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COSETS OF AFFINE VERTEX ALGEBRAS INSIDE LARGER STRUCTURES

THOMAS CREUTZIG AND ANDREW R. LINSHAW

ABSTRACT. Given a finite-dimensional reductive Lie algebra g equipped with a nonde-
generate, invariant, symmetric bilinear form B, let Vk(g, B) denote the universal affine
vertex algebra associated to g and B at level k. Let Ak be a vertex (super)algebra admitting
a homomorphism Vk(g, B) → Ak. Under some technical conditions on Ak, we charac-
terize the commutant Ck = Com(Vk(g, B),Ak) for generic values of k. We establish the
strong finite generation of Ck in full generality in the following cases: Ak = Vk(g

′, B′),
Ak = Vk−l(g

′, B′) ⊗ F , and Ak = Vk−l(g
′, B′) ⊗ Vl(g

′′, B′′). Here g′ and g′′ are finite-
dimensional Lie (super)algebras containing g, equipped with nondegenerate, invariant,
(super)symmetric bilinear forms B′ and B′′ which extend B, l ∈ C is fixed, and F is a free
field algebra admitting a homomorphism Vl(g, B) → F . Our approach is essentially con-
structive and leads to minimal strong finite generating sets for many interesting examples.
As an application, we give a new proof of the rationality of the simple N = 2 superconfor-

mal algebra with c = 3k

k+2
for all positive integers k.

1. INTRODUCTION

Vertex algebra are a fundamental class of algebraic structures that arose out of confor-
mal field theory and have applications in a diverse range of subjects. The coset or commu-
tant construction is a standard way to construct new vertex algebras from old ones. Given
a vertex algebra V and a subalgebra A ⊂ V , Com(A,V) is the subalgebra of V which com-
mutes with A. This was introduced by Frenkel and Zhu in [FZ], generalizing earlier
constructions in representation theory [KP] and physics [GKO], where it was used to con-
struct the unitary discrete series representations of the Virasoro algebra. Many examples
have been studied in both the physics and mathematics literature; for a partial list see
[AP, B-H, BFH, DJX, DLY, HLY, JLI, JLII]. Although it is widely believed that Com(A,V)
will inherit properties of A and V such as rationality, C2-cofiniteness, and strong finite
generation, no general results of this kind are known.

Many interesting vertex algebras are known or expected to have coset realizations. For
example, given a simple, finite-dimensional Lie algebra g, let Lk(g) denote the rational
affine vertex algebra of g at positive integer level k. There is a diagonal map Lk+1(g) →
Lk(g)⊗ L1(g), and a famous conjecture [BS] asserts that when g is simply laced,

(1.1) Com(Lk+1(g), Lk(g)⊗ L1(g))

coincides with a simple rational W-algebra of type g given by the Drinfeld-Sokolov re-
duction associated to the principal embedding of sl2 in g [FF, FKW]. The rationality of
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this series of W-algebras was recently established by Arakawa [Ara]. Another interesting
family is the coset

(1.2) Com(Lk(gln), Lk−1(sln+1)⊗ E(n)).
In this notation, Lk(gln) := H ⊗ Lk(sln) where H is the Heisenberg algebra, and E(n) is
the rank n bc-system, which admits an action of L1(sln). This is conjectured [I] to be a
rational super W-algebra of sl(n+ 1|n), which in the case n = 1 coincides with the N = 2
superconformal algebra.

We propose that in order to study such discrete series of cosets in a uniform manner,
we should first consider the corresponding cosets of the universal affine vertex algebra
Vk(g) of g at level k. For example, to study the cosets (1.1) and (1.2) we should begin
by studying Com(Vk+1(g), Vk(g) ⊗ L1(g)) and Com(Vk+1(gln), Vk−1(sln+1) ⊗ E(n)), respec-
tively. These are expected to coincide with the universal W-algebras of g and sl(n + 1|n),
respectively, for generic values of k. If we could find a strong generating set for the uni-
versal coset, it would in many cases descend to a strong generating set for the coset of
interest. In general, having a strong generating set for a vertex algebra is an impor-
tant step for studying its representation theory and establishing properties such as C2-
cofiniteness and rationality. A class of examples for which this approach has been fruitful
is the parafermion algebras. Given a simple Lie algebra g of rank d and a positive integer
k, the parafermion algebra Nk(g) is the coset Com(H(d), Lk(g)), where H(d) is the rank
d Heisenberg algebra corresponding to the Cartan subalgebra of g. The C2-cofiniteness
of Nk(g) was recently proven in [ALY] and the rationality was proven in [DR], using re-
sults of [DWI, DWII, DWIII]. A key ingredient in proving these important theorems was
the explicit strong generating set for the universal parafermion algebra of sl2, namely
Com(H(1), Vk(sl2)), which was achieved in [DLY, DLWY].

Let g be a finite-dimensional, reductive Lie algebra (i.e., a sum of simple and abelian
Lie algebras), equipped with a nondegenerate, symmetric, invariant bilinear form B. We
denote by Vk(g, B) the universal affine vertex algebra of g at level k, relative to B. In this
paper, we shall study cosets of Vk(g, B) inside a general class of vertex algebras Ak whose
structure constants depend continuously on k. The goal in studying

Ck = Com(Vk(g, B),Ak)

is to understand the behavior of Com(Lk(g, B), Āk), where Lk(g, B) denotes the simple
quotient of Vk(g, B) and Āk is a quotient of Ak. In particular, we are interested in special
values of k for which Vk(g, B) is reducible and Lk(g, B) is rational or admissible. The main
examples we have in mind are the following.

(1) Ak = Vk(g
′, B′) where g′ is a finite-dimensional Lie (super)algebra containing g, and

B′ is a nondegenerate, invariant (super)symmetric bilinear form on g′ extending B.
(2) Ak = Vk−l(g

′, B′) ⊗ F where F is a free field algebra admitting a homomorphism
Vl(g, B) → F for some fixed l ∈ C satisfying some mild restrictions. By a free field
algebra, we mean any vertex algebra obtained as a tensor product of a Heisenberg
algebra H(n), a free fermion algebra F(n), a βγ-system S(n) or a symplectic fermion
algebra A(n).

(3) Ak = Vk−l(g
′, B′)⊗Vl(g′′, B′′). Here g′′ is another finite-dimensional Lie (super)algebra

containing g, equipped with a nondegenerate, invariant, (super)symmetric bilinear
form B′′ extending B. If Vl(g

′′, B′′) is not simple, we may replace Vl(g
′′, B′′) with its

quotient by any ideal; of particular interest is Ll(g
′′, B′′).
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In Section 6, we will prove in full generality that Ck is strongly finitely generated in cases
(1) and (2) above for generic values of k, and in case (3) when Ak = Vk−l(g

′, B′)⊗Vl(g′′, B′′),
and both k and l are generic. We will also prove this when Ak = Vk−l(g

′, B′) ⊗ Ll(g
′′, B′′)

for certain nongeneric values of l in some interesting examples. These are the first general
results on the structure of cosets, and our proof is essentially constructive. The key ingre-
dient is a notion of deformable family of vertex algebras that was introduced by the authors
in [CLI]. A deformable family B is a vertex algebra defined over a certain ring of ratio-
nal functions in a formal variable κ, and B∞ = limκ→∞ has a well-defined vertex algebra
structure. This notion fits into the framework of vertex rings introduced by Mason [M],
and it is useful because a strong generating set for B∞ gives rise to a strong generating set
for B with the same cardinality. In the above examples, Ck is a quotient of a deformable
family C, and a strong generating set for C gives rise to a strong generating set for Ck for
generic values of k. We will show that

C∞ = lim
k→∞

Com(Vk(g, B),Ak) ∼= VG, V = Com
(

lim
k→∞

Vk(g, B), lim
k→∞

Ak

)

,

where G is a connected Lie group with Lie algebra g. Moreover, V is a tensor product of
free field and affine vertex algebras and G preserves each tensor factor of V . The descrip-
tion of Ck for generic values of k therefore boils down to a description of the orbifold VG.
This is an easier problem because V decomposes into a direct sum of finite-dimensional
G-modules, whereas Ck is generally not completely reducible as a Vk(g, B)-module.

Building on our previous work on orbifolds of free field and affine vertex algebras
[LI, LII, LIII, LIV, CLII], we will prove in Sections 4 and 5 that for any vertex algebra
V which is a tensor product of free field and affine vertex algebras and any reductive
group G ⊂ Aut(V) preserving the tensor factors, VG is strongly finitely generated. The
proof depends on a classical theorem of Weyl (Theorem 2.5A of [W]), a result on infinite-
dimensional dual reductive pairs (see Section 1 of [KR] as well as related results in [DLM,
WaI, WaII]), and the structure and representation theory of the vertex algebras BAut(B) for
B = H(n),F(n),S(n),A(n).

In Section 7, we shall apply our general result to find minimal strong finite generating
sets for Ck in some concrete examples which have been studied previously in the physics
literature. In physics language, the tensor product of two copies of Ck is the symmetry
algebra of a two-dimensional coset conformal field theory of a Wess-Zumino-Novikov-
Witten model. Minimal strong generating sets for many examples of coset theories have
been suggested in the physics literature; see especially [B-H], and we provide rigorous
proofs of a number of these conjectures.

Let g be simple, Ak a vertex algebra admitting a homomorphism Vk(g) → Ak, and
Ck = Com(Vk(g),Ak) as above. Suppose that k is a parameter value for which Ak is not
simple, and let I be the maximal proper ideal of Ak, so that Āk = Ak/I is simple. Let
J denote the kernel of the map Vk(g) → Āk, and suppose that J is maximal so that
Vk(g)/J = Lk(g). Let C̄k = Com(Lk(g), Āk) denote the corresponding coset. There is
always a vertex algebra homomorphism

πk : Ck → C̄k,
which in general need not be surjective. In order to apply our results on the generic
behavior of Ck to the structure of C̄k, two problems must be solved. First, we need to
find conditions for which πk is surjective, since in this case a strong generating set for Ck
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descends to a strong generating set for C̄k. Second, let S be a strong generating set for Ck
for generic values of k, which corresponds to a strong generating set for limk→∞ Ck. We
call a value k ∈ C nongeneric if Ck is not strongly generated by S, and we need to find an
algorithm for determining which values of k are generic.

In Section 8, we shall prove that πk is surjective whenever k + h∨ is a positive real
number; in particular, this holds when k is a positive integer. The problem of determining
which values of k are generic is more difficult, and we will describe some examples where
the nongeneric set can be determined explicitly. In these example, the nongeneric set
consists of rational numbers and has compact closure, and all positive real values are
generic. Although we do not prove it, we expect these qualitative features to hold in some
generality. We will use this approach to give a new proof of the rationality of the simple
N = 2 superconformal algebra with c = 3k

k+2
for all positive integers k. This algebra is

realized as the coset of the Heisenberg algebra inside Lk(sl2)⊗E , where E denotes the rank
one bc-system. The rationality and regularity of these N = 2 superconformal algebras
were first established by Adamovic [AII], and in that paper the irreducible modules were
classified and the fusion rules were computed. In the physics literature, these algebras
are known as N = 2 superconformal unitary minimal models [DPYZ]. They are famous in
string theory as extended algebras of tensor products of N = 2 superconformal unitary
minimal models at total central charge 3d are the so-called Gepner models [G] of sigma
models on d-dimensional compact Calabi-Yau manifolds.

Finally, we also mention that our work relates to another current problem in physics.
The problem of finding minimal strong generators is presently of interest in the conjec-
tured duality of families of two-dimensional conformal field theories with higher spin
gravity on three-dimensional Anti-de-Sitter space. Strong generators of the symmetry
algebra of the conformal field theory correspond to higher spin fields, where the confor-
mal dimension becomes the spin. The original higher spin duality [GG] involves cosets
Com (Vk(sln),Ak), where Ak = Vk−1(sln)⊗L1(sln). This case is discussed in Example 7.13.
Example 7.16 is the algebra appearing in the N = 1 superconformal version of the higher
spin duality [CHRI], and Example 7.5 proves a conjecture of that article on the structure
of Com(Vk(sp2n), Vk−1/2(osp(1|2n) ⊗ S(n)). Example 7.11 is the symmetry algebra of the
N = 2 supersymmetric Kazama-Suzuki coset theory on complex projective space [KS].
This family of coset theories is the conjectured dual to the full N = 2 higher spin super-
gravity [CHRII]. All these examples are important since they illustrate consistency of the
higher spin/CFT conjecture on the level of strong generators of the symmetry algebra.
Our results have recently been used in this direction in [FG]. The physics picture is ac-
tually that a two-parameter family of CFTs corresponds to higher spin gravity where the
parameters relate to the ’t Hooft coupling of the gravity. This idea is similar to our idea of
a deformable family of vertex algebras.

2. VERTEX ALGEBRAS

We will assume that the reader is familiar with the basic notions in vertex algebra the-
ory, which has been discussed from various points of view in the literature (see for ex-
ample [B, FBZ, FLM, FHL, LZ, K]). We will follow the notation in [CLII]. Let g be a
finite-dimensional, Lie (super)algebra, equipped with a (super)symmetric, invariant bi-
linear form B. The universal affine vertex (super)algebra Vk(g, B) associated to g and B is
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freely generated by elements Xξ, ξ ∈ g, satisfying the operator product expansions

Xξ(z)Xη(w) ∼ kB(ξ, η)(z − w)−2 +X [ξ,η](w)(z − w)−1.

The automorphism group Aut(Vk(g, B)) is the same as Aut(g); each automorphism acts
linearly on the generators Xξ. If B is the standardly normalized supertrace in the adjoint
representation of g, and B is nondegenerate, we denote Vk(g, B) by Vk(g). We recall the
Sugawara construction, following [KRW]. If g is simple and B is nondegenerate, we may
choose dual bases {ξ} and {ξ′} of g, satisfying B(ξ′, η) = δξ,η. The Casimir operator is
C2 =

∑

ξ ξξ
′, and the dual Coxeter number h∨ with respect to B is one-half the eigenvalue

of C2 in the adjoint representation of g. If k + h∨ 6= 0, there is a Virasoro element

(2.1) Lg =
1

2(k + h∨)

∑

ξ

: XξXξ′ :

of central charge c = k·sdimg

k+h∨ . This is known as the Sugawara conformal vector, and each Xξ

is primary of weight one.

The Heisenberg algebra H(n) has even generators αi, i = 1, . . . , n, satisfying

(2.2) αi(z)αj(w) ∼ δi,j(z − w)−2.

It has the Virasoro element LH = 1
2

∑n
i=1 : α

iαi of central charge n, under which αi is pri-
mary of weight one. The automorphism group Aut(H(n)) is isomorphic to the orthogonal
group O(n) and acts linearly on the generators.

The free fermion algebra F(n) has odd generators φi, i = 1, . . . , n, satisfying

(2.3) φi(z)φj(w) ∼ δi,j(z − w)−1.

It has the Virasoro element LF = −1
2

∑n
i=1 : φ

i∂φi : of central charge n
2
, under which φi is

primary of weight 1
2
. We have Aut(F(n)) ∼= O(n), and it acts linearly on the generators.

Note that F(2n) is isomorphic to the bc-system E(n), which has odd generators bi, ci, i =
1, . . . , n, satisfying

bi(z)cj(w) ∼ δi,j(z − w)−1, ci(z)bj(w) ∼ δi,j(z − w)−1,

bi(z)bj(w) ∼ 0, ci(z)cj(w) ∼ 0.
(2.4)

The βγ-system S(n) has even generators βi, γi, i = 1, . . . , n, satisfying

βi(z)γj(w) ∼ δi,j(z − w)−1, γi(z)βj(w) ∼ −δi,j(z − w)−1,

βi(z)βj(w) ∼ 0, γi(z)γj(w) ∼ 0.
(2.5)

It has the Virasoro elementLS = 1
2

∑n
i=1

(

: βi∂γi : − : ∂βiγi :
)

of central charge −n, under
which βi, γi are primary of weight 1

2
. The automorphism group Aut(S(n)) is isomorphic

to the symplectic group Sp(2n) and acts linearly on the generators.

The symplectic fermion algebra A(n) has odd generators ei, f i, i = 1, . . . , n, satisfying

ei(z)f j(w) ∼ δi,j(z − w)−2, f j(z)ei(w) ∼ −δi,j(z − w)−2,

ei(z)ej(w) ∼ 0, f i(z)f j(w) ∼ 0.
(2.6)

It has the Virasoro element LA = −∑n
i=1 : eif i : of central charge −2n, under which

ei, f i are primary of weight one. We have Aut(A(n)) ∼= Sp(2n), and it acts linearly on the
generators.
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As a matter of terminology, we say that a vertex algebra A is of type W(d1, . . . , dk) if A
has a minimal strong generating set consisting of an element in each weight d1, . . . , dk.

Filtrations. A filtration A(0) ⊂ A(1) ⊂ A(2) ⊂ · · · on a vertex algebra A such that A =
⋃

k≥0A(k) is a called a good increasing filtration [LiI] if for all a ∈ A(k), b ∈ A(l), we have

(2.7) a ◦n b ∈
{

A(k+l) n < 0
A(k+l−1) n ≥ 0

.

Setting A(−1) = {0}, the associated graded object gr(A) =
⊕

k≥0A(k)/A(k−1) is a Z≥0-
graded associative, (super)commutative algebra with a unit 1 under a product induced
by the Wick product on A. Moreover, gr(A) has a derivation ∂ of degree zero, and we call
such a ring a ∂-ring. For each r ≥ 1 we have the projection

(2.8) φr : A(r) → A(r)/A(r−1) ⊂ gr(A).

The key feature of R is the following reconstruction property [LL]. Let {ai| i ∈ I} be a set
of generators for gr(A) as a ∂-ring, where ai is homogeneous of degree di. In other words,
{∂kai| i ∈ I, k ≥ 0} generates gr(A) as a ring. If ai(z) ∈ A(di) satisfies φdi(ai(z)) = ai for
each i, then A is strongly generated as a vertex algebra by {ai(z)| i ∈ I}.

For any Lie superalgebra g = g0 ⊕ g1 and bilinear form B, Vk(g, B) admits a good
increasing filtration

(2.9) Vk(g, B)(0) ⊂ Vk(g, B)(1) ⊂ · · · , Vk(g, B) =
⋃

j≥0

Vk(g, B)(j),

where Vk(g, B)(j) is spanned by iterated Wick products of the generators Xξi and their
derivatives, of length at most j. We have a linear isomorphism Vk(g, B) ∼= gr(Vk(g, B)),
and an isomorphism of graded ∂-rings

(2.10) gr(Vk(g, B)) ∼=
(

Sym
⊕

j≥0

Vj
)

⊗

(

∧

j≥0

⊕

Wj

)

, Vj ∼= g0, Wj
∼= g1.

The ∂-ring structure on
(

Sym
⊕

j≥0 Vj
)
⊗

(
∧

j≥0

⊕

Wj

)

is given by ∂xj = xj+1 for x ∈ Vj
or x ∈ Wj , and the weight grading on Vk(g, B) is inherited by gr(Vk(g, B)).

For V = H(n),F(n),S(n),A(n) we have good increasing filtrations V(0) ⊂ V(1) ⊂ · · · ,
where V(j) is spanned by iterated Wick products of the generators and their derivatives of
length at most j. We have linear isomorphisms

H(n) ∼= gr(H(n)) F(n) ∼= gr(F(n)), S(n) ∼= gr(S(n)), A(n) ∼= gr(A(n)),

and isomorphism of ∂-rings

gr(H(n)) ∼= Sym
⊕

j≥0

Vj , gr(F(n)) ∼=
∧⊕

j≥0

Vj

gr(S(n)) ∼= Sym
⊕

j≥0

(Vj ⊕ V ∗
j ), gr(A(n)) ∼=

∧⊕

j≥0

(Vj ⊕ V ∗
j ),

(2.11)

where Vj ∼= Cn and V ∗
j
∼= (Cn)∗. As above, the ∂-ring structure is given by ∂xj = xj+1 for

x ∈ Vj or V ∗
j , and gr(V) inherits the weight grading on V .

Finally, for all the vertex algebras V = Vk(g, B),H(n),F(n),S(n),A(n) these filtrations
are Aut(V)-invariant. For any reductive group G ⊂ Aut(V), we have linear isomorphisms
VG ∼= gr(VG) and isomorphisms of ∂-rings gr(V)G ∼= gr(VG).
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3. DEFORMABLE FAMILIES

Following [CLI], we recall the notion of a deformable family of vertex algebras. LetK ⊂ C

be a subset which is at most countable, and let FK denote the C-algebra of rational func-

tions in a formal variable κ of the form p(κ)
q(κ)

where deg(p) ≤ deg(q) and the roots of q lie

in K. A deformable family will be a free FK-module B with the structure of a vertex algebra
with coefficients in FK . Vertex algebras over FK are defined in the same way as ordinary
vertex algebras over C. We assume that B possesses a Z≥0-grading B =

⊕

m≥0 B[m] by
conformal weight where each B[m] is free FK-module of finite rank. For k /∈ K, we have
a vertex algebra

Bk = B/(κ− k),

where (κ− k) is the ideal generated by κ− k. Clearly dimC(Bk[m]) = rankFK
(B[m]) for all

k /∈ K and m ≥ 0. We have a vertex algebra B∞ = limκ→∞B with basis {αi| i ∈ I}, where
{ai| i ∈ I} is any basis of B over FK , and αi = limκ→∞ ai. By construction, dimC(B∞[m]) =
rankFK

(B[m]) for all m ≥ 0. The vertex algebra structure on B∞ is defined by

(3.1) αi ◦n αj = lim
κ→∞

ai ◦n aj, i, j ∈ I, n ∈ Z.

The FK-linear map φ : B → B∞ sending ai 7→ αi satisfies

(3.2) φ(ω ◦n ν) = φ(ω) ◦n φ(ν), ω, ν ∈ B, n ∈ Z.

Moreover, all normally ordered polynomial relations P (αi) among the generators αi and
their derivatives are of the form

lim
κ→∞

P̃ (ai),

where P̃ (ai) is a normally ordered polynomial relation among the ai’s and their deriva-
tives, which converges termwise to P (αi). In other words, suppose that

P (αi) =
∑

j

cjmj(αi)

is a normally ordered relation of weight d, where the sum runs over all normally ordered
monomials mj(αi) of weight d, and the coefficients cj lie in C. Then there exists a relation

P̃ (ai) =
∑

j

cj(κ)mj(ai)

where limκ→∞ cj(κ) = cj and mj(ai) is obtained from mj(αi) by replacing αi with ai.

Example 3.1 (Affine vertex superalgebras). Let g = g0 ⊕ g1 be a finite-dimensional Lie
superalgebra over C, where dim(g0) = n and dim(g1) = 2m. Suppose that g is equipped
with a nondegenerate, invariant, supersymmetric bilinear form B. Fix a basis {ξ1, . . . , ξn}
for g0 and {η±1 , . . . , η±m} for g1, so the generators Xξi, Xη±j of Vk(g, B) satisfy

Xξi(z)Xξj (w) ∼ δi,jk(z − w)−2 +X [ξi,ξj ](w)(z − w)−1,

Xη+i (z)Xη−j (w) ∼ δi,jk(z − w)−2 +X [η+i ,η−j ](w)(z − w)−1,

Xξi(z)Xη±j (w) ∼ X [ξi,η
±

j ](w)(z − w)−1,

Xη±i (z)Xη±j (w) ∼ X [η±i ,η±j ](w)(z − w)−1.

(3.3)
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Let κ be a formal variable satisfying κ2 = k, and let F = FK for K = {0}. Let V
be the vertex algebra with coefficients in F which is freely generated by {aξi, aη±j | i =
1, . . . , n, j = 1, . . . , m}, satisfying

aξi(z)aξj (w) ∼ δi,j(z − w)−2 +
1

κ
a[ξi,ξj ](w)(z − w)−1,

aη
+

i (z)aη
−

j (w) ∼ δi,j(z − w)−2 +
1

κ
a[η

+

i ,η−j ](w)(z − w)−1,

aξi(z)aη
±

j (w) ∼ +
1

κ
a[ξi,η

±

j ](w)(z − w)−1,

aη
±

i (z)aη
±

j (w) ∼ +
1

κ
a[η

±

i ,η±j ](w)(z − w)−1.

(3.4)

For k 6= 0, we have a surjective vertex algebra homomorphism

V → Vk(g, B), aξi 7→ 1√
k
Xξi, aη

±

j 7→ 1√
k
aη

±

j ,

whose kernel is the ideal (κ−
√
k), so Vk(g, B) ∼= V/(κ−

√
k). Then

(3.5) V∞ = lim
κ→∞

V ∼= H(n)⊗F(m),

and has even generators αξi for i = 1, . . . , n, and odd generators eη
+

j , eη
−

j for j = 1, . . . , m,
satisfying

αξi(z)αξj (w) ∼ δi,j(z − w)−2,

eη
+

i (z)eη
−

j (w) ∼ δi,j(z − w)−2.
(3.6)

Lemma 3.2 ([CLI], Lemma 8.1). Let K ⊂ C be at most countable, and let B be a vertex algebra
over FK as above. Let U = {αi| i ∈ I} be a strong generating set for B∞, and let T = {ai| i ∈ I}
be the corresponding subset of B, so that φ(ai) = αi. There exists a subset S ⊂ C containing K
which is at most countable, such that FS⊗FK

B is strongly generated by T . Here we have identified
T with the set {1⊗ ai| i ∈ I} ⊂ FS ⊗FK

B.

Corollary 3.3. For k /∈ S, the vertex algebra Bk = B/(κ− k) is strongly generated by the image
of T under the map B → Bk.

IfU is a minimal strong generating set for B∞ it is not clear in general that T is a minimal
strong generating set for B, since there may exist relations of the form λ(k)αj = P , where
P is a normally ordered polynomial in {αi| i ∈ I, i 6= k} and limk→∞ λ(k) = 0, although
limk→∞ P is a nontrivial. However, there is one condition which holds in many examples,
under which T is a minimal strong generating set for B.

Proposition 3.4. Suppose that U = {αi| i ∈ I} is a minimal strong generating set for B∞ such
that wt(αi) < N for all i ∈ I . If there are no normally ordered polynomial relations among
{αi| i ∈ I} and their derivatives of weight less than N , the corresponding set T = {ai| i ∈ I} is a
minimal strong generating set for B.

Proof. If T is not minimal, there exists a decoupling relation λ(k)aj = P for some j ∈ I
of weight wt(aj) < N . By rescaling if necessary, we can assume that either λ(k) or P is
nontrivial in the limit k → ∞. We therefore obtain a nontrivial relation among {αi| i ∈ I}
and their derivarives of the same weight, which is impossible. �
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In our main examples, the fact that relations among the elements of U and their deriva-
tives do not exist below a certain weight is a consequence of Weyl’s second fundamental
theorem of invariant theory for the classical groups [W].

4. ORBIFOLDS OF FREE FIELD ALGEBRAS

By a free field algebra, we mean any vertex algebra V = H(n) ⊗ F(m) ⊗ S(r) ⊗ A(s) for
integers m,n, r, s ≥ 0, where B(0) is declared to be C for B = H,S,F ,A. Building on our
previous work, we establish the strong finite generation of VG for any reductive group
G ⊂ Aut(V) which preserves the tensor factors of V . Our description of these orbifolds is
ultimately based on a classical theorem of Weyl (Theorem 2.5A of [W]). Let Vk ∼= Cn for
k ≥ 1, and let G ⊂ GLn, which acts on the ring Sym

⊕

k≥1 Vk. For all p ≥ 1, GL(p) acts

on
⊕p

k=1 Vk and commutes with the action of G. There is an induced action of GL(∞) =
limp→∞GL(p) on

⊕

k≥1 Vk, so GL(∞) acts on Sym
⊕

k≥1 Vk and commutes with the action

of G. Therefore GL(∞) acts on R = (Sym
⊕

k≥1 Vk)
G as well. Elements σ ∈ GL(∞) are

known as polarization operators, and given f ∈ R, σf is known as a polarization of f .

Theorem 4.1. R is generated by the polarizations of any set of generators for (Sym
⊕n

k=1 Vk)
G.

SinceG is reductive, (Sym
⊕n

k=1 Vk)
G is finitely generated, so there exists a finite set {f1, . . . , fr},

whose polarizations generate R.

As shown in [CLII] (see Theorem 6.4) there is an analogue of this result for exterior
algebras. Let S = (

∧⊕

k≥1 Vk)
G and let d be the maximal degree of the generators of

(Sym
⊕n

k=1 Vk)
G. Then S is generated by the polarizations of any set of generators for

(
∧⊕d

k=1 Vk)
G. In particular, S is generated by a finite number of elements together with

their polarizations. By a similar argument, the same holds for rings of the form

T =
(

(Sym
⊕

k≥1

Vk)⊗ (
∧⊕

k≥1

Wk)
)G
,

where Vk = C
n, Wk = C

m, and G ⊂ GLn ×GLm is any reductive group.

Theorem 4.2. Let V = H(m) ⊗ F(n) ⊗ S(r) ⊗ A(s) for integers m,n, r, s ≥ 0, and let G ⊂
O(m)× O(n)× Sp(2r)× Sp(2s) be a reductive group of automorphisms of V that preserves the
factors H(m), F(n), S(r), and A(s). Then VG is strongly finitely generated.

Proof. Note that V ∼= gr(V) as G-modules, and

gr(VG) ∼= gr(V)G ∼=
(

(Sym
⊕

j≥0

Vj)⊗ (
∧⊕

j≥0

V̄j)⊗ (Sym
⊕

j≥0

Wj)⊗ (
∧⊕

j≥0

W̄j)
)G
,

as supercommutative rings. Here Vj ∼= Cm, V̄j ∼= Cn, Wj
∼= C2r, W̄j

∼= C2s.

By a general theorem of Kac and Radul [KR] (see also [DLM] for the case of compact
G), for each of the vertex algebras B = H(m),S(n),F(r),A(s), we have a dual reductive
pair decomposition

B ∼=
⊕

ν∈H
L(ν)⊗Mν ,

9



where H indexes the irreducible, finite-dimensional representations L(ν) of Aut(B), and
the Mν ’s are inequivalent, irreducible, highest-weight BAut(B)-modules. Therefore

V ∼=
⊕

ν,µ,γ,δ

L(ν)⊗ L(µ)⊗ L(γ)⊗ L(δ)⊗Mν ⊗Mµ ⊗Mγ ⊗M δ,

where L(ν), L(µ), L(γ), and L(δ) are irreducible, finite-dimensional modules over O(m),
O(n), Sp(2r) and Sp(2s), respectively, and Mν , Nµ, Mγ and M δ are irreducible, highest-
weight modules over H(m)O(m), F(n)O(n), S(r)Sp(2r), and A(s)Sp(2s), respectively. An im-
mediate consequence whose proof is the same as the proof of Lemma 14.2 of [LV] is that
VG has a strong generating set which lies in the direct sum of finitely many irreducible
modules over H(m)O(m) ⊗ F(n)O(n) ⊗ S(r)Sp(2r) ⊗A(s)Sp(2s).

By Theorem 9.4 of [LV], S(r) is of type W(2, 4, . . . , 2r2 + 4r) and has strong generators

(4.1) w̃2k+1 =
1

2

r
∑

i=1

(

: βi∂2k+1γi : − : (∂2k+1βi)γi :
)

, k = 0, 1, . . . , r2 + 2r − 1.

By Theorem 11.1 of [LV], F(n) is of type W(2, 4, . . . , 2n) and has strong generators

j̃2k+1 = −1

2

n
∑

i=1

: φi∂2k+1φi :, k = 0, 1, . . . , n− 1.

By Theorem 3.11 of [CLII], A(s) is of type W(2, 4, . . . , 2s) and has strong generators

w2k =
1

2

s
∑

i=1

(

: ei∂2kf i : + : (∂2kei)f i :
)

, k = 0, 1, . . . , s− 1.

In [LIII], it was conjectured that H(m) is of type W(2, 4, . . . , m2 + 3m), and has strong
generators

j2k =

m
∑

i=1

ai∂2kai :, k = 0, 1, . . . ,
1

2
(m2 + 3m− 2).

In [LIV] we proved this form ≤ 6, and although we did not prove it form > 6, we showed
that H(m)O(m) has strong generators {j2k| 0 ≤ k ≤ K} for some K.

For any irreducible H(m)O(m)⊗F(n)O(n)⊗S(r)Sp(2r)⊗A(s)Sp(2s)-submodule M of V with
highest-weight vector f = f(z), and any subset S ⊂ M, define MS to be the subspace
spanned by the elements

: ω1 · · ·ωaν1 · · · νbµ1 · · ·µcζ1 · · · ζdα :,

ωi ∈ H(m)O(m), νi ∈ F(n)O(n), µi ∈ S(r)Sp(2r), ζi ∈ A(s)Sp(2s), α ∈ S.
(4.2)

By the same argument as Lemma 9 of [LII], there is a finite set S of vertex operators of the
form

j2a1(h1) · · · j2at(ht)j̃2b1+1(j1) · · · j̃2bu+1(ju)w̃
2c1+1(k1) · · · w̃2cv+1(kv)w

2d1(l1) · · ·w2dw(lw)f,

such that M = MS. In this notation

j2ai ∈ H(m)O(m), 0 ≤ hi ≤ 2ai ≤ K,

j̃2bi+1 ∈ F(n)O(n), 0 ≤ ji < 2bi + 1 ≤ 2n− 1,

w̃2ci+1 ∈ S(r)Sp(2r), 0 ≤ ki < 2ci + 1 ≤ 2r2 + 4r − 1,

w2di ∈ A(s)Sp(2s), 0 ≤ li ≤ 2di ≤ 2s− 2.

(4.3)
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Combining this with the strong finite generation of each of the vertex algebras H(m)O(m),
F(n)O(n), S(r)Sp(2r), and A(s)Sp(2s), completes the proof. �

5. ORBIFOLDS OF AFFINE VERTEX SUPERALGEBRAS

In [LIII] it was shown that for any Lie algebra g with a nondegenerate form B, and
any reductive group G of automorphisms of Vk(g, B), Vk(g, B)G is strongly finitely gen-
erated for generic values of k. Here we extend this result to the case of affine vertex
superalgebras. Let g = g0 ⊕ g1 be a finite-dimensional Lie superalgebra over C, where
dim(g0) = n and dim(g1) = 2m, and let B be a nondegenerate form on g. Let V be

the deformable vertex algebra from Example 3.1, such that Vk(g, B) ∼= V/(κ −
√
k), and

V∞ = limk→∞ V ∼= H(n)⊗ F(m). Define an F -linear map ψ : V → V∞ by

(5.1) ψ
(

∑

r

cr(κ)mr(a
ξi)

)

=
∑

r

crmr(α
ξi), cr = lim

κ→∞
cr(κ).

In this notation, mr(a
ξi) is a normally ordered monomial in ∂jaξi , and mr(α

ξi) is obtained
from mr(a

ξi) by replacing each aξi with αξi . This map is easily seen to satisfy ψ(ω ◦n ν) =
ψ(ω) ◦n ψ(ν) for all ω, ν ∈ V and n ∈ Z.

Note that V has a good increasing filtration, where V(d) is spanned by normally ordered

monomials in ∂laξi and ∂laη
±

j of degree at most d. We have isomorphisms of ∂-rings

gr(V) ∼= F ⊗C

(

Sym
⊕

j≥0

Vj
)

⊗

(

∧⊕

j≥0

Wj

) ∼= F ⊗C gr(V∞), Vj ∼= g0, Wj
∼= g1.

The action of G on V preserves the formal variable κ, and we have

gr(VG) ∼= gr(V)G ∼= F ⊗C R ∼= F ⊗C gr(V∞)G ∼= F ⊗C gr((V∞)G),

where R =
(

(Sym
⊕

j≥0 Vj)
⊗

(
∧⊕

j≥0Wj)
)G

. Finally, VG[w] is a free F -module and

rankF (VG[w]) = dimC((V∞)G[w]) = dimC(Vk(g, B)G[w])

for all w ≥ 0 and k ∈ C.

Fix a basis {ξ1,l, . . . , ξn,l} for Vl, which corresponds to

{∂laξ1 , . . . , ∂laξn} ⊂ V, {∂lαξ1, . . . , ∂lαξn} ⊂ V∞,

respectively. Similarly, fix a basis {η±1,l, . . . , η±m,l} for Wl corresponding to

{∂laη±1 , . . . , ∂laη±m} ⊂ V, {∂lαη±
1 , . . . , ∂lαη±m} ⊂ V∞,

respectively. The ring R is graded by degree and weight, where ξ1,l, . . . , ξn,l, η
±
1,l, . . . , η

±
m,l

have degree 1 and weight l + 1. Choose a generating set S = {si| i ∈ I} for R as a ∂-ring,
where si is homogeneous of degree di and weight wi. We may assume that S contains
finitely many generators in each weight. We can find a corresponding strong generating
set T = {ti| i ∈ I} for VG, where

ti ∈ (VG)(di), φdi(ti) = 1⊗ si ∈ F ⊗C R.

Here φdi : (VG)(di) → (VG)(di)/(VG)(di−1) ⊂ gr(VG) is the usual projection. In particu-
lar, the leading term of ti is a sum of normally ordered monomials of degree di in the
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variables aξ1 , . . . , aξn and their derivatives, and the coefficient of each such monomial is
independent of κ. Let ui = ψ(ti) where ψ is given by (5.1), and define

(5.2) (VG)∞ = 〈U〉 ⊂ (V∞)G,

where 〈U〉 is the vertex algebra generated by {ui| i ∈ I}.

Fix w ≥ 0, and let {m1, . . . , mr} be a set of normally ordered monomials in ti and their
derivatives, which spans the subspace VG[w] of weight w. Then (VG)∞[w] is spanned by
the corresponding monomials µl = ψ(ml) for l = 1, . . . , r, which are obtained from ml by
replacing ti with ui. Given normally ordered polynomials

P (ui) =
r

∑

l=1

clµl ∈ (VG)∞[w], P̃ (ti) =
r

∑

l=1

cl(κ)ml ∈ VG[w],

with cl ∈ C and cl(κ) ∈ F , we say that P̃ (ti) converges termwise to P (ui) if

lim
κ→∞

cl(κ) = cl, l = 1, . . . , r.

In particular, P̃ (ti) converges termwise to zero if and only if limκ→∞ cl(κ) = 0 for l =
1, . . . , r.

Lemma 5.1. For each normally ordered polynomial relation P (ui) in (VG)∞ of weight m and

leading degree d, there exists a relation P̃ (ti) ∈ VG of weight m and leading degree d which
converges termwise to P (ui).

Proof. We may write P (ui) =
∑d

a=1 P
a(ui), where P a(ui) is a sum of normally ordered

monomials µ =: ∂j1ui1 · · ·∂jtuit : of degree a = di1 + · · · + dit . The leading term P d(ui)
corresponds to a relation in R among the generators si and their derivatives, i.e., P d(si) =
0. It follows that P d(ti) ∈ (VG)(d−1). Since P a(ui) ∈ ((VG)∞)(a) for a = 1, . . . , d − 1, we
have P (ti) ∈ (VG)(d−1). Since {ti| i ∈ I} strongly generates VG, we can express P (ti) as
a normally ordered polynomial P0(ti) of degree at most d − 1. Let Q(ti) = P (ti) − P0(ti),
which is therefore a relation in VG with leading term P d(ti).

If P0(ti) converges termwise to zero, we can take P̃ (ti) = Q(ti) since P (ti) converges
termwise to P (ui). Otherwise, P0(ti) converges termwise to a nontrivial relation P1(ui)

in (VG)∞ of degree at most d − 1. By induction on the degree, there is a relation P̃1(ti)

of leading degree at most d − 1, which converges termwise to P1(ui). Finally, P̃ (ti) =

P (ti)− P0(ti)− P̃1(ti) has the desired properties. �

Corollary 5.2. (VG)∞ = (V∞)G = (H(n)⊗ F(m))G.

Proof. Recall that rankF (VG[w]) = dimC((V∞)G[w]) for all w ≥ 0. Since (VG)∞ ⊂ (V∞)G,
it suffices to show that rankF (VG[w]) = dimC((VG)∞[w]) for all w ≥ 0. Let {m1, . . . , mr}
be a basis for VG[w] as an F -module, consisting of normally ordered monomials in ti and
their derivatives. The corresponding elements µl = ψ(ml) for l = 1, . . . , r span (VG)∞[w],
and by Lemma 5.1 they are linearly independent. Otherwise, a nontrivial relation among
µ1, . . . , µr would give rise to a nontrivial relation among m1, . . . , mr. �

Theorem 5.3. Vk(g, B)G is strongly finitely generated for generic values of k.

Proof. This is immediate from Theorem 4.2 applied to V = H(n) ⊗ F(m) and Corollaries
3.3 and 5.2. �

12



Theorem 5.4. Let V = H(m) ⊗ F(n) ⊗ S(r) ⊗ A(s) be a free field algebra and let g be a Lie
superalgebra equipped with a nondegenerate formB. LetG be a reductive group of automorphisms
of V ⊗ Vk(g, B) which preserves each tensor factor. Then (V ⊗ Vk(g, B))G is strongly finitely
generated for generic values of k.

Proof. We have limk→∞ V ⊗ Vk(g, B) ∼= V ⊗ H(n) ⊗ A(m) where n = dim(g0) and m =
1
2
dim(g1), and limk→∞(V ⊗ Vk(g, B))G ∼= (V ⊗ H(n) ⊗ A(m))G. Clearly G preserves the

tensor factors, so the claim follows from Theorem 4.2 and Corollary 3.3. �

6. COSETS OF Vk(g, B) INSIDE LARGER STRUCTURES: GENERIC BEHAVIOR

Let g be a finite-dimensional reductive Lie algebra, equipped with a nondegenerate
symmetric, invariant bilinear form B. Let Ak be a vertex (super)algebra whose structure
constants depend continuously on k, admitting a homomorphism Vk(g, B) → Ak, and let
Ck = Com(Vk(g, B),Ak). Many cosets of this form have been studied in both the physics
and mathematics literature. One class of examples is Ak = Vk(g

′, B′) where g′ is a Lie
(super)algebra containing g, and B is a nondegenerate, (super)symmetric invariant form
on g′ extending B. Another class of examples is Ak = Vk−l(g

′, B′)⊗F where g′ and B′ are
as above and F is a free field algebra admitting a map φ : Vl(g, B) → F for some fixed
l ∈ C. We require that the action of g on F integrates to an action of a group G whose Lie
algebra is g, and that G preserves the tensor factors of F . The map Vk(g, B) → Ak is just
the diagonal map Xξi 7→ Xξi ⊗ 1 + 1⊗ φ(Xξi).

To construct examples of this kind, we recall a well-known vertex algebra homomor-
phism τ : V−1/2(sp2n) → S(n). In terms of the basis {ei,j|1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n} for gl2n,
a standard basis for sp2n consists of

ej,k+n + ek,j+n, −ej+n,k − ek+n,j, ej,k − en+k,n+j, 1 ≤ j, k ≤ n.

Define τ by

(6.1) Xej,k+n+ek,j+n 7→ : γjγk :, X−ej+n,k−ek+n,j 7→ : βjβk :, Xej,k−en+k,n+j 7→ : γjβk : .

It is easily checked that the sp2n-action coming from the zero modes {Xξ(0)| ξ ∈ sp2n}
integrates to the usual action of Sp(2n) on S(n). There is a similar homomorphism σ :
V1(som) → F(m) whose zero mode action integrates to SO(m). If g is any reductive Lie
algebra which embeds in sp2n, andB1 is the restriction of the form on sp2n to g, we obtain a
restriction map τg : V1(g, B1) → S(n). Similarly, if g embeds in som we obtain a restriction
map σg : V1(g, B2) → F(m), where B2 is the restriction of the form on som to g. Finally, we
have the diagonal embedding

V1(g, B1 +B2) → S(n)⊗F(m), Xξ 7→ τg(X
ξ)⊗ 1 + 1⊗ σg(X

ξ).

The action of g coming from the zero modes integrates to an action of a connected Lie
group G with Lie algebra g, which preserves both S(n) and F(m).

Finally, we mention one more class of examples Ak = Vk−l(g
′, B′) ⊗ Vl(g

′′, B′′). Here
g′′ is another finite-dimensional Lie (super)algebra containing g, equipped with a nonde-
generate, invariant, (super)symmetric bilinear form B′′ extending B. As usual, the map
Vk(g, B) → Ak is the diagonal map Xξi 7→ Xξi ⊗ 1+ 1⊗Xξi . If Vl(g

′′, B′′) is not simple, we
may replace Vl(g

′′, B′′) with its quotient by any nontrivial ideal in the above definition.
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In order to study all the above cosets Ck from a unified point of view it is useful to
axiomatize Ak. A vertex algebra Ak with structure constants depending continuously on
k, which admits a map Vk(g, B) → Ak will be called good if the following conditions hold.

(1) There exists a deformable family A defined over FK for some (at most countable)

subset K ⊂ C containing zero, such that Ak = A/(κ −
√
k). Letting V be as in

Example 3.1, there is a homomorphism V → A inducing the map Vk(g, B) → Ak for

each k with
√
k /∈ K.

(2) For generic values of k, Ak admits a Virasoro element LA and a conformal weight
grading Ak =

⊕

d∈N Ak[d]. For all d, dim(Ak[d]) is finite and independent of k.
(3) For generic values of k, Ak decomposes into finite-dimensional g-modules, so the

action of g integrates to an action of a connected Lie group G having g as Lie algebra.
(4) We have a vertex algebra isomorphism

A∞ = lim
k→∞

Ak
∼= H(d)⊗ Ã, d = dim(g).

Here Ã is a vertex subalgebra of limk→∞Ak with Virasoro element LÃ and N-grading
by conformal weight, with finite-dimensional graded components.

(5) Although Lg
0 need not act diagonalizably on Ak, it induces a grading on Ak into

generalized eigenspaces corresponding to the Jordan blocks of each eigenvalue. In
general, these generalized eigenspaces can be infinite-dimensional. However, any
highest-weight Vk(g, B)-submodule of Ak has finite-dimensional components with
respect to this grading for generic values of k.

Note that for generic values of k, Ck has the Virasoro element LC = LA − Lg, where

Lg is the Virasoro element in Vk(g, B). Note that limk→∞Lg = LH = 1
2

∑d
i=1 : αξiαξi :,

and that limk→∞ LA = LH + LÃ. It is not difficult to check that all the above examples
Ak = Vk(g

′, B′), Ak = Vk−l(g
′, B′) ⊗ F , and Ak = Vk−l(g

′, B′) ⊗ Vk(g
′′, B′′) are good. Also,

Vk−l(g
′, B′)⊗Vk(g′′, B′′) remains good if we replace Vk(g

′′, B′′) by its quotient by any ideal.
Suppose that dim(g) = d and g′ = g′0 ⊕ g′1 where dim(g′0) = n and dim(g′1) = 2m. For

Ak = Vk(g
′, B′), we have Ã ∼= H(n − d) ⊗ A(m). Similarly, for Ak = Vk−l(g

′, B′) ⊗ F ,

we have Ã ∼= H(n − d) ⊗ A(m) ⊗ F . Finally, for Ak = Vk−l(g
′, B′) ⊗ Vl(g

′′, B′′), we have

Ã ∼= H(n−d)⊗A(m)⊗Vl(g′′, B′′). The same holds if we replace Vl(g
′′, B′′) with its quotient

by any ideal.

Lemma 6.1. Let g be reductive and B nondegenerate, and suppose that Ak is good. For generic
values of k, Ck = Ker(Lg

0) ∩ (Ak)
G.

Proof. Suppose first that g is simple. Clearly any ω ∈ Ck is annihilated by Lg
0 and is G-

invariant. Conversely, suppose that ω ∈ Ker(Lg
0) ∩ (Ak)

G. If ω /∈ Ck, Xξi ◦1 ω 6= 0 for each
i = 1, . . . , d. We show that such an ω cannot exist for generic level k.

Recall that Ak is N-graded by conformal weight (i.e., LA
0 -eigenvalue). Write ω as a sum

of terms of homogeneous weight, and let m be the maximum value which appears. Let
g+ ⊂ ĝ be the Lie subalgebra generated by the positive modes {Xξ(k)| ξ ∈ g, k > 0}. Note
that each element of U(g+) lowers the weight by some k > 0, and the conformal weight
grading on U(g+) is the same as the grading by Lg

0-eigenvalue. An element x ∈ U(g+) of
weight −k satisfies x(ω) ∈ Am−k. Also, x(ω) lies in the generalized eigenspace of Lg

0 of
eigenvalue −k, and x(ω) = 0 if k > m.
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It follows that U(g+)ω is a finite-dimensional vector space graded by conformal weight.
In particular, the subspaceM ⊂ U(g+)ω of minimal weightm is finite-dimensional. Hence
it is a finite-dimensional g-module, and is thus a direct sum of finite-dimensional highest-
weight g-modules. Moreover, U(g+) acts trivially on M . Since g is simple and Lg is the
Sugawara vector at level k, the eigenvalue of Lg

0 on M is given by

(6.2) Lg
0|M =

Cas(M)

k + h∨
,

where Cas(M) is the Casimir eigenvalue on M . In fact, each irreducible summand of
M must have the same Lg

0 eigenvalue and hence the same Casimir eigenvalue. This is
a rational number. The Lg

0 eigenvalue on M must actually be a negative integer r, with
−m ≤ r ≤ −1. This statement and (6.2) can only be true for special rational values of k.

Similarly, if g = C, so that G = C∗ and Vk(g, B) ∼= H(1) for k 6= 0, we have Ck =
Ker(LH

0 ) ∩ (Ak)
C∗

for generic values of k. This is immediate from the fact that H(1) acts
completely reducibly on Ak, so that (Ak)

C∗ ∼= H(1)⊗ Ck. Now it follows by induction on
the number of simple and abelian summands that the lemma holds for any reductive Lie
algebra g. �

Theorem 6.2. Let g be reductive and B nondegenerate, and suppose that Ak is good. Then we
have a vertex algebra isomorphism

lim
k→∞

Ck ∼= ÃG.

Proof. The operator Lg
0 acts on the (finite-dimensional) spaces Ak[n] of weight n and com-

mutes withG, so it maps AG
k [n] to itself. By the preceding lemma, Ck[n] is the kernel of this

map. Let φ : Ak[n] → A∞[n] = (H(d) ⊗ Ã)[n] be the map sending ω 7→ limk→∞ ω, which

is injective and maps Ck[n] into Ã[n]. Then Φ = φ ◦ Lg
0 : AG

k [n] → (H(d)⊗ Ã)G[n] also has

kernel equal to Ck[n]. It is enough to show that dim(Ker(Φ)) ≥ dim(ÃG[n]). Equivalently,

we need to show that dim(Coker(Φ)) ≥ dim(ÃG[n]). To see this, note that any element in
the image of Lg

0 is a linear combination of elements of the form : (∂iaξi)ν : for ξi ∈ g and
i ≥ 0. Under φ these get mapped to : (∂iαξi)φ(ν) :. In particular, each term has weight at

least one under LH
0 , so ÃG[n] injects into Coker(Φ). �

Corollary 6.3. Let g be reductive and B nondegenerate, and suppose that Ak is good. Suppose

that Ã is a tensor product of free field and affine vertex algebras, and the induced action of G
preserves each tensor factor. Then Ck is strongly finitely generated for generic values of k.

Corollary 6.4. Let g be reductive and B nondegenerate. Let g′ be a Lie (super)algebra containing
g, equipped with a nondegenerate (super)symmetric formB′ extendingB, and let Ak = Vk(g

′, B′).
Then

Ck = Com(Vk(g, B), Vk(g
′, B′))

is strongly finitely generated for generic values of k.

Let F be a free field algebra admitting a map Vl(g, B) → F for some fixed l, and let Ak =
Vk−l(g

′, B′)⊗ F . If the induced action of G preserves the tensor factors of F ,

Ck = Com(Vk(g, B), Vk−l(g
′, B′)⊗F)

is strongly finitely generated for generic values of k.
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Finally, let g′′ be another Lie (super)algebra containing g, equipped with a nondegenerate (su-
per)symmetric form B′′ extending B, and let Ak = Vk−l(g

′, B′)⊗ Vl(g
′′, B′′). Then

Ck = Com(Vk(g, B), Vk−l(g
′, B′)⊗ Vl(g

′′, B′′))

is strongly finitely generated for generic values of both k and l.

7. SOME EXAMPLES

To illustrate the constructive nature of our results, this section is devoted to finding
minimal strong finite generating sets for Ck in some concrete examples.

Example 7.1. Let g = sp2n and let Ak = Vk+1/2(sp2n)⊗S(n). Using the map V−1/2(sp2n) →
S(n) given by (6.1), we have the diagonal map Vk(sp2n) → Ak. Clearly

Ck = Com(Vk(sp2n),Ak)

satisfies C∞ ∼= S(n)Sp(2n) which is of type W(2, 4, . . . , 2n2 + 4n) by Theorem 9.4 of [LV]. It
follows from Corollary 6.4 that for generic values of k, Ck is of type W(2, 4, . . . , 2n2 + 4n).

It is well known [KWY] that S(n)Sp(2n) ∼= L−1/2(sp2n)
Sp(2n) where L−1/2(sp2n) denotes the

irreducible quotient of V−1/2(sp2n). We obtain the following result, which was conjectured
by Blumenhagen, Eholzer, Honecker, Hornfeck, and Hubel (see Table 7 of [B-H]).

Corollary 7.2. For Ak = Vk+1/2(sp2n) ⊗ L−1/2(sp2n), Ck = Com(Vk(sp2n),Ak) is of type
W(2, 4, . . . , 2n2 + 4n) for generic values of k.

Example 7.3. Let g = sp2n and Ak = Vk(osp(1|2n)). Then Ck = Com(Vk(sp2n), Vk(osp(1|2n))
satisfies limk→∞ Ck ∼= A(n)Sp(2n). Since A(n)Sp(2n) is of type W(2, 4, . . . , 2n) by Theorem
3.11 of [CLII], we obtain

Corollary 7.4. Ck = Com(Vk(sp2n), Vk(osp(1|2n)) is of type W(2, 4, . . . , 2n) for generic k.

In fact, by Corollary 5.7 of [CLII], A(n)Sp(2n) is freely generated; there are no nontrivial
normally ordered polynomial relations among the generators and their derivatives. It
follows that Ck is freely generated for generic values of k.

Example 7.5. Next, let g = sp2n and A = Vk+1/2(osp(1|2n)⊗ S(n). Then

Ck = Com(Vk(sp2n), Vk−1/2(osp(1|2n)⊗ S(n))
satisfies limk→∞ Ck ∼= (A(n)⊗ S(n))Sp(2n).
Lemma 7.6. (A(n)⊗ S(n))Sp(2n) has the following minimal strong generating set:

j2k =
1

2

(

n
∑

i=1

: ei∂2kf i : + : (∂2kei)f i :
)

, 0 ≤ k ≤ n− 1,

w2k+1 =
1

2

(

n
∑

i=1

: βi∂2k+1γi− : (∂2k+1βi)γi :
)

, 0 ≤ k ≤ n− 1,

µk =
1

2

(

n
∑

i=1

: βi∂kf i− : γi∂kei :
)

, 0 ≤ k ≤ 2n− 1.

(7.1)

In particular, (A(n)⊗S(n))Sp(2n) has a minimal strong generating set consisting of even genera-
tors in weights 2, 2, 4, 4, . . . , 2n, 2n and odd generators in weights 3

2
, 5
2
, . . . , 4n+1

2
.
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Proof. The argument similar to the proof of Theorem 7.1 of [CLI], and some details are
omitted. By passing to the associated graded algebra and applying Weyl’s first funda-
mental theorem of invariant theory for Sp2n, we obtain the following strong generating
set for (A(n)⊗ S(n))Sp(2n):

1

2

(

n
∑

i=1

: ∂aei∂bf i : + : (∂b∂aei)f i :
)

, a, b ≥ 0,

1

2

(

n
∑

i=1

: ∂aβi∂bγi− : (∂bβi)∂aγi :
)

, a, b ≥ 0,

1

2

(

n
∑

i=1

: ∂aβi∂bf i− : ∂aγi∂bei :
)

, a, b ≥ 0.

As in Theorem 7.1 of [CLI], we use the relation of minimal weight to construct decoupling
relations eliminating all but the set (7.1). �

Corollary 7.7. For generic values of k, Ck has a minimal strong generating set consisting of even
generators in weights 2, 2, 4, 4, . . . , 2n, 2n and odd generators in weights 3

2
, 5
2
, . . . , 4n+1

2
.

Let L = −j0 +w1 denote the Virasoro element of (A(n)⊗S(n))Sp(2n), which has central
charge −3n. Then L and µ0 generate a copy of the N = 1 superconformal algebra with
c = −3n. Similarly, for noncritical values of k, L = Losp(1|2n) − Lsp2n + w1 and µ0 generate
a copy of the N = 1 algebra inside Ck.

Example 7.8. Let g = gln and Ak = Vk(gl(n|1)). In this case, Ck = Com(Vk(gln),Ak)
satisfies limk→∞ Ck ∼= H(1) ⊗ (A(n)GL(n)). By Theorem 4.3 of [CLII], A(n)GL(n) is of type
W(2, 3, . . . , 2n+ 1) so Ck is generically of type W(1, 2, 3, . . . , 2n+ 1).

Example 7.9. Let g = gln and Ak = Vk(gl(n|1))⊗S(n). In this case, Ck = Com(Vk(gln),Ak)
satisfies limk→∞ Ck ∼= H(1)⊗ (A(n)⊗ S(n))GL(n).

Lemma 7.10. (A(n)⊗ S(n))GL(n) has the following minimal strong generating set:

wk =
n

∑

i=1

: ei∂kf i :, jk =
n

∑

i=1

: βi∂kγi :, 0 ≤ k ≤ 2n− 1,

νk =

n
∑

i=1

: ei∂kγi :, µk =

n
∑

i=1

: βi∂kf i :, 0 ≤ k ≤ 2n− 1.

The even generators are in weights 1, 2, 2, 3, 3, . . . , 2n, 2n, 2n + 1, and the odd generators are in
weights 3

2
, 3
2
, 5
2
, 5
2
, . . . , 4n+1

2
, 4n+1

2
.

Proof. The argument is the same as the proof of Lemma 7.6. �

Therefore Ck has a minimal strong generating set with even generators in weights
1, 1, 2, 2, 3, 3, . . . , 2n, 2n, 2n+ 1, and odd generators in weights 3

2
, 3
2
, 5
2
, 5
2
, . . . , 4n+1

2
, 4n+1

2
, for

generic values of k. Note that (A(n)⊗S(n))GL(n) has the following N = 2 superconformal
structure of central charge −3n.

(7.2) L = j1 − 1

2
∂j0 − w0, F = j0, G+ = ν0, G− = µ0.
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For noncritical values of k, this deforms to anN = 2 superconformal structure on Ck given
by

L = j1−1

2
∂j0+Lgl(n|1)−Lgln , F = j0, G+ =

n
∑

i=1

: Xη−i γi :, G− =

n
∑

i=1

: βiXη+i : .

Example 7.11. Let g = gln and Ak = Vk−1(sln+1) ⊗ E(n). There is a map Vk(gln) →
Vk−1(sln+1) corresponding to the natural embedding gln → sln+1, and a homomorphism
V1(gln) → E(n) appearing in [FKRW], so we have a diagonal homomorphism Vk(gln) →
Ak. Then Ck = Com(Vk(gln),Ak) satisfies limk→∞ Ck = (H(2n) × E(n))GL(n), where H(2n)
is the Heisenberg algebra with generators a1, . . . , an and ā1, . . . , ān satisfying

ai(z)āj(w) ∼ δi,j(z − w)−2, ai(z)aj(w) ∼ 0, āi(z)āj(w) ∼ 0.

Lemma 7.12. (H(2n)× E(n))GL(n) has a minimal strong generating set

jk =

n
∑

i=1

: bi∂kci :, wk =

n
∑

i=1

: ai∂kāi : 0 ≤ k ≤ n− 1,

νk =
n

∑

i=1

: bi∂kāi :, µk =
n

∑

i=1

: ai∂kci :, 0 ≤ k ≤ n− 1.

In particular, (H(2n)×E(n))GL(n) has even generators in weights 1, 2, 2, 3, 3, . . . , n, n, n+1, and
odd generators in weights 3

2
, 3
2
, 5
2
, 5
2
, . . . , 2n+1

2
, 2n+1

2
.

Proof. This is the same as the proof of Lemma 7.6. �

Therefore Ck has a minimal strong generating set in the same weights for generic values
of k. Finally, (H(2n)× E(n))GL(n) has an N = 2 superconformal structure given by

(7.3) L = −j1 + 1

2
∂j0 − w0, F = j0, G+ = ν0, G− = µ0,

which deforms to an N = 2 superconformal structure on Ck.

This example is called the Kazama-Suzuki coset [KS] of complex projective space in the
physics literature. It is conjectured [I] to be a super W-algebra of sl(n+1|n) corresponding
to the principal nilpotent embedding of sl2. In Section 8, we will explicitly determine the
set of nongeneric values of k in the case n = 1. As a consequence, we will describe
Com(H(1), Lk(sl2)⊗ E(1)) for all positive integers k, and prove its rationality.

Example 7.13. Let g = sln and Ak = Vk−1(sln)⊗L1(sln). Note that L1(sln) ∼= Com(H, E(n))
where H is the copy of the rank one Heisenberg algebra generated by

∑n
i=1 : bici : and

E(n) is the rank n bc-system. Then Ck = Com(Vk(sln),Ak) satisfies

lim
k→∞

Ck ∼= L1(sln)
SL(n) = Com(H, E(n))SL(n) ∼= Com(H, E(n)SL(n)) = Com(H, E(n)GL(n)).

By [FKRW], E(n)GL(n) ∼= W1+∞,n
∼= W(gln) so limk→∞ Ck ∼= W(sln) and hence is of type

W(2, 3, . . . , n). It follows that Ck is of type W(2, 3, . . . , n) for generic values of k.

More generally, let g be any simple, finite-dimensional, simply laced Lie algebra. The
action of g on L1(g) integrates to an action of a connected Lie group G with Lie al-
gebra g, and it is known that L1(g)

G is isomorphic to the W-algebra W(g) associated
to the principal embedding of sl2 in g, with central charge c = rank(g) [BBSS, BS, F].
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Let Ak = Vk−1(g) ⊗ L1(g), equipped with the diagonal embedding Vk(g) → Ak. Then
Ck = Com(Vk(g),Ak) satisfies

lim
k→∞

Ck ∼= L1(g)
G.

Therefore Ck has strong generators in the same weights as W(g) for generic values of k.

Example 7.14. Let g = son and let Ak = Vk−1(son) ⊗ L1(son). We have a projection
V1(son) → L1(son), and a diagonal map Vk(son) → Ak. In this case we are interested
not in Ck = Com(Vk(son),Ak) but in the orbifold (Ck)Z/2Z. Note that Z/2Z acts on each of
the vertex algebras Vk(son), Vk−1(son) and L1(son); the action is defined on generators by
multiplication by −1. There is an induced action of Z/2Z on Ck. We have isomorphisms

lim
k→∞

((Ck)Z/2Z) ∼= lim
k→∞

(Ck)Z/2Z ∼=
(

L1(son)
SO(n)

)Z/2Z ∼= L1(son)
O(n) ∼= F(n)O(n).

This appears as Theorems 14.2 and 14.3 of [KWY] in the cases where n is even and odd,
respectively; in both cases, L1(son)

SO(n) decomposes as the direct sum of F(n)O(n) and an
irreducible, highest-weight F(n)O(n)-module. Since F(n)O(n) is of type W(2, 4, . . . , 2n), the
following result, which was conjectured in Table 7 of [B-H], is an immediate consequence.

Corollary 7.15. limk→∞(Ck)Z/2Z is of type W(2, 4, . . . , 2n), so (Ck)Z/2Z is of type W(2, 4, . . . , 2n)
for generic values of k.

Example 7.16. Let g = son and let Ak = Vk−1(son+1) ⊗ F(n). Recall that we have a map
V1(son) → F(n), so we have a diagonal map Vk(son) → Ak. As above, there is an action of
Z/2Z acts on each of the vertex algebras Vk(son), Vk+1(son+1) and F(n), and therefore on
Ck, and we are interested in the orbifold (Ck)Z/2Z. We have C∞ = (H(n) ⊗ F(n))SO(n), and
(C∞)Z/2Z = (H(n)⊗F(n))O(n).

Lemma 7.17. (H(n)⊗F(n))O(n) has the following minimal strong generating set.

w2k+1 =

n
∑

i=1

: φi∂2k+1φi :, j2k =

n
∑

i=1

: αi∂2kαi :, 0 ≤ k ≤ n− 1,

µk =

n
∑

i=1

: αi∂kφi :, 0 ≤ k ≤ 2n− 1.

In particular, (H(n) ⊗ F(n))O(n) has even generators in weights 2, 2, 4, 4, . . . , 2n, 2n and odd
generators in weights 3

2
, 5
2
, . . . , 4n+1

2
.

The proof is the same as the proof of Lemma 7.6, and it implies that (Ck)Z/2Z has strong
generators in the same weights for generic values of k. Moreover, (H(n) ⊗ F(n))O(n) has
anN = 1 superconformal structure with generators L = −w0+ 1

2
j0 and µ0, which deforms

to an N = 1 structure on (Ck)Z/2Z.

Example 7.18. Let g be a simple, finite-dimensional Lie algebra of rank d with Cartan
subalgebra h. For a positive integer k, the parafermion algebra Nk(g) is defined to be
Com(H(d), Lk(g)), where H(d) is the Heisenberg algebra corresponding to h and Lk(g)
is the irreducible affine vertex algebra at level k. The coset Ck(g) = Com(H(d), Vk(g)) is
defined for all k ∈ C, and for a positive integer k, Nk(g) is the irreducible quotient of Ck(g)
by its maximal proper ideal. In the case g = sl2, it follows from Theorems 2.1 and 3.1 of
[DLWY] that Ck(sl2) is of type W(2, 3, 4, 5) for all k 6= 0. This was used to establish the
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C2-cofiniteness of Nk(sl2) for positive integer values of k, and plays an important role in
the structure of Nk(g) for a general simple g [ALY].

For any simple g of rank d, a choice of simple roots give rise to d copies of sl2 inside g

which generate g. We have corresponding embeddings of W(2, 3, 4, 5) into Ck(g), whose
images generate Ck(g) [DWI]. However, these do not strongly generate Ck(g). Corollary
6.4 implies that Ck(g) is strongly finitely generated for generic values of k for any simple
g. We shall construct a minimal strong generating set for Ck(sl3) consisting of 30 elements.

We work in the usual basis for sl3 consisting of {ξij| i 6= j} together with {ξii − ξi+1,i+1}
for i = 1, 2. We have limk→∞ Vk(sl3) ∼= H(2) ⊗ Ã where Ã ∼= H(6) with generators
α12, α23, α13, α21, α32, α31. After suitably rescaling, these generators satisfy

α12(z)α21(w) ∼ (z − w)−2, α23(z)α32(w) ∼ (z − w)−2, α13(z)α31(w) ∼ (z − w)−2.

Note that H(6) carries an action of G = C∗ × C∗ which is infinitesimally generated by the
action of h.

Lemma 7.19. H(6)G is of type W(23, 35, 47, 59, 64, 72). In other words, a minimal strong gener-
ating set consists of 3 fields in weight 2, 5 fields in weight 3, 7 fields in weight 4, 9 fields in weight
5, 4 fields in weight 6, and 2 fields in weight 7.

Proof. By classical invariant theory, H(6)G has a strong generating set consisting of the
normally ordered monomials

q12i,j = : ∂iα12∂jα21 :, q13i,j = : ∂iα13∂jα31 :, q23i,j = : ∂iα23∂jα32 :, i, j ≥ 0,

ci,j,k = : ∂iα12∂jα23∂kα31 :, c′i,j,k = : ∂iα21∂jα32∂kα13 :, i, j, k ≥ 0.
(7.4)

Not all of these generators are necessary. In fact, {q120,i| 0 ≤ i ≤ 3}, {q230,i| 0 ≤ i ≤ 3},
and {q130,i| 0 ≤ i ≤ 3} generate three commuting copies of W(2, 3, 4, 5), and all the above
quadratics lie in one of these copies. Similarly, we need at most {ci,j,k, c′i,j,k| i, j, k ≤ 2}.
This follows from the decoupling relations

: q120,0ci,j,k : − : q12i,0c0,j,k : = − i

2i+ 4
ci+2,j,k, i ≥ 1, j, k ≥ 0,

: q230,0ci,j,k : − : q23j,0ci,0,k : = − j

2j + 4
ci,j+2,k, j ≥ 1, i, k ≥ 0,

: q310,0ci,j,k : − : q31i,0ci,j,0 : = − k

2k + 4
ci,j,k+2, k ≥ 1, i, j ≥ 0,

: q210,0c
′
i,j,k : − : q21i,0c

′
0,j,k : = − i

2i+ 4
c′i+2,j,k, i ≥ 1, j, k ≥ 0,

: q320,0c
′
i,j,k : − : q32j,0c

′
i,0,k : = − j

2j + 4
c′i,j+2,k, j ≥ 1, i, k ≥ 0,

: q130,0c
′
i,j,k : − : q13i,0c

′
i,j,0 : = − k

2k + 4
c′i,j,k+2, k ≥ 1, i, j ≥ 0.

(7.5)

There are some relations among the above cubics and their derivatives, such as ∂c0,0,0 =
c1,0,0 + c0,1,0 + c0,0,1. It is not difficult to check that a minimal strong generating set for
H(6)G consists of

{q120,i, q230,i, q130,i| 0 ≤ i ≤ 3} ∪ {c0,j,k, c′0,j,k| 0 ≤ j, k ≤ 2}.
In particular, H(6)G is of type W(23, 35, 47, 59, 64, 72). �
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Corollary 7.20. For generic values of k, Ck(sl3) is also of type W(23, 35, 47, 59, 64, 72).

A similar procedure will yield minimal strong generating sets for Ck(g) for any simple
g when k is generic.

8. COSETS OF SIMPLE AFFINE VERTEX ALGEBRAS INSIDE LARGER STRUCTURES

Let Ak be a vertex algebra depending on a parameter k with a weight grading by Z≥0,
such that all weight spaces are finite-dimensional. Let g be simple and assume that Ak

admits an injective map Vk(g) → Ak, and let Ck = Com(Vk(g),Ak) as before. Suppose that
k is a parameter value for which Ak is not simple. Let I be the maximal proper ideal of
Ak graded by conformal weight, so that Āk = Ak/I is simple. Let J denote the kernel of
the map Vk(g) → Āk, and suppose that J is maximal so that Vk(g)/J = Lk(g). Let

C̄k = Com(Lk(g), Āk)

denote the corresponding coset. There is always a vertex algebra homomorphism

πk : Ck → C̄k,
but in general this map need not be surjective. Of particular interest is the case where k
is a positive integer and Āk is C2-cofinite and rational. It is then expected that C̄k will also
be C2-cofinite and rational. In order to apply our results on the generic behavior of Ck to
the structure of C̄k, the two problems must be solved.

(1) Find conditions for which πk is surjective, so that a strong generating set for Ck de-
scends to a strong generating set for C̄k.

(2) Suppose that S ⊂ Ck is a strong generating set for Ck for generic values of k. We
call k ∈ C nongeneric if Ck is not strongly generated by S. Find an algorithm for
determining which values of k are generic.

Theorem 8.1. Suppose that k+ h∨ is a positive real number and all zero modes of the currents of
the Cartan subalgebra h ⊂ g in Vk(g) act semisimply on Ak. Then πk : Ck → C̄k is surjective.

Proof. First, Ak decomposes into a direct sum of indecomposable Vk(g) ⊗ Ck modules,
and this sum is bigraded by the conformal weights of the two conformal vectors. Each
bigraded subspace is finite-dimensional since the two conformal weights add up to the
total one, and that weight space is finite-dimensional.

Thus every such indecomposable Vk(g)-module M appearing in Ak must have finite-
dimensional lowest weight subspace. Since the zero modes of the Heisenberg subalge-
bra corresponding to h act semisimply, M must be a subquotient of a finite direct sum
of Verma modules, each of which is induced from an irreducible, finite-dimensional g-
module with highest weight Λ. The conformal dimension of such a module is given by

(Λ + ρ|Λ)
2(k + h∨)

and hence the vacuum module has lowest possible conformal dimension. It therefore
cannot appear in any composition factor of the other modules. Of course quotients of the
vacuum module can appear in the decomposition of Ak, but their multiplicity spaces will
be part of Ck. In other words,

Ak =
(

⊕

i

Mi ⊗ Ci

)

⊕

D,
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where each Mi is a homomorphic image of Vk(g), Ci is a Ck-module, and D is a sum of
indecomposable Vk(g) ⊗ Ck modules which do not contain the vacuum module Vk(g) or
any of its quotients. In particular, note that Ck =

⊕

i Ci.

Similarly, the indecomposable summands of the ideal I ⊂ Ak will be submodules of
the indecomposable summands of Ak. Letting Ii = I ∩ (Mi ⊗ Ci) and ID = I ∩ D, we
have a decomposition

Ak/I ∼=
(

⊕

i

(

Mi ⊗ Ci

)

/Ii

)

⊕

D/ID.

Note that each module (Mi ⊗ Ci)/Ii is a module for Lk(g), and hence must be either
zero or Lk(g)⊗ C̄i where C̄i is a homomorphic image of Ci. Since the remaining summand
D/ID does not contain any quotient of the vacuum module, it follows that

C̄k =
⊕

i

C̄i

is a homomorphic image of Ck =
⊕

iCi. �

This theorem applies in particular to the case where g is simple and simply laced, and
A = Vk−1(g)⊗ L1(g). We obtain

Corollary 8.2. Let g be simple and simply laced, and Ak = Vk−1(g) ⊗ L1(g), and let k > 1 be a
positive integer. Let Ck = Com(Vk(g), Vk−1(g)⊗L1(g)) and C̄k = Com(Lk(g), Lk−1(g)⊗L1(g)).
Then the map πk : Ck → C̄k is surjective.

Remark 8.3. If Vk(g) is replaced by Vk(g, B) where g is semisimple and B is a sum of positive
scalar multiples of the normalized Killing forms of the simple summand, a similar statement to
Theorem 8.1 follows by induction on the number of simple summands. Furthermore, this can be
generalized to the case where g is reductive since the analogous theorem for cosets of Heisenberg
algebras is also straightforward.

Let Ck be a coset of the form Com(Vk(g),Ak) as above, and suppose that S ⊂ Ck is a
strong generating set for Ck for generic values of k. It is an important problem to deter-
mine which values of k are generic, since Theorem 8.1 gives conditions for πk : Ck → C̄k
to be surjective, and this implies that strong generators for Ck give rise to strong genera-
tors for C̄k. In this rest of this section, we shall describe some examples where the set of
nongeneric values of k can be determined either completely or conjecturally.

Parafermion algebras and related structures. Recall that Ck(sl2) = Com(H, Vk(sl2)) is of
type W(2, 3, 4, 5) for all k 6= 0. To this best of our knowledge, this is the first example in the
literature of a coset of the form Ck = Com(Vk(g),Ak) where the set of nongeneric points
has been completely determined. (Here g = C). A similar example involving the coset
of the Heisenberg algebra inside the universal Bershadsky-Polyakov algebra Wk appears
in [ACL]. This example differ slightly from the main examples in this paper since Wk

is not built from affine and free field algebras. However, using a similar approach we
proved that Ck = Com(H,Wk) is of type W(2, 3, 4, 5, 6, 7) for all k 6= −1,−3

2
. The strong

generating set descends to a strong generating set for the simple quotient of Ck. It is
essential for establishing the C2-cofiniteness and rationality of this quotient when Wk has
a rational quotient.
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Based on these examples, one might be tempted to conjecture that the set of nongeneric
values of k for cosets of the form Ck should be finite. However, based on computational
evidence, the next example indicates that this is generally not the case.

The case of Com(Vk(sp2), Vk(osp(1|2))). Fix even generators H,X± and odd generators
φ± for Vk(osp(1|2))), satisfying

H(z)X±(w) ∼ ±X±(w)(z − w)−1, H(z)H(w) ∼ k

2
(z − w)−2,

X+(z)X−(w) ∼ k(z − w)−2 + 2H(w)(z − w)−1,

H(x)φ±(w) ∼ ±1

2
φ±(z − w)−1, X±(z)φ∓(w) ∼ −φ±(w)(z − w)−1,

φ±(z)φ±(w) ∼ ±1

2
X±(w)(z − w)−1, φ+(z)φ−(w) ∼ k

2
(z − w)−2 +

1

2
H(w)(z − w)−1.

Let Ck = Com(Vk(sp2), Vk(osp(1|2))), where Vk(sp2) is generated byH,X±. By Corollary

7.4, for generic values of k, Ck is isomorphic to the Virasoro algebra with c = − k(4k+5)
(k+2)(2k+3)

.

The generator is

L = − 4

2k + 3
: φ+φ− : +

1

(k + 2)(2k + 3)

(

: X+X− : + : HH :
)

+
1 + k

(k + 2)(2k + 3)
∂H,

for k 6= −2,−3
2
. Recall from [CLII] that limk→∞ Ck ∼= A(1)Sp2, which has the following

strong generating set coming from classical invariant theory:

w2m =
1

2

(

: e∂2mf : + : (∂2me)f :
)

, m ≥ 0.

Moreover, we have decoupling relations w2m = P2m(w
2) for all m ≥ 1, where P2m(w

2)
is a normally ordered polynomial in w2 and its derivatives. There exist deformations
W 2m ∈ Ck which strongly generate Ck for generic values of k, and have the property that
limk→∞W 2m = w2m. In particular, W 0 = −2k+3

4
L. There are normally ordered relations

λ2m(k)W
2m = Q2m(W

2), with the property that limk→∞Q2m(W
2) = P2m(w

2). Here λ2m(k)
is a rational function of k satisfying limk→∞ λ2m(k) = 1. We have checked by computer
calculation that

λ2(k) = − k + 4

k + 3/2
, λ4(k) = −(k + 4)(k + 8/3)

(k + 3/2)2
,

λ6(k) = −(k + 4)(k + 8/3)(k + 12/5)

(k + 3/2)3
, λ8(k) = −(k + 4)(k + 8/3)(k + 12/5)(k + 16/7)

(k + 3/2)4
.

This suggests that

λ2m(k) = −
∏m

i=1(k +
4i

2i−1
)

(k + 3/2)m
,

and leads to the following conjecture.

Conjecture 8.4. Ck = Com(Vk(sp2), Vk(osp(1|2))) is isomorphic to the universal Virasoro vertex
algebra for all k /∈ K, where K = {−2,−3

2
} ∪ {− 4i

2i−1
| i ≥ 1}.

Based on computer calculations, it seems plausible that for k ∈ K, Ck is not strongly
finitely generated.
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Remark 8.5. The set K of conjecturally nongeneric levels splits into two parts. The first one con-
sists of minus the dual Coxeter numbers of sp2 and osp(1|2) for which the Sugawara construction
of the Virasoro field does not work. For the second one, Ck has central charge

c = 1− 6
(2i+ 1)2

2(2i+ 3)

which is the central charge of the non-unitary rational Virasoro minimal model M(2, 2i + 3). At
these central charges there are interesting logarithmic vertex algebras called singlet and triplet
algebras. These are strongly finitely generated vertex algebras which are not simple [TW]. The
triplet algebra is evenC2-cofinite [TW] and has also been studied in [AM]. The singlet algebra and
other extensions of the Virasoro algebra have been studied in [CMW]. In view of these relations to
logarithmic vertex algebras it is an interesting task to study the nongeneric Ck.

Although K is not a finite set, it has two good properties: it has compact closure, and
it does not contain any positive real values of k, in particular the values for which Vk(sp2)
and Vk(osp(1|2))) have rational quotients. It is an interesting problem to prove this con-
jecture, and to establish whether qualitative properties of the nongeneric set K such as
compact closure hold for a general class of cosets of the form Ck = Com(Vk(g),Ak). In
view of Theorem 8.1, this would give a powerful method for studying cosets of simple
affine vertex algebras inside larger structures. As an illustration, we shall use this ap-
proach to give a new proof of the C2-cofiniteness and rationality of the simple N = 2
superconformal algebra with central charge c = 3k

k+2
when k is a positive integer. Our

argument makes use of a coset realization has been known for many years [DPYZ], and is
the case n = 1 of Example 7.11. The rationality and regularity of these algebras was first
established by Adamovic in [AII].

Rational N = 2 superconformal algebras. First, for k ∈ C, consider the tensor product
Vk(sl2)⊗ E , where Vk(sl2) has generators H,X± satisfying

H(z)X±(w) ∼ ±X±(w)(z − w)−1, H(z)H(w) ∼ k

2
(z − w)−2,

X+(z)X−(w) ∼ k(z − w)−2 + 2H(w)(z − w)−1,

and E is the bc-system with odd generators b, c satisfying

b(z)b(w) ∼ 0, c(z)c(w) ∼ 0, b(z)c(w) ∼ (z − w)−1.

Let H ⊂ Vk(sl2) ⊗ E denote the Heisenberg algebra with generator J = H− : bc :. The
zero mode J0 integrates to a U(1) action on Vk(sl2)⊗E , and we consider the U(1)-invariant
algebra (Vk(sl2)⊗ E)U(1), which is easily seen to have the following strong generating set:

(8.1) : ∂iX+∂jX− :, : ∂iX+∂jb :, : ∂iX−∂jc :, : ∂ib∂jc : i, j ≥ 0.

Note that

(8.2) : ∂iX+X− :, : ∂iX+b :, : ∂iX−c :, : ∂ibc : i ≥ 0,

is also a strong generating set for (Vk(sl2)⊗E)U(1), since the span of (8.2) and their deriva-
tives coincides with the span on (8.1).

Lemma 8.6. For all k ∈ C, (Vk(sl2)⊗ E)U(1) has a minimal strong generating set

{H, : X+X− :, : bc :, : X+b :, : X−c :}.
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Proof. This is immediate from the following normally ordered relations that exist for all
i ≥ 0.

: (: ∂iX+b :)(: X−c :) : =

(−1)i
2

i+ 1
: H(∂i+1b)c : + : (∂iX+)X−bc : + : (∂i+1X+)X− : − k

i+ 2
: (∂i+2b)c : .

: (: ∂iX+b :)(: bc :) = − : ∂i+1X+b :,

: (: ∂iX−c :)(: bc :) = : ∂i+1X−c :,

: (: ∂ibc :)(: bc :) : = −i+ 2

i+ 1
: (∂i+1b)c : +∂ω,

where ω is a linear combination of elements of the form ∂i−r : (∂rb)c : for r = 0, 1, . . . , i. �

Next, we replace H and : bc : with J = H− : bc : and F = H + k
2
: bc :, respectively, and

we replace : X+X− : with

L =
1

k + 2
: X+X− : +

2

k + 2
: Hbc : − k

2(k + 2)
: b∂c : +

k

2(k + 2)
: (∂b)c : − 1

k + 2
∂H.

Clearly F, L, : X+b :, : X−c : commute with J , and L is a Virasoro element of central
charge c = 3k

k+2
, and F is primary weight one, others are primary weight 3

2
. Moreover,

they generate the N = 2 superconformal algebra. Since

(Vk(sl2)⊗ E)U(1) = H⊗ Com(H, Vk(sl2)⊗ E),
we obtain

Lemma 8.7. For all k 6= −2, Ck = Com(H, Vk(sl2)⊗ E) has a minimal strong generating set

{F, L, : X+b :, : X−c :},
and is isomorphic to the universal N = 2 superconformal vertex algebra with c = 3k

k+2
.

Next, for k a positive integer, we consider the tensor product Lk(sl2) ⊗ E . By abuse of
notation, we denote the generators by H,X±, b, c, as above. Recall that Lk(sl2) ⊗ E is the
simple quotient of Vk(sl2)⊗E by the ideal Ik generated by (X+)k+1. Let Lk = Ck/(Ik ∩Ck).

Lemma 8.8. Lk = Com(H, Lk(sl2) ⊗ E) where H is the Heisenberg algebra generated by J =
H− : bc :. In particular, Lk is simple.

Proof. This is immediate from the fact that Vk(sl2) ⊗ E is completely reducible as an H-
module, and Ik is an H-submodule of Vk(sl2)⊗ E . �

It is well known [DPYZ] that the simpleN = 2 superconformal algebra has a realization
inside Com(H, Lk(sl2) ⊗ E) with generators {F, L, : X+b :, : X−c :}, which are just the
images of the generators of Ck. An immediate consequence of Lemmas 8.7 and 8.8 is that
this N = 2 algebra is the full commutant.

Corollary 8.9. For k = 1, 2, 3, . . . , Lk is isomorphic to the simple N = 2 superconformal algebra
with central charge c = 3k

k+2
.
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It is well known that Lk(sl2) contains a copy of the lattice vertex algebra V√2kZ with

generators {H, : (X±)k :}. Moreover,

Com(Com(〈H〉, Lk(sl2))) = V√2kZ,

where 〈H〉 denotes the Heisenberg algebra generated by H . In particular, V√2kZ and the
parafermion algebra Nk(sl2) form a Howe pair (i.e., a pair of mutual commutants) inside
Lk(sl2), and Lk is an extension of V√2kZ ⊗Nk(sl2). Both V√2kZ and Nk(sl2) are rational, and

the discriminant Z/
√
2kZ of the lattice

√
2kZ acts on Lk as automorphism subgroup. The

orbifold is V√2kZ ⊗Nk(sl2) and as a module for the orbifold

Lk =

2k−1
⊕

t=0

Mt,

where eachMt is a simple V√2kZ⊗Nk(sl2)-module [DM]. EachMt is in fact also C1-cofinite
as the orbifold is C2-cofinite, hence Proposition 20 of [MiII] implies it is a simple current.
We thus have a simple current extension of a rational, C2-cofinite vertex algebra of CFT-
type and hence by [Y] the extension Lk is also C2-cofinite and rational. This provides an
alternative proof of Adamovic’s theorem that the simple N = 2 superconfomal algebra
with central charge c = 3k

k+2
for k = 1, 2, 3, . . . , is C2-cofinite and rational.
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