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ABSTRACT
Estimating an individual’s environmental exposure is a com-
plicated problem that depends on the amount of time of the
individual’s exposure, the uncertain location of the individ-
ual, and the uncertainty in the levels of environmental fac-
tors based on available localized measurements. This prob-
lem is critical in the applications of environmental science
and public health. In this paper we study the fundamen-
tal issues related to spatio-temporal uncertainty of human
trajectories and environmental measurements and define a
model of exposure uncertainty. We adopt a geometric data
structure called the Voronoi diagram to interpolate environ-
mental data, and utilize it in our proposed method to effi-
ciently solve this problem. We evaluate the performance of
the proposed method through experiments on both synthetic
and real road networks. The experimental results show that
our solution based on probabilistic routing aggregation is an
efficient and extensible method for environmental exposure
time estimation.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

Keywords
exposome, environmental exposure, trajectory uncertainty,
mobile sensors, individual-based healthcare

1. INTRODUCTION
Relations between negative health effects like lung cancer

and asthma and elevated levels of the environmental factors,
such as air pollution and tobacco smoke, have been detected
in several large scale exposure studies [12, 24]. It has been
also shown that the combination of extreme weather condi-
tions, such as heat and high humidity, escalates some dis-
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eases’ episodes and consequently leads to mortality [1]. In
many of these studies environmental triggers related to hu-
man health have been measured in a broad manner, (i.e.,
studies were based on summarized data collected in large
scale areas such as cities). However, individual correlations
may differ significantly from those of the population level
due to individual behavior and spatial and temporal vari-
ability of the environment [13]. Thus, individual-level mea-
surement of environmental exposure is important for devel-
oping more accurate diagnoses of the causes of diseases.

The study of environmental exposures requires synchro-
nization of environmental data, individuals’ moving trajec-
tories, and the behaviors of individuals, such as enroute
activities, route selections, etc. By incorporating weather
and other environmental data to characterize and predict
the route distribution (path selection behavior), one can
measure an individual’s exposure to certain environmental
conditions. Moreover, with the use of spatial mining tools
to evaluate individual’s exposure, one can identify environ-
mental triggers, predict behavior of individual exposure and
potential risk, and provide optimal intervention. A model
overview of this complete individual-based health interven-
tion is shown in Figure 1.
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Figure 1: Model overview

Health intervention systems are expected to provide indi-
viduals with real-time responses based on predictive expo-
sure estimates. However, there exist several challenges in
aggregating spatio-temporal data which are voluminous in
nature. First, one cannot realistically sample too frequently
in order to keep data amounts reasonable and sensors long
lasting [9, 14]. Second, a challenge exists in the spatio-
temporal uncertainty associated with the sampled data. In
addition, the join operation among spatio-temporal datasets
in the presence of multi-level uncertainties is extraordinar-
ily time-consuming and data-intensive. Finally, behavior of



individuals has a large impact on exposure estimates, and
such behavior is not known a priori, but rather built itera-
tively from previous estimates of exposure and individuals’
responses.
In this paper, we introduce a novel model to define envi-

ronmental exposure uncertainty and propose a method that
copes with uncertainty. Our proposed method constructs
simple and memory-efficient environmental maps and joins
the maps with a set of possible routes (paths). Exposure
times of these routes are aggregated using probabilities as-
signed to the routes.

2. RELATED WORK
Recent advances in mobile sensor, communication and

computation have opened new opportunities to investigate
the relationship between pollution, human behavior and health
outcomes as well as optimized interventions [22]. The au-
thors in [22] developed an air pollution monitoring system
that provides real-time interpolated maps of air quality us-
ing GIS, which analyzes and displays data collected by sen-
sors. Such successful deployment of mobile devices for en-
vironmental monitoring have led researchers to use them
in health assistant systems like the “EnviroFlash” model [2]
that is used to notify patients about up to date information
on air quality. However, despite isolated commercial suc-
cesses [2, 20], a realization of these opportunities requires
us to surmount considerable computing challenges involving
estimation of exposure time combined with human spatial
behavior.
To simplify the relationship between stochastic, spatio-

temporal sequences of pollutant concentration and their phys-
iological consequences, researchers have recently began to
entertain the notion of “exposome” [24]. Most recently, ex-
posome has been defined as “The cumulative measure of en-
vironmental exposures (influences) and associated biological
responses throughout the lifespan, including exposures from
the environment, diet, behavior, and endogenous processes”
[21]. Different tools and approaches exist to monitor envi-
ronmental exposures such as those proposed in [24].
Spatial and spatio-temporal data analysis methods [7] to-

gether with individuals’ electronic health records provide
ways of relating health and human disease to specific genetic
and environmental factors [8]. The density, accuracy, and
specificity of current geospatial data also facilitate sophisti-
cated spatial and spatio-temporal analysis and the model-
ing of complex spatial health processes at the level of the
individual rather than the aggregate [18, 19]. Research has
shown that even at the population level of environmental ex-
posure, the results can vary based on the technique used [16].
In that paper, the authors discussed the tradeoff between
computational cost and accuracy of exposure measurement.
Some research work in the area of geoscience presented

modeling methods using GPS trajectory data for an indi-
vidual’s exposure estimation [10, 11]. A model presented
in [10] was used to disaggregate air quality to quantify the
individual’s exposure to air pollution. A case study for 10
individuals was conducted in Germany. The authors as-
sumed that GPS time/location data was collected every 1
second and focused on disaggregate concentration values at
the locations in a cell.
None of the aforementioned approaches takes location un-

certainty as a factor when modeling and measuring individ-
ual’s exposure. They all assume known locations of indi-

viduals at a scale of 1-5 seconds. However, due to com-
putational limitations as well as sensor and mobile energy
efficiency, our proposed approach assumes longer periods of
gap in reporting individual’s locations, and, hence, taking
uncertainty in the individual’s location into consideration
when measuring exposure. In addition, our model provides
a more refined representation of environmental concentra-
tions through proposing a Voronoi diagram-based structure
called the Voronoi map, which is more efficient compared to
heat maps used in previously proposed solutions.

3. EXPOSURE UNCERTAINTY MODELING

3.1 Uncertainties of Spatio-temporal Data
Individuals’ trajectory data is often used in the assessment

of risk factors due to environmental exposures by integrating
them with GIS data involving the spatio-temporal variations
of these risk factors [19]. Trajectories representing the loca-
tion and time of individuals are typically obtained through
sampling using GPS and they are stored as a set of points
or lines (vector data format). Although GPS can capture
an individual’s movement or location changes every second,
it would require very large amount of space and computa-
tional resources to process. Thus, an individual’s continu-
ously changing properties are typically discretely updated
(sampled), for instance in intervals ranging from tens of sec-
onds to tens of minutes. Hence, individuals’ trajectories are
always associated with a degree of uncertainty, especially
when there is a considerable time gap between two updated
values [23].

Environmental data is interpolated and stored in a heat
map, which is normally presented in raster format. The con-
centration of an environmental factor is a spatio-temporal
variable represented by grid cells for discrete timestamps,
with the grid cell value representing a spatially and tempo-
rally averaged estimate of the true concentration. The scale
of air quality models is usually a few hundreds of meters and
the data is normally captured every 30-60 minutes. Measur-
ing such variables is associated with spatial and temporal
uncertainties because of the approximations and interpola-
tions used in modeling [10, 11, 15, 17].

In order to calculate an individual’s exposure to envi-
ronmental factors, a join operation is executed among the
trajectory dataset of the individual and the environmental
datasets. However, little research has been done on the
optimization or approximation techniques for spatial joins
on datasets presented in different data formats. Figure 2
illustrates trajectories in vector format of two individuals
overlaid on the environmental dataset represented in raster
format.

A simple way to perform this join is to convert the trajec-
tory dataset into raster format and then overlay the trajec-
tories on an environmental dataset to calculate their over-
laps (the location and the length/area where they overlap).
However, the overlay operation to estimate individuals’ ex-
posure time can be complicated (because of the presence
of multiple uncertainties) and time consuming (because of
multi-joins on spatio-temporal datasets).

3.2 Exposure Uncertainty Model
This paper presents a novel exposure uncertainty model

for individuals whose movements are based on road net-
works.
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Figure 2: Uncertain trajectories on a heat map in-
terpolated from weather stations

The formula for the exposure, Ei, to environmental factor
i given by this model is: Ei =

∑n
j=1 Tij ∗ Cij , where Tij

is the time spent in a region j by the individual and Cij is
the air pollutant concentration of the environmental factor
i that the individual is exposed to in region j. In order to
deal with the spatio-temporal uncertainty of an individual
for time interval t between two consecutively reported GPS
locations, we will first need to estimate Tij , the exposure
time, for each i and j.
Our proposed model is based on a probability distribution

function that represents the location uncertainty of a moving
individual in a road network. The problem can be defined as
follows: Let G = (V,E) be a graph in R2 representing a road
network, where V and E are the set of vertices and edges.
Each edge represents a road segment and has attributes,
length l and maximum speed s allowed on the edge. Then
a trajectory It1tn of a moving object in road network G is
a sequence of points (positions) with time stamps: It1tn =
{(t1, p1), (t2, p2), .., (tn, pn)}, where pm is the sample point
(position) at tm, for m = 1, 2, 3, .., n, and tm+1 > tm.
Given two sampled points pm and pm+1 of an object’s

trajectory, let Rm = {r1, r2, .., rk} be the set of the candi-
date routes (i.e., k top rank routes which the individual is
most likely to choose) between pm and pm+1. The candidate
routes are selected from all possible routes between pm and
pm+1, where the object possibly walked (drove) in a road
network G with a given time interval t = tm+1 − tm, and
a set of moving restrictions (velocity v and/or acceleration
a). If the probability density function of selecting a route
rj was uniform, then the probability of one of the possible
routes would be: Prj = 1

|Rm| =
1
k
, where k is the cardinality

of the set Rm (the number of candidate routes).
A different probability is assigned to each route for expo-

sure time calculation. We then have a route rj as a set of the
edges, rj = {rj1, rj2, .., rjs}. Given that the exposure time
to a particular environmental data value is proportional to
the ratio |rjh|/|rj |, where rjh is the path segment, then we
have the following equation:

Trjh =
|rjh|
|rj |

∗ t ∗ Prj . (1)

In future work, this rather simple assumption must be
replaced by a more realistic approach based on the behav-
ior of the object, yielding more accurate probability density
functions (PDFs). The PDFs would incorporate behavioral
aspects of individuals and/or statistical information about
road usage.
Applying exposure time described in Equation (1), an es-

timate of exposure to environmental factor i with the given
time interval t is given by: ĒiRm =

∑k
j=1

∑s
h=1 Trjh ∗Crjh .

Finally, the exposure estimation along the trajectory It1tn
can be calculated as follows:

Ēi =
n∑

m=1

ĒiRm . (2)

4. THE VORONOI MAP: ENVIRONMENTAL
DATA INTERPOLATION

Currently there are 41446 weather stations in the databases
from across various administrative divisions of the U.S, in-
cluding states and territories. These weather stations up-
date some environmental data every 30 minutes (or 60 min-
utes) and these data files are publicly accessible through
the National Centers for Environmental Information and the
National Oceanic and Atmospheric Administration [3].

Recent research work in environmental science and geo-
science have provided methods for interpolation of discrete
environmental data to generate environmental heat maps.
Generating heat maps of environmental data and storing
the maps every 30-60 minutes is a data-intensive and time
consuming process. Moreover, the“raster overlay”operation
between trajectories and multiple environmental heat maps
is very challenging in terms of space and time complexity,
particularly in the presence of uncertainties. Hence, a more
robust method for capturing environmental measurements
and storing the data in an efficient way is needed.

The Voronoi diagram is the partitioning of a plane with n
points into convex polygons such that each polygon contains
exactly one generating point and every point in a given poly-
gon is closer to its generating point than to any other gen-
erating point [6]. Voronoi diagram and its dual graph, De-
launay triangulation, are used in many applications in areas
such as computer graphics, epidemiology, geophysics, and
meteorology. Delaunay triangulations maximize the mini-
mum angle of all the angles of the triangles in the triangu-
lation and hence they tend to avoid skinny triangles.

In this paper, we propose a model called the “Voronoi
map” to store environmental data. Instead of interpolating
the raw data values of environmental datasets into multi-
ple heat maps whenever the data is updated, we create a
“Voronoi map” using the locations of weather stations for
real-time exposure estimation. Closer environmental sta-
tions would provide better estimations, so we use Voronoi
cells to determine which station should be chosen to pro-
vide the environmental measurement for a specific individ-
ual based on his/her location. Each Voronoi cell in the map
represents a region (area) that has similar environmental
conditions. The values of environmental datasets are stored
as properties of the cells in the Voronoi map.

When weather stations are close to each other, Voronoi
cells tend to be small and the Voronoi cell values can accu-
rately describe the environmental condition in the cell. On
the other hand, the cell values can start being inaccurate
when weather stations are further apart, such as in rural ar-
eas. Also, the cell values can be less accurate moving away
from the station and close to the edge of the cell. To solve
this problem, we propose a method that refines the Voronoi
map through multi-level Delaunay triangulations.

Our proposed method uses interpolation of the cell values
from the weather stations. An example of the refinement
steps is shown in Figure 3. Let V Di and DTi be a set



s
2

VD
0

a
2

s
4

s
3

s
1

Weather stations

s
2

s
4

s
3

s
1

s
2

s
4

s
3

s
1

= {s
1 
, s

2
 , s

3 
, s

4
}

a
1

DT
0

= {     s
1 
s

2 
s

3  
,      s

4 
s

2
 s

3 
}

a
2

s
2

s
4

s
3

s
1

a
1

a
2

s
2

s
4

s
3

s
1

a
1

DT
1

= {     s
1 
s

2 
a

1 
,    s

1 
a

1
 s

3 
,

VD
1

= {s
1 
, s

2
 , s

3 
, s

4  
,a

1 
, a

2
}

b
1

b
2

b
3

b
4

b
5

b
6

a
2

b
1

b
2

b
3

b
4

b
5

b
6

VD
2

= {s
1 
, s

2
 , s

3 
, s

4  
, a

1 
, a

2 
, b

1 
, b

2  
, b

3 
, b

4   
, b

5 
, b

6
} 

s
2

s
4

s
3

s
1

a
1

a
1 
s

2 
a

2  
,    a

1 
a

2
 s

3  
,
         

a
2 
s

2 
s

4  
,    a

2 
s

4
 s

3 
}

Figure 3: Construction of the Voronoi Map

of points in a Voronoi diagram and a set of triangles in a
Delaunay triangulation at level i, respectively. Let point
si represent the weather station i with all properties of the
weather station i stored in si. The Voronoi diagram at level
0, V D0, includes the weather station points s1 - s4, as shown
in Figure 3. The value of each cell in V D0 where point si
lies is an environmental data value from weather station si.
We then create DT0, the Delaunay triangulation at level 0
using V D0. For the level 1 refinement step, we find the
center points of all triangles in DT0 and add these points
(a1 and a2) into the current Voronoi diagram V D0, we then
create a new Voronoi diagram V D1. The environmental
data values stored in these center points are calculated using
the values stored in the three points of the corresponding
triangle. For example, the value of a1 can be calculated from
the interpolation of the values stored in the three points of
△s1s2s3 ; Let l1, l2, and l3 be the lengths of a1s1, a1s2, and
a1s3, respectively. Let l be the sum of l1, l2, and l3, and
e1, e2, and let e3 be the environmental values stored in s1,
s2, and s3, respectively. We then calculate t1=

l−l1
l

* e1,

t2=
l−l2

l
* e2, and t3=

l−l3
l

* e3, and finally we calculate

the value a1 = t1+t2+t3
3

. For the level 2 refinement step,
we find the center points of all triangles in DT1 and add
them to V D1 to obtain a new Voronoi diagram V D2 and
this is followed by calculation of the values of newly found
center points. The refinement step continues until i reaches
a desired granularity level k while updating V D and DT .
Finally, we create a Voronoi map using V Dk (k is set to 2 in
our example). This incremental construction supports more
accurate environmental estimates since as we keep refining
we can further provide more accurate interpolation.
The next step in our exposure measurement method is to

join the captured environmental data with the individual’s
trajectory to calculate the exposure of the individual. Since
the weather stations are static (fixed locations), the Voronoi
map is created once for a trajectory dataset and there is no
need to update the structure. Instead the properties of each
cell in the Voronoi map are updated every 30-60 minutes
with new data values received from the weather stations.

In order to enhance the process of calculating the exposure
time, we can precompute the points of intersection between
a road network and Voronoi diagrams. An example in Figure
4 demonstrates the use of the Voronoi map in our exposure
estimation method.

Although the idea is simple, the proposed method is pow-
erful with the following advantages: (1) the creation of the
Voronoi map for environmental datasets is more computa-
tionally efficient compared to existing methods that use tra-
ditional interpolation, (2) the cells in a Voronoi map store
the values from multiple environmental datasets, hence stor-
ing data using this geometric data structure is more efficient
in space than storing each raster cell values in multiple heat
maps, (3) the join operation between trajectory data (lines)
and the cells (polygons) of the Voronoi map is less time con-
suming than raster overlay between trajectory data and heat
maps.

5. PROBABILISTIC EXPOSURE TIME AG-
GREGATION

As a part of the environmental exposure model for indi-
viduals developed here, we propose and test a probabilistic
method for exposure time aggregation. This method joins
the individual’s trajectory dataset (a set of discrete loca-
tion/time values) and Vornoi maps constructed using envi-
ronment datasets from weather stations. It calculates an
estimated exposure time for each of the possible paths and
aggregates these values to compute a final estimation.

First, we calculate the length of a path within a Voronoi
cell (region). This length can reveal exposure time by mul-
tiplying it by travel speed. We assume that we know ahead
of time the actual exposure length of the path so that we
can compare our estimates to the actual result. We limit
the possible paths taken to a small fixed number. In prac-
tice this can be done using the time interval, and speed data
(velocity) to get practical path options. In our experiments,
we use the shortest paths calculated by Dijkstra’s k-shortest
path algorithm implemented in pgRouting [5]. We assume
a fixed velocity during a path for simplicity.
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Figure 4: Voronoi weather map

5.1 Road Networks on the Voronoi Map
To show the steps of the method, we use both a real road

network with real weather stations and a synthetic road net-
work with synthetic weather stations. For the first example
of the real road network, the Voronoi map cells (weather
regions) are created based on the real weather stations’ lo-
cations illustrated in Figure 5. The weather conditions, i.e.,
temperature, humidity, ozone, etc., in the green colored re-
gion are from weather station C6295, the weather conditions
in the yellow colored region are from weather station AP442,
and the weather conditions in the mauve colored region are
from weather station D6318.

Figure 5: The real road network with real weather
stations

In the examples we use two given points (two reported
locations) to analyze the possible routes between the two
points, the green filled circle at the beginning of the route
in the top left and the orange filled circle ending the route
in the bottom right in Figure 5, and then the exposure time
along the routes is calculated. Based on the possible routes
between the individual’s two reported points, what is the

individual’s exposure time to each of the weather regions?
To answer this, we may solve a similar problem which is to
calculate the distance traveled in each region.

The synthetic road networks and synthetic weather sta-
tions in Figure 6 (a) are set up to model the real version of
the exposure estimation. The subregion has 5 roads going
north and south and 5 roads going east and west. Assuming
that 4 weather stations are located in this region, a Voronoi
map is generated and synthetic environmental values are
stored as the Voronoi cell properties.

5.2 Possible Routes
Since we would not know the actual route ahead of time,

we first need to calculate some possible routes between the
beginning and end points. This could be done in practice
by using the elapsed time between start and end points, and
realistic speed along paths.

For the real road network we consider the 10 shortest
routes using pgRouting as possible routes as shown in Table
1. The reason for choosing 10 routes as candidate routes
selected by an individual is merely to validate the approach
and does not necessarily indicate sufficiency.

route total length in length in length in
length AP442 C6295 D6318

Route 0 0.6224 0.07148 0.2019 0.3490
(blue)
Route 1 0.6226 0.07148 0.1642 0.3870
(fuchsia)
Route 2 0.6228 0.07148 0.2023 0.3490
(green)
Route 3 0.6230 0.08611 0.2019 0.3350

(#800000)
Route 4 0.6231 0.2627 0.1930 0.1674

(#99CCFF)
Route 5 0.6232 0.08611 0.1642 0.3730
(maroon)
Route 6 0.6234 0.3785 0.07749 0.1674
(navy)
Route 7 0.6235 0.08611 0.2023 0.3350
(olive)
Route 8 0.6235 0.2627 0.1934 0.1674
(orange)
Route 9 0.6236 0.07148 0.1642 0.3880
(purple)

Table 1: Possible routes in the Real Road Network
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Figure 6: Synthetic road network with synthetic weather

For the synthetic road network we consider the routes
shown in Figure 6 (b). Each of the routes represents a pos-
sible path that could have been taken to go from the start
point in the bottom left to the end point in the top right.

5.3 Probabilities on Routes
At this point, we would like to calculate and assign a

probability to each route based on how likely it is to be
the actual route. In other words, what are the chances that
the individual took a specific route to get from the point
of origin to the target point. As a proof of concept, we
consider two cases for the probabilities; in one case we use
equal probabilities; in the example of the real road network,
since we have 10 routes, each route has a 10% chance of
being the actual route taken by the individual. In the other
case, we use non-uniform probabilities.
One way to more accurately predict the exposure time to

the weather regions is to know which paths are more likely
to be taken. Assigning probabilities for each route can be
done in different ways, but for simplicity, in this experiment
we use the path length to determine its likelihood of being
chosen by an individual. We want the longer paths to have
lower probabilities of being taken, while shorter paths would
be more likely to be taken. The method of assignment of
probabilities exploits the fact that humans generally pre-
fer shorter routes when traveling from one location to an-
other. Thus, when we calculate the exposure estimation,
the shorter routes are weighted more heavily, thus increas-
ing the accuracy of our estimate if one of the shorter routes
turn out to be the actual route taken by the individual.
It is worth noting that a more accurate distribution func-

tion that models how humans select routes and how their
behaviors affect their selection, would enhance our method
and would make the results of our experiments more realis-
tic. For the exposure estimates, it would be also important
to consider levels of en-route activity, such as riding a ve-
hicle, strolling, walking or running, which would affect the
rate of breathing and thereby intake of the pollutant. A
more “individualized”model that would take human behav-
ior as an input as well as other possible factors such as traffic
will be considered in future work.

The following calculation is used to come up with each
path probability based on its length. Let Pi be the prob-
ability of route ri being taken, Li be the length of ri, Di

be the difference between the length of that path and the
average length of all routes and k be the desired number
of possible routes. By taking the possible k routes from P0

to Pk, we calculate x̄ which is the average length of all the
routes:

x̄ =
L0 + L1 + ...+ Lk

N

Now we calculate D0 −Dk:

Di = x̄− Li

Once we have D0 −Dk we know which routes are longer
than the average and shorter than the average and by how
much. Routes that are longer than the average will have a
negative Di, and routes that are shorter than the average
will have a positive Di. We then calculate the absolute total
of these values. Let this be

s = |D0|+ |D1|+ ...+ |Dk|,
Now we can get the route probabilities.

Pi =
1

N

(
1 +

Di

s

)
(3)

The value k in our example in the real road network is 10.
Therefore, P0 = 12.22%, P1 = 11.61%, P2 = 10.91%, P3 =
10.21%, P4 = 10.04%, P5 = 9.605%, P6 = 9.227%, P7 =
8.901%, P8 = 8.730%, and P9 = 8.538%

Using the probability for route ri, we calculate an esti-
mate of the exposure time for ri, i = 0, 1, 2, ..., k − 1. All
estimated exposures are aggregated to a final estimation of
the individual’s exposure time between the start point and
the end point.

6. PERFORMANCE EVALUATION
To compare how probabilities of routes affect the exposure

time estimation, we choose one of the routes to represent the
actual route and repeat the experiments so that each time
a different route is selected as the actual route.



6.1 Even Probabilities
We apply even probability on each route of the possible

routes for the real road network with real weather stations.
In our experiment, Route 1 is selected as the actual route
with the following properties:

Route 1 (color: fuchsia)
Probability 10.00%
Total length 0.6226
Length in station AP442 0.0715
Length in station C6295 0.1642
Length in station D6318 0.3870

For each route, we use the length of the route overlapped
with each cell of the Voronoi map along with the path prob-
ability to calculate the estimated exposure time. Recall that
the probability of each route in this case is 1

10
. Let ŵ1 be

the estimated exposure length to weather station AP442, ŵ2

be the estimated exposure length to weather station C6295,
and ŵ3 be the estimated exposure length to weather station
D6318. Then we have, ŵ1 = 0.1448 miles, ŵ2 = 0.1765
miles, and ŵ3 = 0.3018 miles. Table 2 shows the result of
the experiment. With even probabilities our estimate was
off by a total of 0.17082.

Even probability exposure lengths
Weather station Estimated Actual Absolute error

AP442 0.1448 0.0715 0.0733
C6295 0.1765 0.1642 0.0123
D6318 0.3018 0.3870 0.0852

Table 2: Experiment on real road network with even
probabilities and actual route being Route 1

6.2 Varied Probabilities
With varied probabilities shown in Table 3, we have the

following values for the estimated exposure lengths to weather
stations AP442, C6295, and D6318, respectively: ŵ1 = 0.1399
miles, ŵ2 = 0.1776 miles, and ŵ3 = 0.3055 miles. In the ex-
periment on the real road network with varied probabilities
where Route 1 is selected as the actual route, the estimate
was off by a total of 0.16332. This is slightly better than the
result of the even probabilities case. This is because the ac-
tual route is one of the more probable routes. As expected,
more accurate probabilities assigned leads to more accurate
prediction of exposure.

Exposure lengths with varied probability
Weather station Estimated Actual Absolute error

AP442 0.1399 0.0715 0.0684
C6295 0.1776 0.1642 0.0134
D6318 0.3055 0.3870 0.0815

Table 3: Experiment on real road network with var-
ied probabilities and actual route being 1

One way to confirm this is to choose each route to be the
actual route and see which cases have the most accurate
exposure estimation. The results of the real road network
case are shown in Table 4. In the higher probability routes
the error tends to remain lower. This makes sense since
more probable routes are weighted higher when calculating
the estimation.

Varied actual routes
Route Probability Absolute error

0 0.1222 0.13622
1 0.1161 0.16332
2 0.1091 0.13662
3 0.1021 0.10759
4 0.1004 0.2763
5 0.09605 0.13469
6 0.09227 0.47681
7 0.08901 0.10799
8 0.08730 0.2767
9 0.08538 0.16432

Table 4: Experiment on real road network with var-
ied probabilities and considering all routes being the
actual route

In the experiment for the synthetic road network with syn-
thetic weather stations, each route is selected as the actual
route and the accuracy of the estimates depending on the
probability of the route selection is evaluated. We calculate
the error for each route; meaning we allow each route to
be considered the actual route and then see what the error
would have been if that was the actual route. For example,
if Route 6 was the actual route, we compare our estimate
to Route 6 to find how close our estimate was. We ran this
many times while randomly picking locations for the weather
stations.

The error calculation is done by taking the estimated
exposure time and subtracting the exposure time for that
route, then taking the absolute value of the result. The test
result of the synthetic road and weather are shown in Figure
7. Note that the error could be a maximum of 162 seconds.
This does not seem obvious since the route is only 81 sec-
onds long, but, for example, if the estimate was 81 seconds
in the green region but the actual route was 81 seconds in
the black region that would evaluate to 162 seconds of error.
Table 5 shows the results from running the experiment 500
times.

Synthetic route/weather experiments
Route average error (sec) standard deviation (sec)

1 56.0367 14.2981
2 55.8893 13.6654
3 32.5733 13.4831
4 33.276 13.6131
5 23.8093 10.5005
6 24.8493 10.8699

Table 5: Data from 500 iterations of the synthetic
route and weather experiment

6.3 System Implementation
The following technologies are used to implement our eval-

uation system: The system uses Linux Redhat 6.0 operating
system; Java and Python are the main programming lan-
guages; Javascript is used for most of the client systems. The
system implements data repository using Hadoop file system
and PostGres database. Third party data visualization tool
such as OpenLayers [4] is used to create base maps and in-
tegrate geographical datasets. The client codes that invoke
Representational State Transfer (REST) API to pull results



Figure 7: Each routes actual exposure time to each
weather region along with the estimated exposure
times

from its data repository are written in Javascript/AJAX,
and are integrated with OpenLayers for the user interface.
The Apache Tomcat is used as an application server.

7. CONCLUSIONS
Exposure measurement is the key to explain the possi-

ble effects of environmental conditions on humans. In this
paper, we proposed a method to calculate exposure time
estimation at an individual level and in the presence of lo-
cation uncertainty. Our method takes advantage of the sim-
ple and fast construction of Voronoi diagrams to build a
new structure called Voronoi Maps, which models the en-
vironmental factors in refined cells at different granularity
levels. We then apply probabilistic functions to determine
the exposure time of individuals to environmental factors.
Experiments on synthetic and real datasets showed that our
proposed solution is robust and efficient.
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