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Abstract. We construct quantum metric structures on unital AF algebras with
a faithful tracial state, and prove that for such metrics, AF algebras are limits of
their defining inductive sequences of finite dimensional C*-algebras for the quantum
propinquity. We then study the geometry, for the quantum propinquity, of three natu-
ral classes of AF algebras equipped with our quantum metrics: the UHF algebras, the
Effrös-Shen AF algebras associated with continued fraction expansions of irrationals,
and the Cantor space, on which our construction recovers traditional ultrametrics.
We also exhibit several compact classes of AF algebras for the quantum propinquity
and show continuity of our family of Lip-norms on a fixed AF algebra. Our work thus
brings AF algebras into the realm of noncommutative metric geometry.
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1. Introduction

The Gromov-Hausdorff propinquity [24, 21, 19, 23, 22], a family of noncommutative

analogues of the Gromov-Hausdorff distance, provides a new framework to study the

geometry of classes of C*-algebras, opening new avenues of research in noncommutative

geometry. We propose to bring the class of AF algebras into this nascent research project

by constructing natural quantum metrics on AF algebras endowed with a faithful tracial

state. We prove first that AF algebras endowed with our quantum metrics are indeed

limits of some sequence of finite dimensional quantum compact metric spaces for the
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quantum propinquity. The main application of our AF quantum metrics is the construc-

tion of a natural continuous surjection, for the quantum propinquity, from the the space

of irrational numbers in (0, 1) onto the class of the Effrös-Shen AF algebras built in [8]

from continued fraction expansion of irrational numbers — these AF algebras were of

course famously employed by Pimsner-Voiculescu in [29] to complete the classification

of the irrational rotation C*-algebras. We also construct another continuous map from

the Baire Space onto the class of UHF algebras, and we prove that our construction of

quantum metrics, when applied to the Cantor space, recover many standard ultrametrics

on that space. Due to this observation, we name our metrics on AF algebras quantum

ultrametrics. Moreover, we exploit some of the topological properties of the Baire Space

to exhibit many compact sets of AF algebras for the quantum propinquity.

Various notions of finite dimensional approximations of C*-algebras are found in

C*-algebra theory, from nuclearity to quasi-diagonality, passing through exactness, to

name a few of the more common notions. They are also a core focus and major source

of examples for our research in noncommutative metric geometry. Examples of finite

dimensional approximations in the sense of the propinquity include the approximations

of quantum tori by fuzzy tori [16, 18] and the full matrix approximations C*-algebras of

continuous functions on coadjoint orbits of semisimple Lie groups [32, 34, 37]. Moreover,

the existence of finite dimensional approximations for quantum compact metric spaces,

in the sense of the dual propinquity, were studied in [23], as part of the discovery by

second author of a noncommutative analogue of the Gromov compactness theorem [11].

Among all the types of finite approximations in C*-algebras, Approximately Finite

(AF) algebras occupy a special place. Introduced by Bratteli [3], following on the work

of Glimm [9] on UHF algebras, AF algebras are inductive limits, in the category of C*-

algebras, of sequences of finite dimensional algebras. Elliott initiated his classification

program with AF algebras, and this project brought K-theory into the core of C*-algebra

theory. Among many problems studied in relation of AF algebras, the fascinating ques-

tion of when a particular C*-algebra may be embedded into an AF algebra has a long

history, with the classification of irrational rotation algebras as a prime example. Thus,

the question of making inductive sequences of finite dimensional algebras converge to

AF algebras, not only in the sense of inductive limit, but also in terms of the quantum

propinquity, is very natural and the seed of this paper.

In order to address this question, we must provide a natural construction of quantum

metrics on AF algebras. A quantum metric is provided by a choice of a particular semi-

norm on a dense subalgebra of a C*-algebra [30, 31, 17], called a Lip-norm, which plays

an analogue role as the Lipschitz seminorm does in classical metric space theory. The key

property that such a seminorm must possess is that its dual must induce a metric on the

state space of the underlying C*-algebra which metrizes the weak* topology. This dual
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metric is a noncommutative analogue of the Monge-Kantorovich metric, and the idea of

this approach to quantum metrics arose in Connes’ work [5, 6] and Rieffel’s work. A pair

of a unital C*-algebra and a Lip-norm is called a quantum compact metric space, and can

be seen as a generalized Lipschitz algebra [39]. However, recent developments in noncom-

mutative metric geometry suggests that some form of relation between the multiplicative

structure of C*-algebras and Lip-norms is beneficial [33, 34, 35, 36, 24, 21, 19, 23]. A

general form of such a connection is given by the quasi-Leibniz property [23]. As such,

we require our quantum metrics on AF algebras to be given by quasi-Leibniz Lip-norms.

Quantum metrics on AF algebras, in turn, allow us to raise further questions, such

as the continuity of various important constructions of AF algebras, such that Effrös-

Shen AF algebras, or Glimm’s UHF algebras. These later problems helped guide us to

our proposed construction in this paper. We restrict ourselves to the class of unital AF

algebras with a faithful tracial state, on which we construct Lip-norms from inductive

sequences, the faithful tracial state, and any choice of sequence of positive numbers

converging to 0. The natural sequences to consider are given by the dimension of the

C*-algebras constitutive of the inductive sequences. The requirement of a faithful tracial

state allows us to construct conditional expectations from which our Lip-norms are built.

We are then able to prove that, equipped with our metrics, and topologizing the class

of quasi-Leibniz quantum compact metric spaces with the quantum propinquity, the class

of UHF algebras is the continuous image, in a very natural way, of the Baire space, i.e.

the space of sequences of nonzero natural numbers equipped with a standard ultrametric.

We then prove that the function which, to any irrational number in (0, 1), associates the

Effrös-Shen AF algebra, becomes continuous as well. This result actually involves the

fact that the set of irrational numbers in (0, 1) is homeomorphic to the Baire space, and

then uses an argument constructed around the continuity of a field of Lip-norms on a

well-chosen finite dimensional piece of the Effrös-Shen AF algebra. This argument relies,

in turn, on computations of certain traces on these finite dimensional algebras, using a

K-theory argument.

We also prove that our construction for quantum metrics, when applied to the Abelian

AF algebra of the C-valued continuous functions on the Cantor space, recover standard

ultrametrics on that space. The importance of this observation is that our construction

can be seen as a generalization of ultrametrics to the context of AF algebras, which are,

informally, zero dimensional quantum compact spaces. We should note that for any two

states ϕ,ψ in the state space S (A) of a unital C*-algebra A, the function t ∈ [0, 1] 7→
tϕ+(1−t)ψ is a continuous function to S (A) equipped with the weak* topology. Thus, no

metric which gives the weak* topology on the state space of a unital C*-algebra can be an

ultrametric (as it would imply that the segment between ϕ and ψ would be disconnected,

which would be a contradiction). Thus, Lip-norms never induce actual ultrametrics on
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state spaces, and thus our terminology will not create any confusion, and rather provide

interesting candidates of possible quantum ultrametrics.

We also address a question which has proven an interesting challenge in general: the

identification of certain compact classes of quasi-Leibniz quantum compact metric spaces

for the quantum propinquity. It is unclear that any of the classes of AF algebras which we

study in this paper are closed for the quantum propinquity, and moreover the quantum

propinquity is not known to be a complete metric, so for a set, being totally bounded and

closed together would not be sufficient for the set to be compact in general — hence the

challenge in finding compact classes for the quantum propinquity. The dual propinquity

is complete [21], which provides a better framework for the study of compactness, but

as the dual propinquity is weaker than the quantum propinquity, the question of finding

the closure of classes of AF algebras is generally delicate. However, in this paper, we

do exhibit natural infinite compact classes of AF algebras for the quantum propinquity,

using the topology of the Baire space.

Our construction should be compared with a previous attempt at the construction of

natural quantum metrics on AF algebras. In [1], Antonescu and Christensen introduced

spectral triples of AF algebras endowed with a faithful state. As their spectral triples are

ungraded and their Dirac operators are positive, they only contain metric information.

However, the metrics obtained from these spectral triples, when restricted to the Cantor

space, are not explicit and do not agree with the usual metrics for that space. Moreover,

no convergence result is proven using the metrics associated with these spectral triples

when working with noncommutative AF algebras, and it is not clear how one would

proceed to prove such results, because the construction of these spectral triples rely on

various constants which are not necessarily easy to compute. Our work takes a different

perspective: quantum metrics arise naturally from Lip-norms, which need not be defined

via spectral triples. Instead, we aim at obtaining natural metrics for which we can actually

prove several interesting geometric results, in particular in regards with the quantum

propinquity.

Our paper begins with a brief section on the notions of quantum compact metric

spaces, quasi-Leibniz Lip-norms, and the quantum Gromov-Hausdorff propinquity. We

then construct our Lip-norms for AF algebras. The next two sections establish our main

continuity results: first for UHF algebras and second for Effrös-Shen AF algebras. We then

exhibit some interesting compact classes of AF algebras for the quantum propinquity. In

its most general form, our construction of Lip-norms on AF algebras involve a sequence

of nonzero natural numbers. We conclude our paper with the proof that our construction

is in fact continuous with respect to this parameter.
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2. Quantum Metric Geometry

We begin our exposition with a brief description of the tools of quantum metric

geometry which we will use in this paper. We refer the reader to [22] for a survey of this

area. A by-product of this exposition is also the introduction of notations which we will

use throughout our paper.

Notation 2.1. When E is a normed vector space, then its norm will be denoted by ‖·‖E
by default.

Notation 2.2. Let A be a unital C*-algebra. The unit of A will be denoted by 1A. The

state space of A will be denoted by S (A) while the self-adjoint part of A will be denoted

by sa (A).

The core objects of noncommutative metric geometry are the quantum compact met-

ric spaces, which are noncommutative generalizations of the algebras of Lipschitz func-

tions over compact metric spaces. The key requirement in the following definition —

that the Monge-Kantorovich metric metrizes the weak* topology on the state space —

is due to Rieffel. The idea to employ the Monge-Kantorovich metric as a means to work

with noncommutative metrics is due to Connes [5] and was the inspiration for Rieffel’s

work. The quasi-Leibniz property is the second author’s added requirement, itself largely

based on Kerr’s similar notion of the F -Leibniz property [15], but used for a very differ-

ent reason — the quasi-Leibniz property is used to ensure that the Gromov-Hausdorff

propinquity has the desired coincidence property, while Kerr used a similar notion to

study the completeness of a version of his matricial distance. In [23], the notion of a

quasi-Leibniz Lip-norm is more general than given below, but this will suffice for this

paper.

Definition 2.3 ([30, 24, 23]). A (C,D)-quasi-Leibniz quantum compact metric space

(A, L), for some C > 1 and D > 0, is an ordered pair where A is unital C*-algebra and L

is a seminorm defined on some dense Jordan-Lie subalgebra dom(L) of sa (A) such that:

(1) {a ∈ sa (A) : L(a) = 0} = R1A,

(2) the seminorm L is a (C,D)-quasi-Leibniz Lip-norm, i.e. for all a, b ∈ dom(L):

max

{
L

(
ab+ ba

2

)
, L

(
ab− ba

2i

)}
6 C (‖a‖AL(b) + ‖b‖AL(a)) +DL(a)L(b),

(3) the Monge-Kantorovich metric defined, for all two states ϕ,ψ ∈ S (A), by:

mkL(ϕ,ψ) = sup {|ϕ(a)− ψ(a)| : a ∈ dom(L), L(a) 6 1}

metrizes the weak* topology of S (A),

(4) the seminorm L is lower semi-continuous with respect to ‖ · ‖A.

The seminorm L of a quantum compact metric space (A, L) is called a Lip-norm.
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Convention 2.4. When L is a seminorm defined on some dense subset F of a vector

space E, we will implicitly extend L to E by setting L(e) =∞ whenever e 6∈ F .

Rieffel initiated the systematic study of quantum compact metric space with the

following characterization of these spaces, which can be seen as a noncommutative form

of the Arzéla-Ascoli theorem.

Theorem 2.5 ([30, 31, 28]). Let A be a unital C*-algebra and L a seminorm defined on

a dense subspace of sa (A), such that L(a) = 0 if and only if a ∈ R1A. The following two

assertions are equivalent:

(1) the Monge-Kantorovich metric mkL metrizes the weak* topology on S (A),

(2) for some state µ ∈ S (A), the set:

{a ∈ sa (A) : L(a) 6 1, µ(a) = 0}

is totally bounded for ‖ · ‖A.

Our primary interest in developing a theory of quantum metric spaces is the intro-

duction of various hypertopologies on classes of such spaces, thus allowing us to study

the geometry of classes of C*-algebras and perform analysis on these classes. A classical

model for our hypertopologies is given by the Gromov-Hausdorff distance. While sev-

eral noncommutative analogues of the Gromov-Hausdorff distance have been proposed

— most importantly Rieffel’s original construction of the quantum Gromov-Hausdorff

distance [38] — we shall work with a particular metric introduced by the second author.

This metric, known as the quantum propinquity, is designed to be best suited to quasi-

Leibniz quantum compact metric spaces, and in particular, is zero between two such

spaces if and only if they are isometrically isomorphic (unlike Rieffel’s distance). We now

propose a summary of the tools needed to compute upper bounds on this metric.

Definition 2.6. The 1-level set S1(D|ω) of an element ω of a unital C*-algebra D is:

{ϕ ∈ S (D) : ϕ((1− ω∗ω)) = ϕ((1− ωω∗)) = 0} .

Definition 2.7. A bridge from A to B, where A and B are unital C*-algebras, is a

quadruple (D, πA, πB, ω) where:

(1) D is a unital C*-algebra,

(2) the element ω, called the pivot of the bridge, satisfies ω ∈ D and S1(D|ω) 6= ∅,
(3) πA : A ↪→ D and πB : B ↪→ D are unital *-monomorphisms.

There always exists a bridge between any two arbitrary quasi-Leibniz quantum com-

pact metric spaces [24, 23]. A bridge allows us to define a numerical quantity which

estimates, for this given bridge, how far our quasi-Leibniz quantum compact metric

spaces are. This quantity, called the length of the bridge, is constructed using two other

quantities we now define.
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In the next few definitions, we denote by Hausd the Hausdorff (pseudo)distance in-

duced by a (pseudo)distance d on the compact subsets of a (pseudo)metric space (X,d)

[14].

The height of a bridge assesses the error we make by replacing the state spaces of the

Leibniz quantum compact metric spaces with the image of the 1-level set of the pivot of

the bridge, using the ambient Monge-Kantorovich metric.

Definition 2.8. Let (A, LA) and (B, LB) be two quasi-Leibniz quantum compact metric

spaces. The height ς (γ|LA, LB) of a bridge γ = (D, πA, πB, ω) from A to B, and with

respect to LA and LB, is given by:

max
{

HausmkLA
(S (A), π∗A(S1(D|ω))),HausmkLB

(S (B), π∗B(S1(D|ω)))
}
,

where π∗A and π∗B are the dual maps of πA and πB, respectively.

The second quantity measures how far apart the images of the balls for the Lip-norms

are in A⊕B; to do so, they use a seminorm on A⊕B built using the bridge:

Definition 2.9. Let (A, LA) and (B, LB) be two unital C*-algebras. The bridge semi-

norm bnγ (·) of a bridge γ = (D, πA, πB, ω) from A to B is the seminorm defined on

A⊕B by:

bnγ (a, b) = ‖πA(a)ω − ωπB(b)‖D

for all (a, b) ∈ A⊕B.

We implicitly identify A with A ⊕ {0} and B with {0} ⊕ B in A ⊕ B in the next

definition, for any two spaces A and B.

Definition 2.10. Let (A, LA) and (B, LB) be two quasi-Leibniz quantum compact metric

spaces. The reach % (γ|LA, LB) of a bridge γ = (D, πA, πB, ω) from A to B, and with

respect to LA and LB, is given by:

Hausbnγ(·) ({a ∈ sa (A) : LA(a) 6 1} , {b ∈ sa (B) : LB(b) 6 1}) .

We thus choose a natural quantity to synthesize the information given by the height

and the reach of a bridge:

Definition 2.11. Let (A, LA) and (B, LB) be two quasi-Leibniz quantum compact metric

spaces. The length λ (γ|LA, LB) of a bridge γ = (D, πA, πB, ω) from A to B, and with

respect to LA and LB, is given by:

max {ς (γ|LA, LB), % (γ|LA, LB)} .

While a natural approach, defining the quantum propinquity as the infimum of the

length of all possible bridges between two given (C,D)-quasi-Leibniz quantum compact

metric spaces, for some fixed C > 1 and D > 0, does not lead to a distance, as the

triangle inequality may not be satisfied. Instead, a more subtle road must be taken, as
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exposed in details in [24]. The following theorem hides these complications and provide

a summary of the conclusions of [24] relevant for our work:

Theorem-Definition 2.12 ([24, 23]). Fix C > 1 and D > 0. Let QQCMSC,D be the

class of all (C,D)-quasi-Leibniz quantum compact metric spaces. There exists a class

function ΛC,D from QQCMSC,D ×QQCMSC,D to [0,∞) ⊆ R such that:

(1) for any (A, LA), (B, LB) ∈ QQCMSC,D we have:

ΛC,D((A, LA), (B, LB)) 6 max {diam (S (A),mkLA
),diam (S (B),mkLB

)} ,

(2) for any (A, LA), (B, LB) ∈ QQCMSC,D we have:

0 6 ΛC,D((A, LA), (B, LB)) = ΛC,D((B, LB), (A, LA))

(3) for any (A, LA), (B, LB), (C, LC) ∈ QQCMSC,D we have:

ΛC,D((A, LA), (C, LC)) 6 ΛC,D((A, LA), (B, LB)) + ΛC,D((B, LB), (C, LC)),

(4) for all for any (A, LA), (B, LB) ∈ QQCMSC,D and for any bridge γ from A to

B, we have:

ΛC,D((A, LA), (B, LB)) 6 λ (γ|LA, LB),

(5) for any (A, LA), (B, LB) ∈ QQCMSC,D, we have:

ΛC,D((A, LA), (B, LB)) = 0

if and only if (A, LA) and (B, LB) are isometrically isomorphic, i.e. if and only

if there exists a *-isomorphism π : A → B with LB ◦ π = LA, or equivalently

there exists a *-isomorphism π : A→ B whose dual map π∗ is an isometry from

(S (B),mkLB
) into (S (A),mkLA

),

(6) if Ξ is a class function from QQCMSC,D×QQCMSC,D to [0,∞) which satisfies

Properties (2), (3) and (4) above, then:

Ξ((A, LA), (B, LB)) 6 ΛC,D((A, LA), (B, LB))

for all (A, LA) and (B, LB) in QQCMSC,D

Thus, for a fixed choice of C > 1 and D > 0, the quantum propinquity is the

largest pseudo-distance on the class of (C,D)-quasi-Leibniz quantum compact metric

spaces which is bounded above by the length of any bridge between its arguments; the

remarkable conclusion of [24] is that this pseudo-metric is in fact a metric up to isometric

isomorphism. The quantum propinquity was originally devised in the framework on Leib-

niz quantum compact metric spaces (i.e. for the case C = 1 and D = 0), and as seen in

[23], can be extended to many different classes of quasi-Leibniz compact quantum metric

spaces.

Moreover, we showed in [24] that we can compare the quantum propinquity to natural

metrics.
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Theorem 2.13 ([24]). If distq is Rieffel’s quantum Gromov-Hausdorff distance [38], then

for any pair (A, LA) and (B, LB) of quasi-Leibniz quantum compact metric spaces, we

have:

distq((A, LA), (B, LB)) 6 Λ((A, LA), (B, LB)).

Moreover, for any compact metric space (X,dX), let LdX be the Lipschitz seminorm

induced on the C*-algebra C(X) of C-valued continuous functions on X by dX . Note

that (C(X), LdX ) is a Leibniz quantum compact metric space. Let C be the class of all

compact metric spaces. For any (X,dx), (Y, dY) ∈ C, we have:

Λ ((C(X), LdX ) , (C(Y ), LdY )) 6 GH((X,dX), (Y, dY ))

where GH is the Gromov-Hausdorff distance [11, 12].

Furthermore, the class function Υ : (X,dX) ∈ C 7→ (C(X), LdX ) is a homeomorphism,

where the topology on C is given by the Gromov-Hausdorff distance GH, and the topology

on the image of Υ (as a subclass of the class of all Leibniz quantum compact metric

spaces) is given by the quantum propinquity Λ.

As we noted, the construction and many more information on the quantum Gromov-

Hausdorff propinquity can be found in our original paper [24] on this topic, as well as in

our survey [22]. The extension of our original work to the quasi-Leibniz setting can be

found in [23]. Two very important examples of nontrivial convergences for the quantum

propinquity are given by quantum tori and their finite dimensional approximations, as

well as certain metric perturbations [16, 18, 20] and by matrix approximations of the

C*-algebras of coadjoint orbits for semisimple Lie groups [34, 35, 37]. Moreover, the

quantum propinquity is, in fact, a special form of the dual Gromov-Hausdorff propinquity

[21, 19, 23], which is a complete metric, up to isometric isomorphism, on the class of Lei-

bniz quantum compact metric spaces, and which extends the topology of the Gromov-

Hausdorff distance as well. Thus, as the dual propinquity is dominated by the quantum

propinquity [21], we conclude that all the convergence results in this paper are valid for

the dual Gromov-Hausdorff propinquity as well.

The present paper establishes new examples of convergence for the quantum propin-

quity by constructing quantum metrics on certain AF algebras. All our quantum metrics

will be (2, 0)-quasi-Leibniz quantum compact metric spaces. Thus, we will simplify our

notation as follows:

Convention 2.14. In this paper, Λ will be meant for Λ2,0.

3. AF algebras as Quasi-Leibniz Quantum Compact Metric Spaces

We begin by observing that conditional expectations allow us to define (2, 0)-quasi-

Leibniz seminorms on C*-algebras.
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Definition 3.1. A conditional expectation E (·|B) : A → B onto B, where A is a C*-

algebra and B is a C*-subalgebra of A, is a linear positive map of norm 1 such that for

all b, c ∈ B and a ∈ A we have:

E (bac|B) = bE (a|B)c.

Lemma 3.2. Let A be a C*-algebra and B ⊆ A be a C*-subalgebra of A. If E (·|B) :

A 7→ B is a conditional expectation onto B, then the seminorm:

S : a ∈ A 7→ ‖a− E (a|B)‖A

is a (2, 0)-quasi-Leibniz seminorm.

Proof. Let a, b ∈ A. We have:

S(ab) = ‖ab− E (ab|B)‖A

6 ‖ab− aE (b|B)‖A + ‖aE (b|B)− E (ab|B)‖A

6 ‖a‖A‖b− E (b|B)‖A

+ ‖aE (b|B)− E (aE (b|B)|B) + E (a(E (b|B)− b)|B)‖A

6 ‖a‖A‖b− E (b|B)‖A + ‖a− E (a|B))‖A‖E (b|B)‖A

+ ‖E (a(b− E (b|B))|B)‖A

6 ‖a‖A‖b− E (b|B)‖A + ‖a− E (a|B)‖A‖E (b|B)‖A

+ ‖a‖A‖b− E (b|B)‖A

6 2‖a‖A‖b− E (b|B)‖A + ‖a− E (a|B))‖A‖b‖A

6 2 (‖a‖AS(b) + ‖b‖AS(a)) .

This proves our lemma. �

Note that the seminorms defined by Lemma (3.2) are zero exactly on the range of

the conditional expectation. Now, our purpose is to define quasi-Leibniz Lip-norms on

AF C*-algebras using Lemma (3.2) and a construction familiar in Von Neumann theory,

which we recall here for our purpose.

We shall work with unital AF algebras [4] endowed with a faithful tracial state. Any

unital AF algebra admits at least one tracial state [25, Proposition 3.4.11], and thus

simple AF algebras admit at least one faithful tracial state. In fact, the space of tracial

states of unital simple AF algebras can be any Choquet simplex [10, 2]. On the other

hand, a unital AF algebra has a faithful trace if, and only if it is a C*-subalgebra of a

unital simple AF algebra [26, Corollary 4.3]. Examples of unital AF algebras without a

faithful trace can be obtained as essential extensions of the algebra of compact operators

of a separable Hilbert space by some full matrix algebra. Thus, our context could be

stated as the study of certain Lip-norms on unital AF algebras which can be embedded

in unital simple AF algebras.
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Our main construction of Lip-norms on unital AF algebras with a faithful tracial

state is summarized in the following theorem.

Notation 3.3. Let I = (An, αn)n∈N be an inductive sequence with limit A = lim−→I. We

denote the canonical *-morphisms An → A by αn−→ for all n ∈ N.

Convention 3.4. We assume that for all the inductive sequences (An, αn)n∈N in this

paper, the C*-algebras An are unital and the *-morphisms αn are unital and injective

for all n ∈ N.

Theorem 3.5. Let A be an AF algebra endowed with a faithful tracial state µ. Let

I = (An, αn)n∈N be an inductive sequence of finite dimensional C*-algebras with C*-

inductive limit A, with A0 = C and where αn is unital and injective for all n ∈ N.

Let π be the GNS representation of A constructed from µ on the space L2(A, µ).

For all n ∈ N, let:

E
(
·
∣∣∣αn−→(An)

)
: A→ A

be the unique conditional expectation of A onto the canonical image αn−→ (An) of An in A,

and such that µ ◦ E
(
·
∣∣∣αn−→(An)

)
= µ.

Let β : N→ (0,∞) have limit 0 at infinity. If, for all a ∈ sa (A), we set:

LβI,µ(a) = sup


∥∥∥a− E(a∣∣∣αn−→(An)

)∥∥∥
A

β(n)
: n ∈ N


then

(
A, LβI,µ

)
is a 2-quasi-Leibniz quantum compact metric space. Moreover for all n ∈

N:

Λ
((

An, L
β
I,µ ◦ α

n

−→
)
,
(
A, LβI,µ

))
6 β(n)

and thus:

lim
n→∞

Λ
((

An, L
β
I,µ ◦ α

n

−→
)
,
(
A, LβI,µ

))
= 0.

Proof. To begin with, we note that, from the standard GNS construction, we have the

following:

(1) since µ is faithful, the map ξ : a ∈ A 7→ a ∈ L2(A, µ) is injective,

(2) since ‖ξ(a)‖L2(A,µ) =
√
µ(a∗a) 6 ‖a‖A for all a ∈ A, the map ξ is a continuous

(weak) contraction,

(3) by construction, ξ(ab) = π(a)ξ(b) for all a, b ∈ A,

(4) if ω is ξ(1A), then ω is cyclic and ξ(a) = π(a)ω.

Let n ∈ N. We denote the canonical unital *-monomorphism from An into A by

αn−→. Thus ξ ◦ αn−→ : An → L2(A, µ) is a linear, weakly contractive injection. Since An is

finite dimension, ξ ◦ αn−→(An) is a closed subspace of L2(A, µ). Let Pn be the orthogonal

projection from L2(A, µ) onto ξ ◦ αn−→(An).

We thus note that for all a ∈ A, we have Pn(ξ(a)) ∈ ξ ◦ αn−→(An), thus, since ξ is

injective, there exists a unique En(a) ∈ αn−→(An) with ξ(En(a)) = Pn(ξ(a)).
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Step 1. We begin by checking that the map En : A → αn−→(An) is the conditional expec-

tation E
(
·
∣∣∣αn−→(An)

)
of A onto αn−→(An) which preserves the state µ.

To begin with, if a ∈ An then Pnξ(αn−→(a)) = ξ(αn−→(a)) so En(a) = αn−→(a). Thus En is

onto αn−→(An), and restricts to the identity on αn−→(An).

We now prove that Pn commutes with π(a) for all a ∈ αn−→(An). Let a ∈ αn−→(An). We

note that if b ∈ αn−→(An) then π(a)ξ(b) = ξ(ab) ∈ ξ(αn−→(An)) since αn−→(An) is a subalgebra

of A. Thus π(a)
(
ξ(αn−→(An))

)
⊆ ξ(αn−→(An)). Since αn−→(An) is closed under the adjoint

operation, and π is a *-representation, we have π(a∗)ξ(αn−→(An)) ⊆ ξ(αn−→(An)). Thus, if

we let x ∈ ξ(αn−→(An))⊥ and y ∈ ξ(αn−→(An)), we then have:

〈π(a)x, y〉 = 〈x, π(a∗)y〉 = 0,

i.e. π(a)(ξ(αn−→(An))⊥) ⊆ ξ(αn−→(An))⊥. Consequently, if x ∈ L2(A, µ), writing x = Pnx +

P⊥n x, we have:

Pnπ(a)x = Pnπ(a)Pnx+ Pnπ(a)P⊥n x = π(a)Pnx.

In other words, Pn commutes with π(a) for all a ∈ αn−→(An).

As a consequence, for all a ∈ αn−→(An) and b ∈ A:

ξ(En(ab)) = Pnπ(a)ξ(b) = π(a)Pnξ(b) = π(a)ξ(En(b)) = ξ(aEn(b)).

Thus En(ab) = aEn(b) for all a ∈ αn−→(An) and b ∈ A.

We now wish to prove that En is a *-linear map. Let J : ξ(x) 7→ ξ (x∗). The key

observation is that, since µ is a trace:

〈Jξ(x), Jξ(y)〉 = µ(yx∗) = µ(x∗y) = 〈x, y〉

hence J is an conjugate-linear isometry and can be extended to L2(A, µ). It is easy to

check that J is surjective, as it has a dense range and is isometric, in fact J = J∗ = J−1.

This is the only point where we use that µ is a trace.

We now check that Pn and J commute. To begin with, we note that:

(JPnJ)(JPnJ) = JPnJ

and thus the self-adjoint operator JPnJ is a projection. Let a ∈ A. Then:

JPnJξ(a) = JPnξ(a
∗) = Jξ(En(a∗)) = ξ(En(a∗)∗) ∈ ξ(αn−→(An)).

Thus JPnJ = Pn, so Pn and J commute since J2 = 1B(L2(A,µ)).

Consequently for all a ∈ A:

ξ(En(a∗)) = Pnξ(a
∗) = PnJξ(a) = JPnξ(a) = Jξ(En(a)) = ξ(En(a)∗),

so En(a∗) = En(a)∗.

In particular, we note that for all a ∈ A and b, c ∈ αn−→(An) we have:

En(bac) = bEn(ac) = bEn(c∗a∗)∗ = b(c∗En(a)∗)∗) = bEn(a)c.
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To prove that En is a positive map, we begin by checking that it preserves the state

µ. First note that 1A ∈ αn−→(An) so ω ∈ ξ(αn−→(An)), and thus Pnω = ω. Thus for all a ∈ A:

µ(En(a)) = 〈π(En(a))ω, ω〉

= 〈ξ(En(a)), ω〉 = 〈Pnξ(a), ω〉

= 〈ξ(a), Pnω〉 = 〈π(a)ω, Pnω〉

= 〈π(a)ω, ω〉 = µ(a).

Thus En preserves the state µ. More generally, using the conditional expectation property,

for all b, c ∈ αn−→(An) and a ∈ A:

µ(bEn(a)c) = µ(bac).

We now prove that En is positive. First, µ restricts to a faithful state of αn−→(An) and

L2(αn−→(An), µ) is given canonically by ξ(αn−→(An)). Let now a ∈ sa (A) with a > 0. We

now have for all b ∈ αn−→(An) that:

〈En(a)ξ(b), ξ(b)〉 = µ(b∗En(a)b) = µ(b∗ab) > 0.

Thus the operator En(a) is positive in αn−→(An). Thus En is positive.

Since En restricts to the identity on αn−→(An), this map is of norm at least one. Now,

let a ∈ sa (A) and ϕ ∈ S (A). Then ϕ ◦En is a state of A since En is positive and unital.

Thus |ϕ ◦ En(a)| 6 ‖a‖A. As En(sa (A)) ⊆ sa (A), we have:

(3.1) ∀a ∈ sa (A) ‖En(a)‖A = sup {|ϕ ◦ En(a)| : ϕ ∈ S (A)} 6 ‖a‖A.

Thus En restricted to sa (A) is a linear map of norm 1.

On the other hand, for all a ∈ A, we have:

0 6 En
(
(a− En(a))

∗
(a− En(a))

)
= En (a∗a)− En (En(a)∗a)− En (a∗En(a)) + En (En(a)∗En(a))

= En (a∗a)− En(a)∗En(a).

Thus for all a ∈ A we have:
‖En(a)‖2A = ‖En(a)∗En(a)‖A

6 ‖En(a∗a)‖A
6 ‖a∗a‖A = ‖a‖2A by Inequality (3.1).

Thus En has norm 1. We conclude that En is a conditional expectation onto αn−→(An)

which preserves µ.

Now, assume T : A→ αn−→(An) is a unital conditional expectation such that µ◦T = µ.

As before, we have:

µ(bT (a)c) = µ(bac)

for all a ∈ A and b, c ∈ αn−→(An). Thus, for all x, y ∈ L2(αn−→(An), µ) and for all a ∈ A, we

compute:

〈T (a)x, y〉 = µ(y∗T (a)x) = µ(y∗ax) = µ(y∗En(a)x) = 〈En(a)x, y〉
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and thus En(a) = T (a) for all a ∈ A. So En is the unique conditional expectation from

A onto αn−→(An) which preserves µ.

Step 2. The seminorm LβI,µ is a (2, 0)-quasi-Leibniz Lip-norm on A, and En is weakly

contractive for LβI,µ and for all n ∈ N.

We conclude from Lemma (3.2) and from Step 1 that LβI,µ is a (2, 0)-quasi-Leibniz

seminorm.

If a ∈ sa (A) and LβI,µ(a) = 0 then ‖a−E0(a)‖A = 0 and thus a ∈ sa
(
α0
−→(C)

)
= R1A.

We also note that if a ∈ sa (A) with LβI,µ(a) 6 1 then ‖a − E0(a)‖A 6 β(0). Note

that E0(a) = µ(a)1A as E0 preserves µ.

For all n, p ∈ N we have Ep ◦ En = Emin{n,p} by construction (since PnPp =

Pmin{n,p}). Thus, if n 6 p and a ∈ sa (A) then:

(3.2) ‖En(a)− Ep(En(a)))‖A = 0.

In particular, we conclude that the dense Jordan-Lie subalgebra sa
(⋃

n∈N α
n
−→(An)

)
of

sa (A) is included in the domain dom(LβI,µ) of LβI,µ and thus dom(LβI,µ) is dense in sa (A).

On the other hand, if p 6 n ∈ N and a ∈ sa (A), then:

(3.3) ‖En(a)− Ep(En(a))‖A = ‖En(a− Ep(a))‖A 6 ‖a− Ep(a)‖A.

Thus, by Expressions (3.2) and (3.3), for all a ∈ sa (A),

(3.4) LβI,µ(En(a)) 6 LβI,µ(a).

Last, let ε > 0. There exists N ∈ N such that for all n > N we have β(n) < ε
2 . Let:

BN =
{
a ∈ sa (AN ) : LβI,µ(αN−→(a)) 6 1, µ(a) = 0

}
.

Since E0 = µ(·)1A, we conclude:

BN ⊆ {a ∈ sa (AN ) : ‖a‖A 6 β(0)},

and since a closed ball in sa (AN ) is compact as AN is finite dimensional, we conclude

that BN is totally bounded. Let FN be a ε
2 -dense subset of BN .

Let now a ∈ sa (A) with µ(a) = 0 and LβI,µ(a) 6 1. By definition of LβI,µ we have

‖a−EN (a)‖A 6 β(N) < ε
2 . Moreover, there exists a′ ∈ FN such that ‖EN (a)−a′‖A 6 ε

2 .

Thus:

‖a− a′‖A 6 ε.

Thus: {
a ∈ sa (A) : LβI,µ(a) 6 1, µ(a) = 0

}
is totally bounded. Thus LβI,µ is a Lip-norm on A.

We conclude with the observation that as the pointwise supremum of continuous

functions, LβI,µ is lower semi-continuous.
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Step 3. If n ∈ N, then (An, L
β
I,µ ◦αn−→) is a (2, 0)-quasi-Leibniz quantum compact metric

space and Λ
((

An, L
β
I,µ ◦ αn−→

)
,
(
A, LβI,µ

))
6 β(n).

The restriction of LβI,µ to αn−→(An) is a (2, 0)-quasi-Leibniz lower semi-continuous Lip-

norm on αn−→(An) for all n ∈ N.

Fix n ∈ N. We now prove our estimate on Λ
((

An, L
β
I,µ ◦ αn−→

)
,
(
A, LβI,µ

))
.

The spaces (An, L
β
I,µ ◦ αn−→) and (αn−→(An), LβI,µ) are isometrically isomorphic and thus

at distance zero for Λ. Therefore:

Λ
((

A, LβI,µ

)
,
(
An, L

β
I,µ ◦ α

n

−→
))

= Λ
((

A, LβI,µ

)
,
(
αn−→(An), LβI,µ

))
.

Let id : A → A be the identity and let ιn : αn−→(An) → A be the inclusion map. The

quadruple γ = (A, 1A, ιn, id) is a bridge from αn−→(An) to A by Definition (2.7). We note

that by definition, the height of γ is 0 since the pivot of γ is 1A. Thus, the length of γ is

the reach of γ.

If a ∈ sa (A) with LβI,µ(a) 6 1, then:

‖a− En(a)‖A 6 β(n).

Since En is positive, we thus have En(a) ∈ sa
(
αn−→(An)

)
. By Equation (3.4):

LβI,µ (En(a)) 6 1.

Since αn−→(An) is contained in A, we conclude that the reach of γ is no more than β(n).

We thus conclude, by definition:

Λ
((
αn−→(An), LβI,µ

)
,
(
A, LβI,µ

))
6 β(n).

As (β(n))n∈N converges to 0, we conclude that:

lim
n→∞

Λ
((

An, L
β
I,µ ◦ α

n

−→
)
,
(
A, LβI,µ

))
= 0,

and thus our theorem is proven. �

Remark 3.6. We may employ similar techniques as used in the proof of Theorem (3.5)

to show that AF algebras, equipped with the Lip-norms defined from spectral triples in

[1], are limits of finite dimensional C*-subalgebras. We shall see in this paper, however,

that the Lip-norms we introduce in Theorem (3.5) provide a very natural framework to

study the quantum metric properties of AF algebras.

Theorem (3.5) provides infinitely many Lip-norms on any given unital AF-algebra

A, parametrized by a choice of an inductive sequence converging to A and a sequence

of positive entries which converge to 0. A natural choice of a Lip-norm for a given AF

algebra, which will occupy a central role in our current work, is described in the following

notation.

Notation 3.7. Let I = (An, αn)n∈N be a unital inductive sequence of finite dimensional

algebras whose inductive limit A = lim−→(An, αn)n∈N has a faithful tracial state µ. Assume
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that A is infinite dimensional. Let k ∈ N, k > 0 and β =
(

1
dim(An)k

)
n∈N

. We note that

lim∞ β = 0. We denote the Lip-norm LβI,µ constructed in Theorem (3.5) by LkI,µ. If k = 1,

then we simply write LI,µ for L1
I,µ.

Our purpose is the study of various classes of AF algebras, equipped with Lip-norms

constructed in Theorem (3.5). The following notation will prove useful.

Notation 3.8. The class of all 2, 0-quasi-Leibniz quantum compact metric spaces con-

structed in Theorem (3.5) is denoted by AF . We shall endow AF with the topology

induced by the quantum propinquity Λ.

Furthermore, for any k ∈ (0,∞), let:

AFk :=

(A, LA) ∈ AF

∣∣∣∣∣∣
∃I ∈ Inductive-f-d A = lim−→I
∃µ faithful trace on A such that LA = LkI,µ
A is infinite dimensional


where Inductive-f-d is the class of all unital inductive sequences of finite dimensional

C*-algebras whose limit has at least one faithful tracial state.

A first corollary of Theorem (3.5) concerns some basic geometric properties of the

class AFk:

Notation 3.9. We denote the diameter of any metric space (X,d) by diam (X,d).

For any quantum compact metric space (A, L), we denote diam (S (A),mkL) by

diam∗ (A, L).

Corollary 3.10. Let I,J ∈ Inductive-f-d and β, β′ be two sequences of strictly positive

real numbers, converging to 0. Let µ, ν be faithful tracial states, respectively, on lim−→I
and lim−→J . Then:

diam∗
(

lim−→I, L
β
I,µ

)
6 2β(0)

and:

Λ
((

lim−→I, L
β
I,µ

)
,
(

lim−→J , L
β′

J ,ν

))
6 max{β(0), β′(0)}.

In particular, for all k ∈ (0,∞):

diam
(
AFk,Λ

)
6 1.

Proof. Let A = lim−→I and B = lim−→J .
Let a ∈ sa (A) with LβI,µ(a) 6 1. Then ‖a−µ(a)‖A 6 β(0). Thus for any ϕ,ψ ∈ S (A),

we have:

|ϕ(a)− ψ(a)| = |ϕ(a− µ(a)1A)− ψ(a− µ(a)1A)| 6 2β(0).

Now, let D = A ∗ B be the free product amalgamated over C1A and C1B. Let

π : A ↪→ D and ρ : B ↪→ D be the canonical unital *-monomorphism. The quadruple

γ = (D, 1D, π, ρ) is a bridge from A to B.
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Let a ∈ sa (A) with LβI,µ(a) 6 1. Then:

‖π(a)1D − 1Dρ(µ(a)1B)‖D = ‖a− µ(a)1A‖A 6 β(0).

The result is symmetric in A andB. Thus the reach of γ is no more than max{β(0), β′(0)}.
As the height of γ is zero, we have proven that:

Λ
((

lim−→I, L
β
I,µ

)
,
(

lim−→J , L
β′

J ,ν

))
6 max{β(0), β′(0)}.

Note that this last estimate is slightly better than what we would obtain with [24,

Proposition 4.6].

We conclude our proof noting that if (A, LI) ∈ AFk then β(0) = 1. �

4. The geometry of the class of UHF Algebras for Λ

Our purpose for this section is to study the topology of the class of uniformly hyper-

finite algebras equipped with the Lip-norms from Theorem (3.5). We begin this section

with an explicit computation, in this context, for the conditional expectations involved

in our construction in Theorem (3.5). We then establish our main result for this section,

by constructing a continuous surjection from the Baire space to the subclass of AFk

consisting of UHF algebras.

Notation 4.1. For all k ∈ (0,∞), we let UHFk be the subclass of AFk of (2, 0)-quasi-

Leibniz quantum compact metric spaces of the form (A, L) with A a UHF algebra.

4.1. An expression for conditional expectations.

Notation 4.2. For all d ∈ N, we denote the full matrix algebra of d × d matrices over

C by M(d).

Let B = ⊕Nj=1M(n(j)) for some N ∈ N and n(1), . . . , n(N) ∈ N \ {0}. For each k ∈
{1, . . . , N} and for each j,m ∈ {1, . . . , n(k)}, we denote the matrix ((δj,mu,v ))u,v=1,...,n(k)

by ek,j,m, where we used the Kronecker symbol:

δba =

{
1 if a = b,
0 otherwise.

We note that for all j,m, j′,m′ ∈ {1, . . . , n(k)} we have:

tr
(
e∗k,j,mek,j′,m′

)
=

{
1

n(k) if j = j′ and m = m′,
0 otherwise

when tr is the unique tracial state of M(n(k)).

Now, let µ be a faithful tracial state on B. Then µ is a convex combination with pos-

itive coefficients of the unique tracial states on M(n(0)), . . . ,M(n(N)). We thus deduce

that:

{ek,j,m : k ∈ {1, . . . , N}, j,m ∈ {1, . . . , n(k)}}

is an orthogonal basis of L2(B, µ).
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Let us further assume that we are given a unital *-monomorphism α : B ↪→ A into a

unital C*-algebra A with a faithful tracial state. The restriction of µ to α(B) is thus a

faithful tracial state on α(B). We will use the notations of the proof of Theorem (3.5):

let π be the GNS representation of A defined by µ on the Hilbert space L2(A, µ) and let

ξ : a ∈ A→ a ∈ L2(A, µ).

We then can regard L2(α(B), µ) as a subspace of L2(A, µ) (as noted in the proof of

Theorem (3.5), L2(α(B), µ) is α(B), endowed with the Hermitian norm from the inner

product defined by µ). Let P be the projection of L2(A, µ) on L2(α(B), µ). Then for all

a ∈ A, we have:

(4.1) Pξ(a) =

N∑
k=1

n(k)∑
j=1

n(k)∑
m=1

µ(α(e∗k,j,m)a)

µ(α(e∗k,j,mek,j,m))
α(ek,j,m).

We also note that, if E (·|α(B)) is the conditional expectation of A onto α(B)

which preserves µ constructed from the Jones’ projection P as in Theorem (3.5), then

ξ(E (a|α(B))) = Pξ(a) for all a ∈ A.

4.2. AHölder surjection from the Baire Space onto UHFk. A uniform, hyperfinite

(UHF) algebra is a particular type of AF algebra obtained as the limit of unital, simple

finite dimensional C*-algebras. UHF algebras were classified by Glimm [9] and, as AF

algebras, they are also classified by their Elliott invariant [7]. UHF algebras are always

unital simple AF algebras, and thus they admit a faithful tracial state. Moreover, the

tracial state of a UHF algebra A is unique, as is seen by noting that it must restrict to

the unique tracial state on the full matrix subalgebras of A whose union is dense in A.

Up to unitary conjugation, a unital *-monomorphism α : B→ A between two unital

simple finite dimensional C*-algebras, i.e. two nonzero full matrix algebras A and B,

exists if and only if dimA = k2 dimB for k ∈ N, and α must be of the form:

(4.2) A ∈ B 7−→

A . . .
A

 ∈ A.

It is thus sufficient, in order to characterize a unital inductive sequence of full matrix

algebras, to give a sequence of positive integers:

Definition 4.3. Let I = (An, αn)n∈N be a unital inductive sequence of unital, simple

finite dimensional C*-algebras, with A0 = C.

The multiplicity sequence of I is the sequence
(√

dimAn+1

dimAn

)
n∈N

of positive integers.

A multiplicity sequence is any sequence in N\{0}. A UHF algebra is always obtained

as the limit of an inductive sequence in the following class:

Notation 4.4. Let StrictFullInductive be the set of all unital inductive sequences of full

matrix algebras whose multiplicity sequence lies in (N \ {0, 1})N and which starts with

C.
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UHF algebras have a unique tracial state, which is faithful since UHF algebras are

simple. We make a simple observation relating multiplicity sequences and tracial states of

the associated UHF algebras, which will be important for the main result of this section.

Lemma 4.5. Let I = (An, αn)n∈N in StrictFullInductive. Let A = lim−→I and let µA be

the unique tracial state of A. Let ϑ be the multiplicity sequence of I.

(1) If a ∈ An, then:

µA(αn−→(a)) =
1∏n−1

j=0 ϑ(j)
Tr(a)

where Tr is the unique trace on An which maps the identity to dimAn.

(2) Let J = (Bn, α
′
n)n∈N in StrictFullInductive and set B = lim−→J . Let µB the

unique tracial state of B. If the multiplicity sequences of I and J agree up to

some N ∈ N, then for all n ∈ {0, . . . , N}, we have An = Bn and moreover, for

all a ∈ An = Bn, we have:

µA ◦ αn−→(a) = µB ◦ α′n−→(a).

Proof. Assertion (1) follows from the uniqueness of the tracial state on An for all n ∈ N.

Assertion (2) follows directly from Assertion (1). �

The set of sequences N of positive integers is thus a natural parameter space for the

classes UHFk. Moreover, N can be endowed with a natural topology, and we thus can

investigate the continuity of maps from the Baire space to
(
UHFk,Λ

)
.

Definition 4.6. The Baire space N is the set (N \ {0})N endowed with the metric d

defined, for any two (x(n))n∈N, (y(n))n∈N in N , by:

d ((x(n))n∈N, (y(n))n∈N) =

{
0 if x(n) = y(n) for all n ∈ N,
2−min{n∈N:x(n) 6=y(n)} otherwise.

Remark 4.7. We note that it is common, in the literature on descriptive set theory, to

employ the metric defined on N by setting on (x(n))n∈N, (y(n))n∈N ∈ N :

d′ ((x(n))n∈N, (y(n))n∈N) =

{
0 if x(n) = y(n) for all n ∈ N,

1
1+min{n∈N:x(n)6=y(n)} otherwise.

It is however easy to check that d and d′ are topologically, and in fact uniformly equivalent

as metrics. Our choice will make certain statements in our paper more natural.

We now prove the result of this section: there exists a natural continuous surjection

from the Baire space N onto UHFk for all k ∈ (0,∞). We recall:

Definition 4.8. A function f : X → Y between two metric spaces (X, dX) and (Y, dY )

is (c, r)-Hölder, for some c > 0 and r > 0, when:

dY (f(x), f(y)) 6 cdX(x, y)r

for all x, y ∈ X.
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Theorem 4.9. For any β = (β(n))n∈N ∈ N , we define the sequence �β by:

�β = n ∈ N 7−→

{
1 if n = 0,∏n−1
j=0 (β(j) + 1) otherwise.

We then define, for all β ∈ N , the unital inductive sequence:

I(β) = (M (�β(n)) , αn)n∈N

where M(d) is the algebra of d×d matrices and for all n ∈ N, the unital *-monomorphism

αn is of the form given in Expression (4.2).

The map u from N to the class of UHF algebras is now defined by:

(β(n))n∈N ∈ N 7−→ u((β(n))n∈N) = lim−→I(β).

Let k ∈ (0,∞) and β ∈ N . Let Lkβ be the Lip-norm LϑI(β),µ on u(β) given by Theorem

(3.5), the sequence ϑ : n ∈ N 7→ �β(n)k and the unique faithful trace µ on u(β).

The (2, 0)-quasi-Leibniz quantum compact metric space
(
u(β), Lkβ

)
will be denoted

simply by uhf (β, k).

For all k ∈ (0,∞), the map:

uhf (·, k) : N −→ UHFk

is a (2, k)-Hölder surjection.

Proof. We fix k ∈ (0,∞). Let β ∈ N and write I(β) = (An, αn)n∈N. Note that An =

M(�β(n)) for all n ∈ N. Moreover, we denote uhf (β, k) by (A, LA).

We begin with a uniform estimate on the propinquity.

Fix n ∈ N. By definition, �β(n) > 2n. By Theorem (3.5), we conclude:

Λ((A, LA), (αn−→(An), LA)) 6 �β(n)−k 6 2−nk.

Now, (αn−→(An), LA) and (An, LA ◦ αn−→) are isometrically isomorphic, so:

(4.3) Λ((A, LA), (An, LA ◦ αn−→)) 6 2−nk.

Let now η ∈ N and write I(η) = (Bn, α
′
n)n∈N. Note that Bn = M(�η(n)) for all

n ∈ N. Moreover, we denote uhf (η, k) by (B, LB).

Let N = − log2 d(β, η)− 1 ∈ N ∪ {−1}.
If N = −1 then the best estimate at our disposal is given by Corollary (3.10), and

we conclude:

Λ((A, LA), (B, LB)) 6 max{�β(0),�η(0)} = 1 = d(η, β).

Assume now that N > 0. By definition, β(j) = η(j) for all j ∈ {0, . . . , N}. By Lemma

(4.5), we note that AN = BN = M(�β(N)), and moreover:

µA ◦ αj−→ = µB ◦ α′j−→

for all j ∈ {0, . . . , N}.
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We now employ the notations of Section (4.1). For all j ∈ {0, . . . , N}, we thus fix the

canonical set {ek,m ∈M(�β(j)) : k,m ∈ Ij} of M(�β(j)), where:

Ij =
{

(k,m) ∈ N2 : 1 6 k,m 6 �β(j)
}
.

From Expression (4.1), for all a ∈M(β(N)) we note:

∥∥∥αj−→(a)− E
(
αj−→(a)

∣∣∣αj−→(Aj)
)∥∥∥

A
=

∥∥∥∥∥∥αj−→(a)−
∑
l∈Ij

µA

(
αj−→(a)αj−→(e∗l )

)
µA

(
αj−→(e∗l el)

) αj−→(el)

∥∥∥∥∥∥
A

=

∥∥∥∥∥∥a−
∑
l∈Ij

µA

(
αj−→(ae∗l )

)
µA

(
αj−→(e∗l el)

)el
∥∥∥∥∥∥
M(�β(j))

=

∥∥∥∥∥∥a−
∑
l∈Ij

µB

(
α′j−→(ae∗l )

)
µB

(
α′j−→(e∗l el)

)el
∥∥∥∥∥∥
M(�β(j))

=

∥∥∥∥∥∥α′j−→(a)−
∑
l∈Ij

µB

(
α′j−→(a)α′j−→(e∗l )

)
µA

(
α′j−→(e∗l el)

) α′j−→(el))

∥∥∥∥∥∥
B

=
∥∥∥α′j−→(a)− E

(
α′j−→(a)

∣∣∣α′j−→(Bj)
)∥∥∥

B
.

Consequently, by definition:

LA ◦ αN−→ = LB ◦ α′N−−→,

so:

(4.4) Λ((AN , LA ◦ αN−→), (BN , LB ◦ α′N−−→)) = 0.

Hence, by the triangle inequality applied to Inequalities (4.3) and (4.4):

Λ(uhf (β, k), uhf (η, k)) 6
2

2Nk
6 2d(β, η)k.

Last, we show that the map uhf (·, k) is a surjection. If U is a UHF algebra, then

there exists an inductive sequence I = (An, αn)n∈N of full matrix algebras whose limit

is U and such that A0 = C, while the multiplicity sequence β of I is in N \ {0, 1}. Thus
u((β(n)− 1)n∈N) = U. Moreover, any Lip-norm L on U such that (U, L) ∈ UHFk can be

obtained, by definition, from such a multiplicity sequence.

This concludes our theorem. �

Remark 4.10. Inequality (4.3) is sharp, as it becomes an inequality for the sequence

β = (1, 1, 1, . . .) ∈ N , and we note that the UHF algebra u(β) is the CAR algebra.

Remark 4.11. Since d is an ultrametric on N , we conclude that dk is a topologically

equivalent ultrametric on N as well. Hence, we could reformulate the conclusion of

Theorem (4.9) by stating that uhf (·, k) is 2-Lipschitz for dk.
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5. The geometry of the class of Effrös-Shen AF algebras AFθ for Λ

The original classification of irrational rotation algebras, due to Pimsner and Voicu-

lescu [29], relied on certain embeddings into the AF algebras constructed from continued

fraction expansions by Effrös and Shen [8]. In [18], the second author proved that the

irrational rotational algebras vary continuously in quantum propinquity with respect to

their irrational parameter. It is natural to wonder whether the AF algebras constructed

by Pimsner and Voiculescu vary continuously with respect to the quantum propinquity

if parametrized by the irrational numbers at the root of their construction. We shall

provide a positive answer to this problem in this section.

5.1. Construction of AFθ for all θ ∈ (0, 1)\Q. We begin by recalling the construction

of the AF C*-algebras AFθ constructed in [8] for any irrational θ in (0, 1). For any

θ ∈ (0, 1) \Q, let (rj)j∈N be the unique sequence in N such that:

(5.1) θ = lim
n→∞

r0 +
1

r1 +
1

r2 +
1

r3 +
1

. . . +
1

rn

.

The sequence (rj)j∈N is called the continued fraction expansion of θ, and we will simply

denote it by writing θ = [r0, r1, r2, . . .] = [rj ]j∈N. We note that r0 = 0 (since θ ∈ (0, 1))

and rn ∈ N \ {0} for n > 1.

We fix θ ∈ (0, 1) \Q, and let θ = [rj ]j∈N be its continued fraction decomposition. We

then obtain a sequence
(
pθn
qθn

)
n∈N

with pθn ∈ N and qθn ∈ N \ {0} by setting:

(5.2)



(
pθ1 qθ1
pθ0 qθ0

)
=

(
r0r1 + 1 r1

r0 1

)
(
pθn+1 qθn+1

pθn qθn

)
=

(
rn+1 1

1 0

)(
pθn qθn
pθn−1 qθn−1

)
for all n ∈ N \ {0}.

We then note that
(
pθn
qθn

)
n∈N

converges to θ.

Expression (5.2) contains the crux for the construction of the Effrös-Shen AF algebras.

Notation 5.1. Throughout this paper, we shall employ the notation x⊕ y ∈ X ⊕ Y to

mean that x ∈ X and y ∈ Y for any two vector spaces X and Y whenever no confusion

may arise, as a slight yet convenient abuse of notation.

Notation 5.2. Let θ ∈ (0, 1) \Q and θ = [rj ]j∈N be the continued fraction expansion of

θ. Let (pθn)n∈N and (qθn)n∈N be defined by Expression (5.2). We set AFθ,0 = C and, for

all n ∈ N \ {0}, we set:

AFθ,n = M(qθn)⊕M(qθn−1),
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and:

αθ,n : a⊕ b ∈ AFθ,n 7−→


a

. . .
a

b

⊕ a ∈ AFθ,n+1,

where a appears rn+1 times on the diagonal of the right hand side matrix above. We also

set α0 to be the unique unital *-morphism from C to AFθ,1.

We thus define the Effrös-Shen C*-algebra AFθ, after [8]:

AFθ = lim−→
(
AFθ,n, αθ,n

)
n∈N .

In [29], Pimsner and Voiculescu construct, for any θ ∈ (0, 1)\Q, a unital *-monomor-

phism from the irrational rotation C*-algebra Aθ, i.e. the universal C*-algebra generated

by two unitaries U and V subject to UV = exp(2iπθ)V U , into AFθ. This was a crucial

step in their classification of irrational rotation algebras and started a long and fascinating

line of investigation about AF embeddings of various C*-algebras.

In order to apply our Theorem (3.5), we need to find a faithful tracial state on AFθ,

for all θ ∈ (0, 1) \Q. This is the matter we address in our next subsection.

5.2. The tracial state of AFθ. We shall prove that for all θ ∈ (0, 1) \ Q, there exists

a unique tracial state on AFθ which will be faithful as AFθ is simple (note that there

must exists at least one tracial state on any unital simple AF algebra). The source of our

tracial state will be the K-theory of AFθ.

We refer to [7, Section VI.3] for the computation of the Elliott invariant of AFθ, which

reads:

Theorem 5.3 ([8]). Let θ ∈ (0, 1) \ Q and let Cθ = {(x, y) ∈ Z2 : θx + y > 0}. Then
K0(AFθ) = Z2 with positive cone Cθ and order unit (0, 1). Thus the only state of the

ordered group (K0(AFθ), Cθ, (0, 1)) is given by the map:

(x, y) ∈ Z2 7−→ θx+ y.

Thus AFθ has a unique tracial state, denoted by σθ.

Notation 5.4. Let θ ∈ (0, 1) \Q and k ∈ (0,∞). The Lip-norm Lkθ on AFθ is the lower

semi-continuous, (2, 0)-quasi Leibniz Lip-norm LkI(θ),σθ
defined in Notation (3.8) based

on Theorem (3.5), where I(θ) = (AFθ,n, αθ,n)n∈N as in Notation (5.2).

As Theorem (3.5) provides Lip-norms based, in part, on the choice of a faithful tracial

state, a more precise understanding of the unique faithful tracial state of AFθ is required.

We summarize our observations in the following lemma.

Lemma 5.5. Let θ ∈ (0, 1) \ Q and let σθ be the unique tracial state of AFθ, and fix

n ∈ N \ {0}. Using Notation (5.2), let:

σθ,n = σθ ◦ αnθ−→
.
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Let trd be the unique tracial state on M(d) for any d ∈ N. Then, if (pθn)n∈N and (qθn)n∈N

are defined by Expression (5.2), then:

σθ,n : a⊕ b ∈ AFθ,n 7−→ t(θ, n)trqθn(a) + (1− t(θ, n))trqθn−1
(b),

where

t(θ, n) = (−1)n−1qθn
(
θqθn−1 − pθn−1

)
∈ (0, 1).

Proof. The map σθ,n is a tracial state on AFθ,n = M(qθn) ⊕M(qθn−1), and thus there

exists t(n, θ) ∈ [0, 1] such that for all a⊕ b ∈ AFθ,n:

σθ,n(a⊕ b) = t(θ, n)trqθn(a) + (1− t(θ, n))trqθn−1
(b).

Let σ∗ : K0(AFθ) → R be the state induced by σθ on the K0 group of AFθ. We then

have:

t(θ, n) = σθ,n(1M(qθn) ⊕ 0)

= σθ ◦ αnθ−→
(1M(qθn) ⊕ 0)

= σ∗ ◦K0

(
αnθ−→

)((
qθn
0

))(5.3)

where K0

(
αnθ−→

)
is the map from K0(AFθ,n) = Z2 to K0(AFθ) = Z2 induced by αn−→. By

construction, following [7, Section VI.3], we have:

K0

(
αnθ−→

)(
z1
z2

)
= (−1)n−1

(
qθn−1 −qθn
−pθn−1 pθn

)(
z1
z2

)
for all (z1, z2) ∈ Z2. Therefore:

t(θ, n) = (−1)n−1σ∗

((
qθn−1 −qθn
−pθn−1 pθn

)(
qθn
0

))
= (−1)n−1σ∗

((
qθn−1q

θ
n

−pθn−1q
θ
n

))
= (−1)n−1qθn

(
θqθn−1 − pθn−1

)
.

Since θ is irrational, t(θ, n) 6= 0. Since 1M(qθn) ⊕ 0 is positive in AFθ,n and less than

1AFθ,n , we conclude t(θ, n) ∈ (0, 1].

To prove that t(θ, n) < 1, we may proceed following two different routes. Applying a

similar computation as in Expression (5.3), we get:

σθ,n

(
0⊕ 1M(qθn−1)

)
= (−1)nqθn−1

(
θqθn − pθn

)
,

and again as θ is irrational, this quantity is nonzero. As 1 = σθ,n

(
1M(qθn) ⊕ 1M(qθn−1)

)
,

our lemma would thus be proven.
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Instead, we employ properties of continued fraction expansions and note that since

pθnq
θ
n−1 − pθn−1q

θ
n = (−1)n−1:

1− t(θ, n) = 1− (−1)n−1qθn(θqθn−1 − pθn−1)

= (−1)n−1
(
(−1)n−1 − qθn(θqθn−1 − pθn−1)

)
= (−1)n−1

(
pθnq

θ
n−1 − pθn−1q

θ
n − qθn(θqθn−1 − pθn−1)

)
= (−1)n

(
qθn(θqθn−1)− pθnqθn−1

)
= (−1)nqθn−1

(
θqθn − pθn

)
,

which is nonzero as θ is irrational, and is less than one since t(θ, n) > 0. This concludes

our proof. �

Remark 5.6. We may also employ properties of continued fractions expansions to show

that t(θ, n) > 0 for all n ∈ N. We shall use the notations of the proof of Lemma (5.5).

We have:

pθ2n
qθ2n

< θ <
pθ2n+1

qθ2n+1

and thus θqθ2n − pθ2n > 0 and pθ2n+1 − θqθ2n+1 > 0, which shows that t(θ, n) > 0 for all

n ∈ N (note that qθn ∈ N \ {0} for all n ∈ N since θ > 0).

We wish to employ Expression (4.1) and thus, we will find the following computation

helpful:

Lemma 5.7. Let θ ∈ (0, 1) \Q and let n ∈ N \ {0}. Let {e1,j,m ∈ AFθ,n : 1 6 j,m 6 qθn}
and {e2,j,m ∈ AFθ,n : 1 6 j,m 6 qθn−1} be the standard family of matrix units in,

respectively, M(qθn) and M(qθn−1) inside AFθ,n = M(qθn)⊕M(qθn−1), as in Section (4.1)

and with (pθn)n∈N and (qθn)n∈N defined by Expression (5.2).

For 1 6 j,m 6 qθn, we compute:

σθ

(
αn−→(e∗1,j,me1,j,m)

)
= (−1)n−1(θqθn−1 − pθn−1)

while, for 1 6 j,m 6 qθn−1:

σθ(α
n

−→(e∗2,j,me2,j,m)) = (−1)n(θqθn − pθn).

Proof. Let 1 6 j,m 6 qθn. By Lemma (5.5), we have:

σθ

(
αn−→(e∗1,j,me1,j,m)

)
= t(θ, n)trqθn(e∗1,j,me1,j,m) + (1− t(θ, n)) · 0

=
t(θ, n)

qθn

= (−1)n−1(θqθn−1 − pθn−1).

And, a similar argument proves the result for the other matrix units. �
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5.3. Continuity of θ ∈ (0, 1) \ Q 7→ AFθ. Our proof that the map θ ∈ (0, 1) \ Q 7→
(AFθ, Lθ) is continuous for the quantum propinquity relies on a homeomorphism between

the Baire space of Definition (4.6) and (0, 1)\Q, endowed with its topology as a subspace

of R. Indeed, the map which associates, to an irrational number in (0, 1), its continue

fraction expansion is a homeomorphism (see, for instance, [27]). We include a brief proof

of this fact as, while it is well-known, the proof is often skipped in references. Moreover,

this will serve as a means to set some other useful notations for our work.

Notation 5.8. Define cf : (0, 1) \ Q → N by setting cf(θ) = (bn)n∈N if and only if

θ = [0, b0, b1, . . .]. We note that cf is a bijection from (0, 1) \Q onto N , where N is the

Baire space defined in Definition (4.6). The inverse of cf is denote by ir : N → (0, 1)\Q.

Notation 5.9. We will denote the closed ball in (N , d) of center x ∈ N and radius

2−N by N [x,N ] for N > 0. It consists of all sequences in N whose N first entries are

the same as the N first entries of x.

Proposition 5.10. The bijection:

cf : ((0, 1) \Q, | · |) −→ (N , d)

is a homeomorphism.

Proof. The basic number theory facts used in this proof can be found in [13]. Since

every irrational in (0, 1) has a unique continued fraction expansion of the form given

by Expression (5.1), and every sequence of positive integers determines the continued

fraction expansion of an irrational via the same expression, cf is a bijection.

We now show that cf is continuous.

Let b = (bn)n∈N ∈ N and let:

θ = lim
n→∞

1

b0 +
1

b1 +
1

. . . +
1

bn

∈ (0, 1) \Q.

Let V = N [b,N ] for some N ∈ N \ {0}.
Let η ∈ cf−1(V ) and let (xn)n∈N = cf(η). Thus, for all j ∈ {0, . . . , N − 1}, we have

xn = bn. Define IN,η as the open interval with end points:

1

b0 +
1

b1 +
1

. . . + 1
bN−1

and
1

b0 +
1

b1 +
1

. . . + 1
bN−1 +1

,

and let ΘN,η = IN,η \Q.



QUANTUM ULTRAMETRICS ON AF ALGEBRAS 27

By construction, ΘN,η is open in the relative topology on (0, 1) \ Q, and since η is

irrational, we conclude η ∈ ΘN,η \ Q. Furthermore, cf(ΘN,η) ⊆ V , which concludes the

argument since the set of open balls in N is a topological basis for N .

Next, we show continuity of ir by sequential continuity. Let (bn)n∈N be a sequence in

N , where, for all n ∈ N, we write bn = (bnm)m∈N. Assume (bn)n∈N converges to some

b ∈ N for d.

For each n ∈ N, define:

N(bn, b) = min{m ∈ N ∪ {∞} : bnm 6= bm},

in which N(bn, b) = ∞ if bn = b. Let θ = ir(b) ∈ (0, 1) \ Q. By Definition (4.6) of our

metric d on N , we conclude that:

(5.4) lim
n→∞

N(bn, b) =∞.

We choose, in particular, M ∈ N such that for all n >M , we have N(bn, b) > 1.

We also note that if θn = ir(bn) for n ∈ N, then, using Notation (5.2), we conclude

that pθm = pθnm and qθm = qθmm for all m ∈ {0, . . . , N(bn, b)− 1}. Thus, for all n ∈ N with

n >M , standard estimates for continued fraction expansions lead to:

|ir(bn)− θ| =
∣∣∣ir(bn)− pθN(bn,b)−1/q

θ
N(bn,b)−1 + pθN(bn,b)−1/q

θ
N(bn,b)−1 − θ

∣∣∣
6
∣∣∣ir(bn)− pθN(bn,b)−1/q

θ
N(bn,b)−1

∣∣∣+
∣∣∣pθN(bn,b)−1/q

θ
N(bn,b)−1 − θ

∣∣∣
=
∣∣∣θn − pθnN(bn,b)−1/q

θn
N(bn,b)−1

∣∣∣+
∣∣∣pθN(bn,b)−1/q

θ
N(bn,b)−1 − θ

∣∣∣
< 1/

(
qθnN(bn,b)−1

)2

+ 1/
(
qθN(bn,b)−1

)2

= 2/
(
qθN(bn,b)−1

)2

.

Thus by Equation (5.4), we conclude that limn→∞ ir(bn) = θ = ir(b) as desired, and our

proof is complete. �

Our main result will be proven in four steps. We begin by observing that the tracial

states of AFθ provide a continuous field of states on various finite dimensional algebras.

Lemma 5.11. Let θ ∈ (0, 1) \Q and N ∈ N. Let (pθn)n∈N and (qθn)n∈N be defined from

cf(θ) using Expression (5.2). For all n ∈ {0, . . . , N}, the map:

(5.5) sn : (x, a) ∈ N [cf(θ), N + 1]× AFθ,n 7−→ σir(x)

(
αnir(x)−−−→

(a)

)
is well-defined and continuous from N [cf(θ), N + 1]× (AFθ,n, ‖ · ‖AFθ,n) to R.

Proof. Let x, y ∈ N [cf(θ), N ] and set η = ir(x) and ξ = ir(y). Since d is an ultrametric

on N , we note that d(x, y) 6 1
2N

.

We note that the result is trivial for n = 0 since s0 is the identity on C = AFx,0 for

all x ∈ N .
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We now use the notation of Expression (5.2). The key observation from Expression

(5.2) is that the functions:

z ∈ N [cf(θ), N + 1] 7→
(
qir(z)
n , pir(z)

n

)
are constant for all n ∈ {0, . . . , N}, equal to (qθn, p

θ
n) — since d(x, cf(θ)) 6 1

2N+1 implies

that the sequences x and cf(θ) agree on their first N entries.

Thus, setting Bn = AFθ,n, we have:

M(qxn)⊕M(qxn−1) = Bn

for all n ∈ {0, . . . , N}, and the maps defined by Expression (5.5) are well-defined.

Let now n ∈ {1, . . . , N} be fixed. Let a ∈ Bn and write a = a′ ⊕ a′′ ∈ M(qθn) ⊕
M(qθn−1). By Lemma (5.5), we compute:∣∣∣∣σξ ◦ αnξ−→(a)− ση ◦ αnη−→

(a)

∣∣∣∣ = |(t(ξ, n)− t(η, n))(trqθn(a′)− trqθn−1
(a′′))|

6 2|t(ξ, n)− t(η, n)|‖a‖Bn

= 2|qθn(ξqθn−1 − pθn−1)− qθn(ηqθn−1 − pθn−1)|‖a‖Bn

= 2|qθnqθn−1||ξ − η|‖a‖Bn

= 2|qθnqθn−1||ir(y)− ir(x)|‖a‖Bn
.

As n < N is fixed, and ir is a homeomorphism, we conclude that if (ym)m∈N is a sequence

in N [θ,N + 1] converging to x then:

lim
m→∞

∣∣∣∣σir(ym) ◦ αnir(ym)−−−−→
(a)− ση ◦ αnη−→

(a)

∣∣∣∣ = 0.

Thus we have established that the partial function sn(·, a) are continuous for all a ∈ Bn.

We now prove the joint continuity of our maps. Let a, b ∈ Bn and η, ξ as above.

Then:∣∣∣∣ση (αnη−→(a)

)
− σξ

(
αnξ−→

(b)

)∣∣∣∣
=

∣∣∣∣ση (αnη−→(a)

)
− ση

(
αnη−→

(b)

)
+ ση

(
αnη−→

(b)

)
− σξ

(
αnξ−→

(b)

)∣∣∣∣
6

∣∣∣∣ση (αnη−→(a)

)
− ση

(
αnη−→

(b)

)∣∣∣∣
+

∣∣∣∣ση (αnη−→(b)

)
− σξ

(
αnξ−→

(b)

)∣∣∣∣
6 ‖a− b‖An +

∣∣∣∣ση (αnη−→(b)

)
− σξ

(
αnξ−→

(b)

)∣∣∣∣ .
It follows immediately that the map sn defined by Expression (5.5) is continuous as

desired. �

Our second step is to prove that, thanks to Lemma (5.11), the Lip-norms induced

from AFθ on their finite dimensional C*-subalgebras form a continuous field of Lip-norms

[38]. Moreover, we obtain a joint continuity result for these Lip-norms, which are thus in

particular continuous rather than only lower semi-continuous.
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Lemma 5.12. Let θ ∈ (0, 1) \Q and N ∈ N. Let (pθn)n∈N and (qθn)n∈N be defined from

cf(θ) using Expression (5.2). For all n ∈ {0, . . . , N} and k ∈ (0,∞), the map:

(5.6) ln : (x, a) ∈ N [cf(θ), N + 1]× AFθ,n 7−→ Lkir(x)

(
αnir(x)−−−→

(a)

)
defined using Notation (5.4), is well-defined and continuous from N [cf(θ), N+1]×(Bn, ‖·
‖Bn

) to R.

Proof. We note that the proof of Lemma (5.11) also establishes, by a similar argument,

that the maps ln are well-defined for all n ∈ {0, . . . , N}. We also note that l0 is constantly

0, and thus the result is trivial for n = 0.

Fix n ∈ {1, . . . , N}. Let x, y ∈ N [cf(θ), N + 1] and write η = ir(x) and ξ = ir(y). As

within the proof of Lemma (5.11), we note that qθn = qηn = qξn and similarly, pθn = pηn = pξn

(using the notations of Expression (5.2) ).

We set Bn = AFθ,n = AFη,n = AFξ,η. We employ the notations of Section (4.1) and

thus, we have a set {e1,j,m ∈ Bn : 1 6 j,m 6 qn} of matrix units of M(qn) ⊆ Bn and a

set {e2,j,m : 1 6 j,m 6 qn−1} of matrix units for M(qn−1) ⊆ Bn.

To lighten our notations in this proof, let:

I1 = {(1, j,m) ∈ N3 : 1 6 j,m 6 qn}, I2 = {(2, j,m) ∈ N3 : 1 6 j,m 6 qn−1}

and I = I1 ∪ I2.

Let a, b ∈ Bn. By Expression (4.1) we have:∣∣∣∣∣
∥∥∥∥αnη−→(a)− E

(
αnη−→

(a)

∣∣∣∣αnη−→(Bn)

)∥∥∥∥
AFη

−
∥∥∥∥αnξ−→(b)− E

(
αnξ−→

(b)

∣∣∣∣αnξ−→(Bn)

)∥∥∥∥
AFξ

∣∣∣∣∣
6

∣∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥α

n
η−→
(a)−

∑
j∈I

ση

(
αnη−→

(ae∗j )

)
ση

(
αnη−→

(e∗jej)

)αnη−→(ej)

∥∥∥∥∥∥∥∥
AFη

−

∥∥∥∥∥∥∥∥α
n
ξ−→
(b)−

∑
j∈I

σξ

(
αnξ−→

(be∗j )

)
σξ

(
αnξ−→

(e∗jej)

)αnξ−→(ej)

∥∥∥∥∥∥∥∥
AFξ

∣∣∣∣∣∣∣∣∣
6 ‖a− b‖Bn

+

∥∥∥∥∥∥∥∥
∑
j∈I1

ση
(
αnη−→

(ae∗j )

)
qηn−1η − p

η
n−1

−
σξ

(
αnξ−→

(be∗j )

)
qξn−1ξ − p

ξ
n−1

 ej

∥∥∥∥∥∥∥∥
Bn

+

∥∥∥∥∥∥∥∥
∑
j∈I2

ση
(
αnη−→

(ae∗j )

)
qηnη − pηn

−
σξ

(
αnξ−→

(be∗j )

)
qξnξ − pξn

 ej

∥∥∥∥∥∥∥∥
Bn

= ‖a− b‖Bn +

∥∥∥∥∥∥
∑
j∈I1

(
sn(x, ae∗j )

qθn−1ir(x)− pθn−1

−
sn(y, be∗j )

qθn−1ir(y)− pθn−1

)
ej

∥∥∥∥∥∥
Bn

+

∥∥∥∥∥∥
∑
j∈I2

(
sn(x, ae∗j )

qθnir(x)− pθn
−

sn(y, be∗j )

qθnir(y)− pθn

)
ej

∥∥∥∥∥∥
Bn

,

where we used Lemma (5.7) in the previous to the last equation above, and sn is defined

by Expression (5.5). Now, since ir is a homeomorphism from N , and the map sn is
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continuous by Lemma (5.11), we conclude that as I = I1 ∪ I2 is finite:

(5.7)

(x, a) ∈ N [cf(θ), N + 1]×Bn 7−→
1

β(n)

∥∥∥∥αnir(x)−−−→
(a)− E

(
αnir(x)−−−→

(a)

∣∣∣∣αnir(x)−−−→
(Bn)

)∥∥∥∥
AFir(x)

is continuous, where β(n) = 1

((qθn)2+(qθn−1)2)
k .

Last, we note that since for all j > n we have:

E

(
αnir(x)−−−→

(a)

∣∣∣∣αjir(x)−−−→
(AFθ,j)

)
= αnir(x)−−−→

(a),

the function ln is the maximum of the functions given in Expression (5.7) with n ranging

over {0, . . . , N}.
As the maximum of finitely many continuous functions is continuous, our lemma is

proven. �

Our third step establishes a bound for the propinquity between finite dimensional

quantum compact metric spaces which constitute the building blocks of the C*-algebras

AFθ.

Lemma 5.13. Let θ ∈ (0, 1) \Q and N ∈ N. Let (pθn)n∈N and (qθn)n∈N be defined from

cf(θ) using Expression (5.2). For all n ∈ {0, . . . , N} and k ∈ (0,∞), setting Bn = AFθ,n,

the map:

(5.8) qn : x ∈ N [cf(θ), N + 1] 7−→
(
Bn, L

k
ir(x) ◦ α

n
ir(x)−−−→

)
defined using Notation (5.4), is well-defined and continuous from (N , d) to the class of

(2, 0)-quasi-Leibniz quantum compact metric spaces metrized by the quantum propinquity

Λ.

Proof. The statement is obvious for n = 0.

Let n ∈ {1, . . . , N}. Let W be any complementary subspace of R1A in sa (Bn) —

which exists since sa (Bn) is finite dimensional. We shall denote by S the unit sphere

{a ∈W : ‖a‖Bn
= 1} in W. Note that since W is finite dimensional, S is a compact set.

We let x ∈ N [cf(θ), N+1]. Let (ym)m∈N be a sequence in N [cf(θ), N+1] converging

to x. Let:

S = {x, ym : m ∈ N} ×S

which is a compact subset of N ×W. Since the function:

ln : (x, a) ∈ N [cf(θ), N ]×Bn 7−→ Lkir(x)

(
αnir(x)−−−→

(a)

)
is continuous by Lemma (5.12), ln reaches a minimum on S: thus there exists (z, c) ∈ S
such that minS ln = ln(z, c). In particular, since Lip-norms are zero only on the scalars,

we have ln(z, c) > 0 as ‖c‖W = 1 yet the only scalar multiple of 1Bn
in W is 0. We denote

mS = ln(z, c) > 0 in the rest of this proof.

Moreover, ln is continuous on the compact S so it is uniformly continuous.
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Let ε > 0. As ln is uniformly continuous on S, there exists M ∈ N such that for all

m >M and for all a ∈ S we have:

|ln(ym, a)− ln(x, a)| 6 m2
Sε.

We then have, for all a ∈ S and m >M :

∥∥∥∥a− ln(ym, a)

ln(x, a)
a

∥∥∥∥
Bn

=
|ln(ym, a)− ln(x, a)|

ln(x, a)
‖a‖BN

6
εm2

S

mS
6 mSε.

Similarly:

(5.9)
∥∥∥∥a− ln(x, a)

ln(ym, a)
a

∥∥∥∥
Bn

6 mSε.

We are now ready to provide an estimate for the quantum propinquity. Let m > M

be fixed. Writing id for the identity of Bn, the quadruple:

γ = (Bn, 1Bn
, id, id)

is a bridge from
(
Bn, L

k
ir(ym) ◦ α

n
ir(ym)−−−−→

)
to
(
Bn, L

k
ir(ym) ◦ α

n
ir(ym)−−−−→

)
.

As the pivot of γ is the unit, the height of γ is null. We are left to compute the reach

of γ.

Let a ∈ Bn. We proceed in four steps.

Step 1. Assume that a ∈ R1Bn
.

We then have that ln(ym, a) = 0 as well, and that ‖a− a‖Bn
= 0.

Step 2. Assume that a ∈ S.

We note again that ln(x, a) > mS > 0. By Inequality (5.9), we note that:∥∥∥∥a− ln(x, a)

ln(ym, a)
a

∥∥∥∥
Bn

6 εmS 6 εln(x, a),

while ln
(
ym,

ln(x,a)
ln(ym,a)a

)
= ln(x, a).

Step 3. Assume that a = b+ t1Bn with b ∈ S.

Note that ln(x, b) = ln(x, a). Therefore, let b′ ∈ sa (Bn) be constructed as in Step 2.

We then check easily that:

‖a− (b′ + t1Bn)‖Bn = ‖b− b′‖Bn 6 εln(x, a)

while ln(ym, b
′ + t1BN

) = ln(ym, b
′) 6 ln(x, a).

Step 4. Let a ∈ sa (Bn).
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By definition of S there exists r, t ∈ R such that a = rb + t1BN
with b ∈ S. Let

b′ ∈ sa (A) be constructed from b as in Step 3. Then set a′ = rb′. By Step 3, we have

ln(ym, b
′) 6 ln(x, a′) and ‖a′ − b′‖Bn

6 εln(x, a′).

Thus by homogeneity, we conclude that:

(5.10) ∀a ∈ sa (Bn) ∃a′ ∈ sa (Bn) ‖a− a′‖Bn
6 εl(x, a) and ln(ym, a

′) 6 ln(x, a).

By symmetry in the roles of x and ym we can conclude as well that:

(5.11) ∀a ∈ sa (Bn) ∃a′ ∈ sa (Bn) ‖a− a′‖Bn
6 εl(ym, a) and ln(x, a′) 6 ln(ym, a).

Now, Expressions (5.10) and (5.11) together imply that the reach, and hence the

length of the bridge γ is no more than ε.

Therefore, for all m >M , we have:

Λ ((Bn, ln(x, ·)), (Bn, ln(ym, ·))) 6 ε

which concludes our proof. �

We are now able to establish the main result of this section.

Theorem 5.14. For all k ∈ (0,∞) and using Notations (5.2) and (5.4), the function:

θ ∈ (0, 1) \Q 7−→
(
AFθ, L

k
θ

)
∈ AFk

is continuous from (0, 1) \ Q, with its topology as a subset of R, to the class of (2, 0)-

quasi-Leibniz quantum compact metric spaces metrized by the quantum propinquity Λ.

Proof. The golden ratio φ = 1+
√

5
2 and Φ = φ − 1 = 1

φ be its reciprocal. The continued

fraction expansion of Φ is given by:

Φ =
1

1 +
1

1 +
1

1 +
1

1 +
. . .

and AFΦ is sometimes called the Fibonacci C*-algebra [7]. Its importance for our work

is that the associated sequence (qΦ
n )n∈N defined by Expression (5.2) is the least possible

sequence of the form (qθn)n∈N given by the same expression, over all possible θ ∈ (0, 1)\Q
(where the order is defined entry-wise).

Let θ ∈ (0, 1) \Q. By Theorem (3.5), we have for all n ∈ N:

(5.12) Λ
(
(AFθ, L

k
θ), (AFθ,n, ln(θ, ·))

)
6

(
1

(qθn)2 + (qθn−1)2

)k
6

(
1

(qΦ
n )2 + (qΦ

n−1)2

)k
,

where ln is defined in Lemma (5.12).

We are now in a position to conclude. Let (θm)m∈N be a sequence in (0, 1) \ Q
converging to θ. Let ε > 0.
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To begin with, let N ∈ N such that for all n > N , we have:(
1

(qΦ
n )2 + (qΦ

n−1)2

)k
6
ε

2
.

We thus have, for all m ∈ N, that:

(5.13) Λ
(
(AFθ, L

k
θ), (AFθm , L

k
θm)
)
6 ε+ Λ

(
(AFθ,N , lN (θ, ·)), (AFθm,N , lN (θm, ·))

)
.

Now, let xm = cf(θm) for all m ∈ N and x = cf(θ). Since cf is a continuous, the

sequence (xm)m∈N converges to x in N . Thus there exists M1 ∈ N such that, for all

m >M1, we have d(x, xm) 6 1
2N+1 , i.e. xm ∈ N [x,N + 1].

We thus apply Lemma (5.13) to obtain from Expression (5.13) that:

Λ
(
(AFθ, L

k
θ), (AFθm , L

k
θm)
)
6 ε+ Λ (qN (θ), qN (θm)) .

Now, Lemma (5.13) establishes that qN is continuous. Hence:

lim sup
m→∞

Λ
(
(AFθ, L

k
θ), (AFθm , L

k
θm)
)
6 ε.

As ε > 0 was arbitrary, our Theorem is proven. �

6. Some compactness results for AF algebras

The search for compact classes of quantum compact metric spaces for the quantum

propinquity is a delicate yet interesting challenge. The main result on this topic is given

by the following analogue of the Gromov compactness theorem, proven in [23] by the

second author; we quote it only for the case of (C,D)s-quasi-Leibniz quantum compact

metric space rather than the more general quasi-Leibniz quantum compact metric spaces

of [23] as this suffices for our current setting.

Definition 6.1 ([23]*Definition 4.1). Let C > 1 and D > 0. The covering number

cov(C,D) (A, L|ε) of an (C,D)-quasi-Leibniz quantum compact metric space (A, L), for

some ε, is:

inf

{
dimCB :

(B, LB) is a (C,D)-quasi-Leibniz quantum compact metric space
Λ((A, L), (B, LB)) 6 ε

}
.

Theorem 6.2 ([23]*Theorem 4.2). Let A be a class of (C,D)-quasi-Leibniz quantum

compact metric spaces, with C > 1 and D > 0, such that cov(C,D) ((A, L)|ε) <∞ for all

ε > 0 and (A, L) ∈ A. The class A is totally bounded for the quantum propinquity ΛC,D

if and only if the conjunction of the the following two assertions hold:

(1) there exists ∆ > 0 such that for all (A, L) ∈ A:

diam∗ (A, L) 6 ∆,

(2) there exists G : (0,∞)→ N such that for all (A, L) ∈ A and all ε > 0, we have:

cov(C,D) (A, L|ε) 6 G(ε).
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Our construction in Theorem (3.5) is designed so that AF algebras with faithful tracial

states are indeed limits of finite dimensional quasi-Leibniz quantum metric spaces, so we

may apply Theorem (6.2) to obtain:

Theorem 6.3. If U,L : N→ N \ {0} are two sequences in N \ {0} such that lim∞ L =

lim∞ U =∞ while L(n) 6 U(n) for all n ∈ N, and if k ∈ (0,∞), then the class:

AFk(L,U) =

(A, LA) ∈ AFk

∣∣∣∣∣∣∣∣
∃I = (An, αn)n∈N A = lim−→I
A0 = C

∀n ∈ N L(n) 6 dimAn 6 U(n)
∃µ faithful tracial state on A LA = LkI,µ


is totally bounded for the quantum propinquity.

Proof. Let ε > 0. Let N ∈ N such that for all n > N we have L(n) > k

√
1
ε .

If (A, L) ∈ AFk(L,U) then by definition, A = lim−→I where I = (An, αn) such that

U(n) > dimC An > L(n) for all n ∈ N and L = LkI,µ for some faithful tracial state µ of

A.

Therefore, by Theorem (3.5):

Λ((A, L), (AN , L ◦ αN−→)) 6
1

dim(AN )k
6

1

L(N)k
6 ε.

Thus cov(2,0) (A, L|ε) 6 U(N). Moreover, diam∗ (A, L) 6 2, and thus by Theorem (6.2),

the class AFk(L,U) is totally bounded for Λ. �

The quantum propinquity is not known to be complete. The dual propinquity [21],

introduced and studied by the second author, is a complete metric and the proper formu-

lation of Theorem (6.2) can thus be used to characterized compactness of certain classes

of quasi-Leibniz compact quantum metric spaces. However, we face a few challenges when

searching for compact subclasses of AFk.
As the quantum propinquity dominates the dual propinquity, Theorems (3.5), (4.9)

and (5.14) are all valid for the dual propinquity, as is Theorem (6.3). However, we do

not know what is the closure of the classes described in Theorem (6.3) for the dual

propinquity, and thus we may not conclude whether these classes are, in general, compact.

It should be noted that, as shown by the second author in [23], there are many quasi-

Leibniz quantum compact metric spaces which are limits of finite dimensional quasi-

Leibniz quantum compact metric spaces for the dual propinquity.

Moreover, we do not know what the completion of the classes in Theorem (6.3) are

for the quantum propinquity either. Thus it is again difficult to describe compact classes

from Theorem (6.3).

Yet, the situation is actually quite interesting if looked at from a somewhat different

perspective. Indeed, Theorems (4.9) and (5.14) provide us with continuous maps from

the Baire space to subclasses of AFk. Thus, knowledge about the compact subsets of

N provides actual knowledge of some compact subclasses of AFk for the quantum

propinquity.
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To illustrate this point, we begin by giving a theorem characterizing closed, totally

bounded, and compact subspaces of the Baire space. This theorem is well-known in

descriptive set theory; however the proofs of these results seem scattered in the literature

and, maybe more importantly, rely on a more complex framework and terminology than

is needed for our purpose. We thus include a short proof for the convenience of our

readers.

Notation 6.4. If x ∈ N and n ∈ N then we denote the finite sequence (x0, . . . , xn) by

x|n.

Theorem 6.5. The Baire Space N is complete for the ultrametric d, defined for all

x, y ∈ N by:

d(x, y) = 2−min{n∈N∪{∞}:x|n 6=y|n}.

Thus the compact subsets of N are its closed, totally bounded subsets. Moreover, for any

X ⊆ N :

(1) the closure of X is the set:

{x ∈ N : ∀n ∈ N ∃y ∈ X x|n = y|n}

(2) X is totally bounded if and only for all n ∈ N:

{x|n : x ∈ X}

is finite.

Proof. We prove each assertion of our theorem in each of the following step.

Step 1. The space (N , d) is complete.

Let (xm)m∈N be a Cauchy sequence in (N , d). For all n ∈ N, there existsM ∈ N such

that, if p, q >M , we have d(xp, xq) < 1
2n . Since d is an ultra-metric, we have equivalently

that d(xM , xp) < 1
2n for all p > M : thus for all m > M we have xM |n = xp|n. In

particular, (xmn )m∈N is an eventually constant function for all n ∈ N. It is then trivial to

check that the sequence (limm→∞ xmn )n∈N is the limit of (xm)m∈N.

Step 2. The closure of X ⊆ N is:

Y = {x ∈ N : ∀n ∈ N ∃y ∈ X x|n = y|n}

Note that by definition, X ⊆ Y . We now check that Y is closed. Let (zm)m∈N be a

sequence in Y converging to some z ∈ N . By definition of d, for all N ∈ N, there exists

M ∈ N such that for all m >M we have d(zm, z) < 1
2N

. Thus zM |N = z|N by definition.

So z ∈ Y as desired, and thus Y is closed.

Let now y ∈ Y . Let n ∈ N. By definition, there exists xn ∈ X such that xn|n = y|n,
i.e. d(xn, y) < 1

2n . Thus (xn)n∈N converges to y. Thus Y is contained in the closure of X.

Since Y is closed, it follows from the minimality of closures that Y is indeed the closure

of X.
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Step 3. A characterization of totally bounded subsets of the Baire Space.

Assume now that X is totally bounded. Then for all n ∈ N there exists a finite subset

Xn of X such that for all x ∈ X there exists y ∈ Xn with d(x, y) < 1
2n , or equivalently,

such that x|n = y|n. Thus {x|n : x ∈ X} = {x|n : x ∈ Xn}, the latter being finite.

Conversely, note that Xn converges to X for the Hausdorff distance Hausd, and thus if

(Xn)n∈N is finite for all n ∈ N, we conclude easily that X is totally bounded. �

Remark 6.6. Theorem (6.5) is well-known in descriptive set theory, though the proof

is often presented within a much more elaborate framework. Our assertion about the

closure of sets is often phrased by noting that a subset of N is closed if and only if

it is given as all infinite paths in a pruned tree. In this context, a tree over the Baire

Space is a subset of the collection of all finite sequences valued in N \ {0} with a simple

hereditary property: if a finite sequence is in our tree, then so is its sub-sequence obtained

by dropping the last entry. A pruned tree is a tree T such that every sequence in it is a

proper sub-sequence of another element of T . Last, a path is simply a sequence x ∈ N

such that x|n ∈ T for all N . This relation makes the translation between Theorem (6.5)

and the terminology of certain branches of set theory.

Moreover, a tree is finitely branching when given a finite sequence x of length n in

the tree, there are only finitely many possible finite sequences of length n + 1 whose n

first entries coincide with x. It is easy to see that Theorem (6.5) exactly states that a

subset of the Baire space is compact if and only if it consists of all infinite paths through

a pruned tree with finite branching (and our theorem makes the tree explicit)

We now apply Theorem (6.5) to identify certain compact subclasses of UHF algebras

and Effrös-Shen AF algebras.

Corollary 6.7. For all k ∈ N and all sequence B : N → N \ {0} with
√

B(n+1)
B(n) ∈

N \ {0, 1} for all n ∈ N, the class:

UHFk ∩ AFk((2n)n∈N, B)

is compact for the quantum propinquity Λ.

Proof. Let:

X =

{
x ∈ N : ∀n ∈ N xn + 1 6

√
B(n+ 1)

B(n)

}
.

By construction, uhf (X, k) = UHFk∩AFk((2n)n∈N, B) (the lower bound on the dimen-

sion of the matrix algebras was observed in the proof of Theorem (4.9)). On the other

hand, by Theorem (6.5), the set X is compact and by Theorem (4.9), the map uhf (·, k)

is continuous. So UHFk ∩ AFk((2n)n∈N, B) is compact. �

We also obtain:
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Corollary 6.8. Let C,B ∈ N , and set:

X =


θ ∈ (0, 1) \Q : θ = lim

n→∞

1

r1 +
1

r2 +
1

· · ·+
1

rn

and ∀n ∈ N C(n) 6 rn 6 B(n)


Then the set: {

(A, L) ∈ AFk : A ∈ AFX

}
is compact for the quantum propinquity Λ.

Proof. This follows from Theorem (6.5) and the continuity established in Theorem (5.14).

�

We were thus able to obtain several examples of compact classes of quasi-Leibniz

quantum compact metric spaces for the quantum propinquity and consisting of infinitely

many AF algebras, which is a rather notable result. We also note that since the dual

propinquity [21] is also a metric up to isometric isomorphism and is dominated by the

quantum propinquity, the topology induced by the quantum propinquity and the dual

propinquity on these compact classes must agree.

7. Quantum ultrametrics on the Cantor Set

The Gel’fand spectrum of Abelian AF algebras are homeomorphic to compact sub-

spaces of the Cantor set. In this section, we will explore the Monge-Kantorovich metrics

induced by the Lip-norms defined in Theorem (3.5) on the Cantor set itself. We will

prove, in particular, that the standard ultrametrics on the Cantor set can be recovered

directly from our construction.

There are many standard presentations of the Cantor set, and we shall pick the

following for our purpose:

Notation 7.1. Let Z2 = {0, 1} with the discrete topology. The Cantor set is given by:

C = {(zn)n ∈ N : n ∈ Z2} =
∏
n∈N

Z2

with the product topology.

In order to fit the Cantor set inside the framework of this paper, we shall explicit a

natural inductive sequence of finite dimensional Abelian C*-algebras converging to the

C*-algebra C(C) of C-valued continuous functions on C.
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Notation 7.2. For all n ∈ N, we denote the evaluation map (zm)m∈N ∈ C 7→ zn by ηn.

Note that ηn ∈ C(C) is a projection and un = 2ηn − 1C(C) is a self-adjoint unitary in

C(C).
We set A0 = C1C(C) and, for all n ∈ N \ {0}, we set:

An = C∗
(
{1C(C), u0, . . . , un−1}

)
.

By definition, An is a finite dimensional C*-subalgebra of C(C), with the same unit

as C(C). Moreover, An ⊆ An+1 for all n ∈ N. Last, it is easy to check that
⋃
n∈N An is a

unital *-subalgebra of C(C) which separates points; as C is compact, the Stone-Weierstraß

theorem implies that:

C(C) = closure

(⋃
n∈N

An

)
.

If we denote the inclusion map An ↪→ An+1 by αn for all n ∈ N, then C(C) = lim−→T
where T = (An, αn). We note that of course, αn−→ is just the inclusion map of An into

C(C) for all n ∈ N; whenever possible we will thus omit the maps αn and αn−→ from our

notations.

We now have our standard description of C(C) as an AF algebra, and a specific

inductive sequence to use in Theorem (3.5). We also require a particular choice of a

faithful tracial state; as C(C) is Abelian, we have quite some choice of such states. We

will focus our attention on a specific construction.

Notation 7.3. The set C =
∏
n∈NZ2 is a group for the pointwise addition modulo

1. As C is compact, there exists a unique Haar probability measure, which defines by

integration a faithful tracial state λ on C(C).
It is easy to check that, for any finite, nonempty F ⊂ N, we have:

λ

∏
j∈F

ηj

 = 2−#F

where #F is the cardinal of F . Indeed,
∏
j∈F ηj is simply the indicator function of the

subset:

{(zn)n∈N ∈ C : ∀j ∈ F zj = 1} .

It is then easy to check that C is the union of 2#F disjoint translates of F .

The primary advantage of our choice of tracial state is illustrated in the following

lemma.

Lemma 7.4. We shall use Notations (7.2) and (7.3). If we endow C(C) with the inner

product:

(f, g) ∈ C(C) 7→ λ(fg),

then un ∈ A⊥n for all n ∈ N. Moreover
(∏

j∈F uj

)
F∈F

, where F is the set of nonempty

finite subsets of N, is an orthonormal family of L2(C(C), λ).
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Proof. We let, for all n ∈ N \ {0}:

Bn =

1C(C),
∏
j∈F

uj : F is a nonempty subset of {0, . . . , n− 1}

 .

We note that Bn is a basis for An. We also note that
(∏

j∈F uj

)
F∈F

is a Hamel basis

of the space
⋃
n∈N An.

Now, let n ∈ N and F ⊆ {0, . . . , n− 1} be nonempty. We have:

λ

u∗n ∏
j∈F

uj

 = λ

(2ηn − 1C(C))
∏
j∈F

(2ηj − 1C(C))


= λ

 ∏
j∈F∪{n}

(2ηj − 1C(C))


=

∑
G⊆F∪{n}

(−1)#F+1−#G2#Gλ

∏
j∈G

ηj


=

∑
G⊆F∪{n}

(−1)#F+1−#G2#G2−#G

=
∑

j∈F∪{n}

(
#F + 1

j

)
(−1)j

= (1− 1)#F+1 = 0.

(7.1)

Since Bn is a basis for An, we conclude that indeed, un ∈ A⊥n .

Moreover, we note that Expression (7.1) also proves that B is an orthogonal family

in L2(C(C), λ). As the product of unitaries is unitary, our definition of the inner product

then shows trivially that the family B is orthonormal. �

We now have the tools needed to state our main theorem for this section: Lip-norms

defined using Theorem (3.5) with the ingredients described in this section naturally lead

to ultrametrics on the Cantor space via the associated Monge-Kantorovich metric.

Theorem 7.5. Let β : N→ N\{0} be a decreasing sequence with lim∞ β = 0. Identifying

the Cantor space C with the Gel’fand spectrum of C(C), and using Notations (7.2) and

(7.3), we have, for all x, y ∈ C:

mkLβT ,λ
(x, y) =

{
0 if x = y,
2β(min{n ∈ N : xn 6= yn}) otherwise.

By construction, mkLβT ,λ
is an ultrametric on C.

Proof. In this proof, we will denote by E (·|An) the conditional expectation from C(C)
onto An, which leave λ invariant.

Fix x 6= y ∈ C. By Theorem (3.5):

mkLβT ,λ
(x, y) = sup

{
|f(x)− f(y)| : f ∈ C(C), LβT ,λ(f) 6 1

}
.
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Our computation relies on the following observation. Let n > k ∈ N. Since un ∈ A⊥k

in L2(C(C), λ) by Lemma (7.4), we conclude that E (un|Ak) = 0. Of course, if k > n ∈ N
then E (un|Ak) = un. Thus we have for all n ∈ N:

LβT ,λ(un) = max

{
‖un‖C(C)

β(k)
: k 6 n

}

= max

{
1

β(k + 1)
: k < n

}
as un is unitary,

=
1

β(n)
as β is decreasing.

We thus have LβT ,λ(β(n)un) 6 1 for all n ∈ N.

Let N = min{n ∈ N : xn 6= yn}. Then |uN (x)− uN (y)| = 2 and thus:

mkLβT ,λ
(x, y) > β(N)|uN (x)− uN (y)| = 2β(N).

On the other hand, for all n ∈ N, the C*-algebra An is the C*-subalgebra generated

by the evaluation maps ηj for j = 0, . . . , n and the identity. Therefore, for any f ∈ C, we
have E (f |An)(x) = E (f |An)(y) for all n < N .

Let f ∈ C(C) with LβT ,λ(f) 6 1. Then for all n < N :

|f(x)− f(y)| = |f(x)− E (f |An)(x)− (f(y)− E (f |An)(y))|

6 2‖f − E (f |An)‖C(C)

6 2β(n+ 1).

Since β is decreasing, we thus get:

|f(x)− f(y)| 6 2 min{β(n+ 1) : n < N} = 2β(N).

We thus conclude that:

mkLβT ,λ
(x, y) = 2β(N),

as desired. It is easy to check that mkLβT ,λ
defines an ultrametric on C since β is decreasing.

�

We thus recognize standard ultrametrics on the Cantor set:

Corollary 7.6. Let r > 1, and set βr : n ∈ N 7→ 1
2r
−n. Then, for any two x, y ∈ C,

using the notations of Theorem (7.5), we have:

mkLβrT ,λ
(x, y) =

{
0 if x = y,
r−min{n∈N:xn 6=yn} otherwise.

8. Family of Lip-norms for a fixed AF algebra

In this section, we consider the situation in which we fix a unital AF-algebra with

faithful tracial state and consider the construction of the Lip-norm from Theorem (3.5),

in which we vary our choices of the sequence β. From this, we describe convergence in

quantum propinquity with respect to this notion. We note that Section (5) essentially

provides an outline for the process.
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Notation 8.1. Let β : N → (0,∞) be a positive sequence that tends to 0 at infinity.

Denote the space of real-valued sequences that converge to 0 as c0(N,R). Define:

cβ = {x ∈ c0(N,R) : ∀n ∈ N, 0 < x(n) 6 β(n)} .

Theorem 8.2. Let A be an AF algebra endowed with a faithful tracial state µ. Let

I = (An, αn)n∈N be an inductive sequence of finite dimensional C*-algebras with C*-

inductive limit A, with A0 = C and where αn is unital for all n ∈ N. If β : N → (0,∞)

is a positive sequence that tends to 0 at infinity and
(
xk
)
k∈N ∪ {x} ⊂ cβ such that xk

converges point-wise to x, then using the notations of Theorem (3.5):

lim
k→∞

Λ
((

A, Lx
k

I,µ

)
,
(
A, LxI,µ

))
= 0.

Proof. The proof follows the procedure from Section (5). We begin by verifying some

details.

Let β : N→ (0,∞) be a positive sequence that tends to 0 at infinity.

Assume that
(
xk
)
k∈N ∪ {x} ⊂ cβ such that xk converges point-wise to x. Next, we

show convergence of the finite dimensional spaces An for all n ∈ N. Thus, fix N ∈ N.

Let y ∈ cβ , so that y(n) > 0 for all n ∈ N, and let a ∈ AN . Then:

LyI,µ ◦ α
N

−→(a) = max


∥∥∥αN−→(a)− E

(
αN−→(a)

∣∣∣αn−→(An)
)∥∥∥

A

y(n)
: n ∈ N, n 6 N

 .

Define RN+ = {y = (y(0), y(1), . . . , y(N)) ∈ RN+1 : ∀n ∈ {0, 1, . . . , N}, y(n) > 0}. For
x, y ∈ RN+ , we define d∞(x, y) = max {|x(n)− y(n)| : n ∈ {0, 1, . . . , N}}. Thus,

(
RN+ , d∞

)
is a metric space. Define g : RN+ × AN → R by:

g(y, a) = max


∥∥∥αN−→(a)− E

(
αN−→(a)

∣∣∣αn−→(An)
)∥∥∥

A

y(n)
: n ∈ N, n 6 N

 ,

which is finite by definition of RN+ . Therefore, it follows that:

g :
(
RN+ , d∞

)
× (AN , ‖ · ‖AN )→ R

is continuous. Denote the class of all (2, 0)-quasi-Leibniz quantum compact metric spaces

by QQCMS2,0. Next, define G : RN+ → QQCMS2,0 by:

G(y) = (AN , g(y, ·)),

which is well-defined by definition of g. Thus, following the proof of Theorem (5.13),

we conclude that G :
(
RN+ , d∞

)
→ (QQCMS2,0,Λ) is continuous. If y ∈ RN, then we

denote y|N = (y(0), y(1), . . . , y(N)). Since
(
xk
)
k∈N∪{x} ⊂ cβ , we have that

(
xk|N

)
k∈N∪

{x|N} ⊂ RN+ . Furthermore, the assumption that xk converges pointwise to x implies that

limk→∞ d∞
(
xk|N , x|N

)
= 0. Therefore:

lim
k→∞

Λ
(
G
(
xk|N

)
, G (x|N )

)
= 0.
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But, for all k ∈ N:

Λ
((

AN , L
xk

I,µ ◦ αN−→
)
,
(
AN , L

x
I,µ ◦ αN−→

))
= Λ

(
G
(
xk|N

)
, G (x|N )

)
.

We thus have:

(8.1) lim
k→∞

Λ
((

AN , L
xk

I,µ ◦ αN−→
)
,
(
AN , L

x
I,µ ◦ αN−→

))
= 0.

As N ∈ N was arbitrary, we conclude that Equation (8.1) is true for all n ∈ N.

We are now ready to prove convergence. Let ε > 0. There exists M ∈ N such that for

all n >M , β(n) < ε/2. Hence, if n >M , then by Theorem (3.5) and definition of cβ :

Λ
((

An, L
xk

I,µ ◦ αn−→
)
,
(
A, Lx

k

I,µ

))
6 xk(n) 6 β(n) < ε/2

for all k ∈ N and:

Λ
((

An, L
x
I,µ ◦ αn−→

)
,
(
A, LxI,µ

))
6 x(n) 6 β(n) < ε/2.

By the triangle inequality and Equation (8.1), we thus get:

lim sup
k→∞

Λ
((

A, Lx
k

I,µ

)
,
(
A, LxI,µ

))
6 ε.

As ε > 0 was arbitrary, limk→∞ Λ
((

A, Lx
k

I,µ

)
,
(
A, LxI,µ

))
= 0. �

In particular, for the Cantor set, we can use this result to discuss continuity in

quantum propinquity of the continuous functions on the Cantor set with respect to the

quantum ultrametrics discussed in Section (7). All that is required is a sequence in cβ ,

which converges point-wise to some element in cβ . We present this in the case of the

standard ultrametrics, and note that although we are using the same C∗-algebra, C(C),
if r 6= s, then the associated standard ultrametrics on the Cantor set are not isometric.

This implies that the function defined in the following Corollary (8.3) is not constant up

to isometric isomorphism.

Corollary 8.3. Let r > 1, and set βr : n ∈ N 7→ 1
2r
−n. Using the notations of Theorem

(3.5) along with Notations (7.2) and (7.3), the function:

u : r ∈ (1,∞) 7−→
(
C(C), LβrT ,λ

)
is continuous from (1,∞) to the class of (2, 0)-quasi-Leibniz quantum compact metric

spaces metrized by the quantum propinquity Λ.

Proof. Let (rn)n∈N ∪{r} ⊂ (1,∞) such that limn→∞ |rn− r| = 0. Since (rn)n∈N ∪{r} is
a compact set, there exists some a > 1 such that for all n ∈ N, rn, r ∈ [a,∞). Therefore,

for all n ∈ N, we have that βrn , βr ∈ cβa . The sequence (βrn)n∈N converges point-wise

to βr since:

lim
n→∞

|βrn(m)− βr(m)| = lim
n→∞

| 12r
−m
n − 1

2r
−m| = 0

for all m ∈ N. Hence, by the Theorem (8.2),

lim
n→∞

Λ(u(rn), u(r)) = 0.

Thus, sequential continuity provides the desired result. �
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