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Abstract. Right Bol loops are loops satisfying the identity ((zx)y)x = z((xy)x), and right Bruck
loops are right Bol loops satisfying the identity (xy)−1 = x−1y−1. Let p and q be odd primes such
that p > q. Advancing the research program of Niederreiter and Robinson from 1981, we classify
right Bol loops of order pq. When q does not divide p2−1, the only right Bol loop of order pq is the
cyclic group of order pq. When q divides p2 − 1, there are precisely (p− q + 4)/2 right Bol loops of
order pq up to isomorphism, including a unique nonassociative right Bruck loop Bp,q of order pq.

Let Q be a nonassociative right Bol loop of order pq. We prove that the right nucleus of Q is
trivial, the left nucleus of Q is normal and is equal to the unique subloop of order p in Q, and the
right multiplication group of Q has order p2q or p3q. When Q = Bp,q, the right multiplication group
of Q is isomorphic to the semidirect product of Zp × Zp with Zq. Finally, we offer computational
results as to the number of right Bol loops of order pq up to isotopy.

1. Introduction

Throughout the paper let p, q be odd primes such that p > q.
Groups of order pq are very well understood. By the Sylow theorems, any group G of order paq

possesses a unique normal subgroup P of order pa, and is a semidirect product of P with the cyclic
group Zq. When q does not divide pa − 1 then G also possesses a normal subgroup of order q and
G ∼= P × Zq. When G has order pq then either G ∼= Zpq or q divides p − 1 and G is the unique
nonabelian group of order pq (cf. [12, Section 4.4]).

In this paper we classify right Bol loops and right Bruck loops of order pq up to isomorphism,
generalizing the above result for groups. For the convenience of the reader, we summarize our main
results in the following theorem:

Theorem 1.1. Let p > q be odd primes.

(i) A nonassociative right Bol loop of order pq exists if and only if q divides p2 − 1.
(ii) If q divides p2 − 1, there exists a unique nonassociative right Bruck loop Bp,q of order pq

up to isomorphism, and there are precisely (p − q + 4)/2 right Bol loops of order pq up to
isomorphism.

(iii) If q divides p2−1, the (p−q+4)/2 right Bol loops of order pq can be constructed on Fq×Fp
with multiplication

(i, j)(k, `) = (i+ k, `(1 + θk)
−1 + (j + `(1 + θk)

−1)θ−1i θi+k),

where θ0, . . . , θq−1 ∈ Fp are chosen as follows.
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Fix a non-square t of Fp, write Fp2 = {u+v
√
t | u, v ∈ Fp}, and let ω ∈ Fp2 be a primitive

qth root of unity. Let

Γ =

{
{γ ∈ Fp | 1 ≤ γ ≤ (p+ 1)/2, 1− γ−1 6∈ 〈ω〉}, if q divides p− 1,
{γ = 1/2 +m

√
t | 0 ≤ m ≤ (p− 1)/2, 1− γ−1 6∈ 〈ω〉}, if q divides p+ 1,

be a set of cardinality (p− q+ 2)/2. Then either let θi = 1 for every i ∈ Fq, or choose γ ∈ Γ
and let θi = (γωi + (1− γ)ω−i)−1 ∈ Fp for every i ∈ Fq.

The choice θi = 1 for all i results in the cyclic group of order pq. The choice γ = 1/2 =
(p+ 1)/2 results in the nonassociative right Bruck loop Bp,q. If q divides p− 1, the choice
γ = 1 results in the nonabelian group of order pq.

(iv) Let Q be a nonassociative right Bol loop of order pq. Then Q contains a unique subloop of
order p and this subloop is normal and equal to the left nucleus of Q. The right nucleus
and the middle nucleus of Q are trivial. The right multiplication group of Q has order p2q
or p3q.

(v) The right multiplication group of Bp,q is isomorphic to (Zp × Zp) o Zq.

The nonassociative right Bol loops of order pq will be available in the next release of the LOOPS

package [19] for GAP [10].

1.1. Related results. Bol loops were introduced in 1937 by G. Bol in [3], where he studied the
associated 3-nets. The first systematic algebraic study of Bol loops is due to D. Robinson [23, 24],
where he showed, among other results, that right Bol loops are right power alternative, and hence
that any right Bol loop of prime order is a group.

R. Burn proved in 1978 [5] that right Bol loops of order p2 and 2p are groups, and classified nonas-
sociative right Bol loops of order 8. In a seminal 1981 paper [20], H. Niederreiter and K. Robinson
established a number of results for right Bol loops of order pq and came close to classifying right
Bol loops of order 3p:

Theorem 1.2 ([20]). Let p > q be odd primes.

• If q divides p2 − 1 then there exists a nonassociative right Bruck loop Bp,q of order pq, and
a non-Bruck right Bol loop of order pq.
• A right Bol loop of order pq contains a unique subloop of order p, and when q = 3 then the

unique subloop of order p is normal.
• There are at least (p + 1)/2 right Bol loops of order 3p up to isomorphism, and at least

(p+ 5)/6 right Bol loops of order 3p up to isotopism.

They also showed that any right Bol loop of order pq can be constructed from an ensemble of q
complete mappings on Zp. They were not able to establish that the unique subloop of order p is
normal even when q > 3, nor that the complete mappings must be linear in order to yield a right
Bol loop. Nevertheless, they obtained additional results (see below) under the assumption that the
subloop of order p is normal and that the complete mappings are linear.

B. Sharma and A. Solarin came up with a conflicting estimate on the number of right Bol loops
of order 3p [30] but a problem with their proof was pointed out in [21]. B. Sharma also attempted
to prove that the subloop of order p in a right Bol loop of order pq is normal [27], and that a
right Bol loop of order pq must be associative when q does not divide p2 − 1 [28]. Both of these
results turn out to be true—as we shall see—but the proofs in [27, 28] are incorrect (there are
counterexamples to some intermediate claims made in the proofs).

R. Burn went on to prove that there exist nonassociative right Bol loops of order 4n [6]. Moreover,
for every odd prime p, there are precisely two nonassociative right Bol loops of order 2p2 up to
isomorphism. (The history of this result is also convoluted: R. Burn claimed in [7] that there is a
unique nonassociative right Bol loop of order 2p2, B. Sharma constructed two examples of order 18
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[26], R. Burn accounted for the second class of examples in a correction to [7], and B. Sharma and
A. Solarin gave an independent proof in [29].)

We note that for Moufang loops, which are properly contained between groups and right Bol
loops, the Moufang theorem [15] guarantees that every Moufang loop of order pq is a group.

From a more general perspective, Bol loops find applications in differential geometry (see the
monograph [25] and the references therein). Bruck loops appear naturally in the special theory
of relativity. A. Ungar showed in [31] that Einsten’s relativistic addition of vectors gives rise to a
nonassociative Bruck loop.

L. Paige discovered an infinite family of nonassociative finite simple Moufang loops [22], and
M. Liebeck proved that no other nonassociative finite simple Moufang loops exist [14]. Although
examples of finite simple non-Moufang Bol loops were not easy to find, they abound [18] even in
the more restrictive case of Bruck loops [2, 17]. There are finite simple Bol loops of odd order paqb

[18], for instance.

1.2. Outline of the paper. There are three main techniques present in this paper.
Standard loop-theoretical arguments (including strong results of Glauberman on right Bruck

loops) provide necessary conditions on local properties of right Bol loops of order pq, such as the
multiplication formula (3.2), but also a proof that the unique subloop of order p is normal and that
the right and middle nuclei are trivial.

Group-theoretical arguments (mostly about groups of order 2paqb) shed light on the structure of
the right multiplication groups of right Bol loops of order pq and completely settle the structure in
the case of right Bruck loops. As a consequence we deduce the global condition that nonassociative
right Bol loops Q of order pq exist only if q divides p2 − 1, and also the fact that the left nucleus
of Q is of order p. From this it then follows easily that the complete mappings of (3.2) must be
linear, a key step.

In the linear (and hence general) case, the isomorphism problem reduces to a solution of the
bi-infinite recurrence relation (6.2) over Fp with period q, and to a classification of the solutions
modulo the equivalence (6.3). This was shown already in [20]. We solve the recurrence relation by
solving the eigenvalue/eigenvector problem for the associated circulant matrix over Fp2 , mimicking
the standard approach to circulant matrices over complex numbers. The difficulty lies in identifying
the solutions with all entries in Fp\{0,−1} (rather than in Fp2). The equivalence classes of solutions
are then described and counted by elementary calculations in Fp2 .

One of our goals was to present the various topics with approximately the same level of detail,
so that the paper can be read by researchers who are not experts in all three areas (loop theory,
group theory, finite fields).

2. Preliminaries on Bol loops and Bruck loops

We apply maps to the right of their arguments, and we conjugate by uv = v−1uv. In nonasso-
ciative situations, we use the dot convention to indicate the order of multiplications. For instance,
uv · w stands for (uv)w.

2.1. Basic properties of Bol loops and Bruck loops. A nonempty set Q with a binary oper-
ation · is a loop if all left translations and all right translations

Lu : Q→ Q, vLu = uv, Ru : Q→ Q, vRu = vu

are bijections of Q, and if there is an identity element 1 ∈ Q satisfying 1u = u1 = u for every u ∈ Q.
In a loop, we write u\v = vL−1u and u/v = vR−1u for the left and right divisions, respectively.

For a loop Q, the right multiplication group of Q is the group

Mltr(Q) = 〈Ru | u ∈ Q〉,
3



and the right inner mapping group of Q is defined by

Innr(Q) = {ϕ ∈ Mltr(Q) | 1ϕ = 1}.

The right section of Q is the set

RQ = {Ru | u ∈ Q}.
The right section RQ is a transversal (both left and right) to Innr(Q) in Mltr(Q), cf. [4]. In
particular, every ϕ ∈ Mltr(Q) can be written uniquely as ϕ = ψRu, where ψ ∈ Innr(Q) and u ∈ Q.

A subgroup H of a group G is core-free in G if H contains no nontrivial subgroups normal in G.
It is well known, cf. [4], that for any loop Q, Innr(Q) is a core-free subgroup of Mltr(Q).

For a loop Q define the left nucleus, middle nucleus and right nucleus by

Nuc`(Q) = {u ∈ Q | u(vw) = (uv)w for all v, w ∈ Q},
Nucm(Q) = {v ∈ Q | u(vw) = (uv)w for all u, w ∈ Q},
Nucr(Q) = {w ∈ Q | u(vw) = (uv)w for all u, v ∈ Q},

respectively. Each of the three nuclei is a subloop of Q, not necessarily normal in Q. Note that
Nuc`(Q) = {u ∈ Q | uϕ = u for every ϕ ∈ Innr(Q)}, and dually for the right nucleus.

A loop Q is right Bol if it satisfies the right Bol identity

(Bolr) ((wu)v)u = w((uv)u).

The identity (Bolr) can be restated as an identity for right translations, namely

RuRvRu = R(uv)u.

It is well known, cf. [23], that every right Bol loop Q is power associative (that is, every element
generates an associative subloop), has the right inverse property (that is, uv · v−1 = u for every u,
v ∈ Q) and, more generally, is right power alternative (that is, Riu = Rui holds for every u ∈ Q and
i ∈ Z). Consequently, |Ru| = |u| for every u ∈ Q, and if |Q| is finite then |u| divides |Q|.

The right nucleus coincides with the middle nucleus in every right inverse property loop [4]. In
a right Bol loop Q, the right nucleus is normal in Q [16, Lemma 2.1].

Finally, in a right Bol loop, the left division can be expressed in terms of the multiplication and
inverses by

(2.1) u\v = (u−1 · vu)u−1,

cf. [11, Lemma 2]. Consequently, a nonempty subset of a right Bol loop is a subloop if it is closed
under multiplication and inverses.

Let Q be a loop with inverses, and let

J : Q→ Q, u 7→ u−1

be the inversion map. Since u−1ϕ = (uϕ)−1 for every u ∈ Q and ϕ ∈ Aut(Q), we have ϕJ = ϕ for
every ϕ ∈ Aut(Q).

A loop Q with inverses has the automorphic inverse property if it satisfies the identity

(AIP) (uv)−1 = u−1v−1,

or, equivalently, if RJv = Rv−1 holds for every v ∈ Q.
A loop is right Bruck if it satisfies (Bolr) and (AIP). Therefore, in a right Bruck loop we have

RJv = Rv−1 = R−1v .
Let Q be a loop and ϕ ∈ Aut(Q). Then we have (vϕ−1 · u)ϕ = v · uϕ for every u, v ∈ Q, and

thus Rϕu = Ruϕ for every u ∈ Q.
A loop Q is right automorphic if Innr(Q) ≤ Aut(Q). It is well known that right Bruck loops are

right automorphic.
4



2.2. Isotopes and conjugation in right Bol loops. Two loops (Q1, ·), (Q2, ∗) are isotopic if
there exist bijections f , g, h : Q1 → Q2 such that f(u) ∗ g(v) = h(u · v) for every u, v ∈ Q1. We
then say that (Q2, ∗) is a loop isotope of (Q1, ·).

Lemma 2.1. Let Q be a right Bol loop. Then every loop isotope of Q is isomorphic to a loop
isotope of the form (Q, ◦c), where

(2.2) u ◦c v = (u · vc)c−1.

Moreover, for all u ∈ Q, the order of u in (Q, ◦c) is the length of the orbit of Lu through c.

Proof. By [24, Lemma 3.4], every loop isotope of Q is isomorphic to a loop isotope (Q, ∗c), where

u ∗c v = uc · (c\v).

By (2.1), u ∗c v = uc · (c−1 · vc)c−1 = [(uc · c−1) · vc]c−1 = [u · vc]c−1 = u ◦c v, where we have also
used (Bolr) and the right inverse property.

By an easy induction, the nth power of u in (Q, ◦c) is 1(L◦u)n = (cLnu)c−1, where L◦u denotes the
left translation by u in (Q, ◦c). �

Lemma 2.2. Let Q be a right Bol loop. For all u, v ∈ Q and all positive integers m,

Ruv(R
−1
v Ruv)

m−1 = RvLm
u
.

Proof. The case m = 1 is trivial. For m = 2, we compute

RuvR
−1
v Ruv = RuvRv−1Ruv = R(uv·v−1)·uv = Ru·uv.

Now suppose that the result holds up to m− 1 > 1 and compute

RvLm
u

= R(uv)Lm−1
u

= Ru·uv(R
−1
uvRu·uv)

m−2

= RuvR
−1
v Ruv(R

−1
uvRuvR

−1
v Ruv)

m−2 = Ruv(R
−1
v Ruv)

m−1,

using the induction step (with uv in place of v) in the second equality and the case m = 2 in the
third equality. �

Let Tu = RuL
−1
u .

Proposition 2.3. Let Q be a right Bol loop. Then for all u, v ∈ Q and for all k ≥ 0,

(vTu)k = (u−1 · (u2)Lkv)u−1.

Proof. First, using (2.1), we can express vTu equationally as

(2.3) vTu = (u−1 · vu2)u−1.

The case k = 0 is clear. For k > 0, (2.3) yields

(vTu)k = vTuR
k−1
vTu

= ((u−1 · vu2)u−1)Rk−1
(u−1·vu2)u−1 .

Using (Bolr), the last expression can be rewritten as

(u−1)Rvu2R
−1
u (R−1u Rvu2R

−1
u )k−1 = (u−1)Rvu2(R−1u R−1u Rvu2)k−1R−1u .

Using the right power alternative property and Lemma 2.2, we can further rewrite this as

(u−1)Rvu2(R−2u Rvu2)k−1R−1u = (u−1)R(u2)Lk
v
R−1u = (u−1 · (u2)Lkv)u−1,

completing the proof. �
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2.3. Bruck loops and twisted subgroups. A subset S of a loop Q is uniquely 2-divisible if the
mapping x 7→ x2 is a bijection of S. Given x ∈ S, the unique element y ∈ S such that y2 = x will
be denoted by x1/2.

The theory of right Bruck loops of odd order (and, more generally, of uniquely 2-divisible right
Bruck loops) has been greatly developed by G. Glauberman in 1960s. The following result is
excerpted from [11].

Theorem 2.4 ([11]). Let Q be a right Bruck loop of odd order. Then:

(i) For all u, v ∈ Q, the identities (uv)2 = (vu2)v and Ruv = (RvR
2
uRv)

1/2 hold.
(ii) Q is solvable.

(iii) |Mltr(Q)| has the same prime factors as |Q|.
(iv) For every prime p dividing |Q|, there is an element of order p in Q.

The conclusion of Theorem 2.4(iii) remains valid in the more general setting of right Bol loops
of odd order:

Proposition 2.5 ([9, 11]). Let Q be a right Bol loop of odd order. Then |Mltr(Q)| has the same
prime factors as |Q|.

A subset T of a group H is a twisted subgroup of H if it contains the identity element, is closed
under inverses, and is closed under the product (u, v) 7→ uvu.

The following result appeared essentially as [11, Lemma 3]. For a proof in the more modern
terminology of twisted subgroups, see [32, Proposition 2.3].

Proposition 2.6 ([11, 32]). Let T be a uniquely 2-divisible twisted subgroup of a group H. Then

(T, ◦) with multiplication u◦v = (vu2v)1/2 is a right Bruck loop. Moreover, the powers and inverses
in (T, ·) and (T, ◦) coincide.

The right Bol identity RuRvRu = R(uv)u together with R−1u = Ru−1 show that in a right Bol loop
Q the right section RQ is a twisted subgroup of Mltr(Q), and hence (RQ, ◦) with multiplication

Ru ◦Rv = (RvR
2
uRv)

1/2 is a right Bruck loop. Using the evaluation map ϕ 7→ 1ϕ, we obtain:

Proposition 2.7 ([9, 32]). Let (Q, ·) be a uniquely 2-divisible right Bol loop. Then (Q, ◦) defined

by u ◦ v = (vu2 · v)1/2 is a right Bruck loop. Moreover, powers and inverses in (Q, ·) coincide with
those in (Q, ◦).

When (Q, ·) is a uniquely 2-divisible right Bol loop, we call the loop (Q, ◦) of Proposition 2.7 the
right Bruck loop associated with (Q, ·).

Lemma 2.8. Let Q be a uniquely 2-divisible right Bol loop and let (Q, ◦) be the associated right
Bruck loop. Then Mltr(Q, ◦) is conjugate to the group 〈LuRu | u ∈ Q〉 in the symmetric group on
Q.

Proof. Let σ : Q → Q be the squaring map, and let R◦v be the right translation by v in (Q, ◦).
Then for every u, v ∈ Q we have uR◦vσ = (u ◦ v)2 = vu2 · v = uσLvRv, so σ−1R◦vσ = LvRv. �

Here is another source of twisted subgroups. Let H be a group and τ ∈ Aut(H). Then the set

KH(τ) = {u ∈ H | uτ = u−1}

of anti fixed points of τ is a twisted subgroup of H.

Lemma 2.9 ([9, 32]). Let T be a twisted subgroup of a uniquely 2-divisible group H, let τ ∈ Aut(H),
and suppose that T ≤ KH(τ) and 〈T 〉 = H. Then T = KH(τ).
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2.4. The group Mltr(Q) o 〈J〉 for right Bruck loops of odd order. Recall that in a right
Bruck loop the inversion map J acts on the right section via RJu = R−1u . We will investigate the
group A = Mltr(Q) o 〈J〉 for a right Bruck loop Q of odd order and show that the isomorphism
type of A determines the isomorphism type of Q.

Lemma 2.10. Let Q be a right Bruck loop of odd order. Let G = Mltr(Q) and A = Go〈J〉. Then:

(i) All elements of A \G have even order.
(ii) Innr(Q) coincides with the fixed points of the action of J on G.

(iii) The right section RQ coincides with the set KG(J) of anti fixed points of J in G.
(iv) The mutually inverse bijections f : S 7→ RS = {Ru ∈ G | u ∈ S} and g : T 7→ 1T = {1ϕ |

ϕ ∈ T} form a one-to-one correspondence between subloops of Q and twisted subgroups of
G contained in RQ.

(v) Let T be a twisted subgroup of G contained in RQ. Then there is a subgroup U ≤ G such
that T = RQ ∩ U .

(vi) Let T be a twisted subgroup of G contained in RQ, and let 1T = S be the corresponding
subloop of Q. Then SEQ if and only if T = RQ∩U for some normal, J-invariant subgroup
U of G.

Proof. (i) This is clear from the fact that J is an involution and from the multiplication in Go 〈J〉.
(ii) Every element of G is of the form ψRu for some ψ ∈ Innr(Q) ≤ Aut(Q) and u ∈ Q. We have

(ψRu)J = ψJRJu = ψRu−1 . Thus ψRu is a fixed point of J if and only if Ru = Ru−1 , which happens
if and only if u = u−1, which is equivalent to u = 1, since Q has no elements of even order.

(iii) Recall that RQ is a twisted subgroup of G = 〈RQ〉. We have RQ ≤ KG(J) thanks to

RJu = Ru−1 . By Theorem 2.4, G is of odd order, hence uniquely 2-divisible. Lemma 2.9 then
implies that RQ = KG(J).

(iv) For a subloop S of Q, we claim that Sf = RS is a twisted subgroup of G. Indeed, if u,
v ∈ S then RuRvRu = R(uv)u ∈ RS and R−1u = Ru−1 ∈ RS . For a twisted subgroup T of G such
that T ⊆ RQ, we claim that Tg = 1T is a subloop of Q. Indeed, if Ru, Rv ∈ T then Ru ◦ Rv =

(RvR
2
uRv)

1/2 = Ruv ∈ T by Theorem 2.4, so 1Ru · 1Rv = uv = 1Ruv ∈ 1T , and we also have
(1Ru)−1 = u−1 = 1R−1u ∈ 1T . Finally, we have Sfg = (RS)g = S and Tgf = (1T )f = R1T = T .

(v) By (iv), T = RS for some S ≤ Q. Let U = 〈RS〉 ≤ G. If Rv ∈ U then v = 1Rv = 1Ru1 · · ·Ruk
for some ui ∈ S, so v ∈ S. This shows that RQ ∩ U = RS = T .

(vi) If T = RQ∩U for some normal (not necessarily J-invariant) subgroup U of G, then S = 1T is
a normal subloop of Q by [11, Lemma 5(v)]. Conversely, suppose that 1T = SEQ. The projection
Q → Q/S induces a surjective homomorphism α : G = Mltr(Q) → Mltr(Q/S). For any u ∈ Q,
we have Ruα = 1 if and only if u ∈ S. Hence RQ ∩ Ker(α) = RS = T . Moreover, Ker(α) is
J-invariant. �

Proposition 2.11. For i ∈ {1, 2}, let Qi be a right Bruck loop of odd order with inversion map
Ji, and let Ai = Mltr(Qi) o 〈Ji〉. Then Q1

∼= Q2 if and only if A1
∼= A2.

Proof. If Q1
∼= Q2 then clearly A1

∼= A2. For the converse, suppose that f : A1 → A2 is an
isomorphism. Since 〈J2〉 is a Sylow 2-subgroup in A2 and all Sylow 2-subgroups of A2 are conjugate,
we can compose f with an inner automorphism of A2 and assume without loss of generality that
J1f = J2. By Lemma 2.10(i), the group Gi = Mltr(Qi) is the maximal normal subgroup of odd
order in Ai, hence G1f = G2. By Lemma 2.10(iii), RQi = KGi(Ji) is the set of anti fixed points

of Ji. Given ψ ∈ RQ1 , we then have (ψf)−1 = (ψ−1)f = (ψJ1)f = (J1ψJ1)f = J1f · ψf · J1f =

J2 · ψf · J2 = (ψf)J2 , so ψf ∈ RQ2 . It follows that f induces a bijection RQ1 → RQ2 . Define
α : Q1 → Q2 by Ruf = Ruα. We claim that α is a loop isomorphism. Indeed, R(uv)α = Ruvf =

(RvR
2
uRv)

1/2f = (Rvf(Ruf)2Rvf)1/2 = (RvαR
2
uαRvα)1/2 = Ruαvα. �
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We will eventually show that there is only one isomorphism type of A = Mltr(Q) o 〈J〉 for
nonassociative right Bruck loops of order pq, from which we deduce via Proposition 2.11 that there
is only one nonassociative right Bruck loop of order pq.

3. A first glance at Bol loops of order pq

Let p > q be odd primes and let Q be a right Bol loop of order pq. Many results of [20] on Q
were obtained under the assumption that the unique subloop of order p is normal in Q. Crucially,
the normality assumption was used in [20] to prove that Q = {bjai · bj | 0 ≤ i < q, 0 ≤ j < p},
where a ∈ Q is an element of order q and b ∈ Q is an element of order p.

In this section we improve upon several results of [20] by removing the normality assumption.
Moreover, we then prove in Theorem 3.11 that the unique subloop of order p is normal in Q. (In
Section 5 we give another proof of this fact, and we also show that q divides p2 − 1 when Q is
nonassociative.) We purposely give an argument that is independent of [20] because the normality
assumption is interwoven into proofs of [20].

3.1. Uniqueness of a subloop of order p in right Bol loops of order pq.

Lemma 3.1. Let p > q be odd primes and let Q be a right power alternative loop of order pq. Then
Q has at most one subloop of order p.

Proof. Let u, v be two elements of order p in Q such that 〈u〉 ∩ 〈v〉 = 1. Let us consider the orbits
O(w) of w under Ru. We claim that for every k we have O(vk)∩ 〈v〉 = {vk}. Indeed, if vj ∈ O(vk)
then vj = vkRiu = vkRui = vkui for some i, so ui = vk\vj = vj−k ∈ 〈u〉∩ 〈v〉 = 1, so we can assume
without loss of generality that i = 0 and k = j. Because Q is right power alternative, all orbits of
Ru have length |u|. It follows that Ru has at least p distinct orbits of length p, so |Q| ≥ p2 > pq, a
contradiction. �

Corollary 3.2 ([20, Theorem 1]). Let p > q be odd primes and let Q be a right Bol loop of order
pq. Then Q contains a unique subloop of order p. When Q is nonassociative, then all nonidentity
elements of Q are of order p or q.

Proof. By Lemma 3.1, there is at most one subloop of order p in Q. By Theorem 2.4, Q contains
an element of order p. Hence Q contains a unique subloop S of order p.

Suppose that Q is nonassociative. In any right Bol loop the order of an element is a divisor of
the order of the loop. If Q contains an element of order pq, it is isomorphic to Zpq, a contradiction.
Hence all elements of Q \ S have order q. �

Lemma 3.3. Let p > q be odd primes and suppose that Q is a right Bol loop containing a normal
subloop of order q. Then Q is associative.

Proof. Suppose that Q is nonassociative. Let S be a normal subloop of Q of order q, say S = 〈a〉.
By Corollary 3.2, there is b ∈ Q such that |b| = p, and every element of Q \ 〈b〉 has order q. Thus
1 = (ba)q ∈ (bS)q = bqS, so bq ∈ S, a contradiction with |b| = p. �

3.2. Factorizations in right Bol loops of order pq.

Lemma 3.4. Let Q be a uniquely 2-divisible right Bol loop. For all v ∈ Q and m,n ∈ Z the
equation uvn · u = vm has a unique solution u = v(m−n)/2.

Proof. That u = v(m−n)/2 solves the equation is clear thanks to power associativity. For the
uniqueness, consider the associated right Bruck loop (Q, ◦) and note that the identity uvn ·u = vm

in (Q, ·) is equivalent to the identity (vn/2 ◦ u)2 = vm in (Q, ◦). The latter equation obviously has
a unique solution u. �
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Proposition 3.5 (compare [20, Theorem 1]). Let Q be a right Bol loop of order pq, where p > q
are odd primes. Then there exists an element a ∈ Q of order q, an element b ∈ Q of order p, and
whenever a, b are such elements, we have Q = {aibj | 0 ≤ i < q, 0 ≤ j < p} = {bjai | 0 ≤ i <
q, 0 ≤ j < p} = {bjai · bj | 0 ≤ i < q, 0 ≤ j < p}.
Proof. In each case, it is enough to show that no two elements of the given form coincide, for then
there are precisely pq elements of that form. If aibj = akb`, then aibj−` = ak by the right inverse
property and so bj−` = ai\ak = ak−i. Since 〈a〉 ∩ 〈b〉 = 1, we must have j = ` and k = i. The
argument for the form bjai is similar.

Suppose that bjai · bj = bka` · bk. Then RjbR
i
aR

j
b = Rbjai·bj = Rbka`·bk = RkbR

`
aR

k
b and so

Rai = Rk−jb R`aR
k−j
b = Rbk−ja`·bk−j . Hence ai = bk−ja` · bk−j . By Lemma 3.4, we have that

bk−j = a(i−`)/2. As above, we conclude that k = j and i = `. �

Corollary 3.6. Let p > q be odd primes and let Q be a right Bol loop of order pq. Let a ∈ Q be of
order q and b ∈ Q of order p. Then Mltr(Q) = 〈Ra, Rb〉.
Proof. By Proposition 3.5, every u ∈ Q can be written as u = bjai · bj for some i, j. Then

Ru = Rbjai·bj = RbjRaiRbj = RjbR
i
aR

j
b ∈ 〈Ra, Rb〉 by (Bolr) and the right power alternative

property. �

3.3. Complete mappings and right Bol loops of order pq. Throughout this subsection, sup-
pose that p > q are odd primes, and let Q be a right Bol loop of order pq. In addition, let a ∈ Q
be an element of order q, and b ∈ Q an element of order p.

Lemma 3.7. For each u ∈ Q, the order of u is equal to the order of Lu. In particular, Lqa = Lpb = 1.

Proof. The conclusion is certainly true when Q is associative, so we can assume that Q is not
associative. Every loop isotope of Q is then also a nonassociative right Bol loop of order pq. Thus
for each c ∈ Q, Corollary 3.2 implies that each nonidentity element of Q has order q or p in the
isotope (Q, ◦c) defined by (2.2). By Lemma 2.1 it follows that for each nonidentity element u ∈ Q,
the orbits of Lu each have length q or p.

Now for 1 6= u ∈ Q, Lu has, say, r orbits of length q and s orbits of length p. Then rq+ sp = pq.
If r > 0 and s > 0, then since sp = (p − r)q, it must be the case that q divides sp and hence q
divides s. But s < q, a contradiction. Therefore either r = 0 or s = 0. Thus Lu has order q or
order p, and this coincides with the order of u which is the length of the orbit of Lu through 1. �

Lemma 3.8. For all u ∈ Q, 〈b〉Tu ⊆ 〈b〉.
Proof. Since 〈b〉 is generated by any of its nonidentity elements, it is enough to show bTu ∈ 〈b〉. By
Proposition 2.3, we have

(bTu)p = (u−1 · (u2)Lpb)u
−1 = u−1u2 · u−1 = 1.

Thus bTu has order dividing p. Since 〈b〉 is the unique subloop of order p by Corollary 3.2, we have
bTu ∈ 〈b〉 as claimed. �

Let us now apply Lemma 3.8 and derive a multiplication formula for Q. For every 0 ≤ i < q and
0 ≤ j < p, there exists 0 ≤ j′ < p such that

(3.1) bjTai = ai\(bjai) = bj
′
.

This gives rise to mappings θi : Zp → Zp, j 7→ j′ = jθi.
A bijection f of a group (G,+) is a complete mapping if the mapping x 7→ xf + x is also a

bijection of G.

Lemma 3.9. For every 0 ≤ i < q, the mappings θi defined by (3.1) are complete mappings of Zp.
Moreover, θ0 is the identity mapping and 0θi = 0 for every i ∈ Zq.
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Proof. By Lemma 3.8, θi is a permutation of Zp. Next,

bjai · bj = aibjθi · bj = aibjθi+j .

By Proposition 3.5, the left hand side accounts for p distinct elements of Q as j varies over Zp, and
hence so does the right hand side. Then Proposition 3.5 implies that j 7→ j + jθi is a permutation
of Zp.

Since bj = bja0 = a0bjθ0 = bjθ0 , we must have θ0 = 1. Similarly, ai = b0ai = aib0θi implies
0θi = 0. �

Proposition 3.10. The multiplication in Q is uniquely determined by the complete mappings
θi : Zp → Zp defined by (3.1). In particular, for 0 ≤ i, k < q and 0 ≤ j, ` < p, we have

(3.2) aibj · akb` = ai+kbm+(j+m)θ−1
i θi+k ,

where m+mθk = `.

Proof. Fix i, k ∈ Zq and j, ` ∈ Zp, and let m ∈ Zp be the unique element satisfying m+mθk = `.
Then

aibj · akb` = aibj · akbm+mθk = aibj · (akbmθk · bm) = aibj · (bmak · bm)

= (aibj · bm)ak · bm = (aibj+m)ak · bm = (b(j+m)θ−1
i ai)ak · bm

= b(j+m)θ−1
i ai+k · bm = ai+kb(j+m)θ−1

i θi+k · bm = ai+kb(j+m)θ−1
i θi+k+m.

�

Theorem 3.11. Let p > q be odd primes and let Q be a right Bol loop of order pq. Then the
unique subloop of order p is normal in Q.

Proof. Let a ∈ Q be an element of order q and b ∈ Q an element of order p. Define φ : Q→ Zq by
(aibj)φ = ai. It follows from Proposition 3.5 that φ is well-defined, and from Proposition 3.10 that
φ is a homomorphism with kernel 〈b〉. �

Call a complete mapping θ : Zp → Zp linear if (i+j)θ = iθ+jθ for every i, j ∈ Zp. Equivalently,
a complete mapping θ : Zp → Zp is linear if there is λ ∈ Zp \ {0,−1} such that iθ = λ · i for every
i ∈ Zp.

We record a useful corollary of Proposition 3.10.

Corollary 3.12. If every θi is linear and we have θi+k = θiθk for every i, k, then Q is associative.

Proof. We have

aibj · akb` = ai+kbm+(j+m)θk = ai+kbm+mθk+jθk = ai+kb`+jθk

with the usual convention on m, so Q is isomorphic to the semidirect product (Zq × Zp, ∗) with
associative multiplication

(i, j) ∗ (k, `) = (i+ k, jθk + `).

�

4. The Bruck loops of order pq

Let p > q be odd primes. We prove that a nonassociative right Bruck loop of order pq exists if
and only if q divides p2−1, and in such case the loop is unique up to isomorphism. Our main tool is
Proposition 2.11, so we must first obtain some results on groups that can arise as A = Mltr(Q)o〈J〉.
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4.1. Dihedral groups in GL(2, p). For a group N , denote by Hol(N) the holomorph of N , that
is, the semidirect product N o Aut(N) with natural action.

Consider now a semidirect product G = N oH with conjugation action α : H → Aut(N). If α
is faithful (that is, injective), then G embeds into Hol(N) via the isomorphism nh 7→ (n, hα).

The goal of this subsection is to show that if G = N o H, N ∼= Zp × Zp, H ∼= D2q and H
acts faithfully by conjugation on N , then q divides p2 − 1 and G is uniquely determined up to
isomorphism. See Proposition 4.2.

We start by exhibiting a canonical copy of (Zp×Zp)oD2q in GL(2, p). Suppose for a while that
q divides p2 − 1. Note that then q either divides p− 1 or p+ 1 but not both. Let ω be a primitive
qth root of unity in Fp2 . Clearly, ω ∈ Fp if and only if q divides p− 1.

We define σ, τ ∈ GL(2, p) as follows. When q divides p− 1, let

σ =

(
ω 0
0 ω−1

)
, τ =

(
0 1
1 0

)
.

When q divides p+ 1, fix an Fp-basis B of Fp2 , and let σ, τ be the matrices of the Fp-linear maps
x 7→ ωx, x 7→ xp with respect to B, respectively. Straightforward calculation shows that in both
cases σ, τ satisfy the relations σq = τ2 = (στ)2 = 1. (When q divides p+ 1, use ωp+1 = 1.)

Denote by ∆ the subgroup 〈σ, τ〉 of GL(2, p) and note that ∆ is isomorphic to the dihedral group
D2q.

Proposition 4.1. When q does not divide p2− 1 then GL(2, p) has no subgroup isomorphic to the
dihedral group D2q. When q divides p2 − 1 then any subgroup isomorphic to D2q is conjugate to ∆
in GL(2, p).

Proof. Let G = GL(2, p) and note that |G| = (p2 − 1)(p2 − p) = (p − 1)2p(p + 1). When q does
not divide p2 − 1 then q does not divide |G|, so G certainly does not contain a subgroup of order
2q. For the rest of the proof suppose that q divides p2 − 1, and let σ, τ , ∆ be as above. Let
S = 〈s, t : sq = t2 = (st)2 = 1〉 be a subgroup of G = GL(2, p) isomorphic to D2q.

Assume first that q divides p− 1. Define the subgroup

U =

{(
a 0
0 b

)
: a, b ∈ F∗p

}
∼= Zp−1 × Zp−1

of G. As [G : U ] = p(p+ 1) is coprime to q, any q-Sylow subgroup of U is a q-Sylow subgroup of G.
In particular, s is conjugate to an element of U . We can therefore assume that, up to conjugacy,
s ∈ U and

s =

(
ωi 0
0 ωj

)
for the primitive qth root of unity ω in Fp fixed above and for some integers i, j. Since s is not
central in G, i 6= j, and s has precisely two 1-dimensional invariant subspaces, namely V1 = 〈(1, 0)〉
and V2 = 〈(0, 1)〉. The relation sts = t implies Vit = Vists = Vits, and thus Vit ∈ {V1, V2}. If t
fixes V1, V2 then S is contained in the abelian group F∗p × F∗p, a contradiction. Therefore, t must
interchange V1 and V2. In particular, t has the form

t =

(
0 a−1

a 0

)
for some a ∈ F∗p. The relation tst = s−1 is then equivalent to i = −j. With

u =

(
a 0
0 1

)
,
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we have su = s and

tu =

(
0 1
1 0

)
.

Hence S is conjugate to ∆.
Now assume that q divides p + 1. By [13, II.7.3.(a)], G contains a cyclic subgroup U of order

p2 − 1. In fact, U consists of the Fp-linear maps ρa : x 7→ xa with a ∈ F∗p2 . Furthermore,

CG(U) = U and NG(U)/U has order 2, which means NG(U) = {ρa, ρaτ | a ∈ F∗p2}. We claim that

any involution of NG(U) \ U is U -conjugate to τ . On the one hand, CU (τ) = {ρa | a ∈ F∗p}, hence

|τU | = (p2 − 1)/(p− 1) = p+ 1. On the other hand, (τρa)
2 = ρp+1

a is the identity map if and only
if ap+1 = 1, which means that NG(U) \ U has p+ 1 involutions.

Since [G : U ] is coprime to q, the q-Sylow subgroup of U is a q-Sylow subgroup of G. Up to
conjugacy, we can assume that 〈s〉 ≤ U is the unique subgroup of order q in U . Then again by [13,
II.7.3.(a)], t ∈ NG(〈s〉) ≤ NG(U). By our claim above, t and τ are U -conjugates. As U centralizes
s, the subgroups 〈s, t〉 and ∆ are conjugate. �

We will identify Hol(Fnp ) with the affine linear group AGL(n, p) consisting of all affine linear
maps x 7→ b+ xA, where b ∈ Fnp and A ∈ Aut(Fnp ) = GL(n, p). Recall that the socle of AGL(n, p)
is in fact the unique minimal normal subgroup of AGL(n, p), namely the group consisting of all
translations x 7→ b+ x.

Proposition 4.2. Let G = NH be a group such that Zp × Zp ∼= N E G, D2q
∼= H ≤ G and

CG(N) = N . Then q divides p2 − 1 and G ∼= F2
p o ∆.

Proof. Since the orders of N and H are coprime, we have N ∩H = 1. It follows that G ∼= N oH,
where the action of H on N is by conjugation. The assumption CG(N) = N means that the
action is faithful, and we have an embedding ϕ : G → Hol(N) = AGL(2, p). The image Nϕ is
the socle of AGL(2, p), and Hϕ ≤ GL(2, p). By Proposition 4.1, q divides p2 − 1 and there is an
element g ∈ GL(2, p) with (Hϕ)g = ∆. Since (Nϕ)g = Nϕ, the map x 7→ (xϕ)g is an isomorphism
G→ F2

p o ∆. �

4.2. Uniqueness. Throughout this section, let Q be a right Bruck loop of order pq. We prove
that either Q is the cyclic group Zpq, or q divides p2 − 1 and Q is the nonassociative Bruck loop
Bp,q constructed by Niederreiter and Robinson.

We start with a special case of Theorem 3.11, giving a proof independent of most of the results
in Section 3.

Proposition 4.3. Q possesses a unique subloop of order p and this subloop is normal.

Proof. By Theorem 2.4, Q is solvable and so its derived subloop Q′ is properly contained in Q. If
Q′ = 1 then Q is an abelian group of order pq and the result follows. We can therefore assume that
|Q′| ∈ {p, q}.

If |Q′| = p, we are done, so assume that |Q′| = q and Q/Q′ ∼= Zp. Let S be the unique subloop
of order p, whose existence is guaranteed by Corollary 3.2. Recall that |u| divides |Q| in any right
Bol loop. Consider any u ∈ Q \ (Q′ ∪ S). Since |uQ′| divides |u| and |uQ′| = p, it follows that p
divides |u| 6= p. Thus |u| = pq, Q ∼= Zpq, and Q′ = 1, a contradiction. �

Let G = Mltr(Q). By Proposition 3.5 and Corollary 3.6, there are a, b ∈ Q such that |a| = q,
|b| = p and G = 〈Ra, Rb〉.

As in Lemma 2.10, let A = Go 〈J〉. Since GEA, G/A ∼= Z2 and G is solvable of order paqb by
Theorem 2.4, A is solvable of order 2paqb. Let N be a minimal normal subgroup of A, necessarily
an elementary abelian r-group for some r ∈ {2, p, q}.

Lemma 4.4. r 6= 2 and N EG.
12



Proof. Suppose first that r = 2. Then |N | = 2 because 4 does not divide |A|, and from N E A
we deduce N ≤ Z(A). Let ϕ be the unique involution of N . If ϕ 6= J , then ϕJ = Jϕ shows that
〈ϕ, J〉 is a subgroup of order 4, a contradiction. Thus N = {1, J}. But then Ru = RJu = Ru−1

implies |u| ≤ 2 for every u ∈ Q, a contradiction. Hence r 6= 2. Since N contains no elements of
even order, it is a subgroup of G by Lemma 2.10(i). �

Consider a vector space V over a field of odd characteristic, and let ϕ be an involutory auto-
morphism of V . Then any v ∈ V can be written as v = v+ + v−, where v+ = (v + vϕ)/2 and
v− = (v − vϕ)/2. Moreover, v+ϕ = v+ and v−ϕ = −v−.

Denote by N+ (resp. N−) the fixed points (resp. anti fixed points) of the involutory automor-

phism J on N ∼= Fmr . As above, any u ∈ N can be written as u = u++u−, where u+ = (uuJ)
1
2 ∈ N+

and u− = (u(u−1)J)
1
2 ∈ N−. Thus N = N+N− = N+ ×N−.

Lemma 4.5. N− is a twisted subgroup of G contained in RQ, it corresponds to a normal subloop
of Q, and it has size r.

Proof. We have N− ≤ G by Lemma 4.4. By Lemma 2.10(iii), N− is a twisted subgroup of G
contained in RQ. By Lemma 2.10(vi), N− corresponds to a normal subloop of Q. Since |Q| = pq
and |N−| is a power of r, it follows that |N−| ∈ {1, r}. Suppose that |N−| = 1. Then N = N+ ≤
Innr(Q) by Lemma 2.10(ii). Together with NEG, this is a contradiction with the fact that Innr(Q)
is a core-free subgroup of Mltr(Q). �

Lemma 4.6. If Q is not associative then N− = 〈Rb〉, |N+| = p and N ∼= Zp × Zp.

Proof. By Proposition 4.3, Q contains a normal subloop of order p. It does not contain a normal
subloop of order q, otherwise Q ∼= Zpq by Lemma 3.3, a contradiction. By Lemma 4.5, |N−| = p.
Since N− is a twisted subgroup of G contained in RQ, we must have N− = 〈Rb〉 because |Ru| = |u|
for every u ∈ Q.

Notice that G = 〈Ra, Rb〉 = 〈N,Ra〉 = N〈Ra〉 and |Ra| = q. If N+ is trivial, then |G| ≤ pq,
which implies that Q is associative, a contradiction. We can therefore assume that N+ is nontrivial.
Let dim(N) = k as a vector space over Fp. From N = N+ × N− and dim(N−) = 1 we deduce
dim(N+) = k − 1, k ≥ 2.

Consider J0 = JRa . Then JJ0 = JR−1a JRa = R2
a. Since |Ra| = q is odd, we have A =

〈N, Ra, J〉 = 〈N, R2
a, J〉 = 〈N, J, J0〉. The set of fixed points of J0 in N is (N+)Ra because

(uRa)J0 = (uJ)Ra = uRa holds if and only if u ∈ N+. Let M = N+ ∩ (N+)Ra and note that all
elements of M are centralized by N , J and J0. Hence M ≤ Z(A) and, in particular, M EA.

Now, dim(M)+k = dim(M)+dim(N) ≥ dim(N+)+dim((N+)Ra) = 2(k−1), so dim(M) ≥ k−2.
If k > 2 then M is a nontrivial normal subgroup of A properly contained in N , a contradiction.
Thus k = 2, dim(N+) = 1 and N ∼= Zp × Zp. �

Proposition 4.7. Let p > q be odd primes, let Q be a nonassociative Bruck loop of order pq,
G = Mltr(Q) and A = Go 〈J〉. Then:

(i) A = NH where N ∼= Zp × Zp, H ∼= D2q, and CA(N) = N .
(ii) q divides p2 − 1.
(iii) G is isomorphic to (Zp × Zp) o Zq.

Proof. (i) Lemmas 4.4–4.6 imply that A has a normal subgroup N ∼= Zp × Zp with Rb ∈ N .
The subgroup H = 〈Ra, J〉 is isomorphic to D2q. A = NH holds. Since CA(N) is normal in
A, H0 = H ∩ CA(N) is normal in H. This implies that if H0 is not trivial then it contains the
unique cyclic subgroup of order q of H. In particular, Ra ∈ H0. From Ra ∈ CA(N), Rb ∈ N and
Mltr(Q) = 〈Ra, Rb〉 we deduce that Mltr(Q) is commutative, a contradiction with nonassociativity
of Q. Hence, H0 = {1} and CA(N) = N hold.
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(ii) By Proposition 4.2, q divides p2 − 1.
(iii) Let K = H ∩G. By Lemma 2.10(i), K ∼= Zq and both N and K are subgroups of G. �

Recall that whenever q divides p2 − 1, Niederreiter and Robinson constructed a nonassociative
right Bruck loop Bp,q of order pq.

Theorem 4.8. Let p > q be odd primes and let Q be a right Bruck loop of order pq. Then either
Q ∼= Zpq, or q divides p2 − 1 and Q ∼= Bp,q.

Proof. If Q is associative then Q ∼= Zpq, so we can assume that Q is not associative. Let us relabel
Q as Q1, let J1 be the inversion map in Q1, and let A1 = Mltr(Q1) o 〈J1〉. By Propositions 4.2
and 4.7, q divides p2 − 1 and A1

∼= F2
p o ∆.

Let Q2 = Bp,q, let J2 be the inversion map in Q2, and let A2 = Mltr(Q2) o 〈J2〉. Reasoning as
before, we get A2

∼= F2
po∆, too. In particular, A1

∼= A2, and Proposition 2.11 implies Q1
∼= Q2. �

We will prove later that in every nonassociative right Bol loop of order pq we have Nuc`(Q) ∼= Zp.
Here is a special case for right Bruck loops.

Proposition 4.9. Let p > q be odd primes and let Q be the nonassociative right Bruck loop of
order pq. Then Nuc`(Q) ∼= Zp.

Proof. We first mimic the beginning of the proof of [32, Proposition 3.18]. Let S be the unique
normal subgroup of order p in Q. Consider the mapping f : Innr(Q) → Aut(S), ϕf = ϕ|S ,
clearly a homomorphism. The kernel of f is equal to C = {ϕ ∈ Innr(Q) | ϕ|S = idS}. Since
Aut(S) ∼= Aut(Zp), we see that Innr(Q)/C ≤ Aut(S) is a cyclic group of order dividing p − 1.
However, we know that |Innr(Q)| = p from Proposition 4.7(iii), so |Innr(Q)/C| = 1 and |C| = p.
It follows that S ≤ Nuc`(Q). �

5. Second glance at right Bol loops of order pq

5.1. The divisibility conditions q | p2 − 1. We will now show that a nonassociative right Bol
loop Q of order pq exists for odd primes p > q if and only if q divides p2 − 1. If we knew that
the associated right Bruck loop (Q, ◦) is nonassociative, we would be done by Theorem 4.8. But it
is conceivable that (Q, ◦) is a group and this situation must be carefully excluded. The setup we
develop here will be useful later, too. Moreover, it will allow us to give another proof of Theorem
3.11 independent of most of Section 3.

Let Q be a loop. Recall that a triple of bijections (α, β, γ) of Q is an autotopism of Q if
uα ·vβ = (uv)γ holds for every u, v ∈ Q. The autotopisms of Q form a group under componentwise
composition, the autotopism group Atp(Q).

We claim that a loop Q is right Bol if and only if (R−1u , LuRu, Ru) ∈ Atp(Q) for every u ∈ Q.
Indeed, the condition (R−1u , LuRu, Ru) ∈ Atp(Q) is equivalent to the identity (w/u)(uv ·u) = (wv)u,
which is equivalent to (Bolr) upon substituting wu for w.

Lemma 5.1 ([4]). Let Q be a loop and let α, β, γ be bijections of Q. Then:

(i) (id, β, γ) ∈ Atp(Q) if and only if β = γ = Rw and w ∈ Nucr(Q).
(ii) (α, id, γ) ∈ Atp(Q) if and only if α = γ = Lw and w ∈ Nuc`(Q).

Denote by πi the projection on the ith coordinate.

Lemma 5.2. Let Q be a uniquely 2-divisible right Bol loop, let N = 〈(R−1u , LuRu, Ru) | u ∈ Q〉 ≤
Atp(Q, ·), and let (Q, ◦) be the right Bruck loop associated with (Q, ·). Then:

(i) The projection π1 : N → Mltr(Q, ·) is a surjective homomorphism and there is a subloop
W1 of Nucr(Q, ·) such that Ker(π1) = {(id, Rw, Rw) | w ∈ Nucr(Q, ·)} is isomorphic to W1.
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(ii) The projection π2 : N → 〈LuRu | u ∈ Q〉 ∼= Mltr(Q, ◦) is a surjective homomorphism,
there is a subloop W2 of Nuc`(Q, ·) such that Ker(π2) = {(Lw, id, Lw) | w ∈ W2} is anti-
isomorphic to W2, and Ker(π2) ≤ Z(N).

Proof. (i) It is clear that π1 is onto Mltr(Q, ·). Let ϕw = (id, Rw, Rw). By Lemma 5.1(i), there is
a subset W1 of Nucr(Q, ·) such that Ker(π1) = {ϕw | w ∈ W1}. We claim that W1 is a subloop of
(Q, ·) and Ker(π1) ∼= W1. If u, v ∈ W1 then ϕu, ϕv ∈ Ker(π1) and ϕuϕv, ϕ

−1
u ∈ Ker(π1). We have

ϕ−1u = ϕu−1 thanks to the right inverse property, and ϕuϕv = ϕuv because v ∈ Nucr(Q). Therefore
uv, u−1 ∈W1.

(ii) It is clear that π2 is onto 〈LuRu | u ∈ Q〉, which is isomorphic to Mltr(Q, ◦) by Lemma
2.8. Let ψw = (Lw, id, Lw). By Lemma 5.1(ii), there is a subset W2 of Nuc`(Q, ·) such that
Ker(π2) = {ψw | w ∈W2}. We claim that W2 is a subloop of (Q, ·) and Ker(π2) is anti-isomorphic
to W2. If u, v ∈ W2 then ψu, ψv ∈ Ker(π2) and ψuψv, ψ

−1
u ∈ Ker(π2). We have ψuψv = ψvu since

v ∈ Nuc`(Q, ·), and ψ−1u = ψu−1 thanks to u ∈ Nuc`(Q, ·). Therefore vu, u−1 ∈W1.
Finally, the condition w ∈ Nuc`(Q, ·) is equivalent to LwRu = RuLw for every u ∈ Q. It follows

that ψw commutes with every (R−1u , LuRu, Ru), hence Ker(π2) ≤ Z(N). �

Proposition 5.3. Let (Q, ·) be a Bol loop of odd order. If the associated right Bruck loop (Q, ◦) is
associative then Mltr(Q, ·) is nilpotent of class at most 2.

Proof. LetN , π1 and π2 be as in Lemma 5.2. Then Ker(π2) ≤ Z(N), andN/Ker(π2) ∼= Mltr(Q, ◦) ∼=
(Q, ◦) is an abelian group by assumption. Therefore N is nilpotent of class at most 2. Since
π1(N) = Mltr(Q, ·), we are done. �

Recall that in a finite nilpotent group the Sylow subgroups are normal, and the maximal sub-
groups are normal of prime index.

Lemma 5.4. Let G be a finite nilpotent group and H a core-free subgroup of G. Then for any
prime divisor r of |G|, there is a normal subgroup M EG such that H ≤M and r = |G/M |.

Proof. We use induction on |G|. Let N1 be a maximal subgroup of G containing H. Then N1 is
normal in G of prime index p. If r = p then we are done. Assume r 6= p. By induction hypothesis,
N1 has a normal subgroup N2 with H ≤ N2 and r = |N1/N2|. Let P be a Sylow p-subgroup of G
and define M = N2P . Since H is core-free and P EG, we see that P is not a subgroup of N2 and
|M/N2| = p. This implies that |G/M | = r, M is maximal in G and hence M EG. �

Lemma 5.5 ([1, 2.12]). Let Q be a loop and M a group with Innr(Q) ≤ M E Mltr(Q). Then
S = {x ∈ Q | Rx ∈M} = 1M is a normal subloop of Q. Moreover, Q/S ∼= Mltr(Q)/M holds.

Proposition 5.6. Let Q be a finite loop such that Mltr(Q) is nilpotent. Then for any prime r
dividing |Q| there is a normal subloop of Q with index r.

Proof. Put G = Mltr(Q) and H = Innr(Q). Since H is core-free in G, there is a normal subgroup
M of G of index r containing H by Lemma 5.4. We are done by Lemma 5.5. �

Theorem 5.7. Let p > q be odd primes and let Q be a nonassociative right Bol loop of order pq.
Then q divides p2 − 1.

Proof. Let (Q, ◦) be the associated right Bruck loop. Suppose first that (Q, ◦) is associative. Then
(Q, ◦) is in fact an abelian group due to the automorphic inverse property, and G = Mltr(Q, ·) is
nilpotent by Proposition 5.3. Proposition 5.6 yields a normal subgroup S of index p (hence of order
q) in (Q, ·), a contradiction with Lemma 3.3. Therefore (Q, ◦) is nonassociative, and we are done
by Theorem 4.8. �
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Lemma 5.8. Let p > q be odd primes and let Q be a nonassociative right Bol loop of order pq.
Let N be as in Lemma 5.2. Then |N | = piqj with i ≤ 3, j ≤ 2, and N contains a unique Sylow
p-subgroup.

Proof. Let (Q, ◦) be the associated right Bruck loop, and let K2 = Ker(π2). By Lemma 5.2,
N/K2

∼= Mltr(Q, ◦) and K2 corresponds (in cardinality) to a subloop of Nuc`(Q). If (Q, ◦) is
associative then |Mltr(Q, ◦)| = pq, otherwise |Mltr(Q, ◦)| = p2q by Proposition 4.7. Thus |N | = piqj

with i ≤ 3, j ≤ 2. Since p does not divide q2 − 1 = (q − 1)(q + 1), N contains a unique Sylow
p-subgroup. �

Remark 5.9. Here is an alternative proof of Theorem 3.11 that does not require most of Section 3.
We can assume that Q is a nonassociative right Bol loop. Let us resume the argument of Lemma
5.8. Let P be the unique Sylow p-subgroup of N . We have N ′ ≤ P because |N/P | ∈ {q, q2}.

Let K1 = Ker(π1). If K1 6= 1 then Nucr(Q, ·) is nontrivial by Lemma 5.2, necessarily a normal
subloop of order p by Lemma 3.3. We can therefore suppose that K1 = 1. Let G = Mltr(Q, ·).
Lemma 5.2 yields N ∼= G, so N ′ ∼= G′ is a p-group. Consider the normal subgroup M = Innr(Q, ·)G′
of G. Since Innr(Q, ·) is core-free in G, it does not contain G′ and |M | = p|Innr(Q, ·)| = |G|/q. By
Lemma 5.5, S = 1M is a normal subloop of Q such that |Q/S| = |G/M | = q, so |S| = p.

5.2. Triviality of the right and middle nuclei. Recall that in every right inverse property
loop Q the right nucleus coincides with the middle nucleus. In this subsection we prove that in a
nonassociative right Bol loop of order pq the right and middle nuclei are trivial.

Lemma 5.10. Let Q be a loop, let S ≤ Nucr(Q)∩Nucm(Q), and suppose that for some u ∈ Q we
have STu = S. Then Tu|S is an automorphism of S.

Proof. For c1, c2 ∈ S, we have u(c1Tu ·c2Tu) = (u ·c1Tu) ·c2Tu = c1u ·c2Tu = c1(u ·c2Tu) = c1 ·c2u =
c1c2 · u. Thus c1Tu · c2Tu = (c1c2)Tu, as claimed. �

Lemma 5.11. Let Q be a right Bol loop. Then:

(i) For each u ∈ Q, Tu|Nucr(Q) is an automorphism of Nucr(Q).
(ii) For each u ∈ Nucr(Q), v ∈ Q and n ≥ 0 we have uTvn = uTnv .

Proof. Part (i) follows immediately from Lemma 5.10. Let us prove (ii) by induction on n, the case
n = 0 being obvious. Using the fact that u ∈ Nucr(Q) = Nucm(Q), part (i), the inductive step and
the right power alternative property, we see that vn+1 · uTn+1

v = vn(v · uTn+1
v ) = vn(uTnv · v) =

(vn · uTnv )v = uvn · v = uvn+1. �

Theorem 5.12. Let p > q be odd primes and let Q be a nonassociative right Bol loop of order pq.
Then Nucr(Q) = Nucm(Q) = 1.

Proof. We know that Nucr(Q) is a normal subloop of Q. If |Nucr(Q)| = 1, we are done. If
|Nucr(Q)| = q then Q is associative by Lemma 3.3, a contradiction. We can therefore assume that
|Nucr(Q)| = p, and we must have Nucr(Q) = 〈b〉, using the notation of Section 3. By Lemma 5.10,
we get

bjθi = bjTai = (bTai)
j = (bT ia)

j = (b1θ
i
1)j = bj·1θ

i
1 .

Thus jθi = j · 1θi1 for every i, j.
Now, if we set t = 1θ1, then we claim that 1θi1 = ti for all i ≥ 0. This is clear for i = 0, so

assuming it for i ≥ 0, we have 1θi+1
1 = 1θi1θ1 = tiθ1 = ti · 1θ1 = ti+1.

Summarizing, we have jθi = tij. By Corollary 3.12, Q is associative, a contradiction. �
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5.3. The left nucleus. Let p > q be odd primes and let Q be a nonassociative right Bol loop of
order pq. In this subsection we prove that |Mltr(Q)| ∈ {p2q, p3q} and that Nuc`(Q) is a normal
subloop of Q isomorphic to Zp.

Proposition 5.13. Let p > q be odd primes and let Q be a nonassociative right Bol loop of order
pq. Let G = Mltr(Q). Then:

(i) G contains a unique Sylow p-subgroup.
(ii) |G| = pkq, where k ∈ {2, 3}.

Proof. (i) Let N , π1, π2 be as in Lemma 5.2 and recall that π1 is onto G, Ker(π1) is isomorphic to
a subloop of Nucr(Q, ·), and Nucr(Q, ·) = 1 by Theorem 5.12. Therefore N ∼= G and we are done
by Lemma 5.8.

(ii) Let P be the unique Sylow p-subgroup of G. Let a, b ∈ (Q, ·) be such that |a| = q and
|b| = p. Then G = 〈Ra, Rb〉 by Corollary 3.6. Since |Ra| = q and |Rb| = p, we have G = 〈Ra〉P
and |G| = pkq with 1 ≤ k ≤ 3. The case |G| = pq leads to Q ∼= Zpq, a contradiction. �

Theorem 5.14. Let p > q be odd primes and let Q be a nonassociative right Bol loop of order pq.
Then Nuc`(Q) ∼= Zp.

Proof. By Proposition 5.13, G = Mltr(Q) is of order p2q or p3q. Since |G| = |Q| · |Innr(Q)|, it
follows that Innr(Q) is a p-group. Consequently, every orbit of Innr(Q) has a size that is a power
of p. Since 1 is a fixed point of Innr(Q), there must be at least p − 1 additional fixed points of
Innr(Q). Now, Nuc`(Q) consists precisely of the fixed points of Innr(Q).

We have shown that |Nuc`(Q)| ≥ p, so either |Nuc`(Q)| = p and we are done, or |Nuc`(Q)| = pq,
Nuc`(Q) = Q, a contradiction. �

5.4. The complete mappings θi are linear. Niederreiter and Robinson obtained a number of
results for right Bol loops of order pq for which every complete mapping θi of (3.2) is linear. We
now prove that every θi must be linear should (3.2) yield a right Bol loop.

Lemma 5.15. Let p > q be odd primes, and let Q be a groupoid defined on Zq ×Zp = 〈a〉 × 〈b〉 by

(3.2), where every θi is a complete mapping of Zp. Then bj · akb` = bjak · b` holds for every j, ` if
and only if θk is linear.

Proof. First note that (3.2) implies aibk · b` = aibk+` for every i, k, `. Now fix j, k, ` and let m

be such that m + mθk = `. Then bj · akb` = akbm+(j+m)θk , while bjak · b` = akbjθk · b` = akbjθk+`.
Therefore bj · akb` = bjak · b` holds if and only if m + (j + m)θk = jθk + ` = jθk + m + mθk, or,
equivalently, (j +m)θk = jθk +mθk. Note that as ` ranges over Zp, so does m. �

Theorem 5.16. Let p > q be odd primes and let Q be a right Bol loop of order pq. Then all
complete mappings θi of (3.2) are linear.

Proof. By Theorem 5.14, Nuc`(Q) contains a subloop of order p. Since 〈b〉 accounts for all elements
of order p in Q, we have 〈b〉 ≤ Nuc`(Q). We are done by Lemma 5.15. �

6. The right Bol loops of order pq up to isomorphism

In this section we present a classification of right Bol loops of order pq up to isomorphism.

6.1. An abstract construction. The following is motivated by Lemma 3.9 and Proposition 3.10.
Let p > q be odd primes, and let Θ = {θi | i ∈ Zq} be a collection of complete mappings of Zp

such that θ0 = 1 and 0θi = 0 for every i ∈ Zq. Define multiplication on Zq × Zp by

(i, j)(k, `) = (i+ k, m+ (j +m)θ−1i θi+k),

where m+mθk = `.
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We have (0, 0)(k, `) = (k,m + mθ−10 θk) = (k,m + mθk), where m + mθk = `, so (0, 0)(k, `) =

(k, `). Similarly, (i, j)(0, 0) = (i, n + (j + n)θ−1i θi) = (i, 2n + j), where 2n = n + nθ0 = 0, so
(i, j)(0, 0) = (i, j). Therefore (0, 0) is the identity element.

We claim that all right translations biject. Given (k, `), (u, v), we need to find (i, j) such that
(i, j)(k, `) = (i + k,m + (j + m)θ−1i θi+k) = (u, v), where m + mθk = ` is determined by k, `. We

must take i = u−k, and we need a j such that m+(j+m)θ−1i θu = v, that is, j = (v−m)θ−1u θi−m.
However, the left translations are not necessarily bijections. We claim that all left translations are

bijections if and only if θ−1i θj is a complete mapping for every i, j ∈ Zq. Indeed, given (i, j), (u, v),

we need to find (k, `) such that (i, j)(k, `) = (i+k,m+(j+m)θ−1i θi+k) = (u, v), where m+mθk = `.

We must take k = u−i, and we want ` such that −j+(m+j)+(m+j)θ−1i θu = v, where m+mθk = `.

Now, as ` ranges over Zq, so does m, so we need an m such that (m+ j) + (m+ j)θ−1i θu = v + j.

We will be always able to find such an m if and only if θ−1i θu is a complete mapping.

Therefore, for odd primes p > q, let Θ = {θi | i ∈ Zq} be a collection of complete mappings such

that θ0 = 1, 0θi = 0 for every i ∈ Zq, and θ−1i θj is a complete mapping for every i, j ∈ Zq. Then,
and only then, will we define Q(Θ) on Zq × Zp by

(6.1) (i, j)(k, `) = (i+ k, m+ (j +m)θ−1i θi+k),

where m+mθk = `. We have proved above that Q(Θ) is a loop.
We would like to know when Q(Θ) is a right Bol loop. This problem was resolved by Niederreiter

and Robinson when Θ consists of linear complete mappings. We can restate their results as follows:

Theorem 6.1 (compare [20, Theorems 6, 8 and 11]). Let p > q be odd primes. Let Q(Θ) be the
loop defined by (6.1), and suppose that θi is linear for every i ∈ Zq. Then Q(Θ) is a right Bol loop
if and only if there exists a bi-infinite sequence {ui} with ui ∈ Fp solving the recurrence relation

(6.2) un+2 = λun+1 − un,
for some λ ∈ F∗p, and we have u0 = 1, u−1i uj ∈ Fp \ {0,−1} for every i, j, and θi = u−1k whenever
i ≡ k (mod q).

Suppose that two right Bol loops correspond to the bi-infinite sequences {ui} and {vi}, respectively.
Then the loops are isomorphic if and only if there is 0 6= s ∈ Zq such that ui = vsi for every i ∈ Zq,
and the loops are isotopic if and only if there are 0 6= s ∈ Zq and r ∈ Zq such that ui = v−1r vsi+r
for every i ∈ Zq.

Finally, the obtained right Bol loop is a right Bruck loop if and only if ui = u−i for all i ∈ Zq.

Proof. Theorem 6 of [20] applies as long as we verify the following properties in our abstract loop
Q(Θ): (i, 0)(k, 0) = (i + k, 0), (0, j)(0, `) = (0, j + `), (i, 0)(0, `) = (i, `), (0, j)(i, 0) = (i, jθi), and
{(0, j) | j ∈ Zp} is a normal subloop of Q(Θ). These conditions are routinely verified from (6.1),
where we note that {(0, j) | j ∈ Zp} is the kernel of the homomorphism (i, j) 7→ i.

(Our assumption on Θ that θ−1i θj is complete for every i, j is somewhat suppressed in [20,

Theorem 6], perhaps being implicit in the fact that their coefficient R(j, `) = (θ`+1)−1(θj+`θ
−1
j +1)

must be invertible. In any case, we have seen that this assumption is necessary in order to obtain
a loop, so we must also enforce its counterpart u−1i uj 6∈ {0,−1} for the solutions of the recurrence
relation.)

The isomorphism and isotopism problems for bi-infinite sequence are solved in [20, Theorem 11].
The claim about right Bruck loops is [20, Theorem 8]. �

Theorem 6.1 in combination with Theorem 5.16 allows us to attack the classification of right Bol
loops of order pq.

Given u = {ui}, v = {vi}, write

(6.3) u ∼ v
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if and only if there is 0 6= s ∈ Zq such that ui = vsi for every i.

6.2. The eigenproblem for a circulant matrix. We will solve the recurrence relation (6.2) in
several steps. First, since we demand θi = u−1k whenever i ≡ k (mod q), the solution {ui} must be
periodic with period q. Moreover, the constant 0 6= λ ∈ Fp is part of the problem.

Let A = (ai,j) be an n × n matrix with rows and columns indexed by elements of Zn. Then A
is a circulant matrix if a(i+1) mod q, (j+1) mod q = ai,j for every i, j ∈ Zn. It is clear that a circulant
matrix is determined by its first row.

Let P be the permutation matrix corresponding to the q-cycle (1, 2, . . . , q), and let A = P +P−1.
Then A is a q × q circulant matrix with first row equal to (0, 1, 0, . . . , 0, 1). Once we rewrite the
recurrence (6.2) as un+2−λun+1+un = 0, we see that solving (6.2) with period q for some constant
λ is equivalent to solving the eigenvalue problem Au = λu.

We will follow the standard approach to real circulant matrices [8]. Since we will need to work
in Fp2 , let us first recall some basic facts about quadratic extensions.

Let p be an odd prime, and let t be any element of Fp that is not a square modulo p. Then

Fp2 can be represented as {u + v
√
t | u, v ∈ Fp} with addition (u1 + v1

√
t) + (u2 + v2

√
t) =

(u1+u2)+(v1+v2)
√
t and multiplication (u1+v1

√
t)(u2+v2

√
t) = (u1u2+v1v2t)+(u1v2+v1u2)

√
t.

Let α = u + v
√
t ∈ Fp2 . The conjugate of α is the element α∗ = u − v

√
t. The norm of α is

given by N(α) = αα∗ = u2 − v2t, giving rise to a multiplicative map N : Fp2 → Fp. The trace of α
is given by tr(α) = α + α∗ = 2u, giving rise to an additive map tr : Fp2 → Fp. The characteristic

polynomial of α is the polynomial x2 − tr(α)x+N(α) over Fp, which has both α and α∗ as roots.

Lemma 6.2. Let p > q be odd primes such that q divides p2 − 1, and let ω be a primitive qth root
of unity in Fp2. Then ω + ω−1 ∈ Fp.

Proof. There is nothing to prove when q divides p− 1 since then ω ∈ Fp. Suppose that q does not
divide p−1. Since ω is a (primitive) qth root of unity in Fp2 , we have 1 = N(1) = N(ωq) = N(ω)q.

Since q does not divide p−1, it follows that N(ω) = 1, and with ω = x+y
√
t we get ω−1 = x−y

√
t

and ω + ω−1 = 2x ∈ Fp. �

Lemma 6.3. Let p > q be odd primes such that q divides p2 − 1. Let A be the q × q circulant
matrix with first row equal to (0, 1, 0, . . . , 0, 1). Let ω be a primitive qth root of unity in Fp2. For

0 ≤ i < q, let λi = ωi + ω−i and vi = (1, ωi, ω2i, . . . , ω(q−1)i)T .

(i) For every 0 ≤ i < q, λi is an element of the prime field of Fp2.
(ii) For every 0 ≤ i < q, λi is an eigenvalue of A over Fp2 with eigenvector vi.

(iii) For 0 ≤ i < j < q, λi = λj if and only if i+j ≡ 0 (mod q). In particular, λ0 has multiplicity
1, and every λi with 1 ≤ i ≤ (q − 1)/2 has multiplicity 2.

(iv) For 0 < i ≤ (q − 1)/2, the eigenvectors vi, vq−i are linearly independent.

Proof. Part (i) follows from Lemma 6.2. For (ii), let us index the rows and columns of A by elements
of Zq, and let ej be the row vector whose only nonzero entry is 1 in position j. The jth row of
A − λiI is equal to ej−1 − λiej + ej+1, where the subscripts of e are taken modulo q. We have

(ej−1 − λiej + ej+1) · vTi = w(j−1)i − (wi + w−i)wji + w(j+1)i = 0.
(iii) We clearly have λi = λq−i. Suppose that there are 0 ≤ i < j ≤ q − 1 such that λi = λj = λ.

Then ωi, ω−i and ωj are roots of the characteristic polynomial x2 − λx+ 1. Therefore j ∈ {i, −i}.
(iv) The vectors vi, vq−i have the same first coordinates but different second coordinates, so they

are linearly independent. �
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6.3. Identifying valid solutions. Suppose that q divides p2 − 1. We have now solved the recur-
rence relation (6.2) in Fp2 subject only to the restriction that it be periodic with period q. While
the eigenvalues happen to lie in Fp, the eigenvectors need not have all components in Fp when q
divides p+ 1.

Let us leave the solution for λ0 = 2 aside for now. By Lemma 6.3, the general solution for the
eigenvalue λi with i > 0 is of the form u = γvi + δv−i, where γ, δ ∈ Fp2 .

Following Theorem 6.1, we are only interested in solutions u such that u0 = 1 and u−1i uj ∈
Fp \ {0,−1}. Finally, we need to understand the solutions modulo the equivalence (6.3). We will
deal with all these requirements at the same time.

The final solutions will eventually be described by a certain set Γ, a subset of

Γ′′ =

{
Fp, if q divides p− 1,
1/2 + Fp

√
t, if q divides p+ 1.

Lemma 6.4. Let p > q be odd primes such that q divides p2 − 1, and let ω be a primitive qth root
of unity in Fp2. Let γ ∈ Fp2. Then γω + (1− γ)ω−1 ∈ Fp if and only if γ ∈ Γ′′.

Proof. Let ω = x + y
√
t and γ = u + v

√
t. Suppose that q divides p − 1, so ω = x ∈ Fp. Then

γω + (1− γ)ω−1 = (u+ v
√
t)x+ ((1− u)− v

√
t)x−1 is of the form r + s

√
t, where s = vx− vx−1.

We see that s = 0 if and only if v = 0 or x− x−1 = 0, but the latter condition cannot occur since
x2 = ω2 6= 1.

Now suppose that q divides p + 1, so ω = x + y
√
t for some y 6= 0. Then γω + (1 − γ)ω−1 =

(u+v
√
t)(x+y

√
t)+((1−u)−v

√
t)(x−y

√
t) is of the form r+s

√
t, where s = uy+vx−(1−u)y−vx =

(2u− 1)y. Since y 6= 0, we conclude that s = 0 if and only if 2u− 1 ≡ 0 (mod p). �

Lemma 6.5. Let 0 < j, k ≤ q − 1. Then for every γ, δ ∈ Fp2 we have γvj + δv−j ∼ γvk + δv−k.

Proof. Let s = s(j, k) = jk−1 (mod q), and note that s(j, k) = s(−j,−k). Then for every 0 ≤
i ≤ q − 1 we have vj,i = ωij = ωijk

−1k = ω(is)k = vk,si and, similarly v−j,i = v−k,si. Therefore
(γvj + δv−j)i = γvj,i + δv−j,i = γvk,si + δv−k,si = (γvk + δv−k)si. �

Lemma 6.6. Let 0 < j, k ≤ q − 1. Let uj = {uj,i} be a solution to Auj = λjuj such that
uj,i ∈ Fp \ {0,−1} and uj,0 = 1. Then there is a solution uk = {uk,i} to Auk = λkuk such that
uk,i ∈ Fp \ {0,−1}, uk,0 = 1 and uj ∼ uk.

Proof. Since Auj = λjuj , we have uj = γvj + δv−j for some γ, δ ∈ Fp2 . We have uj,0 = 1 by
assumption and vj,0 = v−j,0 = 1 always, which forces δ = 1− γ. Lemma 6.4 therefore applies.

Let uk = γvk + (1−γ)v−k. Obviously, uk solves Auk = λkuk. Moreover, Lemma 6.4 implies that
uk,i ∈ Fp for every i and uk,0 = uj,0 = 1. By Lemma 6.5, uj ∼ uk. Since the coordinates of uk are
merely the permuted coordinates of uj , we also get uk,i 6∈ {0,−1}. �

We are therefore interested in the solutions

u(γ) = γv1 + (1− γ)v−1

to Au = λ1u, where γ ∈ Γ′′.

Lemma 6.7. Let F be a field and x, y ∈ F such that y2 6= −1. Then xy + (1− x)y−1 = 0 if and
only if xy2 + (1− x)y−2 = −1.

Proof. Note that xy2 + 1 + (1− x)y−2 = (xy + (1− x)y−1)(y + y−1). �

Set Γ′ = {γ ∈ Γ′′ | 1− γ−1 6∈ 〈ω〉}.
Lemma 6.8. The solutions to Au = λ1u such that ui ∈ Fp \ {0,−1} and u0 = 1 are precisely the
p− (q − 1) solutions {u(γ) | γ ∈ Γ′}.

Moreover, u(1/2) is a solution, and u(γ) is a solution if and only if u(1− γ) is a solution.
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Proof. A vector u solves Au = λ1u and satisfies u0 = 1 if and only if u = γv1 + (1− γ)v−1. Every
ωi with 1 ≤ i ≤ q − 1 is a primitive qth root of unity in Fp2 , so Lemma 6.4 shows that ui ∈ Fp for
every i if and only if γ ∈ Γ′′.

By Lemma 6.7, ui = 0 for some i if and only if u2i = −1. It therefore suffices to investigate the
condition ui = 0. Call γ ∈ Fp2 bad if ui ∈ {0,−1} for some i. If γ is bad then γωi + (1− γ)ω−i ∈
{0,−1} ⊆ Fp for some i, and thus γ ∈ Γ′′ by Lemma 6.4. Moreover, γ = 0 is not bad (since ω has
odd order).

The following conditions are therefore equivalent: γ is bad, γωi = (γ − 1)ω−i for some i, γω2i =
γ−1 for some i, 1−γ−1 = ω2i for some i. Thus γ is bad if and only if 1−γ−1 ∈ 〈ω〉. The mapping
x 7→ 1− x−1 is a bijection Fp2 \ {0} → Fp2 \ {1}, hence precisely q − 1 values of γ ∈ Γ′′ are bad.

We have now established that the solutions are precisely the elements of {u(γ) | γ ∈ Γ′}. We
note that 1/2 ∈ Γ′′ is not bad because 1 − (1/2)−1 = 1 − 2 = −1 6∈ 〈ω〉. Note that if γ ∈ Γ′′ then
1− γ ∈ Γ′′. Also note that if 1− γ−1 = ωj for some j, then 1− (1− γ)−1 = ω−j . Thus, if u(γ) is a
solution then γ ∈ Γ′′ implies 1− γ ∈ Γ′′, which in turn means that u(1− γ) is a solution. �

Lemma 6.9. Let γ, δ ∈ Fp2. Then u(γ) ∼ u(δ) if and only if γ = δ or γ = 1− δ.

Proof. If γ = δ then obviously u(γ) ∼ u(δ). Also, for every i we have u(γ)i = γωi + (1− γ)ω−i =
u(1− γ)−i, so u(γ) ∼ u(1− γ) via s = −1.

Suppose that there is 0 6= s ∈ Zq such that u(γ)i = u(δ)si for every i. In particular,

γω + (1− γ)ω−1 = δωs + (1− δ)ω−s,
γω−1 + (1− γ)ω = δω−s + (1− δ)ωs,

and summing up these equations yields ω + ω−1 = ωs + ω−s. It follows from Lemma 6.3 that
s = ±1. The choice s = 1 yields γ = δ, and the choice s = −1 yields γ = 1− δ. �

Finally, set

Γ =

{
{γ ∈ Γ′ | 1 ≤ γ ≤ (p+ 1)/2}, if q divides p− 1,
{γ = 1/2 +m

√
t ∈ Γ′ | 0 ≤ m ≤ (p− 1)/2}, if q divides p+ 1.

Note that Γ is a set of representatives of the equivalence classes of ∼ on Γ′.

Lemma 6.10. If u = u(γ) for some γ ∈ Γ, then u−1i uj 6= −1 for every i, j ∈ Zq.

Proof. Suppose that uiu
−1
j = −1 for some i, j. Then ui = −uj , so γωi + (1− γ)ω−i = −γωj − (1−

γ)ω−j . Note that we have γ 6= 0. Dividing by γ, we get ωi + (γ−1 − 1)ω−i = −ωj − (γ−1 − 1)ω−j .
Solving for 1− γ−1, we get

1− γ−1 =
ωi + ωj

ω−i + ω−j
= ωi+j ∈ 〈ω〉,

a contradiction. �

We can now finish the proof of Theorem 1.1:
Let p > q be odd primes. Focusing on nonassociative right Bol loops Q of order pq, we can

assume that q divides p2 − 1 by Theorem 5.7. By Lemma 3.9, Proposition 3.10 and Theorem 5.16,
Q = Q(Θ), where every θi is linear, θ0 = 1, and θ−1i θj 6= {0,−1} for every i, j. By Theorem
6.1, we instead solve the recurrence relation (6.2) with period q subject to the conditions u0 = 1,
u−1i uj ∈ Fp \ {0,−1}, and modulo the equivalence ∼.

To obtain period q in the solution, we solve the system Au = λu, where A is the q × q circulant
matrix with first row (0, 1, 0, . . . , 0, 1). The eigenvalues and eigenvectors are given by Lemma
6.3. The eigenvalue λ0 = 2 has eigenvector v0 = (1, 1, . . . , 1), which is a valid solution, and this
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solution cannot be equivalent to any other solution modulo ∼ since it is the only solution where all
coordinates are the same. It is obvious from (6.1) that this solution yields the cyclic group Zpq.

We showed above that up to ∼ it suffices to consider solutions for the eigenvalue λ1. These
solutions are precisely the elements of S = {u(γ) | γ ∈ Γ′}, we have u(1/2) ∈ S, and if u(γ) ∈ S
then u(1 − γ) ∈ S. The involutory action u(γ) 7→ u(1 − γ) of Lemma 6.9 therefore restricts to S.
The unique fixed point of the action is u(1/2) ∈ S. The remaining p − (q − 1) − 1 = p − q points
of S are paired up modulo ∼.

We have obtained 1 + 1 + (p− q)/2 = (p− q + 4)/2 solutions up to ∼.
When q divides p − 1, the solution u(1) yields a (nonabelian) group by Corollary 3.12. The

solution u(1/2) yields a right Bruck loop by Theorem 6.1. Since we have already accounted for
all groups of order pq, this right Bruck loop must be nonassociative. All other solutions yield
nonassociative non-Bruck right Bol loops, by Theorem 4.8.

7. Open problems

Problem 7.1. Let p > q be odd primes such that q divides p2 − 1, and let Q be a nonassociative
right Bol loop of order pq. Is the order of the right multiplication group of Q equal to p2q?

Problem 7.2. Let p > q be odd primes such that q divides p2− 1. Classify right Bol loops of order
pq up to isotopism.

Conjecture 7.3. Let p > 3 be a prime. Then the number of right Bol loops of order 3p up to
isotopism is equal to b(p+ 5)/6c+ 1.

We have verified Conjecture 7.3 for all primes p less than 1000 by means of Theorem 6.1.

Problem 7.4. Let p > q be odd primes. Classify right Bol loops of order p2q.
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