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Abstract. The first paper in this series initiated a study of Sy-
low theory for quasigroups and Latin squares, based on orbits of
the left multiplication group. The current paper is based on so-
called pseudo-orbits, which are formed by the images of a subset
under the set of left translations. The two approaches agree for
groups, but differ in the general case. Subsets are described as
sectional if the pseudo-orbit that they generate actually partitions
the quasigroup. Sectional subsets are especially well-behaved in
the newly identified class of conflatable quasigroups, which pro-
vides a unified treatment of Moufang, Bol, and conjugacy-closure
properties. Relationships between sectional and Lagrangean prop-
erties of subquasigroups are established. Structural implications
of sectional properties in loops are investigated, and divisors of the
order of a finite quasigroup are classified according to the behavior
of sectional subsets and pseudo-orbits. An upper bound is given
on the size of a pseudo-orbit. Various interactions of the Sylow
theory with design theory are discussed. In particular, it is shown
how Sylow theory yields readily computable isomorphism invari-
ants with the resolving power to distinguish each of the 80 Steiner
triple systems of order 15.

1. Introduction

This paper is part of a research program to extend Sylow theory
from finite groups to finite quasigroups and Latin squares. General
approaches to the extension have been both top-down and bottom-
up. The top-down approach works with the Burnside order, a labeled
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order structure on the set of isomorphism classes of irreducible permu-
tation representations of a quasigroup [19, §§10–13]. The bottom-up
approach, which is modeled on Wielandt’s treatment of the Sylow the-
ory for groups [22], studies the combinatorial or geometric structure of
systems of subsets of a quasigroup. In a predecessor paper, the systems
studied were the orbits of a given subset under the full left multiplica-
tion group of the quasigroup [19, §§5–9]. In the current paper, which
again works solely with the bottom-up approach, the systems studied
are the images of a subset under the set of left multiplications by ele-
ments of the quasigroup. For groups, these two versions of the bottom-
up approach coincide, but they separate for general quasigroups.

If S is a subset of a quasigroup Q, then the pseudo-orbit generated
by S is the system {SL(q) | q ∈ Q} of images of S under the left
multiplications L(q) by elements q of Q (see Example 2.2). The left
multiplications are the permutations represented by the rows of the
Latin square forming the body of the bordered multiplication table.
The images under the left multiplications are the cosets that appeared
in [13], but here they are described as left translates.

A subset S is said to be sectional if the pseudo-orbit it generates
forms a partition of Q. Note that in the finite case, a nonempty subset
S is sectional if and only if the columns indexed by S in the multiplica-
tion table of Q can be partitioned into |Q|/|S| pairwise disjoint Latin
subsquares of order |S|.

In Wielandt’s approach to the Sylow theory for groups, p-subgroups
of a finite group Q (for a prime p) appear in the pseudo-orbits of
sectional subsets of p-power order. The basic properties of pseudo-
orbits and sectional subsets are studied in Section 2.

One of the primary motivations for the extension of Sylow theory
to quasigroups is the insight that the extension provides into various
aspects of quasigroup theory, and the way that it leads to a unification
of these diverse aspects. This effect is seen clearly in Section 3, which
investigates when each element of the orbit of a subset under the full left
multiplication group is actually sectional. Theorem 3.7 shows that this
happens within the class of (left) conflatable quasigroups Q, satisfying
the property

∀ x ∈ Q , ∃ αx ∈ Q! . ∀ y ∈ Q , L(x)L(y)αx ∈ L(Q)

— compare (3.1). Conflatable quasigroups form the framework for a
unified treatment of various classes of quasigroups and loops that have
appeared in the literature, such as Moufang loops, Bol quasigroups,
conjugacy-closed loops, and distributive quasigroups.
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Section 4 investigates the relationships between the sectional and
Lagrangean properties for subquasigroups. The concepts coincide for
loops, but differ for general quasigroups. Sufficient conditions for sec-
tionality are also given. Section 5 provides a classification of the divi-
sors d of the order of a finite quasigroup, based on the behavior of the
pseudo-orbits of subsets of size d. This classification is correlated with
the classification from [19], which was based on the behavior of orbits
under the full left multiplication group.

Theorem 6.5 provides an upper bound for the size of the pseudo-
orbit of a (non-sectional) subgroup of a quasigroup, in terms of the
semilattice of subgroups containing the given subgroup. This bound is
sharp, for example, when applied to Klein 4-subgroups of the smallest
simple, non-associative Moufang loop, the Paige loop PSL1,3(2) of order
120 [17].

The concluding Sections 7 and 8 offer applications and illustrations of
the current Sylow theory in design theory and loop theory respectively.
In particular, §7.1 shows how Sylow theory produces readily computed
invariants that are powerful enough to distinguish each of the 80 Steiner
triple systems of order 15 (compare Table 4 and [6, Table II.1.28]).

Readers are referred to [18] and [20] for quasigroup-theoretic and
general algebraic concepts and conventions that are not otherwise ex-
plicitly clarified here.

2. Pseudo-orbits and sectional subsets

A quasigroup Q is a set with a binary operation · such that the
equation x ·y = z has a unique solution in Q whenever two of the three
elements x, y, z of Q are specified. This is equivalent to saying that the
left multiplications L(q) : Q→ Q; x 7→ qx and the right multiplications
R(q) : Q → Q; x 7→ xq by each element q of Q are bijections of Q. In
particular, unlabeled multiplication tables of finite quasigroups (which
we will employ throughout the paper and whose rows and columns
we tacitly label 1, . . . , |Q|) are precisely Latin squares. We also set
y\x = xL(y)−1, and x/y = xR(y)−1 for elements x, y of a quasigroup
Q. Finally, a loop is defined as a quasigroup Q with an identity element
1 ∈ Q satisfying 1 · x = x · 1 = x for all x ∈ Q.

2.1. Pseudo-orbits.

Definition 2.1. Let S be a subset of a quasigroup Q. Then

{SL(q) | q ∈ Q}
is called the (left) pseudo-orbit generated by S in Q. Its elements are
described as (left) translates of S in Q.
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Example 2.2. Consider the quasigroup with multiplication table

1 2 3 4 5 6

2 1 4 5 6 3

3 4 5 6 1 2

4 6 2 1 3 5

5 3 6 2 4 1

6 5 1 3 2 4

The set
{
{1, 3}, {1, 6}, {2, 4}, {3, 5}, {5, 6}

}
is the pseudo-orbit of

{1, 3}.

We begin with an elementary observation.

Lemma 2.3. Let S be a non-empty subset of a quasigroup Q. Then
the pseudo-orbit generated by S is a cover of Q.

Proof. Let s be an element of S, and let x be an element of Q. Then
x = (x/s)s lies in the translate SL(x/s) of S. �

Note that common membership in a pseudo-orbit is not a transitive
relation. More specifically, define a relation ∼ on subsets of a quasi-
group Q by

S1 ∼ S2 ⇔ ∃ S ⊆ Q . ∃ q1, q2 ∈ Q . S1 = q1S and S2 = q2S .

Certainly, ∼ is symmetric.

Lemma 2.4. Let Q be a quasigroup. Then the relation ∼ is reflexive.

Proof. If Q is empty, the result is immediate. Otherwise, let S1 be a
subset of Q. For an element q of Q, consider S = S1L(q)

−1. Then
S1 = SL(q), so S1 ∼ S1. �

In general, ∼ is not a transitive relation. For instance, in the quasi-
group of Example 2.2, we have {1, 2, 3} ∼ {1, 2, 4} ∼ {1, 2, 5}, but
{1, 2, 3} � {1, 2, 5}.

Recall that for a quasigroup Q, the left multiplication group LMltQ
of Q is the permutation group ⟨L(q) | q ∈ Q⟩Q! of the underlying set
Q generated by the full set {L(q) | q ∈ Q} of left multiplications by
elements of Q.

Proposition 2.5. If two subsets of a quasigroup Q are related by the
transitive closure of ∼, then they lie in the same orbit under the left
multiplication group LMltQ.
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Proof. Suppose that S and S ′ lie in the transitive closure of ∼, and are
thus related by a chain of the form

(2.1) S = S0 ∼ S1 ∼ · · · ∼ Sr = S ′ .

It will be shown by induction on r that S ′ lies in the LMltQ-orbit of
S. If r = 0, the result is trivial. Now suppose that Sr−1 = Sλ, for
some element λ of LMltQ. Suppose Sr−1 = S∗L(q1) and Sr = S∗L(q2)
for q1, q2 ∈ Q and some subset S∗ of Q. Then

S ′ = S∗L(q2) = Sr−1L(q1)
−1L(q2) = SλL(q1)

−1L(q2) ∈ S LMltQ

as required. �

Theorem 2.6. Two subsets of a finite loop Q are related by the tran-
sitive closure of ∼ if and only if they lie in the same orbit under the
left multiplication group LMltQ.

Proof. Suppose that S ′ = Sλ for S, S ′ ⊆ Q and λ ∈ LMltQ. It will
be shown, by induction on the length of λ as a word over the alphabet
{L(q) | q ∈ Q}, that there is a chain of the form (2.1). This is certainly
true if λ = 1. For the induction step, suppose that S ′′ = SλL(q), with
S ′ = Sλ and a chain (2.1) given by the induction hypothesis. Then
S ′′ = S ′L(q) and S ′ = S ′L(1), so S ′ ∼ S ′′, and the chain (2.1) is
extended to S ∼ · · · ∼ S ′ ∼ S ′′. �

2.2. Sectional and poly-sectional subsets. Within a quasigroup
Q, the following recursive definition specifies disjointness properties of
various pseudo-orbits. Right-handed versions of the concepts in the
definition may also be formulated.

Definition 2.7. Let S be a subset of a quasigroup Q.

(a) The subset S is said to be a (left) sectional or 1-sectional subset
if the left pseudo-orbit it generates is a partition of Q. In this
case, the pseudo-orbit itself is described as partitional.

(b) Let p be a positive integer. Then S is (left) (p+1)-sectional if it
is sectional, and if each element of the pseudo-orbit it generates
is itself p-sectional.

(c) The subset S is (left) poly-sectional if it is left p-sectional for
each positive integer p.

(d) If S is left poly-sectional in Q, define the (left) sectional degree
of S in Q to be infinite. Otherwise, set the left sectional degree
to be the largest nonnegative integer p such that S is p-sectional
in Q but not (p+ 1)-sectional. (By default, each subset of Q is
0-sectional.)
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(e) The subset S is (left) multi-sectional if each element of the
orbit of S under the left multiplication group LMltQ is itself
sectional.

Lemma 2.8. Let S be a subset of a quasigroup Q. If S is multi-
sectional, then it is poly-sectional.

Proof. Let T be an element of the orbit of S under LMltQ. Then
the pseudo-orbit generated by T is contained in the orbit of S under
LMltQ. �

Note that singleton subsets are always multi-sectional. In finite
quasigroups, the concepts of poly-sectionality and multi-sectionality
coincide, and may thus be used interchangeably:

Proposition 2.9. Let S be a subset of a finite quasigroup Q. Then S
is multi-sectional if and only if it is poly-sectional.

Proof. Lemma 2.8 provides the “only if” direction. Conversely, let S
be a poly-sectional subset of a finite quasigroup Q. The finiteness
of Q implies the finiteness of LMltQ. An element of the orbit of S
under LMltQ then takes the form SL(q1) . . . L(qp) for some natural
number p. Since S is poly-sectional, it follows that SL(q1) . . . L(qp) is
sectional. �
Problem 2.10. Is there a (necessarily infinite) quasigroup Q contain-
ing a poly-sectional subset that is not multi-sectional?

2.3. Sectional degrees and Steiner loops. We exhibit sectional sets
with sectional degree 1 or 2.

First consider the quasigroup of Example 2.2. Its subset {1, 4},
with pseudo-orbit

{
{1, 4}, {2, 5}, {3, 6}

}
, is the unique sectional sub-

set of size two. For example,
{
{2, 5}, {1, 4}, {1, 6}, {3, 4}, {3, 6}

}
is the

pseudo-orbit of {2, 5}.
Consider a quasigroup (Q, ◦). Define the ternary multiplication table

to be T (Q) or

(2.2) T (Q, ◦) = {(q1, q2, q3) ∈ Q3 | q1 ◦ q2 = q3} .
The quasigroup (Q, ◦) is described as being totally symmetric if T (Q)
is invariant under the action of the symmetric group S3 permuting the
coordinates of its entries. An idempotent, totally symmetric quasi-
group (Q, ◦) is described as a Steiner quasigroup, since the underlying
sets of the asymmetric triples lying in T (Q) then form the blocks of
a Steiner triple system on Q. Conversely, each Steiner triple system
(Q,B) yields a Steiner quasigroup with blocks of the form {q1, q2, q1◦q2}
for q1 ̸= q2 ∈ Q. Given a Steiner quasigroup (Q, ◦), a Steiner loop
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(Q ∪̇ {e},+) is obtained by adjoining an identity element e to the un-
derlying set Q, imposing the unipotent law q + q = e for each element
q of Q, and q1 + q2 = q1 ◦ q2 for distinct elements q1, q2 of Q [7, p.65],
[18, §1.5–6]. Note that for i = 1, 2, Steiner triple systems (Qi,Bi) are
isomorphic if and only if the corresponding Steiner quasigroups (Qi, ◦)
or Steiner loops (Qi ∪̇ {e},+) are isomorphic.

Consider the 80 Steiner triple systems of order 15 [6, Table II.1.28].
Four of the Steiner triple systems are actually Kirkman triple systems.
The corresponding 15-element Steiner quasigroups themselves are an-
alyzed later in §7.1. For now, it suffices to remark that within all of
the Steiner quasigroups of order 15, there are no proper, non-trivial
sectional subsets whatsoever.

Among the 80 Steiner loops of order 16, there are loops Q (Kirkman
or non-Kirkman as desired) that contain a 2-element subset S with
sectional degree 2. For instance, consider the Steiner loop whose (un-
labeled) multiplication table is given by the Latin square of Table 1.
The underlying Steiner triple system is identified as number 4 in [6, Ta-
ble II.1.28]. In the LOOPS package [15] for GAP [10], the corresponding
unipotent loop is identified as SteinerLoop(16,4). Then the subset
{5, 7} is 2-sectional, but not 3-sectional. More general problems are as
follows.

Problem 2.11. For each integer p > 2, construct a finite quasigroup
Q with a subset S such that the left sectional degree of S in Q is p.

Problem 2.12. For given extended natural numbers p, q ∈ N ∪ {∞},
when is it possible to find a subset S of a finite quasigroup Q such that
the left sectional degree of S in Q is p and the right sectional degree of
S in Q is q?

2.4. Right nuclear subsets. Recall that the (possibly empty) subset

{s ∈ Q | ∀ x, y ∈ Q , x(ys) = (xy)s}
of a quasigroup Q is known as the right nucleus of Q.

Proposition 2.13. Let S be a left sectional subset of a finite quasigroup
Q. Suppose that S is a subset of the right nucleus of Q. Then S is left
multi-sectional.

Proof. Induction on n yields

(2.3) sL(q1)L(q2) . . . L(qn) = sL
(
q1L(q2) . . . L(qn)

)
for every q1, . . . , qn ∈ Q and s ∈ S.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15

3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14

4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13

5 6 7 8 1 2 3 4 13 14 15 16 9 10 11 12

6 5 8 7 2 1 4 3 15 13 16 14 10 12 9 11

7 8 5 6 3 4 1 2 16 15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 14 16 13 15 11 9 12 10

9 10 11 12 13 15 16 14 1 2 3 4 5 8 6 7

10 9 12 11 14 13 15 16 2 1 4 3 6 5 7 8

11 12 9 10 15 16 14 13 3 4 1 2 8 7 5 6

12 11 10 9 16 14 13 15 4 3 2 1 7 6 8 5

13 14 15 16 9 10 12 11 5 6 8 7 1 2 3 4

14 13 16 15 10 12 11 9 8 5 7 6 2 1 4 3

15 16 13 14 11 9 10 12 6 7 5 8 3 4 1 2

16 15 14 13 12 11 9 10 7 8 6 5 4 3 2 1

Table 1. Multiplication table of SteinerLoop(16,4)

Consider an element λ = L(q1)L(q2) . . . L(qn) of LMltQ, and the
corresponding element Sλ of the orbit of S under LMltQ. Suppose that
there are elements x and y of Q such that x(Sλ) and y(Sλ) intersect
non-trivially, say x(s1λ) = y(s2λ) for certain elements s1 and s2 of S.

Set u = q1L(q2) . . . L(qn)L(x) and v = q1L(q2) . . . L(qn)L(y). For
each element s of S, the equation (2.3) yields

sL(u) = sL
(
q1L(q2) . . . L(qn)L(x)

)
= sL(q1)L(q2) . . . L(qn)L(x) = x(sλ) ,

and similarly sL(v) = y(sλ). In particular, x(Sλ) = uS and y(Sλ) =
vS, along with s1L(u) = x(s1λ) = y(s2λ) = s2L(v). By the latter
equation, uS and vS intersect. Since S is sectional, uS = vS. Thus
x(Sλ) = y(Sλ). It follows that Sλ is itself sectional, as required. �
Proposition 2.14. Let S be a left sectional subset of a loop Q. Suppose
that S is a subset of the right nucleus of Q. Then S is left multi-
sectional.
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Proof. For x, y ∈ Q and s ∈ S, we have

(2.4) x\(ys) = (x\y)s and in particular x\s = (x\1)s

since x[x\(ys)] = ys = [x(x\y)]s = x[(x\y)s]. Using (2.3) and (2.4),
induction on n shows that

(2.5) sL(q1)
ε1 . . . L(qn)

εn = sL
(
1L(q1)

ε1 . . . L(qn)
εn
)

for all q1, . . . , qn ∈ Q, s ∈ S and ε ∈ {1,−1}.
We can now mimic the proof of Proposition 2.13. Consider λ =

L(q1)
ε1 . . . L(qn)

εn ∈ LMltQ, and suppose that x(s1λ) = y(s2λ) for
some x, y ∈ Q and s1, s2 ∈ S. Set u = 1L(q1)

ε1 . . . L(qn)
εnL(x) and

v = 1L(q1)
ε1 . . . L(qn)

εnL(y). For each s ∈ S, (2.5) yields

sL(u) = sL
(
1L(q1)

ε1 . . . L(qn)
εnL(x)

)
= sL(q1)

ε1 . . . L(qn)
εnL(x) = x(sλ) ,

and similarly sL(v) = y(sλ). The remainder of the proof follows as for
Proposition 2.13. �

Problem 2.15. Does Proposition 2.13 extend to infinite quasigroups?

2.5. Non-overlapping orbits. This brief paragraph relates the top-
ics of the current section with the concepts of overlapping and non-
overlapping orbits introduced earlier [19, §5]. Recall that in a finite
quasigroup Q, the orbit of a subset S under the left multiplication
group LMltQ is said to be overlapping if it contains distinct elements
that are not disjoint, and otherwise is described as non-overlapping.

Lemma 2.16. Let Q be a finite quasigroup. Suppose that S is a subset
of Q which lies in a non-overlapping orbit. Then S is a multi-sectional
subset of Q.

Proof. Let T be an element of the orbit of S under LMltQ. The pseudo-
orbit {TL(q) | q ∈ Q} of T is a subset of the LMltQ-orbit of S. If this
orbit contains no distinct elements that are not disjoint, then neither
will the pseudo-orbit. By Lemma 2.3, it follows that the pseudo-orbit
partitions Q. Thus S is multi-sectional. �

Corollary 2.17. Let S be a congruence class on a finite, non-empty
quasigroup Q. Then S is multi-sectional.

Proof. By [19, Proposition 5.2], S lies in a non-overlapping orbit. �
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3. Conflatable quasigroups

This section introduces a new class of quasigroups, which comprises
many well-known examples such as Bol loops and conjugacy-closed
loops. In a finite member of this class, each sectional subset is poly-
sectional.

3.1. Definitions and examples.

Definition 3.1. Let Q be a quasigroup.

(a) The quasigroup Q is said to be (left) conflatable if the condition
(3.1)
∀ x ∈ Q , ∃ αx ∈ Q! . ∀ y ∈ Q , ∃ vx,y ∈ Q . L(x)L(y)αx = L(vx,y)

is satisfied.
(b) The quasigroup Q is said to be right conflatable if its opposite

Qop is left conflatable.

The Latin verb conflāre has the sense of “blow on” or “melt down”.
In (3.1), αx is “blown on” L(x)L(y), and “melts it down” to L(vx,y).

For quasigroups (Q, ·) and (Q′, ◦), recall that a homotopy is a triple
(f, g, h) of functions from Q to Q′ such that xf ◦yg = (x ·y)h for all x, y
in Q. A homotopy is an isotopy if it consists of bijections. An isotopy
is an autotopy if its domain (Q, ·) and codomain (Q′, ◦) coincide.

Remark 3.2. (a) If Q is a left conflatable loop, then application of the
equation from (3.1) to the identity element yields (yx)αx = vx,y. Thus
for each element x of Q, the self-map Q → Q; y 7→ vx,y = yR(x)αx is
bijective. The condition (3.1) may then be reformulated as saying that
for each x in Q, there is an autotopy

(
R(x)αx, L(x)

−1, αx

)
of Q.

(b) If Q is a quasigroup, applying the conclusion of (3.1) to x\x yields
vx,y · (x\x) = yR(x)αx. The autotopy

(
R(x)αxR(x\x)−1, L(x)−1, αx

)
is obtained in this case.

Example 3.3. (a) A group is conflatable, with αx = 1 and vx,y = yx
in (3.1).

(b) More generally, a left Bol loop is left conflatable, with αx = L(x)
and vx,y = x · yx. It is worth noting that groups are conflatable in
various ways, e.g. as in (a), or as here.

(c) Even more generally, a left Bol quasigroup [8] is left conflatable,
with αx = L(x) and vx,y = (x · yx)/(x\x).
(d) A left conjugacy-closed loop [16] is left conflatable, with αx =
L(x)−1 and vx,y = x\(yx).
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(e) More generally, define a left conjugacy-closed quasigroup to be a
quasigroup satisfying the identity

(3.2) x\(y · xz) =
[
(x\(yx))

/
(x\x)

]
z .

(This identity does not seem to have appeared in the literature.) Left
conjugacy-closed quasigroups are left conflatable, with αx = L(x)−1

and vx,y = (x\(yx))
/
(x\x).

Remark 3.4. The “conjugacy-closed quasigroups” considered in [12]
are required to satisfy the condition

(3.3)
[
(xy)/x

]
z = x

[
y(x\z)

]
.

Now although the quasigroup of integers modulo 3 under the multipli-
cation operation x ·y = y−x does satisfy the quasigroup left conjugacy
closure identity (3.2), it does not satisfy (3.3), since [(0 · 1)/0] · 0 ̸=
0 · [1 · (0\0)].

3.2. Conflatability and isotopy. Recall that a principal isotopy is
an isotopy whose third component is an identity function. Finite quasi-
groups are principally isotopic if and only if they have the same Latin
square in the body of their bordered multiplication tables, where the
two respective tables differ at most by the orders in which the Latin
square entries appear down the left borders or across the top borders.

Proposition 3.5. Let

(3.4) (f, g, 1Q) : (Q, ·) → (Q, ◦)

be a principal isotopy from a left conflatable quasigroup (Q, ·). Suppose
that the second component g of (3.4) is an automorphism of (Q, ◦).
Then (Q, ◦) is left conflatable.

Proof. Let q be an element of Q. Write L(q) for left multiplication by q
in (Q, ·), and L◦(q) for left multiplication by q in (Q, ◦). The principal
isotopy implies that

L(q) = gL◦(q
f )

for each element q of Q. On the other hand, the automorphic property
of g implies that

L◦(q
g) = g−1L◦(q)g

for each element q of Q. The conclusion

L(x)L(y)αx = L(vx,y)
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of the conflatability condition (3.1) for (Q, ·) may then be written, after
left multiplication by g−2 and right multiplication by g, in the form

L◦(x
fg)L◦(y

f )
[
αxg

]
= g−2

[
gL◦(x

f )gL◦(y
f )αx

]
g

= g−2
[
gL◦

(
vfx,y

)]
g = L◦

(
vfgx,y

)
.

Thus

∀ x ∈ Q , ∃ α(xg−1f−1)g ∈ Q! . ∀ y ∈ Q , ∃ vfgxg−1f−1,yf−1 ∈ Q .

L◦(x)L◦(y)
[
α(xg−1f−1)g

]
= L◦

(
vfgxg−1f−1,yf−1

)
,

establishing the left conflatability of (Q, ◦). �
The chiral dual follows:

Corollary 3.6. Let

(3.5) (f, g, 1Q) : (Q, ·) → (Q, ◦)
be a principal isotopy whose domain is a right conflatable quasigroup
(Q, ·). Suppose that the first component f of (3.5) is an automorphism
of (Q, ◦). Then (Q, ◦) is right conflatable.

3.3. Conflatability and sectionality.

Theorem 3.7. Let S be a sectional subset of a conflatable finite quasi-
group Q. Then S is multi-sectional.

Proof. Since Q is finite, each element λ of the left multiplication group
of Q may be written as a monoid word in the elements of the generating
set {L(q) | q ∈ Q}. It will be shown, by induction on the length of
such a word λ, that each element Sλ of SLMltQ is sectional. Since S
is sectional, the claim is true for the image of S under the unique word
of length 0.

Now suppose, by induction, that all the images of S under words
of length less than n are sectional. Suppose that λ has length n, say
λ = L(q1) . . . L(qn) for q1, . . . , qn ∈ Q, and that there are elements x, y
of Q such that SλL(x) intersects non-trivially with SλL(y). In other
words, there are elements s and t of S such that sλL(x) = tλL(y), or

(3.6) sL(q1) . . . L(qn−1)L(qn)L(x) = tL(q1) . . . L(qn−1)L(qn)L(y) .

Since Q is conflatable, L(qn)L(x)αqn = L(vqn,x) and L(qn)L(y)αqn =
L(vqn,y). Then (3.6) implies

sL(q1) . . . L(qn−1)L(qn)L(x)αqn = tL(q1) . . . L(qn−1)L(qn)L(y)αqn ,

whence

sL(q1) . . . L(qn−1)L(vqn,x) = tL(q1) . . . L(qn−1)L(vqn,y) .
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By the induction hypothesis, which implies that SL(q1) . . . L(qn−1) is
sectional, it follows that

SL(q1) . . . L(qn−1)L(vqn,x) = SL(q1) . . . L(qn−1)L(vqn,y)

or

SL(q1) . . . L(qn−1)L(qn)L(x)αqn = SL(q1) . . . L(qn−1)L(qn)L(y)αqn .

Applying the inverse of αqn to both sides yields

SL(q1) . . . L(qn−1)L(qn)L(x) = SL(q1) . . . L(qn−1)L(qn)L(y) ,

showing that Sλ is sectional. �

4. Sectional subquasigroups

4.1. Sectional versus Lagrangean. In general, a left sectional sub-
quasigroup of a finite quasigroup need not be left Lagrangean. Recall
that a subquasigroup P of a finite quasigroup Q is left Lagrangean if
the relative right multiplication group RMltQP = ⟨R(p) | p ∈ P ⟩Q! of
P in Q acts semitransitively, so that its orbits all have the same size
|P | [18, §4.5] [19, §4].

Example 4.1. Consider the opposite Q of the quasigroup of integers
modulo 3 under subtraction, with S = {0}. The subquasigroup S is
left sectional. However, 1RQ(0) = 1 −op 0 = 0 − 1 = 2, so {1, 2} is an
orbit of RMltQS, and S is not left Lagrangean.

The following result summarizes the main connections between the
subquasigroup properties of being sectional and being Lagrangean.

Theorem 4.2. Let S be a non-empty subquasigroup of a finite quasi-
group Q.

(a) If S is left Lagrangean, then it is left sectional.
(b) If S is left sectional, and contains a right identity for Q, then

it is left Lagrangean.

Proof. (a) If S is left Lagrangean, the relative right multiplication group
RMltQS of S in Q acts semitransitively on Q. This means that each
orbit qRMltQS of RMltQS on Q has the same length |S| as the orbit
S. Now the left translate qS of an element q of Q is contained in its
orbit qRMltQS. Since |S| = |qS| ≤ |qRMltQS| = |S|, it follows that
qS = qRMltQS: the translates and orbits coincide. Since the orbits
partition Q, one may say that the left translates qS partition Q, and
S is left sectional.

(b) Suppose that S is left sectional, and contains an element e with
RQ(e) = 1 (i.e., a right identity for Q). Since Q is finite, the relative
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right multiplication group RMltQS of S in Q consists of monoid words
in the alphabet {R(s) | s ∈ S}. Let x be an element of Q. It will be
shown, by induction on the length n of such a word R(s1) . . . R(sn),
with si ∈ S, that xR(s1) . . . R(sn) lies in the translate xS. The result
is true for n = 0, since x1 = x = xe ∈ xS. Now suppose xα ∈ xS for
words α of length less than n. Then xR(s1) . . . R(sn) = xβR(sn) with
β = R(s1) . . . R(sn−1), and xβ = xs with some s ∈ S, by induction.
Thus xR(s1) . . . R(sn) = (xs)sn ∈ (xs)S. However, (xs)S ∋ (xs)e =
xs ∈ xS. Since S is left sectional, this implies (xs)S = xS, and
therefore xR(s1) . . . R(sn) ∈ xS, as required. �

Corollary 4.3. Let S be a subloop of a finite loop. Then S is left
Lagrangean if and only if it is left sectional.

Corollary 4.4. Let S be a cyclic subgroup of a finite loop L. Then S
is left sectional in each of the following cases:

(a) L is a right Bol loop;
(b) L is a di-associative loop.

Proof. In [19, §11], it was shown that cyclic subloops of finite right Bol
(including Moufang) and di-associative loops are left Lagrangean. The
result then follows by Corollary 4.3. �

4.2. Paige loops. The results of this paragraph were obtained using a
GAP computation with the LOOPS package. However, the first statement
of Proposition 4.5 is a consequence of Corollary 4.4.

Proposition 4.5. In the Paige loop PSL1,3(2), subloops of order 2 and
3 are sectional (cf. §4.1), while subloops of orders 4 (cf. §8.1), 6, 8, 12
and 24 are not. This list comprises all the proper, non-trivial subloops
of PSL1,3(2).

Although the subloops of order 2 and 3 lie in overlapping orbits (of
LMltPSL1,3(2)), each element of these two orbits is a sectional subset
of PSL1,3(2). Furthermore, there are no other sectional subsets of sizes
2 or 3.

Additional information, beyond that incorporated in Proposition 4.5,
is listed in Table 2. The term “orbit length” refers to orbits of the left
multiplication group LMltPSL1,3(2), as studied in [19]. The subloops
were classified in [21]. See §8.1 below for a description of the two types
of Klein 4-subgroup V ±

4 . Note that G = 2 denotes the Chein double of
a group G, also often written as M2|G|(G, 2) [5, 9].
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Subloop type Size Pseudo-orbit length Orbit length

C2 2 60 3780

C3 3 40 1120

V +
4 4 102 9450

V −
4 4 114 113400

S3 6 110 67200

C3
2 8 71 2025

A4 12 98 3150

S3 = 2 12 109 11200

A4 = 2 24 49 1575

Table 2. Subloops of the Paige loop PSL1,3(2)

4.3. Group extensions.

Lemma 4.6. Let q and q′ be elements of a quasigroup Q. Suppose that
V is a congruence on Q. Then q′ · qV = (q′q)V .

Proof. The equivalence classes q′ · qV and (q′q)V both contain q′q, so
they coincide. �
Theorem 4.7. Let Q be a finite quasigroup, with congruence V , such
that QV is a group with identity element eV . If a subquasigroup P of
Q contains eV , then P is a sectional subquasigroup of Q.

Proof. Suppose x ∈ q1P ∩q2P for q1, q2 ∈ Q. Then xV ∈ qV1 P
V ∩qV2 P V .

In the group QV , intersecting cosets of the subgroup P V coincide, so
qV1 P

V = qV2 P
V . Thus for each element p1 of P , one has

q1p1 ∈ qV1 p
V
1 ⊆ qV1 P

V = qV2 P
V = {(q2p)V | p ∈ P} .

In other words,

∃ p2 ∈ P . q1p1 ∈ (q2p2)
V = q2 · pV2 ,

the equality holding by Lemma 4.6. Since P V contains the congruence
class eV , it is a union of V -classes. Thus there is an element p′2 of
P (in pV2 ) such that q1p1 = q2p

′
2. It follows that q1p1 ∈ q2P , and so

q1P = q2P , as required. �
Corollary 4.8. Let L be a finite loop, with normal subloop N , such
that L/N is a group. If a subloop P of L contains N , then P is a
sectional subloop of L.
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5. Classifying divisors

In the part of Sylow theory presented in [19, §8], non-overlapping
orbits provided the basis for a classification of the divisors of the order
of a non-trivial finite quasigroup. Here, the partitional pseudo-orbits
play a comparable role. A parallel classification is established (§5.1–
5.2), and compared with the previous classification (§5.3).

5.1. The classification.

Definition 5.1. Let d be a positive integer, and let Q be a quasigroup
whose (finite) order is a multiple of d. For the quasigroup Q, the integer
d is said to have . . .

• . . . type J* if a sectional subset of size d exists;
• . . . type I* if there is a pseudo-orbit, generated by a sectional
subset of size d, which contains a subquasigroup of Q;

• . . . type H* if each pseudo-orbit generated by a sectional subset
of size d contains a subquasigroup of Q;

• . . . type G* if it has type H*, and if each subquasigroup in a
pseudo-orbit generated by a (left) sectional subset of size d is
(right) Lagrangean.

5.2. Separating the classes. We provide a sequence of examples of
6-element loops that separate the classes of Definition 5.1.

Example 5.2. In the loop whose (unlabeled) multiplication table is
the Latin square

1 2 3 4 5 6

2 1 4 3 6 5

3 4 5 6 1 2

4 5 6 1 2 3

5 6 1 2 3 4

6 3 2 5 4 1

the divisor 2 is not of type J*: no doubleton is sectional.

Example 5.3. In the loop whose (unlabeled) multiplication table is
the Latin square

1 2 3 4 5 6

2 1 4 3 6 5

3 5 1 6 4 2

4 6 5 2 3 1

5 4 6 1 2 3

6 3 2 5 1 4
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the divisor 2 is of type J*, but not I*. Note that the doubleton {3, 4} is
sectional, although the pseudo-orbit

{
{1, 6}, {2, 5}, {3, 4}

}
it generates

contains no subquasigroup.

Example 5.4. In the loop whose (unlabeled) multiplication table is
the Latin square

1 2 3 4 5 6

2 1 4 3 6 5

3 5 1 6 2 4

4 6 2 5 1 3

5 3 6 2 4 1

6 4 5 1 3 2

the divisor 2 is of type I*, but not H*. Note that the subloop {1, 2}
generates the partitional pseudo-orbit

{
{1, 2}, {3, 5}, {4, 6}

}
. On the

other hand, the pseudo-orbit
{
{1, 6}, {2, 5}, {3, 4}

}
generated by {2, 5}

contains no subquasigroup.

Remark 5.5. Example 5.11 below shows that in the Paige loop PSL1,3(2)
of order 120, the divisors 2 and 3 have type I*, but not H*.

Example 5.6. In the loop whose (unlabeled) multiplication table is
the Latin square

1 2 3 4 5 6

2 1 4 3 6 5

3 5 1 6 2 4

4 6 2 5 1 3

5 4 6 1 3 2

6 3 5 2 4 1

the divisor 2 is of type H*, but not G*. For instance, the subloop {1, 6}
generates the partitional pseudo-orbit

{
{1, 6}, {2, 5}, {3, 4}

}
, but the

relative left multiplication group of {1, 6} has {2, 3, 5, 4} as an orbit.

Example 5.7. In the non-associative loop whose (unlabeled) multipli-
cation table is the Latin square

1 2 3 4 5 6

2 1 4 3 6 5

3 4 5 6 1 2

4 3 6 5 2 1

5 6 1 2 4 3

6 5 2 1 3 4
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the divisor 2 is of type G*.

5.3. Comparing classifications. In this paragraph, comparisons are
made between the two parallel classifications of divisors of the order of a
finite quasigroup: the classification of [19, §8] based on non-overlapping
orbits, and the classification of §5.1 based on sectional subsets and
pseudo-orbits. For convenience, we recall the former classification:

Definition 5.8. [19] Let d be a positive integer, and let Q be a quasi-
group whose (finite) order is a multiple of d. Consider the action of
LMltQ on the set

(
Q
d

)
of subsets of Q of size d. For the quasigroup Q,

the integer d is said to have . . .

• . . . type J if at least one non-overlapping orbit exists;
• . . . type I if the action has at least one non-overlapping orbit
which contains a subquasigroup of Q;

• . . . type H if the action has non-overlapping orbits, each of which
contains a subquasigroup of Q;

• . . . type G if it has type H, and if each subquasigroup in a non-
overlapping orbit is (right) Lagrangean.

The first result is a consequence of Lemmas 6.1(b) and 2.16.

Lemma 5.9. Let d be a positive integer, and let Q be a quasigroup
whose (finite) order is a multiple of d.

(a) If d has type J, then it has type J*.
(b) If d has type I, then it has type I*.

Example 5.10. Consider the loop Q of Example 5.4. The orbit of the
subloop {1, 2} under LMltQ coincides with its partitional pseudo-orbit{
{1, 2}, {3, 5}, {4, 6}

}
, while all the remaining two-element subsets lie

in a single LMltQ-orbit. Thus
{
{1, 2}, {3, 5}, {4, 6}

}
is the unique

non-overlapping orbit on
(
Q
2

)
. Furthermore, {1, 2} is right and left

Lagrangean (e.g., by Corollary 4.3). Thus 2 has type G, even though
it does not have type H*.

Along with Lemma 5.9(b), the following example shows that type I
is properly contained in type I*, and that type J is properly contained
in type J*.

Example 5.11. Consider the Paige loop PSL1,3(2), of order 120. By
Proposition 4.5, it follows that both 2 and 3 are of type I*, but not of
type H* or I. In particular, 2 has type J*. However, 2 does not have
type J, since there are just two orbits of the full left multiplication group
on the set of two-element subsets, having respective lengths 3360 and
3780 (as determined by the LOOPS package for GAP).
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The relationships between the divisor classes are summarized in the
diagram

G* // H* // I* // J*

G //

\����

@@���

H // I //

OO

J

OO

where plain arrows indicate proper containments, and the slashed arrow
indicates non-containment.

6. Pseudo-orbit lengths

If a subset S of a finite quasigroup Q is sectional, Lemma 2.3 ensures
that the length of its pseudo-orbit is |Q|/|S|. On the other hand, the
same lemma shows that a subset S which is not sectional generates a
longer pseudo-orbit. If the length of a pseudo-orbit is l, the co-length
co-lQ(S) of the pseudo-orbit is defined as |Q| − l. These co-lengths
provide powerful isomorphism invariants, as illustrated below in §7.1.

6.1. The coset function. Let S be a subset of a finite quasigroup Q.
Define the coset function

cS : Q→ 2Q; q 7→ qS .

The relation kernel ker cS of the coset function, defined by relating
elements q, q′ of Q if and only if qS = q′S, is an equivalence relation
on Q. By the First Isomorphism Theorem for sets, there is a bijection

(6.1) b : Qker cS → {qS | q ∈ Q}; qker cS 7→ qS

to the image of the coset function, namely the pseudo-orbit generated
by S, from the set Qker cS of equivalence classes. One obtains the for-
mula

(6.2) co-lQ(S) = |Q| −
∣∣Qker cS

∣∣ = ∑
K∈Qker cS

(|K| − 1)

for the co-length of the pseudo-orbit generated by S. In this context, it
is sometimes convenient to refer to the quantity |K|−1 as the excess of
a (ker cS)-class K, and to describe such a class as excessive if |K| > 1.

Lemma 6.1. Suppose that S is a non-empty subquasigroup of a finite
quasigroup Q.

(a) S is a (ker cS)-class.
(b) S is a member of the pseudo-orbit it generates.

Proof. For an element q of Q, one has qS = S iff q ∈ S. �
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Example 6.2. Consider the opposite Q of the quasigroup of integers
modulo 3 under subtraction, with S = {0}. In this case, the bijection
(6.1) maps {0} 7→ {0}, {1} 7→ {2}, and {2} 7→ {1}, so for q ∈ Q r S,
the equivalence class qker cS may differ from its corresponding image qS,
even when S is a subquasigroup.

From (6.2), one obtains the following.

Corollary 6.3. The co-length of the pseudo-orbit generated by a non-
empty subquasigroup S is at least |S| − 1.

6.2. A lower bound on certain co-lengths.

Lemma 6.4. Let S be a subgroup of a subgroup G of a quasigroup Q.
Then each element of G lies in a (ker cS)-class of size |S|.

Proof. Suppose x ∈ G and y ∈ Q. If xS = yS, then x = x1S ∈ xS =
yS implies x = ys for some element s of S, so y = x/s ∈ G. Thus the
two elements x and y are related by ker cS if and only if they lie in the
same group (left) coset in G. It follows that the (ker cS)-class of each
element x of G has size |S|. �

Theorem 6.5. Let S be a subgroup of a quasigroup Q. Let M be the
meet semilattice (under set-theoretical inclusion) of all subgroups of Q
that contain S. Let µM be the Möbius function in M. Then

(6.3)
∑
G∈M

∑
H∈M

µM(H,G) (|H|/|S|) (|S| − 1)

is a lower bound on the co-length of the pseudo-orbit generated by S.

Proof. Extend the meet semilattice order M to a linear order L (cf.
[3], [20, O, Prop. 3.5.4(a)]). Recall that the Möbius function values
µM(H,G) appearing in (6.3) are the entries of the matrix inverse to
the upper triangular incidence matrix of the order relation M with
respect to a basis ordered by L.

The subgroup S is the first element in the linear order L. By
Lemma 6.1 and Corollary 6.3, the elements of S contribute

|S| − 1 = µM(S, S) (|S|/|S|) (|S| − 1)

to the sum form (6.2) for co-lQ(S).
Now consider progressively building up the sum (6.3) by taking the

general elements G of M in the order that is determined by L. By
Lemma 6.4, the elements of G make a total contribution of

(|G|/|S|) (|S| − 1)
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to the sum (6.2). However, the only “new” contributions, that have not
already arisen from elements of a subgroup H of G (which necessarily
shows up earlier in L), are counted by the summand∑

H∈M

µM(H,G) (|H|/|S|) (|S| − 1)

of (6.3). �
Remark 6.6. Section 8.1 provides examples where the lower bound
given in Theorem 6.5 is sharp. On the other hand, there are many cases
where the lower bound is not sharp, especially for sectional subgroups.
Remark 8.5 provides an example of a non-sectional subgroup for which
the bound is not sharp.

7. Connections with design theory

This section presents some connections between design theory and
the current Sylow theory for quasigroups. In §7.1, it is shown how the
Sylow theory provides easily computed isomorphism invariants, indeed
complete invariants, to distinguish among the 80 Steiner triple systems
of order 15 [6, Table II.1.28]. Within §7.2, certain aspects of Hall triple
systems are examined from the standpoint of Sylow theory. Finally,
§7.3 presents a small example where successive translates of a sectional
subloop of a loop may be used to produce regular graphs.

7.1. Steiner quasigroups of order 15. Let X be a set. Suppose
that (V,E, c : E → X) is an edge-labeled graph. We say that two
edge-labeled graphs (Vi, Ei, ci : Ei → X) are isomorphic if there is a
bijection φ : V1 → V2 that induces a bijection ψ : E1 → E2 such that
ec1 = eψc2 for every e ∈ E1.

For a quasigroup Q, let Γ(Q) be the complete graph with vertex set
Q, where each edge {x, y} is labeled by the colength co-lQ

(
{x, y}

)
of

the subset {x, y} in Q. It is clear that two quasigroups Q1, Q2 are
non-isomorphic if the corresponding edge-labeled graphs Γ(Q1), Γ(Q2)
are non-isomorphic.

The following (computational) result shows that the colength graph
Γ(Q) provides a complete isomorphism invariant for the 80 Steiner
triple systems of order 15 tabulated in [6, Table II.1.28].

Theorem 7.1. Up to isomorphism, the 80 Steiner triple systems of
order 15 are distinguished by means of the colengths of two-element
subsets. More precisely, let Q1, . . . , Q80 be a full set of representatives
for the 80 isomorphism classes of Steiner quasigroups of order 15. Then
no two edge-labeled graphs Γ(Qi), Γ(Qj) with i ̸= j are isomorphic.
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Further powerful isomorphism invariants are obtained from Sylow
theory as follows. For a linearly ordered quasigroup Q of finite order n,
and for each 1 ≤ i ≤ n, consider the lexicographically ordered sequence

si(Q) = (S1, . . . , Sbi)

of all i-element chains Sk = {qj1 < qj2 < · · · < qji} in Q, with bi =
(
n
i

)
and 1 ≤ k ≤ bi. Define the i-th colength sequence

ci(Q) =
(
co-lQ(S1), . . . , co-lQ(Sbi)

)
.

The second colength sequences c2(Q) turn out to be pairwise distinct
for the 80 Steiner quasigroups of order 15 as they are implemented in
the LOOPS package. Nevertheless, since the colength sequences ci(Q)
for i > 1 depend on the ordering of the underlying elements of Q, they
are not invariants of quasigroup isomorphism.

However, if c∗i (Q) is the sorted version of the i-th colength sequence
ci(Q), then c∗i (Q) is a quasigroup isomorphism invariant. Represent
these i-th sorted colength sequences as multisets, where xi11 x

i2
2 . . . x

im
m

means that the colength x1 occurs i1 times, the colength x2 occurs i2
times, and so on, with x1 < . . . < xm.

It transpires that the 80 Steiner quasigroups of order 15 fall into 49
different classes according to c∗2(Q), with no class containing more than
5 quasigroups. See Table 3 for more information. Combining c∗2(Q),
c∗3(Q) and c

∗
4(Q) suffices to distinguish all but two Steiner quasigroups

of order 15, the exceptions being the quasigroups associated with items
62 and 63 from [6, Table II.1.28].

Most strikingly, the invariant c∗6(Q) is complete. Details may be
found in Table 4.

Theorem 7.2. The sixth sorted colength sequence c∗6(Q) suffices to
separate all the 80 Steiner quasigroups of order 15.

Remark 7.3. Consider a quasigroup Q of order n that is specified
by its multiplication table. For a fixed constant 1 < i ≤ ⌊n/2⌋, the
complexity of the computation of the i-th sorted colength c∗i (Q) is
polynomial in n. Similarly, the complexity of the computation of the
full collection of all i-th sorted colengths c∗i (Q) for every 1 < i ≤ ⌊n/2⌋
is also polynomial in n.

7.2. Hall triple systems. Hall triple systems are designs that may
be characterized readily in terms of certain quasigroups.

Definition 7.4. Let (Q, ◦) be a quasigroup.
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80 77 57 37 67, 69, 71, 72 50 66, 68, 73, 78, 79
0105 09926 09221261 09121262 090215 08921561 087218

46, 49, 60 62, 63, 65, 75 42, 44, 48, 56, 58 38, 51 74 43 45, 52, 55

08621861 084221 08322161 08222162 081224 08122163 08022461

36, 53 70 47 41 54 35 64, 76
07922462 078227 07722761 07722464 07622762 07622465 075230

40 34, 39 17 33 27, 30 32, 59 28
07422764 07323062 072212621 07123361 06923363 06823661 06623663

61 25 29 19, 22 23, 31 26 24
063242 06323369 06223667 06024263 05924264 058236611 05624564

16 21 20 15, 18 7, 13 11 8, 14
056649 05524565 05324864 052242611 048236621 04625465 044236625

9, 10 12 3 6 4, 5 2 1

038254613 035257613 032224649 024266615 016260629 248657 6105

Table 3. The 80 Steiner quasigroups Q of order 15 from
[6, Table II.1.28], classified into 49 classes according to
the sorted colength sequences c∗2(Q). The entries are or-
dered lexicographically by their colength sequences.

(a) (Q, ◦) is left distributive if each left multiplication

L◦(q) : Q→ Q; x 7→ q ◦ x

by an element q of Q is an automorphism of (Q, ◦).
(b) (Q, ◦) is right distributive if each right multiplication

R◦(q) : Q→ Q;x 7→ x ◦ q

by an element q of Q is an automorphism of (Q, ◦).
(c) (Q, ◦) is distributive if it is both left and right distributive.
(d) (Q, ◦) is said to be a TSDQ if it is totally symmetric and dis-

tributive.

Distributive quasigroups are conflatable.

Proposition 7.5. Let (Q, ◦) be a distributive quasigroup.

(a) Each element e of Q is idempotent in (Q, ◦).
(b) For a given element e of Q, define

(7.1) x · y = xR◦(e)
−1 ◦ yL◦(e)

−1.

Then (Q, ·, e) is a commutative Moufang loop.
(c) The quasigroup (Q, ◦) is conflatable.

Proof. (a) Note e ◦ (e ◦ e) = (e ◦ e) ◦ (e ◦ e) by Definition 7.4(a), and
cancel e ◦ e.
(b) This is Belousov’s Theorem [1, Teorema 1], [2, Teorema 8.1].
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1 2 3 4
044804525 04456116021443964149 0444412722723144473 0450412842124352441

5 6 7 8
045121304276356457 04580131227238433 046001288236324457 045261322280358419

9 10 11 12
046001306262326411 046021304260328411 0463813202323847 04551135527132147

13 14 15 16
045541322268342419 045221320296348419 046261304248316411 0443812802843168435

17 18 19 20
045701326260330419 046221310248314411 0469212742263647 04647132222947

21 22 23 24
04605137022347 04650132822047 046631307222313 046431326224312

25 26 27 28
046141330245316 045861347253319 04671130821838 04652132522137

29 30 31 32
046321323235315 04662131921737 046791292220314 04663132321237

33 34 35 36
04671131721433 04648133621734 04611136822036 046971290218

37 38 39 40
04645135426 04635135621034 04646133821734 04648132722733

41 42 43 44
04640134221934 04596139721131 04668132121531 04684130921131

45 46 47 48
04650134221132 04645134921031 0466813252933 046721320213

49 50 51 52
046611332212 0466813272733 04622136521731 04653133721431

53 54 55 56
04664132421334 04631135521633 04630136121331 04660132921531

57 58 59 60
04678131829 04700129121133 04608137721733 04624136521531

61 62 63 64
04704128021447 0471012872533 0471312842236 04680131121133

65 66 67 68
04658133521131 0466113362632 0465013482532 0468213152731

69 70 71 72
0467013262732 04664132721331 0468913072831 0465413412931

73 74 75 76
0461113842832 047031290212 046521342211 047051290210

77 78 79 80
0466913332231 0467513202832 04699130036 046751330

Table 4. Distinguishing the 80 Steiner quasigroups Q
of order 15 using the sorted colength sequences c∗6(Q).
The table is ordered by the index r of the corresponding
Steiner triple systems in [6, Table II.1.28].
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(c) If (Q, ◦) is empty, the result is immediate. Otherwise, choose an
element e of Q. By (b), there then exists a principal isotopy

(7.2)
(
R◦(e), L◦(e), 1Q

)
: (Q, ·) → (Q, ◦)

from a commutative Moufang loop structure (Q, ·, e) on the set Q. By
(a), the automorphism L◦(e) of (Q, ◦) fixes e. Thus in the principal
isotopy (7.2), the second component is an automorphism of the domain
multiplication (7.1). As noted in Example 3.3(b), the left Bol loop
(Q, ·, e) is conflatable. Proposition 3.5 then implies that the codomain
(Q, ◦) of (7.2) is left conflatable. A chirally dual argument shows that
(Q, ◦) is right conflatable. �

Three approaches to Hall triple systems are collected in the following
result. In the present context, the condition of Proposition 7.6(a) is
the most appropriate.

Proposition 7.6. [23] Let (Q,B) be a Steiner triple system. Then the
following conditions are equivalent:

(a) The corresponding Steiner quasigroup (Q, ◦) is a TSDQ;
(b) For each block B in B, and for each element q of Q, the translate

q ◦B is again a block of Q;
(c) For each element q of Q, there is an involutory automorphism

of (Q,B) with q as its unique fixed point.

Definition 7.7. (a) A Steiner triple system is a Hall triple system if
it satisfies the equivalent conditions of Proposition 7.6.

(b) A Hall triple system is a Hall matroid if it does not constitute the
set of lines in an affine geometry over GF(3).

Remark 7.8. (a) Hall triple systems are also known as “affine triple
systems” [23].

(b) The terminology of Definition 7.7(b) was introduced in [23], in
reference to the unique Hall matroid of order 81 constructed in [11].

Proposition 7.9. Let B be a block of a finite Hall triple system (Q,B).
Then B is a multi-sectional subset of the corresponding TSDQ (Q, ◦).
Proof. Suppose that B = {e, p, e ◦ p}. Now within the corresponding
commutative Moufang loop (Q, ·, e), the set B is the cyclic subgroup
{e, p, p−1}. By Corollary 4.4, B is (left) sectional in (Q, ·, e). Consider
the left translate q ◦ B of B in (Q, ◦) by an element q of Q. Then by
(7.1), one has q ◦ B = qR◦(e) · BL◦(e) = qR◦(e) · B, a left translate
of B in (Q, ·, e). Since these left translates partition Q, it follows that
B is sectional in (Q, ◦). By Proposition 7.5(c), (Q, ◦) is conflatable.
Theorem 3.7 then shows that B is multi-sectional in (Q, ◦). �
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Proposition 7.10. Consider the Hall matroid (Q,B) of order 81.
There is a block B in B, along with elements q1, q2 of Q, such that
the double translate q1 ◦ (q2 ◦B) does not appear as the single translate
q ◦B for any element q of Q.

Proof. Build the Hall matroid on the free commutative Moufang loop
(Q, ·, e) of exponent 3 on the 3-element set {x, y, z}. Consider the
block B = {e, x, x−1}. For each element q of Q, the subloop of (Q, ·, e)
generated by (q◦B)∪B has order at most 9, as the associative subloop
generated by {q, x}.

Now take q2 = y, so that q2 ◦ B = {y−1, y−1x−1, y−1x}. Then take
q1 = z−1, so that q1 ◦ (q2 ◦ B) = {zy, z(yx), z(yx−1)}. In terms of the
associator (x, y, z), the double translate may be rewritten as

q1 ◦ (q2 ◦B) = {zy, (zy)x(x, y, z), (zy)x−1(x, y, z)−1}

(compare [4, Ch. 8]). The subloop of (Q, ·, e) generated by the union
of q1 ◦ (q2 ◦ B) and B then contains the elements zy, x, and (x, y, z).
As such, it has order 27. Thus q1 ◦ (q2 ◦B) is not of the form q ◦B for
any element q of Q. �

7.3. Regular graphs in a Chein double. Let Q = S3 = 2 =
M(S3, 2) be the Chein double of the symmetric group S3. Having
order 12, it is the smallest non-associative Moufang loop. Here is the
multiplication table of Q:

1 2 3 4 5 6 7 8 9 10 11 12
2 1 4 3 6 5 8 7 12 11 10 9
3 6 5 2 1 4 9 10 11 12 7 8
4 5 6 1 2 3 10 9 8 7 12 11
5 4 1 6 3 2 11 12 7 8 9 10
6 3 2 5 4 1 12 11 10 9 8 7
7 8 11 10 9 12 1 2 5 4 3 6
8 7 12 9 10 11 2 1 4 5 6 3
9 12 7 8 11 10 3 4 1 6 5 2
10 11 8 7 12 9 4 3 6 1 2 5
11 10 9 12 7 8 5 6 3 2 1 4
12 9 10 11 8 7 6 5 2 3 4 1

Out of the
(
12
2

)
= 66 two-element subsets of Q, 54 have sectional degree

∞ and 12 have sectional degree 0.
Consider S1 = {1, 2}. The left pseudo-orbit S1L(Q) of S1 is

{{1, 2}, {3, 6}, {4, 5}, {7, 8}, {9, 12}, {10, 11}} ,
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the union of all the pseudo-orbits of elements of S1L(Q) is S1L(Q)L(Q) =

S1L(Q)∪{{3, 4}, {5, 6}, {7, 10}, {7, 12}, {8, 9}, {8, 11}, {9, 10}, {11, 12}} ,
and the union of all the pseudo-orbits of elements of S1L(Q)L(Q) is

S1L(Q)L(Q)L(Q) = S1L(Q)L(Q) ∪ {{1, 4}, {1, 6}, {2, 3}, {2, 5}} ,
a 1-(12, 2, 3) designD1, i.e., a 3-regular graph on 12 vertices. In fact, D1

consists of two connected components, each isomorphic to the complete
bipartite graph K3,3.

Similarly, with S2 = {1, 7} and S3 = {1, 8} we obtain 3-regular
graphs D2, D3, respectively. The three graphs D1, D2, D3 are isomor-
phic and pairwise edge-disjoint, so D = D1 ∪ D2 ∪ D3 is a 9-regular
graph on 12 vertices. The complement of D in the complete graph K12

consists of four disjoint 3-cycles, and each of these 3-cycles corresponds
to a translate of the normal subloop S = {1, 3, 5} of Q.

8. Structural implications

This section applies the current Sylow theory to structural questions
in certain loops: the smallest simple nonassociative Moufang loop in
§8.1, commutative Moufang loops of exponent 3 in §8.2, and a Bol loop
in §8.3.

8.1. Klein 4-subgroups of the smallest Paige loop. The auto-
morphism group of the simple Moufang loop PSL1,3(2) has two disjoint
orbits (of respective lengths 63 and 252) on the set of Klein 4-subgroups
[21, §5.2.6]. Members of the two orbits are identified as respectively
having positive type and negative type. Hitherto, they have only been
distinguished by the number of elementary abelian subgroups of order 8
in PSL1,3(2) within which they are contained, namely 3 for the positive
type and 1 for the negative type. The following result (paraphrasing
part of the content of Table 2) shows how the types are distinguished
within the current theory.

Proposition 8.1. In the simple Moufang loop PSL1,3(2) of order 120,
the pseudo-orbit generated by a Klein 4-subgroup of positive type has
co-length 18, while the pseudo-orbit generated by a Klein 4-subgroup of
negative type has co-length 6.

Remark 8.2. Proposition 8.1 provides examples where the lower bound
given in Theorem 6.5 is sharp.

(a) For each Klein 4-subgroup V −
4 of negative type, the co-length of

6 = 2 · (4− 1) is explained entirely in terms of the two excessive classes
constituted by elements of the unique elementary abelian subgroup of
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order 8 that contains V −
4 . Indeed, V −

4 is not contained in any other
subgroups ([21, Figure 5.1, p.59]).

(b) Each Klein 4-subgroup V +
4 of positive type is contained in 3 sub-

groups of order 8 and 1 (alternating) subgroup of order 12 ([21, Fig-
ure 5.1, p.59]). The co-length of order 18 = (1 + 3 + 2) · (4 − 1) is
then accounted for by the excessive class V +

4 itself, its unique comple-
mentary coset in each of the 3 elementary abelian subgroups of order
8 that contain it, and its two complementary cosets in the subgroup of
order 12.

8.2. Subgroups of commutative Moufang loops. Suppose that L
is a commutative Moufang loop of exponent 3. If S is a subgroup of
order 3, Corollary 4.4 shows that S is sectional. The following result
identifies when subgroups of order 9 are sectional.

Theorem 8.3. Let L be a commutative Moufang loop of exponent 3.
Then a subgroup S of L of order 9 is sectional if and only if it intersects
the center non-trivially.

Proof. First, suppose that S intersects the center non-trivially. Then
S is of the form ⟨y⟩⊕⟨z⟩ with a non-trivial central element z. Consider
two intersecting translates xS and x′S of S in L, say with xs1 = x′s2
for s1, s2 ∈ S. Then x′ = (xs1)s

−1
2 ∈ ⟨x, y, z⟩. Since the associator

(x, y, z) = 1, Moufang’s Theorem implies that G = ⟨x, y, z⟩ is a sub-
group of L. Then xS and x′S, as intersecting cosets of S inside the
group G, actually coincide. It follows that S is sectional.

Now suppose that S has trivial intersection with the center. Then S
is generated by two elements u, v such that the inner mappingR(v, u) =
R(v)R(u)R(vu)−1 is non-trivial. Suppose that w is an element of L
which is not fixed by R(v, u), i.e., which does not associate with u
and v. This means that {w, v, u} freely generates a free commutative
Moufang loop of exponent 3, so the associator (w, v, u) does not lie in
the subgroup S.

Consider the translates wS and (wv)S of S. The translates overlap,
since wS ∋ w1 = w = (wv)v−1 ∈ (wv)S. Now suppose that wS =
(wv)S. Since vu ∈ S, there is then an element s of S such that w(vu) =
(wv)s. However, w(vu) = (wv)[u(w, v, u)−1], since

wR(v)R(u)R(vu)−1 = wR(v, u) = w(w, v, u) .

This implies that u(w, v, u)−1 = s ∈ S, leading to the contradiction
(w, v, u) ∈ S. Thus the intersecting translates wS and (wv)S are
distinct, implying that S is not sectional. �
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8.3. Subloops of order 4 in a Bol loop of order 16. Let B be a
Bol loop with the following properties:

(a) |B| = 16;
(b) The center Z(B) is trivial;
(c) B has exponent 4;
(d) The right nucleus NR(B) has order 8;
(e) B contains 7 involutions; and
(f) |LMltB| = 128.

In fact, B is known to be unique (up to isomorphism). In Moorhouse’s
nomenclature [14], it is the loop 16.7.2.443. In the LOOPS package
for GAP, it is identified as LeftBolLoop(16,1). The following result
was obtained using that package. Note that B contains elements of
exponent 4.

Proposition 8.4. In the Bol loop B, a subloop of order 4 is sectional
if and only if it is isomorphic to the Klein 4-group. Indeed, cyclic
subgroups of order 4 generate pseudo-orbits of length 8.

Remark 8.5. The cyclic subgroups of order 4 are maximal subloops
of B, so the co-length bound given by Theorem 6.5 is not sharp in this
case.
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