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Abstract. For any subshift, define FX(n) to be the collection of distinct

follower sets of words of length n in X. Based on a similar result proved
in [4], we conjecture that if there exists an n for which |FX(n)| ≤ n, then

X is sofic. In this paper, we prove several results related to this conjecture,

including verifying it for n ≤ 3, proving that the conjecture is true for a
large class of coded subshifts, and showing that if there exists n for which

|FX(n)| ≤ log2(n + 1), then X is sofic.

1. Introduction

Let X be a subshift, i.e. a closed, shift-invariant subset of AZ where A is some
finite set. In this paper, we consider follower sets for words w appearing in X. By
the follower set of w we mean the set of all one-sided infinite sequences s which may
follow w in some point of X; see Section 2 for a formal definition. It is well known
that the number of distinct follower sets in X is finite if and only if the subshift
X is sofic [2]. In this paper, we consider the question of whether a sufficiently
slow growth rate in the number of distinct follower sets for words of length n in X
implies that X is a sofic subshift.

More specifically, let FX(n) denote the set of distinct follower sets in X for words
of length n. We make the following conjecture:

Conjecture 1.1. For a subshift X, if there exists n for which |FX(n)| ≤ n, then
X is sofic.

We are unable to prove this conjecture presently, but prove some supporting
results in this paper. Firstly, we prove that if |FX(n)| ≤ log2(n+1) for some n ≥ 1,
then X is sofic (Theorem 4.7). We prove a version of the conjecture relating to
|
⋃

`≤n FX(n)| rather than |FX(n)| (Theorem 4.6). We also prove Conjecture 1.1

for n = 1, 2, 3 (Theorems 4.5, 4.9, and 4.10).
Conjecture 1.1 is motivated by a number of results, among them the following

classical theorem of Morse and Hedlund.

Theorem 1.2 ([3]). For a subshift X, if there exists an n such that the number of
words of length n is less than or equal to n, then X is a finite collection of periodic
points.

An equivalent formulation is that a bound of n on the number of words of length
n implies a uniform bound on the number of words of length n. With this phrasing,
Conjecture 1.1 is equivalent to a version of Theorem 1.2 with “words of length n”
replaced by “follower sets of words of length n”.
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Another motivation is recent work of the three authors. In [1], building on
an example of Delacourt, the first author showed that even when bounded, the
sequence {|FX(n)|} can exhibit some surprising behavior. In particular, he showed
that while the sequence {|FX(n)|} is always eventually periodic, it is not necessarily
eventually constant. In fact, the gaps between consecutive terms in the periodic
portion can be arbitrarily prescribed. Even more closely related, the second and
third authors proved in [4] that Conjecture 1.1 holds if follower sets are replaced
by so-called extender sets. For a word w appearing in X, the extender set of w is
the set of all pairs (p, s) of a left-infinite sequence p and a right-infinite sequence s
such that the concatenation pws forms a legal point in X. Let EX(n) denote the
set of distinct extender sets for words of length n in X.

Theorem 1.3 ([4]). Let X be a subshift. The following are equivalent.

(1) X is sofic
(2) the sequence {|EX(n)|} is uniformly bounded
(3) for some n ≥ 1, EX(n) ≤ n.

It is then natural to ask whether the above holds for follower sets as well, though
the question seems more difficult.

We remark that one obvious approach would be to attempt to use Theorem 1.3
above. In other words, one might attempt to prove that a small number of follower
sets implies a small number of extender sets, and therefore soficity. Indeed, this still
may be an avenue to a proof. However, in Example 3.1, we show that the sequence
{|EX(n)|} may grow exponentially while {|FX(n)|} grows linearly, meaning that
this approach may not be enough on its own.

2. Definitions and preliminaries

We begin with a list of definitions. Let A denote a finite set, which we will refer
to as our alphabet, elements of A will be referred to as letters.

Definition 2.1. A subshift X on an alphabet A is some subset of AZ which is
shift-invariant and closed in the product topology.

Definition 2.2. A word over A is a member of An for some n ∈ N, which we call
the length of w. We use ∅ to denote the empty word, the word of length zero.

Definition 2.3. For any words v ∈ An and w ∈ Am, we define the concatenation
vw to be the word in An+m whose first n letters are the letters forming v and whose
next m letters are the letters forming w.

Definition 2.4. For a word u ∈ An, if u can be written as the concatenation of
two words u = vw then we say that v is a prefix of u and that w is a suffix of u.

Definition 2.5. The language of a subshift X, denoted by L(X), is the set of all
words which appear in points of X. For any finite n ∈ N, define Ln(X) = L(X)∩An,
the set of words in the language of X with length n.

Definition 2.6. For any subshift X on an alphabet A, and any word w in the
language of X, we define the follower set of w in X, FX(w), to be the set of all
right-infinite sequences s ∈ AN such that the infinite word ws occurs in some point
of X. (Note that FX(∅) is simply the set of all right-infinite sequences appearing
in any point of X). Similarly, we define the predecessor set of w in X, written



SUBSHIFTS WITH SLOWLY GROWING NUMBERS OF FOLLOWER SETS 3

PX(w), to be the set of all left-infinite sequences p ∈ A−N such that pw occurs in
some point of X.

Definition 2.7. For any word w ∈ L(X), we say that w is shortenable if there
exists v ∈ L(X) with strictly shorter length than w such that FX(w) = FX(v).

Definition 2.8. For any subshift X over the alphabet A, and any word w in the
language of X, we define the extender set of w in X, EX(w), to be the set of all
pairs (p, s) where p is a left-infinite sequence of symbols in A, s is a right-infinite
sequence of symbols in A, and pws is a point of X.

Definition 2.9. For any positive integer n, define the set FX(n) = {FX(w) | w ∈
Ln(X)}. Thus the cardinality |FX(n)| is the number of distinct follower sets of
words of length n in X. Similarly, define EX(n) = {EX(w) | w ∈ Ln(X)} and
PX(n) = {PX(w) | w ∈ Ln(X)}, so that |PX(n)| and |EX(n)| are the numbers of
distinct extender sets of words of length n in X and predecessor sets of words of
length n in X respectively.

Definition 2.10. A subshift X is sofic if it is the image of a shift of finite type
under a continuous shift-commuting map.

Equivalently, sofic shifts are those with only finitely many follower sets, that
is, a shift X is sofic iff {FX(w) | w in the language of X} is finite (See Theo-
rem 3.2.10 of [2]). The same equivalence exists for extender sets: X is sofic iff
{EX(w) | w in the language of X} is finite. (See Lemma 3.4 of [4])

3. An example with many more predecessor sets than follower sets

Example 3.1. There exists a subshift X such that for every n, |FX(n)| = 2n + 1
and for every n > 6, |PX(n)| ≥ 2bn/4c.

Proof. Define a labeled graph G as follows: the vertex set is V = Z+ = {0, 1, 2, . . .}.
From any vertex n are two outgoing edges: one leads to n+1 and is labeled with U
(for ‘up’), and the other leads to bn/2c and is labeled with D (for ‘down’), unless it
is the lone self-loop in the graph from 0 to itself, in which case it is labeled with E
(for ‘equals.’) Then, define a subshift X with alphabet {D,U,E} whose language
consists of all labels of finite paths on G. For example, since from 17 one could
follow D (to 8), D (to 4), U (to 5), U (to 6), D (to 3), D (to 1), D (to 0), and then
E (to 0), DDUUDDDE would be a word in the language of X. An example of
a word not in the language of X would be EUUDDD, since E must terminate at
0, and then following U would take you to 1, another U to 2, D to 1, D to 0, and
another D is not legal from 0. Note that G is right-resolving, i.e. given an initial
vertex n and label a, there is at most one edge with initial vertex n labeled by a.

We will need two auxiliary notations: for any w ∈ L(X), denote by TG(w) the
set of terminal states of paths in G labeled by w, and by IG(w) the set of initial
states of paths in G labeled by w. Similarly, for any n ∈ V , denote by FG(n) the
set of labels of right-infinite paths in G with initial state n, and by PG(n) the set
of labels of left-infinite paths in G with terminal state n. It should be clear that
for any w, FX(w) =

⋃
n∈TG(w) FG(n), and PX(w) =

⋃
n∈IG(w) PG(n).

Claim 1: For every n, |FX(n)| = 2n + 1.
Fix any n, and consider any w ∈ Ln(X) which contains an E. Since E can only

terminate at 0, and G is right-resolving, there is only one possible terminal vertex
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of a path in G labeled by w, and so TG(w) = {k} for some k, and correspondingly,
FX(w) = FG(k). Since the largest vertex in V that can be reached from 0 via a path
of length less than n is n− 1, 0 ≤ k ≤ n− 1. We claim that for k < k′ ∈ [0, n− 1],
FG(k) 6= FG(k′); if 2m is the smallest power of 2 greater than k, then the reader
may check that U2m−k−1DmEEEE . . . is in FG(k) but not FG(k′). Finally, we
note that for each k ∈ [0, n − 1], the word w = En−kUk has TG(w) = {k}, and so
all n of the distinct follower sets FG(0), FG(1), . . . , FG(n− 1) are in FX(n).

Now, consider any w ∈ Ln(X) which does not contain an E. We will prove by
induction on n that TG(w) = [k,∞) for some 0 ≤ k ≤ n. The hypothesis is easy
for n = 1; TG(U) is clearly [1,∞), and TG(D) is similarly clearly [0,∞). Now,
suppose that the inductive hypothesis is true for n, and consider w ∈ Ln+1(X). We
can of course represent w = w′a, where w′ ∈ Ln(X). By the inductive hypothesis,
TG(w′) = [k,∞) for 0 ≤ k ≤ n. The reader can verify that if a = D, then
TG(w) = [bk/2c,∞), and if a = U , then TG(w) = [k + 1,∞), completing the
inductive step. The proof is then completed, and so FG(w) =

⋃
i≥k FG(i) for some

k ∈ [0, n].
We claim that for k < k′ ∈ [0, n],

⋃
i≥k FG(i) 6=

⋃
i≥k′ FG(i); again, if 2m is the

smallest power of 2 greater than k, then U2m−k−1DmEEE . . . is in FG(k) but not
FG(i) for any i ≥ k′. We note that for each k ∈ [0, n], the word w = Dn−kUk has
TG(w) = [k,∞), and so follower sets

⋃
i≥k FG(i) are in FX(n) for k = 0, 1, 2, . . . , n.

There are therefore n distinct follower sets of words w ∈ Ln(X) containing an
E and n + 1 distinct follower sets of words w ∈ Ln(X) not containing an E. To
prove the claim that there are 2n + 1 in total, we verify that for all k, k′ ∈ [0, n],⋃

i≥k′ FG(i) 6= FG(k). If k 6= k′, we have already distinguished these sets by iden-

tifying an element of FG(min(k, k′)) that is not in FG(i) for any i > min(k, k′). If
k′ = k and 2m > k, then Dm+1EEE . . . is in FG(2m) ⊆

⋃
i≥k FG(i), but not in

FG(k). This completes the proof of the claim.

Claim 2: For every n > 6, |PX(n)| ≥ 2bn/4c.
We will consider the set S of all w ∈ {D,U,E}n which end with Ddn/2e−1E,

contain no other E, and do not contain consecutive U symbols. Clearly |S| is the
number of (bn/2c)-letter words on {D,U} without consecutive U symbols, which
is greater than or equal to 2bn/4c (simply freely choose the first letter, force the
second to be D, freely choose the third letter, and so on). Therefore, it suffices to
show that S ⊆ Ln(X) and that for w 6= w′ ∈ S, PX(w) 6= PX(w′). We will verify
both claims by the auxiliary claim that for any w ∈ S, IG(w) is a nonempty finite
interval of integers, and that if w 6= w′ ∈ S, then IG(w) 6= IG(w′). Clearly the fact
that IG(w) 6= ∅ will imply that w ∈ Ln(X). Also, if IG(w) 6= IG(w′), then one
can choose k ∈ IG(w)4IG(w′). The reader may check that . . . EEEUk ∈ PG(k)
and is not in PG(k′) for any k′ 6= k, and so PX(w) =

⋃
i∈IG(w) PG(i) and PX(w′) =⋃

i∈IG(w′) PG(i) are distinct.

It remains only to prove the auxiliary claim. Consider any w ∈ S. We will work
backwards from the end of w to determine IG(w). First, write w = vDdn/2e−1E.
The reader may check that IG(Ddn/2e−1E) = [2dn/2e−2, 2dn/2e−1), which we write
as [a, b) for brevity. Write v = vbn/2c . . . v2v1. Then, we will work from the right
and state how each vi will alter this interval. For instance, if v1 = D, then
IG(v1D

dn/2e−1E) is the set of all vertices which lead to a vertex in [a, b) via an
edge labeled D, or [2a, 2b). Similarly, if v1 = U , then IG(v1D

dn/2e−1E) is the set of
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all vertices which lead to a vertex in [a, b) via an edge labeled U , or [a−1, b−1). In
fact, it is simple to see in the same way that each vi will either double the endpoints
of the interval (if vi = D) or subtract one from the endpoints of the interval (if
vi = U). Since a = 2dn/2e−2 > bn/2c (for n > 6), clearly neither endpoint will ever
go below 0 in this procedure.

This allows us to give a closed form for IG(w). Since U does not change the
length of the interval and D doubles it, clearly the length of IG(w) is 2j(b − a),
where j is the number of D symbols in v. The left endpoint of IG(w), call it c, is
obtained from a via a sequence of either doubling or subtracting 1, determined by
whether the letters v1, v2, etc. are D or U respectively. Since no two consecutive
vi can be U , two subtractions in a row are not permitted. For instance, if a = 16
and v = UDDDUD, then c = (((((16 ·2)−1) ·2) ·2) ·2)−1 = 247. It is not hard to
check that this final answer could also be written as c = 2ja−(2n1 +2n2 + . . .+2nk),
where j is again the number of D symbols in v, k is the number of U symbols in
v, and ni is the number of D symbols preceding the ith U symbol in v. (Note that
since v does not contain consecutive U symbols, {ni} is strictly decreasing). For
instance, for v = UDDDUD, there are three D symbols preceding the rightmost U
and zero D symbols preceding the leftmost U , and so n1 = 3 and n2 = 0, yielding
c = 24a− (2n1 + 2n2) = 24 · 16− 8− 1 = 247. This yields the closed form

IG(w) =

[
2ja−

k∑
i=1

2ni , 2jb−
k∑

i=1

2ni

)
.

Then, if w and w′ have different numbers of D symbols, then the lengths of IG(w)
and IG(w′) are different, clearly implying that IG(w) 6= IG(w′). If w and w′ have
the same number of D symbols, then the choices of ni for w and w′ are distinct
(since the ni uniquely determine v), and by uniqueness of binary representation,

the sum
∑k

i=1 2ni would take different values for w and w′, again implying that
IG(w) 6= IG(w′). Therefore, all words in S have distinct predecessor sets in X, and
we are done.

�

We note that since predecessor sets are just projections of extender sets, this
example clearly has |EX(n)| ≥ 2bn/4c for every n > 6 as well, illustrating that in
general, the number of extender sets of words of length n may be much greater
than the number of follower sets of words of length n.

4. Main Results

We begin with some simple facts about follower sets, which will repeatedly be
useful in our analysis. The proofs are simple and left to the reader.

Lemma 4.1. For any subshift X, any w ∈ Ln(X), and any m ∈ N, FX(w) =⋃
v FX(vw), where the union is taken over those v ∈ Lm(X) for which vw ∈

Lm+n(X).

Lemma 4.2. For any subshift X, any w ∈ Ln(X), and any m < n, there exists a
v ∈ Lm(X) for which F (v) ⊇ F (w).

Lemma 4.3. Let X be a subshift. If for two words w, u ∈ L(X), FX(w) = FX(u),
then for any v ∈ L(X), FX(wv) = FX(uv).
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The following will be our main tool for proving soficity of a subshift via the sets
FX(n).

Theorem 4.4. For any subshift X, if there exists n ∈ N such that FX(n) ⊆⋃
`≤n−1

FX(`), then X is sofic.

Proof. If there exists n ∈ N such that FX(n) ⊆
⋃

`≤n−1

FX(`), then for any word

w ∈ Ln(X), the follower set FX(w) is also the follower set of a strictly shorter
word, so w is shortenable to a word of length strictly less than n. Now, let v ∈
L(X) of length greater than n, say v = v1v2...vnvn+1...vk where k > n. Then
v1v2...vn ∈ Ln(X), and so is shortenable to some word v′ ∈ L(X) of length less than
n. But FX(v1v2...vn) = FX(v′) implies FX(v1v2...vnvn+1...vk) = FX(v′vn+1...vk)
by Lemma 4.3, so v is shortenable to a word v′vn+1...vk. If v′vn+1...vk has length
less than n, stop, but if v′vn+1...vk has length at least n, we may apply the above
process again and shorten repeatedly, getting shorter and shorter words with the
same follower set until we find one with length less than n. So v is shortenable to a
word of length less than n. But this means that

⋃
`≤n−1 FX(`) contains all follower

sets in X, so X has only finitely many follower sets, and thus, X is sofic. �

We can now show that |FX(n)| = 1 for any n always implies soficity of X.

Theorem 4.5. For any subshift X, if there exists n for which |FX(n)| = 1, then
X is a full shift.

Proof. We prove the contrapositive. Without loss of generality, assume that the
alphabet A of X consists entirely of letters which actually appear in points of X,
and assume that X is not the full shift on A. Then there exists a word w =
w1w2 . . . wk ∈ Ak which is not in the language of X; suppose that the length k of w
is minimal. It must be the case that k is at least 2, since we assumed that all letters
of A are in L(X). Then since we assumed k to be minimal, w2 . . . wk ∈ L(X), so
we can choose some one-sided infinite sequence s appearing in X which begins with
w2 . . . wk. Similarly, w1 is in L(X), so for any n ∈ N, we may choose an n-letter
word v ending with w1. Then vs contains w /∈ L(X), so s /∈ FX(v). However, since
s appears in X, there exists some n-letter word u which can be followed by s in
X, and so s ∈ FX(u). Hence FX(u) 6= FX(v), so |FX(n)| ≥ 2, and since n was
arbitrary, this is true for all n. �

We can now prove a version of Conjecture 1.1 for unions of the sets FX(n), rather
than the sets themselves.

Theorem 4.6. For any subshift X, if there exists n ∈ N so that

∣∣∣∣∣∣
⋃
`≤n

FX(`)

∣∣∣∣∣∣ ≤ n,

then X is sofic.

Proof. We prove the contrapositive, and so assume that X is nonsofic. By The-
orem 4.5, |FX(1)| ≥ 2. Then, by Theorem 4.4, for every n > 1, there exists

S ∈ FX(n) \
⋃

`<n FX(`), and so
∣∣∣⋃`≤n FX(`)

∣∣∣ > ∣∣∣⋃`≤n−1 FX(`)
∣∣∣. Therefore, by

induction, for each n,
∣∣∣⋃`≤n FX(`)

∣∣∣ ≥ n + 1. �
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We may now prove the following, which establishes a logarithmic lower bound
for the growth rate of |FX(n)| for nonsofic shifts.

Theorem 4.7. For any subshift X, if there exists n ∈ N such that |FX(n)| ≤
log2(n + 1), then X is sofic.

Proof. Suppose that for some n, FX(n) = {F1, F2, ..., Fk} where k ≤ log2(n+1). By
Lemma 4.1, for each length ` < n, every follower set of a word in L`(X) is a union of
follower sets of words of length n. Therefore, every element of

⋃
`≤n FX(`) is a non-

empty union of elements of FX(n). There are at most 2k − 1 ≤ 2log2(n+1) − 1 = n

such unions, so
∣∣∣⋃`≤n FX(`)

∣∣∣ ≤ n, which implies that X is sofic by Theorem 4.6. �

Our next result shows that under the additional assumption that some non-
empty word w has the same follower set as the empty word, Conjecture 1.1 is
true.

Lemma 4.8. For any subshift X, if there exists a non-empty word w ∈ L(X) such
that FX(w) = FX(∅) and n ∈ N such that |FX(n)| ≤ n, then X is sofic.

Proof. The follower set of the empty word is the set of all right-infinite sequences
appearing in any point of X. If there exists a word w such that any legal right-
infinite sequence may appear after w, then by Lemma 4.2, there is a letter with
this property as well. So we may assume that FX(a) = FX(∅) where a is a single
letter.

The fact that FX(∅) = FX(a) implies by Lemma 4.3 that for every w ∈ L(X),
FX(w) = FX(aw) = FX(aaw) = . . .. Therefore, every follower set of a word of
length ` is also a follower set of a word of any length greater than `. In other
words, FX(1) ⊆ FX(2) ⊆ FX(3) ⊆ . . .. Then, for every n, FX(n) =

⋃
`≤n FX(`),

and so if |FX(n)| ≤ n for some n, clearly
∣∣∣⋃`≤n FX(`)

∣∣∣ ≤ n, implying that X is

sofic by Theorem 4.6. �

Theorem 4.9. For any subshift X, if there exists n ≥ 2 for which |FX(n)| ≤ 2,
then X is sofic.

Proof. The case where |FX(n)| = 1 is treated by Theorem 4.5, so we choose any
n ≥ 2 and suppose that there are exactly 2 follower sets in X of words of length
n, say F1 and F2. We consider the sets in FX(1). By Lemma 4.1, every element
of FX(1) is either F1, F2, or F1 ∪ F2. If |FX(1)| = 1, X is sofic by Theorem 4.5,
so assume that |FX(1)| ≥ 2, that is, at least two of the above sets must appear
in FX(1). Note that F (∅) =

⋃
w∈LX(n) F (w) = F1 ∪ F2, so by Lemma 4.8, if

F1 ∪ F2 is an element of FX(1), then X is sofic. The only remaining case is that
FX(1) = {F1, F2} = FX(n), and then X is sofic by Theorem 4.4. �

We are now prepared to prove Conjecture 1.1 for n ≤ 3. Our proof is much more
complicated than the cases where n = 1, 2.

Theorem 4.10. Let X be a subshift. If |FX(n)| ≤ n for any n ≤ 3, then X is
sofic.

Proof. Clearly, for n < 3, Theorems 4.5 and 4.9 imply this result. We can then
restrict to the case where n = 3. If |FX(3)| < 3, then X is again sofic by either
Theorem 4.5 or Theorem 4.9. We therefore suppose that |FX(3)| = 3, say FX(3) =
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{F1, F2, F3}. We also note that F (∅) = F1∪F2∪F3, and if any of FX(1), FX(2), or
FX(3) contains F1∪F2∪F3 as an element, then X is sofic by Lemma 4.8. Therefore,
in everything that follows, we assume that F1 ∪ F2 ∪ F3 is not contained in FX(i)
for i ≤ 3.

We first show that if any Fi is contained entirely within another, then X is sofic.
Suppose for a contradiction that some Fi is contained in another, and so without
loss of generality, we say that F2 ⊆ F1. By Lemma 4.1, all elements of FX(2) are
nonempty unions of F1, F2, and F3. However, F1 ∪ F3 = F1 ∪ F2 ∪ F3, and so
F1 ∪ F3 = F1 ∪ F2 ∪ F3 are not in FX(2) as assumed above. Also, F1 ∪ F2 = F1.
Therefore, the only possible elements of FX(2) are F1, F2, F3, and F2∪F3. If fewer
than three of these four sets are part of FX(2), then X is sofic by Theorem 4.9.
Thus we may assume at least three of the four sets appear. If F1, F2, and F3 are all
in FX(2), then FX(3) ⊆ FX(2), implying that X is sofic by Theorem 4.4. Therefore,
F2∪F3 ∈ FX(2). We note that by Lemma 4.2, some element of FX(2) must contain
F1. If F3 contained F1, then F3 = F1∪F2∪F3 is in FX(3), which we assumed not to
be the case above. Similarly, F2 ∪ F3 cannot contain F1. Therefore, F1 is the only
set of F1, F2, F3, and F2 ∪ F3 to contain F1, and so F1 ∈ FX(2). Therefore FX(2)
consists of F1, F2 ∪ F3, and exactly one of F2 and F3. We note that if F2 ∪ F3 is
equal to any of F1, F2, or F3, then either |FX(2)| = 2 or FX(3) ⊆ FX(2), in either
case implying soficity by either Theorem 4.9 or Theorem 4.4. So from now on we
assume F2 ∪ F3 is not equal to F1, F2, or F3.

Now, let us consider FX(1). By Lemma 4.1, FX(1) can only consist of unions
of sets in FX(2). The set FX(1) cannot contain F1 ∪ F3 = F1 ∪ F2 ∪ F3, and since
F1 ∪ F2 = F1 we see that FX(1) ⊆ FX(2). There exists some word ab ∈ LX(2)
such that FX(ab) = F2 ∪ F3. Clearly FX(a) is an element of FX(1) and therefore
FX(a) = FX(xy) for some xy ∈ L2(X). But then by Lemma 4.3, FX(xyb) =
FX(ab) = F2 ∪ F3, a contradiction since we above noted that F2 ∪ F3 does not
equal any of F1, F2, or F3. We have then shown that if any of the follower sets
F1, F2, and F3 are contained in one another, X is sofic, and so for the rest of the
proof assume that no such containments exist. Note that this also implies that if
any of F1 ∪ F2, F1 ∪ F3, or F2 ∪ F3 contain each other, then the containing set is
F1 ∪ F2 ∪ F3, which we have assumed is not in FX(1), FX(2), or FX(3).

We break the remainder of the proof into cases by how many of the sets F1, F2,
and F3 are elements of FX(2). If all three of the sets are elements of FX(2), then
X is sofic by Theorem 4.4. We then have three remaining cases.

Case 1: none of F1, F2, F3 are in FX(2). By Lemma 4.1, FX(2) consists of
nonempty unions of F1, F2, and F3, and we have assumed that F1 ∪ F2 ∪ F3 is not
in FX(2). If |FX(2)| ≤ 2, then X is sofic by Theorem 4.9. The only possibility is
then that FX(2) = {F1 ∪ F2, F1 ∪ F3, F2 ∪ F3}. Then by Lemma 4.2, FX(1) must
contain supersets of each of these sets, and it cannot contain F1 ∪ F2 ∪ F3. This
forces FX(1) to also be {F1 ∪ F2, F1 ∪ F3, F2 ∪ F3}, meaning that FX(2) = FX(1),
and so X is sofic by Theorem 4.4.

Case 2: exactly one of F1, F2, F3 is in FX(2). Without loss of generality,
suppose that F1 ∈ FX(2) and F2, F3 /∈ FX(2). At least two other sets must be
elements of FX(2) or else X is sofic by Theorem 4.9, and they must be unions of
F1, F2, and F3 by Lemma 4.1. Therefore, FX(2) contains at least two of the sets
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F1 ∪ F2, F1 ∪ F3, and F2 ∪ F3. By Lemma 4.2, supersets of any such unions are
also present in FX(1), which must be the sets themselves since we’ve assumed that
F1 ∪F2 ∪F3 /∈ FX(1). If F1 is also in FX(1), FX(2) ⊆ FX(1), and X would be sofic
by Theorem 4.4, so F1 /∈ FX(1).

Now, let abc be some word such that FX(abc) = F2. What, then, is the fol-
lower set of ab? If it is any set in FX(1), then there would exist d so that
FX(ab) = FX(d), and then FX(abc) would equal FX(dc) by Lemma 4.3, mean-
ing that F2 ∈ FX(2), a contradiction. So the only choice for FX(ab) is F1. Since
at least two of F1 ∪ F2, F1 ∪ F3, and F2 ∪ F3 are in FX(2), FX(2) contains a set of
the form F1 ∪ Fi. Say that FX(xy) = F1 ∪ Fi. Then, FX(xy) ⊇ FX(ab), meaning
that FX(xyc) ⊇ FX(abc) = F2. Since none of the Fi contain each other, this means
that FX(xyc) = F2. But then since F1 ∪Fi also is a member of FX(1), there exists
z so that FX(z) = F1 ∪ Fi, and then by Lemma 4.3, FX(zc) = F2, a contradiction
since F2 /∈ FX(2). Hence, X is sofic in this case as well.

Case 3: exactly two of F1, F2, F3 are in FX(2). Without loss of generality,
suppose that F1, F2 ∈ FX(2) and F3 /∈ FX(2). By Lemma 4.2, FX(2) must contain
some superset of F3 which is not F1∪F2∪F3, so it is of the form F3∪Fi for i = 1 or
2. As in Case 2, any of the sets F1 ∪F2, F1 ∪F3, or F2 ∪F3 which is an element of
FX(2) must be in FX(1) as well. This means that if F1 and F2 are both in FX(1),
then FX(2) ⊆ FX(1) and X would be sofic by Theorem 4.4, so we restrict to the
case where at least one of these sets is not in FX(1).

Now, let abc be some word such that FX(abc) = F3. As in Case 2, the follower set
of ab must be some set which occurs in FX(2) but not FX(1), which must be either
F1 or F2 (depending on which is not part of FX(1)). Without loss of generality, we
say that FX(ab) = F2. We now show that neither F1 ∪ F2 nor F2 ∪ F3 is in FX(2).
Suppose for a contradiction that there is a word xy ∈ L(X) for which FX(xy) =
F2 ∪ Fi, i = 1 or 3. Then, since F (xy) ⊇ F (ab) = F2, F (xyc) ⊇ F (abc) = F3.
Again, since no Fi contains another, this implies that F (xyc) = F3. Finally, we
note that F (y) ⊇ F (xy) = F2 ∪ Fi, so F (y) = F2 ∪ Fi. Therefore, by Lemma 4.3,
F (yc) = F (xyc) = F3, but this is a contradiction since F3 /∈ FX(2). We now know
that neither F1 ∪ F2 nor F2 ∪ F3 is in FX(2). By Lemma 4.1, all sets in FX(2)
are nonempty unions of F1, F2, and F3, and if |FX(2)| < 3, then X is sofic by
Theorem 4.9. The only remaining case is then that FX(2) = {F1, F2, F1 ∪ F3}.

We now consider the sets in FX(1). Recall that F2 /∈ FX(1) and that F1 ∪ F3 ∈
FX(1) since F1∪F3 ∈ FX(2). If |FX(1)| = 1, then X is sofic by Theorem 4.5, so we
can assume that FX(1) contains at least one other set, which must be a nonempty
union of the elements of FX(2) by Lemma 4.1. The only possibilities are F1 and
F1 ∪ F3, since we assumed earlier that F1 ∪ F2 ∪ F3 /∈ FX(2). Therefore, every set
in FX(1) is a superset of F1.

Our final step will involve considering what happens when a word with follower
set F1 is extended on the right by a letter. Suppose for a contradiction that there
exists a word w ∈ L(X) with FX(w) = F1 and a letter i for which FX(wi) = F2.
Then, for any letter j, since FX(j) ∈ FX(1), FX(j) ⊇ FX(w) = F1. Therefore,
FX(ji) ⊇ FX(wi) = F2. However, the only superset of F2 in FX(2) is F2 itself,
and so for every j ∈ A, FX(ji) = F2. Finally, note that, by Lemma 4.1, FX(i) =⋃

j FX(ji) = F2, a contradiction since F2 /∈ FX(1).
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Similarly, let’s assume for a contradiction that there exists a word w ∈ L(X)
with FX(w) = F1 and a letter i for which FX(wi) = F3. Then, choose a letter j
with FX(j) = F1 ∪ F3. Then, since FX(j) ⊇ FX(w) = F1, FX(ji) ⊇ FX(wi) = F3.
However, the only superset of F3 in FX(2) is F1 ∪ F3, so FX(ji) = F1 ∪ F3. Then,
since FX(j) = FX(ji) = F1 ∪ F3, by Lemma 4.3, FX(jii) = FX(ji) = F1 ∪ F3, a
contradiction since F1 ∪ F3 /∈ FX(3).

This means that for every word w ∈ L(X) with FX(w) = F1 and any letter a
for which wa ∈ L(X), F (wa) = F1. But then, since the follower set of every letter
contains F1, the follower set of every legal 2-letter word contains F1, a contradiction
since FX(2) contains F2, and we assumed that none of the Fi contains another.
Every case has either led to a contradiction or to the conclusion that X is sofic,
and so we’ve proved that X is sofic.

�

Our final result is a version of Conjecture 1.1 for a class of coded subshifts.
Recall the definition of coded subshifts below.

Definition 4.11. Given a set W of finite words, the coded subshift with code
words W is the subshift generated by taking the closure of the set of all biinfinite
sequences made from concatenating words in W.

Theorem 4.12. Given a sofic shift X, choose a subsetW ⊆ L(X) with the property
that for any finite word v ∈ L(X), there exists some w ∈ W such that v is a suffix
of w. Create a coded subshift Y with code words {wc | w ∈ W} where c is a letter
not appearing in the alphabet of X. Then if |FY (n)| ≤ n for any n ∈ N, then Y is
sofic.

Proof. We begin with two preliminary observations. Firstly, X ⊆ Y , since any
point of X is a limit of finite words in L(X), all of which are suffixes of code words,
which are themselves in L(Y ). We also note that any word in L(Y ) without a c
must be a subword of a code word, and therefore in L(X).

Secondly, for any word ucv ∈ L(Y ), FY (ucv) = FY (cv). Clearly FY (ucv) ⊆
FY (cv). Let s ∈ FY (cv). Because uc is the suffix of a concatentation of code words
and vs is the beginning of a concatenation of code words in Y , ucvs occurs in Y
and therefore FY (ucv) ⊇ FY (cv).

We begin our proof by claiming that there are only finitely many follower sets
in Y of words not containing the letter c. Given any word w ∈ L(Y ), if w does
not contain a c then w ∈ L(X). There are only finitely many follower sets in
X, so it is sufficient to show that for any w, v ∈ L(X), FX(w) = FX(v) implies
FY (w) = FY (v). To that end, let FX(w) = FX(v) and consider any s ∈ FY (w).
If s does not contain the letter c, then ws is a limit of longer and longer words in
W, and since all such words are in L(X), ws occurs in X, i.e. s ∈ FX(w). Since
FX(w) = FX(v), s ∈ FX(v), i.e. vs also occurs in X. Since Y ⊇ X, vs occurs in Y
as well, and so s ∈ FY (v).

On the other hand, if s contains the letter c and s ∈ FY (w), then s = s′cs′′ for
some s′ not containing c (s′ may be the empty word). By the same logic as above,
ws′ ∈ L(X), therefore vs′ ∈ L(X), and so vs′ occurs as a suffix of some word in
W. But then, vs′c is a suffix of some code word, and so vs′cs′′ occurs in Y .

We have shown that in both cases, s ∈ FY (w) implies s ∈ FY (v), and so FY (w) ⊆
FY (v). By the same argument, FY (v) ⊆ FY (w), giving FY (w) = FY (v). Therefore
there are only finitely many follower sets in Y of words not containing c.
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Now, we assume that n is such that |FY (n)| ≤ n. Partition Ln(Y ) into n+1 sets
based on the last appearance of the letter c in the word–the first set S0 consists of
words with no c, the second set S1 consists of words ending with c, the third S2

consists of words ending with c followed by another letter that is not c, and so on,
up to the final set Sn which consists of words beginning with a c followed by n− 1
other symbols which are not c. Since X ⊆ Y , there exist words in L(Y ) of every
length without any c symbols, implying that S0 6= ∅. Therefore, there must exist
k > 0 so that all follower sets (in Y ) of words in Sk are also follower sets (in Y ) of
some word in Si for some i < k; else each of the n + 1 sets Si would contribute a
follower set not in any previous one, contradicting |FY (n)| ≤ n.

Let w be a word in L(Y ) of length at least k. Our goal is to show that FY (w) is
either equal to one of the finitely many follower sets of words without a c or to the
follower set of a word of length less than k. Clearly, if w does not contain a c, we
are done, so suppose w contains the letter c. As noted earlier, FY (w) is unchanged
if all letters before the last occurrence of c are removed from w. If this removal
results in a word of length less than k, then again we are done. So let us proceed
under the assumption that w begins with c, has length k or greater and contains
no other c symbols.

Let p denote the k-letter prefix of w. Since p begins with c, p can be arbitrarily
extended backwards in any way to yield an n-letter word p′ which has the same
follower set as p. Note that p′ ∈ Sk, and so there exists i < k and p′′ ∈ Si so
that FY (p) = FY (p′) = FY (p′′). There are two cases. If i 6= 0, then we may again
remove the letters of p′′ before the final c symbol to yield a word p′′′ of length i < k
for which FY (p) = FY (p′′′). Then, we replace the prefix p of w by p′′′ to yield a
new word w′ with strictly smaller length, which still begins with a c and contains
no other c symbols, and for which FY (w) = FY (w′) by Lemma 4.3. We then repeat
the above steps. If at each step, i 6= 0, then eventually w will be shortened to a
word of length at most k with the same follower set in Y , of which there are clearly
only finitely many.

The only other case is that at some point, the prefix of length k has the same
follower set in Y as a word in S0. Then, again by Lemma 4.3 that prefix can
be replaced by the word in S0, yielding a word with no c symbols with the same
follower set in Y as w. There are only finitely many follower sets in Y of words
not containing c. We have then shown that FY (w) (for arbitrary w of length at
least k) has follower set in Y from a finite collection (namely all follower sets in Y
of words with no c and all follower sets in Y of words with length at most k − 1),
which implies that Y is sofic.

�

Remark 4.13. The class of coded subshifts Y which may be created as in Theo-
rem 4.12 includes all so-called S-gap shifts [2] (with X = {0∞} and c = 1) and the
reverse context-free shift of [5] (with X = {a, b}Z and c as in the theorem).
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