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ABSTRACT. We introduce a metric on Hilbert modules equipped with a general-
ized form of a differential structure, thus extending Gromov-Hausdorff conver-
gence theory to vector bundles and quantum vector bundles — not convergence
as total space but indeed as quantum vector bundle. Our metric is new even in the
classical picture, and creates a framework for the study of the moduli spaces of
modules over C*-algebras from a metric perspective. We apply our construction,
in particular, to the continuity of Heisenberg modules over quantum 2-tori.
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1. INTRODUCTION

Our project in noncommutative metric geometry aims at constructing an an-
alytic framework for the study of entire classes of C*-algebras, seen as objects
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of some larger geometry, thus taking the perspective that new mathematics and
mathematical physics will arise from looking at C*-algebras as points of some hy-
perspace, in the spirit of metric geometry [12], extended into the realm of non-
commutative geometry [8]. We laid some of the foundations for this project with
the construction of the Gromov-Hausdorff propinquity [31, 27, 24, 29, 28], a non-
commutative analogue of the Gromov-Hausdorff distance [11] for quantum met-
ric spaces, i.e. noncommutative generalizations of algebras of Lipschitz functions
over metric spaces [7, 40, 41]. We now extend our framework to quantum vector
bundles over quantum metric spaces, i.e. to modules over C*-algebras, equipped
with appropriate additional structures to encode metric information.

Modules, and in particular finitely generated projective modules over C*-alge-
bras, are crucial to the theory of C*-algebras — from Morita equivalence [36] to
K-theory and KK-theory [2] — and vector bundles play a fundamental role in
the construction of fields in quantum physics. Of course, vector bundles are a
corner stone of topology and geometry. We construct a far-reaching extension of
the quantum Gromov-Hausdorff propinquity to Hilbert modules [35] over quan-
tum metric spaces, equipped with a metric generalization of a connection, called
a D-norm. We prove that our new metric, called the modular Gromov-Hausdorff
propinquity, is indeed a distance on our class of metrized quantum vector bundles
up to a strong notion of isomorphism, which preserves the module structure, the
inner product — hence the C∗-Hilbert norm — and the D-norm. We check that our
new distance extends the topology of the quantum propinquity, since C*-algebras
are canonically Hilbert modules over themselves. There are no analogues of the
Gromov-Hausdorff distance on vector bundles even classically, hence the modu-
lar propinquity introduces new possibilities even in the classical picture. We shall
however focus on an application of the modular propinquity to the continuity of
Heisenberg modules [6, 37] over quantum tori.

We strongly believe that the modular Gromov-Hausdorff propinquity is a sig-
nificant progress in our program, and this paper lays the foundation for many
research questions. The genesis of our project lies in mathematical physics and the
desire to provide a formal approach to various approximation results involving
matrix algebras and noncommutative, as well as classical limits (see for instance
[46] for some references in physics). In this context, the convergence of matrix alge-
bras to a torus or a quantum torus is not an end, but rather a mean to then discuss
convergences of various quantities of physical importance, many of which are de-
fined on modules over the spaces under consideration. These spaces often carry a
form of geometry, often given by means of generalized differential calculus, which
provide metric data which we can use in our current project. A particularly com-
mon object in this context are connections, which do play a key role in motivating
the notions of metrics on quantum vector bundles.

The moduli space of finitely generated projective modules over C*-algebra has
been a central structure in the study of C*-algebras. Rieffel studied the categor-
ical aspect of this space and introduced Rieffel-Morita equivalence between C*-
algebras — a weak form of isomorphism whose role is well-established near the
core of our subject. K-theory, then later on its far-reaching extension, Kasparov
KK-theory, directly involve the classification of modules under a form of stable
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isomorphism, and once more, this algebraic-topological aspect of the moduli space
of modules is a central topic in C*-algebra research. We now propose to introduce
a metric on this moduli space, and thus open many avenues for research on new
analytic aspects of the moduli space of modules, so far completely unexplored. We
expect not only that our metric will provide new and interesting results within the
previously studied categorical and algebraic framework, but also that new ideas
will emerge based on analytic constructs and ideas so far out of reach.

Remarkably, our modular propinquity introduces a mean to define a topology
on vector bundles over metric spaces which is new even in the classical picture.
This is also a very exiting development for us. Indeed, it may well be that the func-
tional analytic perspective taken in the development of the quantum propinquity
opened new ways to think of convergence of classical geometry objects such as
vector bundles. Once more, this opens obvious new directions for queries within
the realm of Riemannian geometry and in particular, the metric aspects of Rie-
mannian geometry. The Gromov-Hausdorff distance has proven a very powerful
tool to discuss the geometry of classes of spaces, including singular limits of Rie-
mannian manifolds, by focusing on the underlying metric structure. The modular
propinquity, in turn, allows one to discuss convergence of vector bundles, thus
of additional structures besides the underlying metric. We are hopeful that once
more, new and exiting results lie in the future of the exploration of this particular
consequence of the construction we present in this paper.

Our research program began with the observation by A. Connes in [7] that an
noncommutative analogue of the Monge-Kantorovich metric could be defined on
the state space of a C*-algebra by means of a spectral triple. Rieffel laid the foun-
dation for the study of quantum metric spaces [40], recognizing that a quantum
metric is encoded in a type of seminorm whose dual seminorm induces a noncom-
mutative Monge-Kantorovich metric which, crucially, Rieffel requires to induce
the weak* topology on the state space, just as its classical counter part. This obser-
vation laid the groundwork for the construction of noncommutative analogues of
the Gromov-Hausdorff distance — a task fraught with unexpected challenges, and
which gave rise to a succession of candidates. The first construction is also due to
Rieffel who defined the quantum Gromov-Hausdorff distance [49]. We introduce
the dual Gromov-Hausdorff propinquity in [27, 24] as our answer to many of the
questions which research in noncommutative metric geometry brought up in the
last decade or so. The dual Gromov-Hausdorff propinquity can be specialized —
in other words, it really is a family of metrics, a technical flexibility which we will
take advantage of in this paper by working with the most important specialization
of the dual propinquity: the quantum Gromov-Hausdorff propinquity [31] (which
was actually introduced before the more general dual propinquity).

A key motivation behind our introduction of the propinquity was to devise
an analogue of the Gromov-Hausdorff distance which was well-behaved with re-
spect to the C*-algebraic structure. In essence, a compact quantum metric space
comes with a metric structure, embodied in a particular seminorm which gen-
eralizes the Lipschitz seminorm, and a topological structure, encoded in the C*-
algebraic structure. We propose to require a connection between these two by im-
posing a form of the Leibniz inequality to the Lip-norm; quantum compact metric
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spaces which satisfy this additional requirement are called quasi-Leibniz quantum
compact metric spaces [29] (originally, we worked with Leibniz quantum compact
metric spaces in [31, 27], but new examples of quantum compact metric spaces led
us to the more general notion of quasi-Leibniz Lip-norms). This development ac-
tually raises some serious difficulties when attempting to construct an analogue of
the Gromov-Hausdorff distance, as seen with the early work of Kerr [19] or, later
on, with the quantum proximity of Rieffel [45], where in each case, working exclu-
sively with Leibniz Lip-norms, or even their generalizations, lead to analogues of
the Gromov-Hausdorff distance which are not satisfying, as far as we know, the
triangle inequality.

As we thus solved the difficulties inherent in extending the Gromov-Hausdorff
topology to noncommutative geometry with the introduction of the Gromov-Haus-
dorff propinquity, we now wish to move our theory forward and study within its
context such C*-algebraic related structures as modules, as announced already in
[31, 27, 24]. We chose to work with the quantum Gromov-Hausdorff propinquity
since it provides us with additional structure compared to the more general dual
Gromov-Hausdorff propinquity, which will prove helpful in our first venture into
the realm of modules. We thus assume given a sequence of quasi-Leibniz quan-
tum compact metric spaces converging for the quantum propinquity. There are
many interesting such sequences already known: quantum tori [25], fuzzy tori
converging to quantum tori [25], matrix algebras converging to the sphere [43, 45],
certain sequences of AF-algebras [1], finite dimensional quasi-Leibniz quantum
compact metric spaces converging to any nuclear quasi-diagonal quasi-Leibniz
quantum compact metric space [29], conformal deformations of Leibniz quantum
compact metric spaces constructed from spectral triples [28], curved quantum tori
[26], noncommutative solenoids [32], to name but a few. Given such a sequence,
we wish to make sense of the statement: each quasi-Leibniz quantum compact
metric spaces in the sequence carries a module, presumably equipped with addi-
tional metric data, such that the resulting sequence of modules converge in some
sense to a module over the limit quasi-Leibniz quantum compact metric spaces.

Such a statement immediately raises three entangled questions. First, we wish
to make sense of what it means for a sequence of modules to converge at all. Given
the context of this question, we expect that there may be a need to introduce some
metric data on modules, and this is itself an interesting, second challenge. We may
approach this question by expecting to have a canonical mean to extend the metric
information of quasi-Leibniz quantum compact metric spaces to their modules (or
some class of modules), or we may take the view that this metric data is a new
component of our theory. Last, we may wonder, given a module over the limit of a
sequence of quasi-Leibniz quantum compact metric spaces, how to select modules
over the spaces in the sequence to get the desired convergence.

Rieffel initiated a first approach to the convergence of modules in his pioneer-
ing work in [44, 45, 47, 48]; indeed his work spurred our own research project on
the quantum propinquity. He proposed to work with finitely generated projec-
tive modules over certain Leibniz quantum compact metric spaces. In this pic-
ture, modules correspond to projections in matrix algebras over quantum metric
spaces. Rieffel suggests in [48] that the metric data needed to work with modules
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is a canonical extension of the metric data on the base space. He then suggests
the fascinating idea that we can measure the “twist” of a vector bundle using that
metric data. Using this approach, Rieffel provided a meaning to certain vector
bundles over the sphere to be approximated by vector bundles over finite spaces
[44], and initiated the same study for approximations by full matrix algebras. No-
tably, Rieffel’s recent work utilizes the quantum propinquity as a starting point
[48]. In this picture, the effort is placed on proving that certain projections in ma-
trix algebras over quasi-Leibniz quantum compact metric spaces are close in the
sense of a generalized Lip-norm.

We propose an approach in this paper which, we submit, is complementary
to Rieffel’s approach. Our focus is on extending the quantum propinquity to left
Hilbert modules. Thus, we start our investigation with the goal to define a very
general notion of convergence, induced by an actual metric. To this end, we do not
regard the metric data on modules as canonically associated with the base space,
but rather as a new ingredient, which may be given via Rieffel’s approach or, as in
the main example of this paper, may have a geometric source. Heisenberg mod-
ules over quantum tori then provide many examples of convergent sequences.

Our approach is best presented by first discussing it informally in the context
of manifolds and their vector bundles. A vector bundle V over a compact, con-
nected Riemannian manifold M, may be equipped with a metric — which in this
context, means a smooth section of the bundle of inner products over each fiber of
V. In other words, we pick an inner product on the C(M)-module Γ of continu-
ous sections of V, where C(M) is the C*-algebra of C-valued continuous functions
over M. This is a particular example of a Hilbert module over a C*-algebra, and
thus we will work in this paper with left Hilbert modules. Yet, there is one more
essential tool of differential geometry when working with modules: namely, the
notion of a connection. Indeed, given a metric on a bundle, one may always find
a so-called metric connection, and under stronger assumption, this connection is
in fact unique. In other words, to a metric corresponds a natural notion of parallel
transport.

In noncommutative geometry, there still exists metric connections, appropri-
ately defined, on left Hilbert modules, under rather generous conditions. The
matter of uniqueness issue is less clear. In any event, we adopt the perspective
that the metric information needed to work with vector bundles include not only
an inner product on its module of sections, but also a choice of a connection, or
rather an additional norm on the space of smooth functions which encode some
aspects of the connection which are of use to define our metric. We do not need
the full strength of a connection in this work, and we will address the issue of
convergence for differential structures in a forthcoming paper.

For our purpose, therefore, the metric data which we will consider to define a
metrized quantum vector bundle includes a Hilbert module equipped with an ad-
ditional, densely defined norm called a D-norm with a natural topological condi-
tion inspired by the commutative picture above. There is a clear relation between
our notion of a metrized quantum vector bundle and the notion of a quasi-Leibniz
quantum compact metric space which we take as a sign that our approach is sen-
sible. Moreover, a metrized quantum vector bundle will of course be defined over
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a particular quasi-Leibniz quantum compact metric space, its base space. Just as
is the case with proving that certain semi-norms are Lip-norms, establishing that
a given norm is a D-norm may be challenging.

Concretely, Heisenberg modules over quantum tori are in fact equipped with a
natural connection [6, 9] which plays an important role in the geometry of quan-
tum tori. This connection is indeed what we will use as part of the metric data to
turn Heisenberg modules into metrized quantum vector bundles, and then study
some convergence properties for our modular propinquity.

The modular Gromov-Hausdorff propinquity is thus defined on the class of
all metrized quantum vector bundles. Its construction is inspired by our work
on the quantum Gromov-Hausdorff propinquity for two reasons. First of all, we
develop the quantum propinquity in the hope to work with C*-algebraic struc-
tures, and thus it is for us the natural path to follow here. Second of all, we
envisage that when working with the modular Gromov-Hausdorff propinquity,
we already have acquired some good understanding of the quantum Gromov-
Hausdorff propinquity between the quantum base spaces of our noncommutative
bundles. Thus we want the modular propinquity to take advantage, as much as
possible, of the work done on the base spaces. This strongly motivates us to de-
sign our new metric around concepts which we unearthed when working with
the quantum propinquity. Naturally, there are many new challenges raised by
working with modules, and this, too, is a reason to take full advantage of our
understanding of the quantum propinquity.

In summary, we present in this paper the class of metrized quantum vector
bundles, on which we then define a metric akin to a Gromov-Hausdorff distance
for (noncommutative) vector bundles. We prove that our metric, the modular
Gromov-Hausdorff propinquity, is indeed a metric up to full quantum isometry
of metrized quantum vector bundles — i.e. an appropriate notion of morphism
between left Hilbert modules over possibly different C*-algebras which also pre-
serves all the metric data. We then prove that we apply our metric to the sub-
class of the metrized quantum vector bundles canonically constructed from quasi-
Leibniz quantum compact metric spaces — extending the observation that any C*-
algebra is a left Hilbert module over itself — we recover the topology of the quan-
tum Gromov-Hausdorff topology. We also show that, reassuringly, the modular
propinquity between free modules over quasi-Leibniz quantum compact metric
spaces behave as expected — close base spaces in the quantum propinquity and
same rank of free modules imply close in the modular propinquity. We discuss a
sufficient condition for the direct sum of metrized quantum vector bundles to be
continuous on certain classes called iso-pivotal.

We then apply our work to exhibit continuity properties for the modular propin-
quity among the Heisenberg modules over quantum 2-tori. This work involves
several step reflective of our new approach: we must construct D-norms on Heisen-
berg modules, which actually do arise from the natural connection these modules
carry. We must establish that the connection does give rise to D-norms, which in-
volve some aspects of the analysis of the Moyal plane. We also must prove that the
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norms of Heisenberg modules can form continuous fields, and do the same regard-
ing our D-norms. The final proof of our main example exemplifies the idea that
we bootstrap our convergence for modules from convergence of the base space.

2. THE MODULAR GROMOV-HAUSDORFF PROPINQUITY

We propose a structure of metrized quantum vector bundle which abstracts the
notion of a metric on a vector bundle over a manifold. Our structure builds upon
common elements of noncommutative geometry, though it adds a crucial analytic
condition.

A metric on a complex vector bundle V over a compact space M is typically
defined as a continuous section of the associated bundle of sesquilinear forms over
the fibers of V — when M is a manifold, the metric is in fact required to be a
smooth section in general. We can thus regard a metric on a vector bundle as
defining an inner product, valued in C(M), over the continuous sections of V.
In other words, one natural ingredient for our work is a structure of left Hilbert
module.

However, a fundamental observation of Riemannian geometry is that the metric
is associated with a form of parallel transport. There is in fact a unique metric con-
nection on the cotangent bundle with zero torsion — the Levi-Civita connection
and thus a metric provides a canonical notion of transport, curvature, and more.
In noncommutative geometry, we do not have in general a unique metric connec-
tion, even under conditions of zero torsion. None the less, metric connections can
be shown to exist under very mild assumptions. As such, it becomes natural to
say that in differential geometry, metric information on bundle comes in the form,
not only of a section of fiber-wise inner products, but also in the form of a connec-
tion. Involving a connection, however, would seem to suggest that we work on
a noncommutative differentiable manifold. While our main example will indeed
be in this setting, our modular propinquity is much more general. The reason is
that we shall reduce the idea of a connection to a particular norm called a D-norm.
Thus, a metrized quantum vector bundle will be a left Hilbert module equipped
with a (densely defined) additional norm inspired from the differential notion of
a connection. We shall make these statements precise in Example (2.2.10).

We begin this section with a short survey section on quantum compact metric
spaces which will provide us with the base space for our metrized quantum vector
bundles.

2.1. Quantum Compact Metric Spaces. A quantum compact metric space is a
noncommutative generalization of the algebras of Lipschitz functions over a met-
ric space. Our work on the Gromov-Hausdorff propinquity [31, 27, 24, 29, 26]
emphasizes the role of a relation between the generalized Lipschitz seminorms
and the multiplicative structure of the underlying algebra, though this relation
can be quite general. We will thus work in the category of quasi-Leibniz quantum
compact metric spaces, defined as follows.

Notation 2.1.1. The norm of a normed vector space E will be denoted by ‖ · ‖E by
default.
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Notation 2.1.2. Let A be a unital C*-algebra. The space of self-adjoint elements of
A is denoted by sa (A), while the state space of A is denoted by S (A). The unit of
A is denoted by 1A.

Definition 2.1.3 ([29]). A function F : [0, ∞)4 → [0, ∞) is admissible when for all:

(x1, x2, x3, x4), (y1, y2, y3, y4) ∈ [0, ∞)4

such that xj 6 yj for all j ∈ {1, 2, 3, 4}, we have:

F(x1, x2, x3, x4) 6 F(y1, y2, y3, y4)

and x1x3 + x2x4 6 F(x1, x2, x3, x4).

Definition 2.1.4 ([40, 41, 31, 29]). An F–quasi-Leibniz quantum compact metric space
(A, L), for some admissible function F, is a unital C*-algebra A and a seminorm L
defined on a dense Jordan-Lie subalgebra dom (L) of sa (A), such that:

(1) {a ∈ dom (L) : L(a) = 0} = R1A,
(2) the Monge-Kantorovich metric mkL, defined on the state space S (A) by set-

ting for all ϕ, ψ ∈ S (A):

mkL(ϕ, ψ) = sup {|ϕ(a)− ψ(a)| : a ∈ sa (A), L(a) 6 1} ,

metrizes the weak* topology on S (A),
(3) L is lower semi-continuous, i.e. {a ∈ sa (A) : L(a) 6 1} is norm closed,
(4) for all a, b ∈ dom (L), we have:

max {L (a ◦ b) , L ({a, b})} 6 F (‖a‖A, ‖b‖A, L(a), L(b)) .

The seminorm L of a F–quasi-Leibniz quantum compact metric space (A, L) is
called an L-seminorm of type F. If F : x, y, lx, ly 7→ xly + ylx, then (A, L) is simply
called an Leibniz quantum compact metric space and L is said to be of Leibniz
type.

We adopt the following convention in our exposition to keep our notations sim-
ple:

Convention 2.1.5. If L is a seminorm defined on a subspace dom (L) of a vector
space E then, for all x ∈ E \ dom (L), we set L(x) = ∞. Thus dom (L) = {x ∈ E :
L(x) < ∞} with this convention. With the additional convention that 0 ·∞ = 0
and ∞ + r = r + ∞ = ∞ for all r ∈ [0, ∞] when working with seminorms, we can
see L as a seminorm on E taking the value ∞.

The classical prototype of a Leibniz quantum compact metric space is given
by the ordered pair (C(X), Lip) of the C*-algebra C(X) of C-valued continuous
functions over a compact metric space (X, d) and the Lipschitz seminorm induced
on sa (C(X)) — the Banach algebra of R-continuous functions — by the metric d.
In this case, the metric mkL is indeed the Monge-Kantorovich metric on the space
of regular Borel probability measures over X, a fundamental object introduced
by Kantorovich [17] in the study of Monge’s transportation problem. The form
of the Monge-Kantorovich metric which we generalize in Definition (2.1.4) was
discovered by Kantorovich and Rubinstein [18].

Important examples of quasi-Leibniz quantum compact metric spaces include
the quantum tori [40, 42], Connes-Landi sphere [33], full C*-algebras of Hyperbolic



THE MODULAR GROMOV-HAUSDORFF PROPINQUITY 9

groups [34], AF-algebras with a faithful tracial state [1], curved quantum tori [26],
conformal perturbations of quantum metric spaces obtained from Dirac operators
[28], C*-algebras of nilpotent groups [5], noncommutative solenoids [32], among
many other. Moreover, finite dimensional C*-algebras can be endowed with many
quantum metric structures which play an important role when approximating C*-
algebras of continuous functions over coadjoint orbits of semisimple Lie groups
[43], quantum tori [21, 25], AF-algebras [1], and arbitrary nuclear quasi-diagonal
quasi-Leibniz quantum compact metric spaces [29].

The first occurrence of a noncommutative version of the Monge-Kantorovich
metric is due to Connes in [7], where it was observed that a spectral triple give
rise to a metric on the state space of a C*-algebra. Rieffel initiated the study of
compact quantum metric spaces in [40] by requiring that the Monge-Kantorovich
metric in noncommutative geometry should metrize the weak* topology on the
state space, and can be built without appealing to the theory of spectral triple,
but rather using a generalized Lipschitz seminorm. As a matter of terminology, a
seminorm L satisfying properties (1) and (2) is called a Lip-norm. We choose our
new terminology to avoid writing the rather long expression “quasi-Leibniz lower
semi-continuous Lip-norm” too often. A pair (A, L) where L is a Lip-norm is called
a compact quantum metric space.

Quantum locally compact metric spaces were introduced in [23], building on
our work in [22], and provide a far-reaching generalization of Definition (2.1.4).

Definition (2.1.4) evolved with the role of the algebraic structure of a compact
quantum metric spaces. In [40], Rieffel’s original notion of Lip-norm was defined
over normed vector spaces (and the notion of state was replaced with a more gen-
eral notion). In [41], the focus was on order-unit spaces, and this was the setting
for the construction of the quantum Gromov-Hausdorff distance [49], and the first
examples of continuity for that metric [43, 21, 33]. As research in noncommuta-
tive metric geometry became focused on the relationship between convergence
for analogues of the Gromov-Hausdorff distance and C*-algebraic structures — in
particular modules [44, 45] — it became apparent that Lip-norms should be con-
nected to the underlying C*-algebraic structure. We proposed Definition (2.1.4) by
adapting the idea of F-Leibniz seminorms of Kerr’s [19], with two differences.

L-seminorms are defined on a dense *-subspace of the self-adjoint part of C*-
algebras, and in general sa (A) is not a *-subalgebra of A for non-Abelian C*-
algebras. It is a Jordan-Lie algebra, and thus we use the Jordan and Lie product
in the definition of the quasi-Leibniz property. Our insistence on working with L-
seminorms defined only on self-adjoint elements will be justified when discussing
quantum isometries later on. Second, we require that the quasi-Leibniz property
be no sharper than the Leibniz property, which actually ensures that for any given
choice of an admissible function F, the quantum propinquity can be restricted to
the class of F–quasi-Leibniz quantum compact metric spaces and never involve
any space outside of this class. We refer to [31, 27, 24, 28, 26] for details.

The class of quantum compact metric spaces form a category when morphisms
are defined using a natural Lipschitz condition. In fact, there are at least three
ideas one may consider when defining a notion of a Lipschitz morphism between
compact quantum spaces, and these notions will not agree in general. However,
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as we impose that L-seminorms are lower-semicontinuous, all three ideas agree
for quasi-Leibniz quantum compact metric spaces.

We choose the following definition for morphisms of quasi-Leibniz quantum
compact metric spaces.

Definition 2.1.6. A k-Lipschitz morphism π : (A, LA) → (B, LB) between two
quasi-Leibniz quantum compact metric spaces (A, LA) and (B, LB) is a *-morphism
π : A→ B such that for all a ∈ dom (LA):

LB ◦ π(a) 6 kLA(a).

We then show that other natural ideas for morphisms of quasi-Leibniz quantum
compact metric spaces agree with Definition (2.1.6).

Theorem 2.1.7 ([41, 30]). Let (A, LA) and (B, LB) be two quasi-Leibniz quantum com-
pact metric spaces and π : A→ B be a *-morphism. The following assertions are equiva-
lent for any k > 0:

(1) π is a k-Lipschitz morphism,
(2) π∗ : ϕ ∈ S (B) 7→ ϕ ◦ π ∈ S (A) is a k-Lipschitz map from (S (B), mkLB)

to (S (A), mkLA),
(3) π(dom (LA)) ⊆ dom (LB).

Assertion (2) in Theorem (2.1.7) was the initial definition of a Lipschitz mor-
phism in [41, 49]. The equivalence between Assertion (1) and Assertion (3) was
the subject of [30] while Rieffel proved the equivalence between Assertion (1) and
(2) in [41], where the importance of lower semicontinuity for Lip-norms was dis-
covered.

It is straightforward to check that, taking for objects our quasi-Leibniz quantum
compact metric spaces and for morphisms our Lipschitz morphisms give rise to a
category.

The stronger notion of isometry between quasi-Leibniz quantum compact met-
ric spaces must be well-understood in our context, since the Gromov-Hausdorff
propinquity is a metric up to isometry, properly defined. The original notion of
isometry for compact quantum metric space [49] did not involve *-morphisms,
since two Rieffel’s distance could be null between compact quantum metric spaces
which were not *-isomorphic.

Rieffel’s insight into the proper notion of an isometric embedding rests on Bla-
schke’s theorem [4, Theorem 7.3.8], which states that a real valued k-Lipschitz func-
tion on some nonempty subset of a metric space can be extended to a k-Lipschitz
function on the whole space. For our purpose, the main consequence of Blaschke’s
theorem is that, if π : (X, d) ↪→ (Z, m) is an injection between two compact metric
spaces, then π is an isometry if and only if the Lipschitz seminorm on C(X) in-
duced by d is the quotient seminorm of the Lipschitz seminorm on C(Z) induced
by m. This is the origin of the definition of a quantum isometry.

Blaschke’s theorem is not valid as stated for C-valued Lipschitz functions: in
general, the best statement for C-value Lipschitz functions is that a k-Lipschitz
function over a subset can be extended to the whole space as a 4k

π -Lipschitz func-
tion [44]. It means that the relationship between Lipschitz seminorms provided,
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on theR-valued functions, by isometries, does not hold forC-valued function, ren-
dering the generalization of these ideas to the noncommutative realm less obvious,
and thus justifying in large part the choice to work with L-seminorms defined only
for self-adjoint elements in general.

The construction of the propinquity was in large part motivated by ensuring
that *-isomorphism is necessary for distance zero, and thus we arrive at the notion
of quantum isometries which we have used since our work in [31]:

Definition 2.1.8 ([49, 31]). Let (A, LA) and (B, LB) be two quasi-Leibniz quan-
tum compact metric spaces. A quantum isometry π : (A, LA) � (B, LB) is a *-
epimorphism such that for all b ∈ B we have:

LB(b) = inf{LA(a) : π(a) = b}.
A full quantum isometry π is a quantum isometry and a *-isomorphism such that
π−1 is also a quantum isometry.

If π : (A, LA)� (B, LB) is a quantum isometry, then in particular LB ◦ π(a) 6
LA(a) for all a ∈ sa (A) and thus π is a 1-Lipschitz morphism.

If π is a full quantum isometry and a ∈ sa (A) then LB ◦ π(a) = LA(a), since:

LB(π(a)) 6 LA(a) = LA(π
−1(π(a))) 6 LB(π(a)).

One may therefore define a subcategory of quasi-Leibniz quantum compact
metric spaces whose morphisms are quantum isometries, as quantum isometries
compose to quantum isometries by [49, Proposition 3.7]. In this category, full
quantum isometries are the isomorphisms. The Gromov-Hausdorff propinquity
is null between two quasi-Leibniz quantum compact metric spaces if and only if
they are fully quantum isometric [31, 27, 29].

We now turn to the following question: what metric structure may we equip
modules over quasi-Leibniz quantum compact metric spaces, so that we then
might develop a generalized notion of convergence for such metrized modules?

2.2. D-norms. Our work in this article is concerned with the construction of a
metric on modules over quasi-Leibniz quantum compact metric spaces, appropri-
ately defined. For the current research, a module over a quasi-Leibniz quantum
compact metric space is a left Hilbert A-module over the underlying C*-algebra,
equipped with an additional norm defined on some dense subspace (which is not
in general a submodule) satisfying a particular topological requirement, and with
various basic inequalities connecting all the ingredients of such a structure. These
inequalities generalize the Leibniz inequality for L-seminorms.

As a matter of fixing our notations, we recall the definition of left Hilbert mod-
ules:

Definition 2.2.1 ([35]). A left pre-Hilbert module (M , 〈·, ·〉M ) over a C*-algebra A is
a left module M over A equipped with a sesquilinear map 〈·, ·〉M : M ×M → A

such that for all ω, η ∈M and a ∈ A we have:
(1) 〈aω, η〉M = a〈ω, η〉M ,
(2) (〈ω, η〉M )∗ = 〈η, ω〉M ,
(3) 〈ω, ω〉M > 0.
(4) 〈ω, ω〉M = 0 if and only if ω = 0.
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Let (M , 〈·, ·〉M ) be a left pre-Hilbert module over a C*-algebra A. We note that
Conditions (1) and (2) together prove that 〈·, ·〉M possesses a modular form of
sesquilinearity, i.e. 〈ω, aη〉M = 〈ω, η〉M a∗ for all a ∈ A and ω, η ∈M .

A version of the Cauchy-Schwarz inequality is valid for left pre-Hilbert mod-
ules, so that for all ω, η ∈M we have:

〈ω, η〉M 〈η, ω〉M 6 ‖〈ω, ω〉M ‖A 〈η, η〉M
and thus, together with the rest of the properties of the inner product, we may
define a module norm on M from the inner product 〈·, ·〉M :

Proposition 2.2.2 ([35]). If (M , 〈·, ·〉M ) is a left pre-Hilbert module over a C*-algebra
A, and if, for all ω ∈M , we set:

‖ω‖M =
√
〈ω, ω〉M

then ‖ · ‖M is a module norm on M . i.e. a norm such that for all a ∈ A and ω ∈M , the
following holds:

‖aω‖M 6 ‖a‖A‖ω‖M .
Moreover, for any ω, η ∈M , we also have:

|〈ω, η〉M | 6 ‖ω‖M ‖η‖M .

Notation 2.2.3. For a left pre-Hilbert module (M , 〈·, ·〉M ), we adopt the convention
that ‖ · ‖M always refer to the norm defined in Proposition (2.2.2) and we call this
norm the Hilbert morm of (M , 〈·, ·〉M ).

We thus may require completeness of a left pre-Hilbert module for its C∗-Hilbert
norm, leading to the following definition.

Definition 2.2.4 ([35]). A left Hilbert module (M , 〈·, ·〉M ) over a C*-algebra A is a
left pre-Hilbert module over A which is complete for its C∗-Hilbert norm ‖ · ‖M .

We define our notion of a morphism between left Hilbert modules. Our mor-
phisms can be defined between left Hilbert modules over different base algebras,
and this concept will be folded in our notion of a morphism for a metrized quan-
tum vector bundle.

Definition 2.2.5. Let (M , 〈·, ·〉M ) and (N , 〈·, ·〉N ) be two left Hilbert modules
over, respectively, two C*-algebras A and B. A module morphism (Θ, θ) is given by
a a *-morphism θ : A → B, and a C-linear map Θ : M → N , such that for all
a ∈ A and ω, η ∈M , we have:

(1) Θ(aω) = θ(a)Θ(ω),
(2) 〈Θ(ω), Θ(η)〉N = 〈ω, η〉M .

The module morphism (Θ, θ) is unital when θ is a unital *-morphism.

We note that if (Θ, θ) is a module morphism, Θ is continuous of norm 1 by
definition.

In continuing with the tradition in noncommutative geometry to name struc-
tures after their commutative analogues, we shall thus define a metrized quantum
vector bundle as follows. We first extend the notion of an admissible function to a
triple of functions, as we shall have three versions of the Leibniz inequality in our
definition of metrized quantum vector bundles.
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Definition 2.2.6. A triple (F, G, H) is admissible when:

(1) F : [0, ∞)4 → [0, ∞) is admissible,
(2) G : [0, ∞)3 → [0, ∞) satisfies G(x, y, z) 6 G(x′, y′, z′) if x, y, z, x′, y′, z′ ∈

[0, ∞) and x 6 x′, y 6 y′, z 6 z′, while:

(x + y)z 6 G(x, y, z).

(3) H : [0, ∞)2 → [0, ∞) satisfies H(x, y) 6 H(x′, y′) if x, y, x′, y′ ∈ [0, ∞) and
x 6 x′ and y 6 y′ while 2xy 6 H(x, y).

The structure of a metrized quantum vector bundle is thus given by the follow-
ing definition.

Notation 2.2.7. Let a ∈ A where A is a C*-algebra. We denote a+a∗
2 by <a and a−a∗

2i
by =a. Note that <a,=a ∈ sa (A).

Definition 2.2.8. A (F, G, H)–metrized quantum vector bundle (M , 〈·, ·〉M , DM ,A, LA),
for some admissible triplet (F, G, H), is given by a F–quasi-Leibniz quantum com-
pact metric space (A, LA), as well as a left Hilbert module (M , 〈·, ·〉M ) over A and
a norm DM defined on a dense C-subspace dom (DM ) of M such that:

(1) we have ‖ · ‖M 6 DM ,
(2) the set:

{ω ∈M : DM (ω) 6 1}
is compact for ‖ · ‖M .

(3) for all a ∈ sa (A) and for all ω ∈M , we have:

DM (aω) 6 G (‖a‖A, LA(a), DM (ω)) ,

which we call the inner quasi-Leibniz inequality for DM ,
(4) for all ω, η ∈M , we have:

max {LA (<〈ω, η〉M ) , LA (=〈ω, η〉M )} 6 H (DM (ω), DM (η)) ,

which we call the modular quasi-Leibniz inequality for DM .

The F–quasi-Leibniz quantum compact metric space (A, LA) is called the base quan-
tum space of Ω and is denoted by bqs (Ω). The norm DM will be called the D-norm
of Ω.

If Ω is a (F, G, H)–metrized quantum vector bundle then its D-norm is said to
be of type (G, H). In general, we say that Ω is a metrized quantum vector bundle
when it is a (F, G, H)–metrized quantum vector bundle for some admissible triple
(F, G, H). We make a simple observation which also applies, in a simpler form, to
our work in [29] as we shall discuss after the proof of Theorem (2.5.11).

Notation 2.2.9. Let (F1, G1, H1) and (F2, G2, H2) be two admissible triple. If F =
max{F1, F2}, G = max{G1, G2} and H = max{H1, H2}, then (F, G, H) is also an
admissible triple, denoted by (F1, G1, H1) ∨ (F2, G2, H2). In particular, F is admis-
sible. Therefore, given any pair of quasi-Leibniz quantum compact metric spaces
or metrized quantum vector bundles, one may always assume that they share the
same quasi-Leibniz properties.
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The classical picture which inspired our Definition (2.2.8) of a metrized quan-
tum vector bundle is provided by Riemannian geometry and locally trivial com-
plex vector bundles. Our idea is that the choice of a metric connection for a her-
mitian metric on a complex vector bundle is in fact a part of the metric data of the
associated module — and gives rise to a prototypical D-norm.

Example 2.2.10. Let M be a compact connected differentiable manifold of dimen-
sion n. As a matter of convention, we assume in this example that vector bundle is
meant for locally trivial vector bundle, and that all our vector bundles have com-
plex vector spaces as fibers; in particular, the tangent and cotangent bundles are
complexified (by taking their tensor product with the trivial bundle M×C).

A natural derivation, namely the exterior differential, acts on the dense *-sub-
algebra C1(M) of C1, C-valued functions over M, inside the C*-algebra C(M) of
C-valued continuous functions over M. This derivation is valued in the C(M)-
C(M)-bimodule Ω1 of continuous sections of the cotangent bundle T∗CM of M. We
recall that for all pair f , g of C1 functions on M, we have d( f g) = f ∧ dg+ d f ∧ g =
f dg + d f · g.

We are interested in metric structures, and thus we naturally endow M with
some Riemannian metric g. Formally, a metric gV on a vector bundle V is a smooth
section of the vector bundle over M of sesquilinear functionals over each fiber of V
such that for all x ∈M, the map gV

x over the fiber Vx of V at x is in fact a hermitian
inner product. In particular, a Riemannian metric is given as a metric over the
cotangent bundle T∗CM (or equivalently over the tangent bundle TCM of M).

Now, if ΓV is the C(M)-left module of continuous sections of a vector bundle V
over M, then setting, for all ω, η ∈ ΓV:

x ∈ M 7→ gV
x (ωx, ηx)

defines a C(X)-valued inner product on ΓV, which we still denote by slight abuse
of notation by gV . Thus, (Γ, gV) is a left Hilbert module with norm, for all ω ∈ ΓV:

‖ω‖ΓV = sup
x∈M

√
gV

x (ωx, ωx).

Notably, ‖ · ‖ΓV is a module norm, i.e. for all f ∈ C(X) and ω ∈ ΓV we can trivially
check that ‖ f ω‖ΓV 6 ‖ f ‖C(X)‖ω‖ΓV .

We note that we will simply write gV
x (ω, η) for gV

x (ωx, ηx) in the rest of this
example, whenever x ∈ M, and ω and η are in ΓV.

Let us focus for a moment on the case where V is the cotangent bundle T∗CM of
M, and g some Riemannian metric for M. We note that the right action of C(M) on
Ω1 is by so-called adjoinable operators, and in fact (Ω1, g) is a Hilbert C*-bimodule
over C(M). Consequently, if we define:

L : f ∈ C1(M) 7→ ‖d f ‖Ω1

then L is a seminorm defined on a dense subalgebra of C(M), taking the value 0
exactly on the constant functions over M since M is connected, and satisfying the
Leibniz inequality:

L( f g) 6 ‖ f ‖C(X)L(g) + L( f )‖g‖C(X).
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Thanks to the Arzéla-Ascoli theorem and since M is compact, we note that:

BL1 =
{

f ∈ C(M) : L( f ) 6 1, ‖ f ‖C(X) 6 1
}

is totally bounded in C(X). Moreover, the closure of BL1 consists of the 1-Lipschitz
functions with respect to the Riemannian path distance induced by g on M, and
the Lipschitz seminorm for this distance is the Minkowsky gauge functional of
the closure of BL1. As it agrees with L on C1(M), we denote the Lipschitz semi-
norm simply by L as well. Its closed unit ball is now compact (as it is closed since
L is lower semicontinuous), and it is trivial to check that is satisfies the Leibniz
inequality. Thus (C(X), L) is a Leibniz quantum compact metric space.

Our purpose is to introduce data on modules which will allow us to define
a Gromov-Hausdorff distance between them, and thus we now return to our dis-
cussion of the metric structure of a generic vector bundle V over M. Given a metric
gV on V, a very important fact of Riemannian geometry is the existence of a metric
connection, i.e. a connection ∇ on V with the property that for all tangent vector
fields X of M, and for all ω, η ∈ ΓV, we have:

dX gV(ω, η) = gV(∇Xω, η) + gV(ω,∇Xη).

If we require the connection to be torsion free when V = T∗CM, then the connec-
tion ∇ is unique and called the Lévi-Civita connection; we will however work on
general vector bundles and not require any condition on the torsion of our metric
connections. Instead, we look at the connection as part of the metric information
of our vector bundle V.

Thus, let us fix a complex bundle V over M with a metric gV and let ∇ be a
gV-metric connection on V. Let ΓV be the C(M)-module of continuous sections of
V over M and Γ1V the C1(M)-module of differentiable sections over M.

We already have endowed T∗M with a Riemannian metric g, and thus we also
have a metric on the tangent bundle TM by (fiber-wise) duality; we denote this
metric by g∗. The connection ∇ defined, for all differentiable section ω of V, the
linear map:

∇ω : X ∈ TM 7→ ∇Xω ∈ ΓV.
We define for all differentiable section ω the norm:

|||∇ω||| = sup
x∈M

sup
{√

gV
x (∇Xω,∇Xω) : X ∈ TM, g∗x(X, X) = 1

}
,

i.e. the operator norm of ∇ω for the underlying inner products valued in C(M)
on the module of vector fields and the module of sections of V.

For all differentiable ω ∈ ΓV, we set:

D(ω) = max {‖ω‖ΓV , |||∇ω|||} .

We now explicit some formulas which we will need. Since M is compact and V
is locally trivial, there exists a finite atlas U such that for any chart (U, ψ) ∈ U ,
we also have a local frame for V over U, i.e. k functions {eU

1 , . . . , eU
k } such that for

all x ∈ U, the set {eU
1 (X), . . . , eU

k (x)} is a basis for the fiber Vx.
We moreover let V be an open cover of M with the property that for all O ∈ V ,

there exists (U, ψ) ∈ U such that the closure cl(O) ⊆ U. This can always be
achieved since M is compact.
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Let us fix (U, ψ) ∈ U . Let {∂1, . . . , ∂n} be some set of tangent vector fields on U
such that for all x ∈ U, the set {∂1(x), . . . , ∂n(x)} is a basis for Tx M.

We also note that ∇ restricts to a metric connection for (V, gV) restricted to U,
as a vector bundle over U. We shall tacitly identify ∇ with its restriction.

For any ω ∈ ΓV , we now write ω = ∑n
j=1 ωjeU

j for ω1, . . . , ωk ∈ C1(M). Now, if
we write, for all p, r in {1, . . . , k} and q ∈ {1, . . . , n}:

∇∂q ep =
k

∑
r=1

Γr
pqer

noting that e1, . . . , ek are smooth so that the above expression makes sense, then,
for all smooth ω:

∇∂q ω =
k

∑
r=1

(
∂qωr +

k

∑
p=1

Γr
pqωp

)
er.

In particular, for any x ∈ U, q ∈ {1, . . . , n} and j ∈ {1, . . . , k}, we thus have:∣∣∣(∂qω
)

j (x)
∣∣∣ 6 ∣∣∣∣∣(∇∂q ω(x)

)
j
−

k

∑
p=1

Γr
pqωp

∣∣∣∣∣ .

We now need a few estimates. We first note that by construction, if for all x ∈ U
we set:

Gx =

gV
x (eU

1 , eU
1 ) . . . gV

x (eU
k , eU

1 )
...

...
gV

x (eU
1 , eU

k ) . . . gU
x (eU

k , eU
k )


then G : x ∈ U 7→ Gx is a continuous function valued in the k × k (positive
symmetric invertible) matrices. We endow the algebra of k× k matrices with the
norm |||·|||k induced by the usual inner product on Cd.

Moreover by construction, if we set:〈
k

∑
j=1

ωjej,
k

∑
r=1

ηkek

〉
x

=
k

∑
j=1

ωj(x)ηj(x)

then we have gV
x (ω, η) = 〈Gω, η〉x. Now, for all x ∈ U, we have:

max
{
|ωj(x)| : j ∈ {1, . . . , k}

}
6
√
〈ω, ω〉x

6

√∣∣∣∣∣∣∣∣∣G−1
x

∣∣∣∣∣∣∣∣∣
k
〈Gω, ω〉x

=

√∣∣∣∣∣∣∣∣∣G−1
x

∣∣∣∣∣∣∣∣∣
k

√
gV

x (ω, ω).

We now pick any O ⊆ V such that the closure cl(O) lies inside our chosen U.
In this case, G, and therefore G−1, are continuous on the compact cl(O) and thus,
x ∈ O 7→

∣∣∣∣∣∣G−1
x
∣∣∣∣∣∣

k is bounded below and above; since the bounds are reached and
Gx is never null, we conclude that there exists w > 0 such that for all x ∈ cl(O) we
have:

max
{
|ωj(x)| : j ∈ {1, . . . , k}

}
6 w

√
〈Gω, η〉x = w

√
gV

x (ω, ω).
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In particular, we note that if D(ω) 6 1 and p ∈ {1, . . . , k} then:

(2.2.1) ‖ωp‖C(cl(O)) 6 w.

We also note that the functions x ∈ cl(O) 7→
√

g∗x(∂q, ∂q) are continuous on a
compact as well for all q ∈ {1, . . . , d}, and thus we can choose K > 0 such that:

sup
{√

g∗x(∂q, ∂q) : x ∈ cl(O), q ∈ {1, . . . , n}
}
6 K.

Last, we note that since the Christoffel symbols of our connection in our local
frame are continuous as well, there exists K2 > 0 such that:

sup
{∣∣∣Γr

pq

∣∣∣ : p, r ∈ {1, . . . , k}, q ∈ {1, . . . , n}, x ∈ cl(O)
}
6 K2.

We have thus for all ω ∈ ΓV with D(ω) 6 1, x ∈ cl(O) and q ∈ {1, . . . , k}:

|∇∂q ωj(x)| 6 max
{
|∇∂q ωj(x)| : j ∈ {1, . . . , k}

}
6 w

√
gV

x (∇∂q ω,∇∂q ω)

6 w|||∇ω|||
√

g∗x(∂q, ∂q)

6 wK.

Therefore for all q ∈ {1, . . . , n} and j ∈ {1, . . . , k}, and for all ω ∈ ΓV with D(ω) 6
1, we estimate:

∥∥(∂qω)j
∥∥

C(cl(O))
= sup

x∈cl(O)

|∂qω(x)|

6 sup
x∈cl(O)

∣∣∣∣(∇∂q ω
)

j
(x)
∣∣∣∣

+ k sup
{∣∣∣Γr

pq(x)
∣∣∣ : p, r ∈ {1, . . . , k}, q ∈ {1, . . . , n}, x ∈ cl(O)

}
× k

max
p=1
‖ωp‖C(cl(O))

6 wK + wkK2.

(2.2.2)

Let:

D1 (D, O) =
{

the restriction of ωj to cl(O) : D(ω) 6 1, j ∈ {1, . . . , k}
}

.

We deduce from Equations (2.2.2) and (2.2.1) that D1 (D, O) is an equicontinuous
family (in fact, a collection of (Kw + wkK2)-Lipschitz functions).

We may now apply Arzéla-Ascoli theorem to the set D1 (D, O), viewed as an
equicontinuous set of functions on the compact O and valued in a fixed compact
in C. Thus, D1 (D, O) is totally bounded for the uniform norm ‖ · ‖cl(O).

Now, we also observe that since G is bounded above as well, there exists w2 > 0
such that for all ω ∈ ΓV and x ∈ cl(O):

gV
x (ω, ω) 6 |||Gx|||k〈ω, ω〉x 6 k|||Gx|||k max{|ω1(x)|, . . . , |ωk(x)|}.
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Therefore, we conclude that D1 (D) is totally bounded for the seminorm:

‖ω‖ΓV,O = ω ∈ ΓV 7→ sup
x∈cl(O)

√
gV

x (ω, ω).

Last, we note that:

‖ω‖ΓV = sup
x∈M

√
gV

x (ω, ω) = max
O∈V
‖ω‖ΓV,O

from which it is easy to deduce that D1 (D) is totally bounded for ‖ · ‖ΓV .
Our reasoning proves that for all O ∈ V , the set of all the restrictions of elements

ω ∈ ΓV with D(ω) 6 1 is equicontinuous and obviously bounded. Since V is a
finite cover of M, we then conclude that {ω ∈ ΓV : D(ω) 6 1} is equicontinuous
on the compact M and valued in the common compact thus by Arzéla-Ascoli, we
conclude that {ω ∈ ΓV : D(ω) 6 1} is compact for the supremum norm.

Furthermore, since ∇ is a connection, we check that:

D( f ω) 6 L( f )‖ω‖ΓV + ‖ f ‖C(M)D(ω)

for all f ∈ C1(X) and smooth ω ∈ ΓV (and using the fact that ‖ · ‖ΓV is a module
norm), while since ∇ is a metric connection, we also check that:

L(gV(ω, η)) 6 D(ω)‖η‖ΓV + ‖ω‖ΓVD(η)

for all smooth ω, η ∈ ΓV.
As we did with L, we extend D by defining DV as the Minkowsky functional

of the norm closure of D1 (D), which is compact. Thus (ΓV, gV , DV , C(M), L) is a
metrized quantum vector bundle.

We note that it is not clear in general what ker∇ = {ω ∈ Γ1V : ∇ω = 0}
might be; it is a key reason why we actually define our D-norms to dominate the
underlying norm: by taking the maximum of the module norm and the norm of
a connection, we remove the question of what the kernel should be and we can
make a clear requirement of compactness for the closed unit ball of our D-norm.

Example (2.2.10) justifies the following terminology:

Definition 2.2.11. A (F, G, H)–metrized quantum vector bundle is Leibniz when:

(1) F = (x, y, lx, ly) ∈ [0, ∞)4 7→ xly + ylx,
(2) G = (x, l, d) ∈ [0, ∞)3 7→ (x + l)d,
(3) H = (x, y) ∈ [0, ∞)2 7→ 2xy.

We note that a the admissible triple for a Leibniz metrized quantum vector bun-
dle is chosen to be the lower allowed bounds in Definition (2.2.6).

We now turn to examples of metrized quantum vector bundles over general
quasi-Leibniz quantum compact metric spaces. We begin with the observation that
Definition (2.2.8) contains, in the statement of the inner quasi-Leibniz inequality, a
canonical extension of the L-seminorm to a dense *-subalgebra of the entire base
quantum space. This extension possess properties which will prove helpful for
our next few examples.
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Lemma 2.2.12. Let (A, L) be a F–quasi-Leibniz quantum compact metric space for some
admissible function F. The seminorm:

M : a ∈ A 7→ max{L(<a), L(=a)}
satisfies:

M(ab) 6 8F(‖a‖A, ‖b‖A, M(a), M(b)).
Moreover the domain of M is a dense *-subalgebra of A, while M satisfies M(a∗) = M(a)
for all a ∈ A and {a ∈ A : M(a) = 0} = C1A.

Proof. We first observe that M is a seminorm (which may assume the value ∞,
though it is finite on dom (L) + idom (L); moreover it is easy to check that M(a) =
0 if and only if a ∈ C1A). Moreover, M restricted to sa (A) is of course L. It is
similarly straightforward to note that M(a∗) = M(a) for all a ∈ A.

Let a, b ∈ A. We note, since ab = a ◦ b + i{a, b} and M is a norm:

(2.2.3) M(ab) 6M(a ◦ b) + M({a, b}).
We then have:

M(a ◦ b) 6M(<(a) ◦ <(b)) + M(<(a) ◦ =(b))
+ M(=(a) ◦ <(b)) + M(=(a) ◦ =(b))

= L(<(a) ◦ <(b)) + L(<(a) ◦ =(b))
+ L(=(a) ◦ <(b)) + L(=(a) ◦ =(b))
6 F(‖<(a)‖A, ‖<(b)‖A, L(<(a)), L(<(b)))
+ F(‖<(a)‖A, ‖=(b)‖A, L(<(a)), L(=(b)))
+ F(‖=(a)‖A, ‖<(b)‖A, L(=(a)), L(<(b)))
+ F(‖=(a)‖A, ‖=(b)‖A, L(=(a)), L(=(b)))
6 4F(‖a‖A, ‖b‖A, M(a), M(b)).

A similar computation allows us to conclude:

M({a, b}) 6 4F(‖a‖A, ‖b‖A, M(a), M(b))

and thus, using Inequality (2.2.3), our lemma is proven. �

Remark 2.2.13. Let (X, d) be a compact metric space and L be the seminorm in-
duced on C(X) by d. While L is the Lipschitz seminorm for functions from X val-
ued in Cwith its usual hermitian norm, we note that M = max{L ◦ <, L ◦ =} is the
Lipschitz seminorm of functions form X to C endowed with the norm ‖x + iy‖ =
max{|x|, |y|} for all x, y ∈ R2.

This observation is interesting because Blaschke theorem is valid for the semi-
norm M: when C is endowed with ‖ · ‖ rather than its standard hermitian norm,
a k-Lipschitz function on some subset of X to C can be extended a k-Lipschitz
function over X. Indeed, it is easy to check that for any two quasi-Leibniz quan-
tum compact metric spaces (A, LA) and (B, LB), a *-morphism π : A → B is a
quantum isometry if and only if max{LB ◦ <, LB ◦ =} is the quotient of max{LA ◦
<, LA ◦=} and the notion of full quantum isometry extends similarly. Thus Lemma
(2.2.12) provides a rather canonical way to extend L-seminorms while keeping all
notions of isometries unchallenged.
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We first note that every quasi-Leibniz quantum compact metric space defines
a canonical metrized quantum vector bundle over itself. This observation implies
that the modular propinquity will provide another metric on quasi-Leibniz quan-
tum compact metric spaces, though we will prove that it is equivalent to the quan-
tum Gromov-Hausdorff propinquity.

Example 2.2.14. Let (A, L) be a F–quasi-Leibniz quantum compact metric space.
The C*-algebra A is of course a left module over itself, using the multiplication of
A on the left. The C*-algebra A is naturally a left A-Hilbert module by setting for
all a, b ∈ A:

〈a, b〉A = ab∗.

Note that for every state ϕ of A, the completion of the pre-Hilbert space A en-
dowed with ϕ ◦ 〈·, ·〉A provides the Gel’fand-Naimark-Segal representation asso-
ciated with ϕ

The norm of a ∈ A is: √
‖aa∗‖A = ‖a‖A,

and thus the C*-norm ‖ · ‖A and the C∗-Hilbert norm ‖ · ‖A agree. In particular,
(A, 〈·, ·〉A) is complete for its norm.

We can now set DA(a) = max{L(<a), L(=a), ‖a‖A} for all a ∈ A. It is easy to
check, using Lemma (2.2.12), that:

Ω(A) = (A, 〈·, ·〉A, DA,A, L)

is a (F, 8F, 8F)–metrized quantum vector bundle.

We extend Example (2.2.14) to free modules. Free modules are of course ba-
sic examples, but they are also important since every finitely generated projective
modules lies inside a free module; thus the construction in the next example would
provide D-norms to many finitely generated projective modules under appropri-
ate conditions. This being said, our main example of non free, finitely generated
projective modules in this paper — Heisenberg modules over quantum 2-tori —
will come with a D-norm from a connection, akin to Example (2.2.10) though in-
volving very different techniques. The following example is thus a natural default
source of D-norms, while our work may accommodate different D-norms if the
context calls for it.

Example 2.2.15. Let (A, LA) be a F–quasi-Leibniz quantum compact metric space
for some admissible function F. Let d ∈ N \ {0}. Let M = Ad. The map:

〈a1
...

ad

,

b1
...

bd

〉
M

=
d

∑
j=1

ajb∗j ,

for all

a1
...

ad

 ,

b1
...

bd

 ∈ Ad, is an A-inner product, for which M is complete.
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We set MA(a) = max{LA(<a), LA(=a)} for all a ∈ A, and then::

Ld
A

a1
...

ad

 = max
{

M(aj) : j ∈ {1, . . . , d}
}

for all a1, . . . , ad ∈ A. LM is a form of L-seminorm for modules. We note that
Ld
A(x) = 0 if and only if x ∈ Cd.

We now define Dd
A = max

{
‖ · ‖M , Ld

A

}
.

To begin with, we note that for all a, b1, . . . , bd ∈ A:

Ld
A

a

b1
...

bd


 = max

{
M(abj) : j ∈ {1, . . . , d}

}
= max

{
8F(‖a‖A, ‖bj‖A, MA(a), M(bj)) : j ∈ {1, . . . , d}

}
6 8F

‖a‖A,

∥∥∥∥∥∥∥
b1

...
bd


∥∥∥∥∥∥∥

M

, M(a), Ld
A

b1
...

bd




6 G

‖a‖A, M(a), Ld
A

b1
...

bd


 ,

where G(x, y, z) = 8F(x, y, z, y) for all x, y, z > 0.
Since ‖ · ‖M is a C∗-Hilbert norm and M(a) = LA(a) if a = a∗, we conclude that

if a ∈ sa (A) then:

Dd
A

a

b1
...

bd


 6 G

‖a‖A, LA(a), Dd
A

b1
...

bd


 .
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Moreover, again using Lemma (2.2.12), we also have, for all a1, . . . , ad, b1, . . . , bd ∈
M , that:

LA

<〈
a1

...
ad

,

b1
...

bd

〉
M

 = LA

(
<
(

d

∑
j=1

ajbj

))

6M

(
d

∑
j=1

ajbj

)

6 8
d

∑
j=1

F(‖aj‖A, ‖bj‖A, M(aj), M(bj))

6 8dF


∥∥∥∥∥∥∥
a1

...
ad


∥∥∥∥∥∥∥

M

,

∥∥∥∥∥∥∥
b1

...
bd


∥∥∥∥∥∥∥

M

, Ld
A

a1
...

ad

 , Ld
A

b1
...

bd




6 dF

Dd
A

a1
...

ad

 , Dd
A

b1
...

bd

 , Dd
A

a1
...

ad

 , Dd
A

b1
...

bd




= H

Dd
A

b1
...

bd

 , Dd
A

b1
...

bd


 ,

where H(x, y) = 8dF(x, y, x, y) for all x, y > 0.
If is immediate that (F, G, H) is an admissible triplet. Thus Conditions (1), (3)

and (4) of Definition (2.2.8) are met.

Last, let (an
1 , . . . , an

d) ∈MN be a sequence such Dd
A

an
1
...

an
d

 6 1 for all n ∈ N.

Thus (<an
1 )n∈N lies in the compact {a ∈ dom (LA) : LA(a) 6 1, ‖a‖A 6 1};

we thus may extract a ‖ · ‖A-convergent subsequence (<a f1(n)
1 )n∈N with limit a1 ∈

sa (A) such that LA(a1) 6 1 and ‖a1‖A 6 1 (we used the fact that LA is lower
semicontinuous with respect to ‖ · ‖A). For the same reason, we can then extract
convergent subsequences (<a f1◦ f2(n)

2 )n∈N of (<a f1(n)
2 )n∈N with limit <a2 ∈ sa (A),

. . . , (<a f1◦ f2◦···◦ fd(n)
d )n∈N from (<a f1◦ f2◦···◦ fd−1(n)

d )n∈N with limit ad ∈ sa (A); more-
over max{LA(aj), ‖aj‖A : j ∈ {1, . . . , n}} 6 1.

If g : n ∈ N 7→ f1 ◦ f2 ◦ · · · ◦ fd(n), then


<ag(n)

1
...

<ag(n)
d


n∈N

converges to

a1
...

ad

,

where by construction Dd
A

a1
...

ad

 6 1.
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Just as easily, we can prove that there exists b1, . . . , bd ∈ sa (A) and a function
h : N→ N strictly increasing such that:

lim
n→∞


=ag(h(n))

1
...

=ag(h(n))
d

 =

b1
...

bd


and therefore:

lim
n→∞


ag(h(n))

1
...

ag(h(n))
d

 =

a1 + ib1
...

ad + ibd

 .

By construction, D

a1 + ib1
...

ad + ibd

 6 1.

Thus (M , 〈·, ·〉M , Dd
A,A, LA) is a (F, G, H)–metrized quantum vector bundle.

We make a few additional comments on our Definition (2.2.8). Condition (3)
will be used to prove that distance zero for the modular propinquity will in partic-
ular give rise to a module morphism. Condition (4) connects the metric structures
of the D-norm and the L-seminorms. Condition (1) is just a normalization condi-
tion: indeed, the unit sphere for a D-norm is compact for the C∗-Hilbert norm and
thus the norm attains a maximum on it; thus the C∗-Hilbert norm is always less
than some constant multiple of the D-norm, thanks to Condition (2). Last, Condi-
tion (2) provides us with the compact set we will use to start the construction of a
Gromov-Hausdorff distance for modules.

A consequence of Condition (4) is an additional implicit structure in metrized
quantum vector bundles:

Remark 2.2.16. Definition (2.2.8) implies that, given a metrized quantum vector
bundle (M , 〈·, ·〉M , DM ,A, LA), the space dom (DM ) is a left module over the
Jordan-Lie algebra dom (LA), and that the inner product 〈·, ·〉M restricts to an
dom (LA)-valued inner product on dom (DM ).

Condition (1) (as well as Condition (2)) implies that a D-norm is lower semi-
continuous with respect to the C∗-Hilbert norm, which implies:

Remark 2.2.17. Let (M , 〈·, ·〉M , DM ,A, LA) be a metrized quantum vector bundle.
The C-vector space (dom (DM ), DM ) is a Banach space. Indeed, DM is lower
semi-continuous with respect to ‖ · ‖M since its unit ball is compact, hence closed,
for ‖ · ‖M ; moreover DM dominates ‖ · ‖M .

The proof that the lower semi-continuity of DM implies that (M , DM ) is a Ba-
nach space is identical to the proof that (dom (LA), max{‖ · ‖A, LA}) is a Banach
space, as found in [30].

The category of metrized quantum vector bundles, whose objects are intro-
duced in Definition (2.2.8), is constructed using the following natural notion of
morphism.
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Definition 2.2.18. Let:

ΩA = (M , 〈·, ·〉M , DM ,A, LA) and ΩB = (N , 〈·, ·〉N , DN ,B, LB)

be two metrized quantum vector bundles. A morphism (Θ, θ) from ΩA to ΩB is a
unital module morphism (Θ, θ) such that:

(1) θ is continuous from (dom (LA), LA) to (dom (LB), LB), i.e. there exists
C > 0 such that LB ◦ θ 6 CLA on dom (LA),

(2) Θ is continuous from (dom (DM ), DM ) to (dom (DN ), DN ), i.e. there ex-
ists M > 0 such that for all ω ∈M we have DN (Θ(ω)) 6 MDM (ω).

Such a morphisms is an epimorphism when both θ and Θ are surjective, and a monomor-
phism when both θ and Θ are both monomorphisms.

A isomorphism is thus given by a morphism (Θ, θ) where θ is a *-isomorphism,
Θ is a bijection and (Θ−1, θ−1) is a morphism from ΩB onto ΩA.

As is customary with categories of metric spaces, there are several appropriate
of isomorphisms. Inside the general category described via Definitions (2.2.8) and
(2.2.18), an isomorphism would be a generalization of a bi-Lipschitz map. For our
purpose, a stronger notion of isomorphism will be employed, akin to a notion of
isometry. We first define the notion of a full quantum isometry, which is rather
self-evident:

Definition 2.2.19. Let:

ΩA = (M , 〈·, ·〉M , DM ,A, LA) and ΩB = (N , 〈·, ·〉N , DN ,B, LB)

be two metrized quantum vector bundles. A full quantum isometry (Θ, θ) from ΩA

to ΩB is a metrized quantum vector bundle isomorphism from ΩA to ΩB such
that:

(1) LB ◦ θ = LA on dom (LA),
(2) DN ◦Θ = DM on dom (DM ).

It is easy to check that the category of metrized quantum vector bundles with
quantum isometries as morphisms is a subcategory of the category whose mor-
phisms are given by Definition (2.2.18).

The more delicate question for us regards the notion of a quantum isometry for
metrized quantum vector bundles. As we discussed when introducing quantum
isometries for quasi-Leibniz quantum compact metric spaces, isometries between
L-seminorms rely on working with self-adjoint elements only. We did note in Re-
mark (2.2.13) that we can extend L-seminorms to bypass this issue, though the
situation for module requires some idea.

We propose to circumvent this issue by bringing the problem down to the base
quantum spaces. Indeed, we take advantage of the observation that the inner
quasi-Leibniz inequality implies that for any metrized quantum vector bundle
(M , 〈·, ·〉M , D,A, L) and any ω, η ∈ M , the elements <〈ω, η〉M and =〈ω, η〉M
lies in the domain dom (L) of the L-seminorm L. Thus, the tools developed for the
Gromov-Hausdorff propinquity can be brought to bare to the study of metrized
quantum vector bundles.
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Now, while the Cauchy-Schwarz inequality for the C∗-Hilbert norm of a left
pre-Hilbert module (M , 〈·, ·〉M ) implies that:

(2.2.4) ‖ω‖M = sup{|〈ω, η〉M | : η ∈M , ‖η‖M 6 1},

we want to work only with elements bounded for the D-norms. We now study the
metric on the domain of D-norm resulting from working with Expression (2.2.4),
with the closed unit ball for the C∗-Hilbert norm replaced by the closed unit ball
for the D-norm. We begin with a notation we shall use throughout this paper.

Notation 2.2.20. Let Ω = (M , 〈·, ·〉M , DM ,A, LA) be a (F, G, H)–metrized quantum
vector bundle for some admissible (F, G, H). The closed ball of center 0 and radius
r > 0 in (dom (DM ), DM ) is denoted by:

Dr (Ω) = {ω ∈ dom (DM ) : DM (ω) 6 r} .

By Definition (2.2.8), the set Dr (Ω) is norm compact.

We call the initial topology for a set F of functions defined on a given set E
and valued in a topological space, the smallest topology on E for which all the
members of F are continuous.

Definition 2.2.21. Let (M , 〈·, ·〉M ) be a left Hilbert A-module. The A-weak topology
on M is the initial topology for the set of maps:

{〈·, ω〉M : ω ∈M } .

Thus, a net (ωj)j∈J converges to some ω in a left Hilbert A-module (M , 〈·, ·〉M )

when for all η ∈M , the net
(〈

ωj, η
〉
M

)
j∈J

converges to 〈ω, η〉M in A.

Thus, in particular, for any metrized quantum vector bundle Ω, the set D1 (Ω)
is now endowed with three topologies: the norm topology from the D-norm, the
norm topology from the C∗-Hilbert norm inherited from the inner product, and
the A-weak topology where A is the base space of Ω. Definition (2.2.8) assures us
that the latter two agree on D1 (Ω).

Lemma 2.2.22. Let Ω = (M , 〈·, ·〉M , DM ,A, L) be a metrized quantum vector bundle.
The A-weak topology and the norm topology, induced by 〈·, ·〉M , agree on Dr (Ω) for all
r > 0.

Proof. The A-weak topology is weaker than the topology induced by ‖ · ‖M , yet
Hausdorff. On the other hand, Dr (Ω) is compact for ‖ · ‖M . Therefore, the A-
weak topology and the topology from ‖ · ‖M agree on Dr (Ω). �

Our reason to introduce the A-weak topology is that it is naturally metrized by
a metric defined from D1 (Ω).

Definition 2.2.23. Let Ω = (M , 〈·, ·〉M , D,A, LA) be a metrized quantum vector
bundle. The modular Monge-Kantorovich metric kΩ associated with Ω is the metric
kΩ, defined for ω, η ∈M by:

kΩ(ω, η) = sup {‖〈ω, ξ〉M − 〈ω, ξ〉M ‖A : ξ ∈M , D(ξ) 6 1} .
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We note that the Monge-Kantorovich metric on the module of a metrized quan-
tum vector bundle is indeed a metric since the C-linear span of the closed unit ball
for the D-norm is dense in the module itself by assumption. We now prove the
main property of this metric for us:

Proposition 2.2.24. Let Ω = (M , 〈·, ·〉M , D,A, LA) be a metrized quantum vector bun-
dle. For all r > 0, the Monge-Kantorovich metric kΩ associated with Ω metrizes the
A-weak* topology on Dr (Ω), and therefore it metrizes the norm topology on Dr (Ω).

Proof. Let (ωj)j∈J be a net in Dr (Ω), indexed by (J,�) and converging to ω in the
A-weak topology. Let ε > 0. Since D1 (Ω) is compact by assumption, there exists
a finite subset F ⊆ D1 (Ω) which is ε

3 -dense in Dr (Ω).
There exists j0 ∈ J such that for all j � j0 we have ‖

〈
ωj, ξ

〉
M
− 〈ω, ξ〉M ‖A 6

ε
3 for all ξ ∈ F since F is finite and J is directed. It follows that ‖

〈
ωj, ξ

〉
M
−

〈ω, ξ〉M ‖A 6 ε. Thus kΩ(ωj, ω) 6 ε.
Conversely, if (ωn)n∈N is a sequence in Dr (Ω) converging to some ω ∈ M

for kΩ, then since D1 (Ω) is total, we conclude that (〈ωn, ξ〉M )n∈N converges to
〈ω, ξ〉M for all ξ ∈M . Thus ω is the A-weak limit of (ωn)n∈N.

Now, since the A-weak topology and the norm topology agree on Dr (Ω), and
Dr (Ω) is compact in norm by assumption, we conclude that ω ∈ Dr (Ω) as well.
This concludes our proof. �

We conclude this section with an observation. Let Ω = (M , 〈·, ·〉M , D,A, L)
be a metrized quantum vector bundle. Let B = {a + ib : a, b ∈ dom (L)} en-
dowed with the norm ‖ · ‖B = max{‖ · ‖A, L ◦ <, L ◦ =}. The norm ‖ · ‖B is lower
semicontinuous with respect to ‖ · ‖A and thus one can prove that (B, ‖ · ‖B) is a
Banach algebra (the fact that it is a subalgebra of A follows from the fact dom (L)
is a Jordan-Lie subalgebra of sa (A)). We note that dom (D) is a B-left module
thanks to Definition (2.2.8).

We also noted that (dom (D), D) is a Banach space as well. Let us call a current
of Ω a continuous B-module map from (dom (D), D) to (B, ‖ · ‖B). Let C (Ω)
be the space of all currents of Ω and let Cr(Ω) be the closed ball of radius r > 0
centered at 0 for the operator norm on C (Ω).

Let us call the locally convex topology induced by the seminorms:

T ∈ C (Ω) 7→ ‖T(ω)‖A
on C (Ω) for all ω ∈ dom (D) the A-weak* topology.

Let L = {a ∈ B : ‖a‖B 6 1}. By assumption on the L-seminorm L, the set L is
compact in (A, ‖ · ‖A). If we let Ξ = ∏ω∈dom(D) rD(ω)L, then Ξ is compact in the
product topology by the Tychonoff theorem.

By construction, if T ∈ Cr(Ω) then Θ(T) = (T(ω))ω∈dom(D) ∈ Ξ. It is straight-
forward to check that Θ is a continuous injection from the A-weak* topology to
the product topology, whose range is given by:

Ξr =
⋂

b∈B,ω,η∈dom(D)

(
πbω+η − bπω − πη

)−1
({0}),

where πω : (bη)η∈dom(D) ∈ Ξ 7→ bω for all ω ∈ dom (D). Of course, by definition
of the product topology on Ξ, the maps πω are continuous for all ω ∈ dom (D) and
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thus Ξr is closed in Ξ, hence compact. It is easy to see that Θ is an homeomorphism
and thus Cr(Ω) is actually compact for the A-weak* topology. These facts did not
involve the fact that D1 (Ω) is compact for ‖ · ‖M .

Suppose now that S is a seminorm on M satisfying the inner quasi-Leibniz
inequality:

L(〈ω, η〉M ) 6 H(S(ω), S(η))
and S > ‖ · ‖M . The latter equation implies that the closed unit ball for S is also
closed in the norm ‖ · ‖M .

The inner quasi-Leibniz inequality implies in turn that if S(ω) 6 1 for ω ∈
M then 〈·, ω〉M is a H(1, 1) current, and thus belongs to some compact set for
the A-weak* topology. It is easy to check that the map ω ∈ M 7→ 〈·, ω〉M is
an homeomorphism from M with the A-weak topology to its range, with the A-
weak* topology. Thus we conclude that {ω ∈ M : S(ω) 6 1} is totally bounded
for the A-weak topology.

This does not however make S a D-norm, even if it satisfies some form of mod-
ular quasi-Leibniz inequality. Indeed, while norm closed, it is unclear whether the
closed unit ball of S is also A-weak closed. Moreover, even it is was, we could
not deduce that the closed unit ball for S is norm compact, rather than weakly
compact. Thus, it does not appear to be sufficient to assume the inner and mod-
ular quasi-Leibniz inequalities and the dominance over the C∗-Hilbert norm to
construct a D-norm, and the compactness of the closed ball of a D-norm requires
some additional work.

We now turn to the construction of the modular propinquity. The basic ingredi-
ent is a notion of a modular bridge which extends the notion of a bridge used as a
noncommutative encoding of the idea of an isometric embedding in the construc-
tion of the quantum Gromov-Hausdorff propinquity.

2.3. Modular Bridges. Bridges between C*-algebras provide a mean to define a
particular type of isometric embedding for a any pair of quasi-Leibniz quantum
compact metric spaces, from which the quantum Gromov-Hausdorff propinquity
is built in [31]. An advantage of bridges is that the quantum propinquity is defined
directly from numerical quantities defined using a bridge rather than through the
associated isometric embeddings, and thus they are natural to use a foundation for
our modular propinquity — bypassing the need for a notion of isometric embed-
dings of metrized quantum vector bundles. We present our idea on how to extend
the notion of bridges to metrized quantum vector bundles in this section. While
our presentation will at times refer to [31], we will strive to make it reasonably
self-contained.

Bridges involve an element of a unital C*-algebra called a pivot, which allows
us to select a particular set of states. We require that this set is not empty. The
following definition extends the notion of a state defined on some self-adjoint ele-
ment [15, Exercise 4.6.16],[16] to general elements.

Definition 2.3.1 ([31, Definition 3.1]). The 1-level set S1(D|x) of an element x ∈
sa (D) of a unital C*-algebra D is:

S1(D|x) =
{

ϕ ∈ S (D)

∣∣∣∣ ϕ ((1− x)∗(1− x)) = 0
ϕ ((1− x)(1− x)∗) = 0

}
.
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We make the following remark:

Remark 2.3.2. If x ∈ D for some unital C*-algebra D, and if S1(D|x) 6= ∅, then
‖x‖D > 1. Indeed, if ϕ ∈ S (D|x) then ϕ(x) = ϕ(x∗) = 1. Thus ‖<(x)‖D > 1 and
thus ‖x‖D > ‖<x‖D > 1.

In particular, if ‖x‖D 6 1 and S (D|x) 6= ∅ then ‖x‖D = 1.

We will use Definition (2.3.1) via the following lemma:

Lemma 2.3.3 ([31, Lemma 3.4]). If D is a unital C*-algebra and x ∈ D, then:

S (D|x) = {ϕ ∈ S (D) : ∀d ∈ D ϕ(dx) = ϕ(xd) = ϕ(d)}
= {ϕ ∈ S (D) : ∀d ∈ D ϕ(dx∗) = ϕ(x∗d) = ϕ(d)} .

Proof. This follows from the Cauchy-Schwarz inequality. �

We first extend the notion of a bridge between quasi-Leibniz quantum com-
pact metric spaces to a modular bridge between metrized quantum vector bun-
dles. While a bridge between to quasi-Leibniz quantum compact metric spaces
does not involve any metric information in its definition — the quantum metric
information is used to associate numerical quantities to the bridge — a modu-
lar bridge between two metrized quantum vector bundles involve the D-norms.
Nonetheless, a modular bridge retains the simplicity of a bridge, as it only adds
two families of elements from modules.

Definition 2.3.4. Let:

ΩA = (M , 〈·, ·〉M , DM ,A, LA) and ΩB = (N , 〈·, ·〉N , DN ,B, LB)

be two metrized quantum vector bundles.
An modular bridge:

γ =
(
ΩA, ΩB,D, x, πA, πB, (ωj)j∈J , (ηj)j∈J

)
from ΩA to ΩB is given:

(1) a unital C*-algebra D,
(2) an element x ∈ D with S1(D|x) 6= ∅ and ‖x‖D = 1,
(3) πA : A ↪→ D and πB : B ↪→ D are two unital *-monomorphisms,
(4) J is some nonempty set,
(5) (ωj)j∈J is a family of elements in D1 (ΩA), i.e. max{DM (ωj) : j ∈ J} 6 1,
(6) (ηj)j∈J is a family of elements in D1 (ΩB), i.e. max{DN (ηj) : j ∈ J} 6 1.

Notation 2.3.5. Let γ = (ΩA, ΩB,D, x, π, ρ, (ωj)j∈J , (ηj)j∈J) be a modular bridge.
We will use the following notations and terminology throughout this paper.

(1) The domain dom (γ) of γ is ΩA.
(2) The co-domain codom (γ) of γ is ΩB.
(3) The element x is called the pivot of γ and is denoted by pivot (γ).
(4) The family (ωj)j∈J is the family of anchors of γ, denoted by anchors (γ).
(5) The family (ηj)j∈J is the family of co-anchors of γ, denoted by coanchors (γ).

Notation 2.3.6. Let ΩA and ΩB be two metrized quantum vector bundles. The set
of all modular bridges from a ΩA to ΩB is denoted by Bridges [ΩA −→ ΩB].
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We note that since modular bridges are defined as tuples, the order of their com-
ponent matter and thus they have a domain and a codomain, though in fact they
are quite a symmetric concept. We will remark later that all the quantities defined
from modular bridges are in fact symmetric in the domain and the codomain.

We also remark that we include the domain and the codomain of a modular
bridge in its very definition. This choice will in fact simplify our notations later
on, by removing the need to explicit the quantum metric data as in [31] for various
quantities associated to modular bridges.

Last, we note that unlike [31, Definition 3.6], we require the pivot of modular
bridges are of norm (at most) 1. This requirement will be essential in the proof
of Proposition (2.3.17), which in turn underlies the construction of the modular
propinquity.

The basic ingredients to compute the modular propinquity between modules
require a lot of notations. We clarify our exposition by grouping some of these
notations into a single set of hypothesis which we will use repeatedly in the fol-
lowing definitions and theorems.

Hypothesis 2.3.7. Let:

ΩA = (M , 〈·, ·〉M , DM ,A, LA) and ΩB = (N , 〈·, ·〉N , DN ,B, LB)

be two (F, G, H)–metrized quantum vector bundles.
Let J be some nonempty set and let:

γ = (ΩA, ΩB,D, x, π, ρ, (ωj)j∈J , (ηj)j∈J)

be a modular bridge from ΩA to ΩB.

The modular propinquity is computed from natural numerical quantities ob-
tained from modular bridges and the quantum metric information encoded in
metrized quantum vector bundles. The first quantities we will use are in fact the
numerical values introduced in [31] for the canonical bridge from bqs (dom (γ))
to bqs (codom (γ)) associated to any modular bridge γ:

Definition 2.3.8. Let Hypothesis (2.3.7) be given. The basic bridge γ[ from A to B

is given by:
γ[ = (D, x, πA, πB).

It is straightforward that Definition (2.3.8) gives a bridge in the sense of [31,
Definition 3.6]. Thus, we can compute the reach and height of a basic bridge. We
adjust our terminology to fit the setting of this paper in the following definitions
of the height and basic reach of a modular bridge.

We start by recalling from [31, Definition 3.10] that a bridge defines an impor-
tant seminorm:

Definition 2.3.9 ([31, Definition 3.10]). Let Hypothesis (2.3.7) be given. The bridge
seminorm bnγ (·, ·) of the modular bridge γ is the bridge seminorm of the basic
bridge γ[, i.e. the seminorm on A⊕B defined for all a ∈ A and b ∈ B by:

bnγ (a, b) = ‖πA (a) x− xπB (b)‖D .
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The bridge seminorm allows us to quantify how far apart two quasi-Leibniz
quantum compact metric spaces are from the perspective of a given bridge.

Definition 2.3.10 ([31, Definition 3.14]). Let Hypothesis (2.3.7) be given. The basic
reach $[ (γ) of the modular bridge γ is the reach of the basic bridge γ[ with respect
to (LA, LB), i.e.

max

{
supa∈sa(A),LA(a)61 infb∈sa(B),LB(b)61 bnγ (a, b)
supb∈sa(B),LB(b)61 infa∈sa(A),LA(a)61 bnγ (a, b)

}
.

We provide an alternative expression for the basic reach of a modular bridge.
Indeed, the basic reach is where we actually take the Hausdorff distance between
quasi-Leibniz quantum compact metric spaces in an appropriate sense. We shall
use the following notation for the Hausdorff distance on a pseudo-metric space.

Notation 2.3.11. Let X be a set and d be a pseudo-metric on X. For any nonempty
subset A ⊆ X and for any x ∈ X, we set:

d(x, A) = inf{d(x, y) : y ∈ A}.

For any two nonempty sets A, B ⊆ X, we then define, following [13]:

Hausd(A, B) = sup {d(x, B), d(y, A) : x ∈ A, y ∈ B} .

We thus observe, using the notations of Hypothesis (2.3.7) and of Definition
(2.3.8), that:

(2.3.1) $[ (γ) = Hausbnγ(·,·) ({(a, 0) ∈ A⊕B : a ∈ sa (A), LA(a) 6 1} ,

{(0, b) : b ∈ sa (B), LB(b) 6 1}) .

The motivation to use the bridge seminorm, i.e. to involve the pivot, in Equa-
tion (2.3.1), in place of the norm ‖ · ‖D of D, is that the pivot allows us to “cut-off”
elements and thus may be used as a noncommutative substitute for truncation.
This fact is explained and illustrated in [25].

The cost of replacing the norm of D by the bridge seminorm in Equation (2.3.1)
is measured by the next quantity associated with a modular bridge.

Definition 2.3.12 ([31, Definition 3.16]). Let Hypothesis (2.3.7) be given. The height
ς (γ) of the modular bridge γ is the height of the basic bridge γ[ with respect to
(LA, LB), i.e.:

max
{

HausmkLA
(S (A), π∗A (S (D|x))) , HausmkLB

(S (B), π∗B (S (D|x)))
}

.

The height of a bridge involves computation in each of the domain and co-
domain of the bridge, but not in between them. Its definition is what justifies that
pivot must have nonempty 1-level set.

We now turn to the new quantities which we define for modular bridges, which
naturally relate to the module structure. The first of these numerical values, called
the reach of a modular bridge, is derived from a new natural seminorm defined
by a modular bridge. We continue to choose our terminology from the lexical field
of bridges.
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Definition 2.3.13. Let Hypothesis (2.3.7) be given. The deck seminorm dnγ (·, ·) is
the seminorm on M ⊕N defined for all ω ∈M and η ∈ N by:

dnγ (ω, η) = max {bnγ (〈ω, ωk〉M , 〈η, ηk〉N ),

bnγ (〈ωk, ω〉M , 〈ηk, η〉N ) : k ∈ J} .

We continue using the notations of Definition (2.3.13). We emphasize that when
working with dnγ (·, ·), we only require the structure of vector space on M ⊕N .
We also record the deck seminorm does not involve any explicit need to embed
M and N is some left Hilbert module. We rely instead on the well understood
idea behind noncommutative isometric embeddings of quantum metric spaces
and avoid the need to introduce a similar, non-obvious notion for modules.

Furthermore, the deck seminorm is defined with a symmetry in mind, which
will prove useful in the notion of the inverse of a bridge defined at the end of this
section.

The reach of a modular bridge requires the definition of two additional quanti-
ties besides the basic reach. The first quantity, the modular reach, regards the pair-
ing of anchors and co-anchors. We underscore that, in the construction of the deck
seminorm, we match anchors and co-anchors with the same index in the modu-
lar bridge. Therefore, when constructing of a modular bridge, we must make an
astute choice, with the idea that each pair of anchor and co-anchor are expected
to be “close” in a sense quantified, ultimately, by the modular reach, via the deck
seminorm.

Definition 2.3.14. Let Hypothesis (2.3.7) be given. The modular reach $] (γ) is the
nonnegative number:

max
{

dnγ

(
ωj, ηj

)
: j ∈ J

}
.

The last quantity needed to define the reach of a modular bridge is the im-
print. The modular bridge only involves anchors and co-anchors, and the cost
of this choice, rather than taking some Hausdorff distance between unit balls for
D-norms, is measured by the following quantity:

Definition 2.3.15. Let Hypothesis (2.3.7) be given. The imprint v (γ) of the modu-
lar bridge γ is:

max
{

HauskDM

({
ωj : j ∈ J

}
, D1 (ΩA)

)
,

HauskDN

({
ηj : j ∈ J

}
, D1 (ΩB)

)}
.

We now define the reach of a modular bridge as a synthetic valued which ad-
equately combines the basic reach, the modular reach, and the imprint. Our def-
inition is immediately followed with a proposition which, we hope, will clarify
the meaning of the reach of a modular bridge — and which will prove crucial for
our work in allowing for the definition of target sets for modular bridges, to come
shortly.

Definition 2.3.16. Let Hypothesis (2.3.7) be given. The reach $ (γ) of the modular
bridge γ is the nonnegative value:

$ (γ) = max
{

$[ (γ), $] (γ) + v (γ)
}

.



32 FRÉDÉRIC LATRÉMOLIÈRE

Proposition 2.3.17. Let Hypothesis (2.3.7) be given. If ω ∈ M with DM (ω) 6 1 and
if j ∈ J is chosen so that kΩA

(ω, ωj) 6 v (γ), then dnγ

(
ω, ηj

)
6 $ (γ). The result also

holds if ΩA and ΩB are switched.
We then have:

(2.3.2) max


supa∈sa(A),LA(a)61 infb∈sa(B),LB(b)61 bnγ (a, b)
supb∈sa(B),LB(b)61 infa∈sa(A),LA(a)61 bnγ (a, b)
supω∈M ,DM (ω)61 infη∈N ,DN (η)61 dnγ (ω, η)

supη∈N ,DN (η)61 infω∈M ,DM (ω)61 dnγ (ω, η)

 6 $ (γ).

Proof. By Definition (2.3.10) and Definition (2.3.16), it is sufficient to prove that:

max

{
supω∈M ,DM (ω)61 infη∈N ,DN (η)61 dnγ (ω, η)

supη∈N ,DN (η)61 infω∈M ,DM (ω)61 dnγ (ω, η)

}
6 $ (γ).

Let ω ∈ DM with DM (ω) 6 1. By Definition (2.3.15), there exists j ∈ J such
that:

kΩA
(ω, ωj) 6 v (γ).

Now, by Definition (2.3.14), we have:

dnγ

(
ωj, ηj

)
6 $] (γ).

Thus, for any k ∈ J, we compute:∥∥∥πA (〈ω, ωk〉M ) x− xπB

(〈
ηj, ηk

〉
N

)∥∥∥
D

6
∥∥∥πA

(
〈ω, ωk〉M −

〈
ωj, ωk

〉
M

)
x
∥∥∥
D

+
∥∥∥πA

(〈
ωj, ωk

〉
M

)
x− xπB

(〈
ηj, ηk

〉
N

)∥∥∥
D

6 ‖x‖DkΩA
(ω, ωj) + dnγ

(
ωj, ηj

)
6 v (γ) + $] (γ) 6 $ (γ).

We now observe that since the involution of D is isometric and k ∈ J:∥∥∥πA (〈ωk, ω〉M ) x− xπB

(〈
ηk, ηj

〉
N

)∥∥∥
D

=
∥∥∥x∗πA

(〈
ω, ωj

〉
M

)
− πB

(〈
ηj, ηk

〉
N

)
x∗
∥∥∥
D

.

Since ‖x∗‖D 6 1, a similar computation then proves that for all k ∈ J:∥∥∥πA

(〈
ωk, ωj

〉
M

)
x− xπB

(〈
ηk, ηj

〉
N

)∥∥∥
D
6 $ (γ).

Thus, as desired:
dnγ

(
ω, ηj

)
6 $ (γ).

In particular, we have shown:

supω∈D1(ΩA)
infη∈D1(ΩB) dnγ (ω, η) 6 $ (γ).

A similar computation shows that:

supη∈D1(ΩB) infω∈D1(ΩA)
dnγ (ω, η) 6 $ (γ).

This concludes our proof. �
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We now pause for a few remarks regarding our Definition (2.3.16) of a reach
for the modular bridge. First, unlike in [31], we required in Definition (2.3.4) that
pivots have norm at most one. The result in Proposition (2.3.17) is where this
additional assumption is needed.

Proposition (2.3.17) suggests a competing candidate for the notion of a bridge,
given by the left-hand side of Inequality (2.3.2). This alternate candidate is given
as the maximum of Expression (2.3.1) and the following similar expression for
modules:

(2.3.3) Hausdnγ(·,·) ({(ω, 0) ∈M ⊕N : DM (ω) 6 1} ,

{(0, η) ∈M ⊕N : DN (η) 6 1}) .

This formulation would more closely resemble the definition of the basic reach.
Our preference for Definition (2.3.16) rather than the maximum of Expressions
(2.3.1) and (2.3.3) is at the core of our idea for the construction of the modu-
lar propinquity. Indeed, Definition (2.3.10) employs the match between anchors
and co-anchors. This pairing is essential, because it also appears in the Definition
(2.3.13) of the deck seminorm and actually, it is the approach we use to construct
a seminorm from a couple of sesquilinear maps.

Indeed, we also could have introduced anchors and co-anchors in the construc-
tion of the quantum propinquity. Namely, an “anchored” bridge from (A, LA) to
(B, LB) could be of the form γ = (D, x, πA, πB, (aj)j∈J , (bj)j∈J) with aj ∈ L1 (LA)
and bj ∈ L1 (LB) for all j ∈ J. We then could define the “anchored” reach as we
just did for modular bridge, i.e. as the maximum of max{bnγ

(
aj, bj

)
: j ∈ J} and

of a kind of imprint, i.e. max{Haus‖·‖A({aj : j ∈ J},L1 (LA)), Haus‖·‖A({aj : j ∈
J},L1 (LA))}. The length of an anchored bridge would then be the maximum of
its anchored reach and its height, defined in the usual manner.

Yet such a definition of a bridge reach would not change our construction of the
quantum propinquity. Indeed, Proposition (2.3.17) could be adapted to prove that
the reach of the bridge (D, x, πA, πB) is lesser or equal than the anchored reach
of γ. It is also easy to check that given a bridge (D, x, πA, πB) in the sense of
[31, Definition 3.6], there always is a mean to construct an anchor bridge with the
same length. We refer briefly to [31] for various notions which we will extend in a
moment to modular bridges, and the reader may skip the following few details as
they are just a side observation. Using the notion of target sets introduced in [31,
Definition 5.1], we can, for all a ∈ L1 (LA), choose some ba ∈ tγ (a|1), and similarly
by symmetry, for all b ∈ L1 (LB), choose ab ∈ tγ−1 (b|1). With these notations, if
J = L1 (LA)äL1 (LB), and if we set aa = a and bb = b for all a ∈ L1 (LA) and
b ∈ L1 (LB), then: (

D, x, πA, πB, (aj)j∈J , (bj)j∈J
)

is an anchored bridge with the same length than the bridge (D, x, πA, πB). Thus
there is no need for anchors and co-anchors in the construction of the quantum
propinquity.

If such is the case, then why did we introduce anchors in our current work? The
reason lies with the fact that the bridge seminorm is indeed a seminorm because
the maps πA and πB are linear. However the inner products 〈·, ·〉M and 〈·, ·〉N
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are sesquilinear, and thus, to construct our deck seminorm as indeed a seminorm,
we discovered the idea of employing pairs of anchors-co-anchors. While this idea
would not change anything for the quantum propinquity, it becomes essential for
the modular propinquity.

The length of a modular bridge is the synthetic numerical value which summa-
rizes all the information contained in the basic reach, modular reach, height and
imprint of the modular bridge, and from which the modular propinquity will be
computed.

Definition 2.3.18. Let Hypothesis (2.3.7) be given. The length λ (γ) of the modular
bridge γ is the maximum of its reach, its height and its imprint:

λ (γ) = max {ς (γ), $ (γ)} .

We note that a modular bridge always has a finite length.

Lemma 2.3.19. If γ is a modular bridge then λ (γ) < ∞.

Proof. The imprint and the height of a modular bridge are both defined as the
Hausdorff distance between two compact sets and thus are finite.

Now, if ω ∈ D1 (ΩA) and η ∈ D1 (ΩB) then since ‖x‖D 6 1, we have:

dnγ (ω, η) = max
j∈J
‖πA (〈ω, ωk〉M ) x− xπA (〈ω, ωk〉M )‖D 6 2.

Thus $] (γ) 6 2. The reach of γ is thus the maximum of the (finite) basic bridge
reach and the sum of the (finite) imprint and the (finite) modular reach. Thus
$ (γ) < ∞ and thus our proposition is proven. �

Modular bridges are a type of morphism between metrized quantum vector
bundles — though we shall address the question of composition for modular
bridges in our next section with the introduction of modular treks. In the rest
of this section, we formalize the idea that bridges posses some properties akin
to some form of multi-valued morphism. These properties are the essential rea-
son behind the fact that, if the modular propinquity is null between two metrized
quantum vector bundles, then they are fully quantum isometric.

A modular bridge from ΩA to ΩB, with ΩA and ΩB two metrized quantum
vector bundles, defines maps from the domain of the L-seminorm of ΩA to the
power set of domain of the L-seminorm of ΩB.

Definition 2.3.20. Let Hypothesis (2.3.7) be given. For any a ∈ dom (LA) and
l > LA(a), we define the l-target set tγ (a|l) of a for γ as:

tγ (a|l) =
{

b ∈ dom (LB)

∣∣∣∣ LB(b) 6 l
bnγ (a, b) 6 l$ (γ[).

}
.

Definition (2.3.20) ensures that tγ (a|l) = tγ[
(a|l), where the right hand side

is defined in [31, Definition 5.1]. It actually would not matter in our subsequent
work if instead, we had used $ (γ) in place of $ (γ[) in Definition (2.3.20). On the
other hand, thanks to our choice, we can invoke our work in [31] to immediately
conclude:
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Proposition 2.3.21. Let Hypothesis (2.3.7) be given. For all a, a′ ∈ dom (LA) and
l > max{LA(a), LA(a′)}, if b ∈ tγ (a|l) and b′ ∈ tγ (a′|l) then:

(1) tγ (a|l) is a nonempty compact subset of sa (B),
(2) ‖b‖B 6 ‖a‖A + 2lλ (γ),
(3) for all t ∈ R we have b + tb′ ∈ tγ (a + ta′|(1 + |t|)l),
(4) ‖b− b′‖B 6 ‖a− a′‖A + 4lλ (γ),
(5) We have:

b ◦ b′ ∈ tγ
(
a ◦ a′

∣∣F(‖a‖A + 2lλ (γ), ‖a′‖A + 2lλ (γ), l, l)
)

and{
b, b′

}
∈ tγ

({
b, b′

}∣∣F(‖a‖A + 2lλ (γ), ‖a′‖A + 2lλ (γ), l, l)
)
.

In particular, for all a ∈ dom (LA) and l > LA(a), we have:

diam (tγ (a|l), ) 6 4lλ (γ).

Proof. Assertion (1) is [31, Lemma 5.2] and since it is a closed subset of the norm
compact Ll (LB). Assertion (2) follows from [31, Proposition 5.3]. Assertion (3)
follows from [31, Proposition 5.4]. Assertion (4) follows from Assertion (2) and
Assertion (3). Assertion (5) is established by noting:

LB(b ◦ b′) 6 F(‖b‖B, ‖b′‖B, l, l) 6 F(‖a‖A + 2λ (γ), ‖a′‖A + 2lλ (γ), l, l),

and similarly for the Lie product. Setting a = a′ gives us the given estimate on the
diameter of tγ (a|l). �

We now define the target set for elements in the domain of a D-norm.

Definition 2.3.22. Let Hypothesis (2.3.7) be given. For any ω ∈ M and l >
DM (ω), we define the l-modular target set of ω for γ as:

tγ (ω|l) =
{

η ∈ N

∣∣∣∣ DN (η) 6 l
dnγ (ω, η) 6 l$ (γ)

}
.

We begin by observing that modular target sets are compact and non-empty.

Proposition 2.3.23. Let Hypothesis (2.3.7) be given. For any ω ∈ dom (DM ) and
l > DM (ω), the set tγ (ω|l) is a nonempty compact for ‖ · ‖N (or equivalently for kΩB

).

Proof. By Proposition (2.3.17), for all ω ∈ D1 (ΩA) there exists η ∈ D1 (ΩB) such
that dnγ (ω, η) 6 $ (γ). Thus, if DM (ω) 6 l for some ω ∈ M , it follows from
homogeneity that there exists η ∈ Dl (ΩB) such that dnγ (ω, η) 6 l$ (γ) since
dnγ (·) is a seminorm. Therefore, tγ (ω|l) 6= ∅.

By construction tγ (ω|l) is a subset of the compact set Dl (ΩB) (for ‖ · ‖N or
for kΩB

, as both give the same topology on Dl (ΩB)). Thus it is sufficient to prove
that tγ (ω|l) is closed.

Let (ηn)n∈N be a sequence in tγ (ω|l), converging to some η for ‖ · ‖N . Since
DN is lower semi-continuous with respect to ‖ · ‖N , we have DN (η) 6 l.

Moreover, by continuity, dnγ (ω, η) 6 l$ (γ) since dnγ (ω, η) 6 l$ (γ). This
proves that η ∈ tγ (ω|l) as desired. �
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The fundamental property of modular target sets for a modular bridge γ is
that their diameter in the modular Monge-Kantorovich metric is controlled by the
length of γ — and, in contrast with target sets for basic bridges, not their diam-
eter in the C∗-Hilbert norm. We begin with a well-known lemma included for
convenience.

Lemma 2.3.24. If A is a C*-algebra, a ∈ A, and there exists M > 0 such that for all
ϕ ∈ S (A) we have:

max {|ϕ(<(a))|, |ϕ(=(a))|} 6 M,

then:
‖a‖A 6

√
2M.

Proof. Let b ∈ sa (A) then the functional calculus implies that ‖b‖A = sup{|ϕ(b)| :
ϕ ∈ S (A)}. Thus for all a ∈ A, we compute:

‖a‖2
A = ‖aa∗‖A
= ‖(<(a) + i=(a))(<(a) + i=(a))∗‖A
= ‖<(a)2 +=(a)2‖A
6 ‖<(a)‖2 + ‖=(a)‖2

= (sup{|ϕ(<(a)) : ϕ ∈ S (A)})2 + (sup{|ϕ(=(a)) : ϕ ∈ S (A)})2

6 2M2.

This concludes our lemma. �

Proposition 2.3.25. Let Hypothesis (2.3.7) be given.
If ω, ω′ ∈M , l > max {DM (ω), DM (ω′)}, η ∈ tγ (ω|l) and η′ ∈ tγ (ω′|l), then:

kDN
(η, η′) 6

√
2
(
kDM

(ω, ω′) + (4l + H(2l, 1))λ (γ)
)

.

In particular:

diam
(
tγ (ω|l), kLN

)
6
√

2(4l + H(2l, 1))λ (γ).

Proof. Let θ = η − η′ and ζ = ω−ω′. Note that:

max {DN (θ), DM (ζ)} 6 2l.

Let ϕ ∈ S (B) and let ν ∈ D1 (ΩA).
There exists j ∈ J such that kDN

(ν, ηj) 6 v (γ) by Definition (2.3.15).
By Definition (2.3.12), there exists ψ ∈ S (D|x) with mkLB(ϕ, ψ ◦ πB) 6 ς (γ).
Note that DN (ηj) 6 1, and therefore, using the inner quasi-Leibniz inequality,

we have:

max
{

LB

(
<
〈
θ, ηj

〉
N

)
, L
(
=
〈
θ, ηj

〉
N

)}
6 H(2l, 1).

We also note that since ψ is a state, we have:

|ψ(<(d))| = |<(ψ(d))| 6 |ψ(d)| and, similarly: |ψ(=(d))| 6 |ψ(d)|

for all d ∈ D.
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Now, letting m = H(2l, 1):

|ϕ (<〈θ, ν〉N )| 6 2lλ (γ) +
∣∣∣ϕ (<〈θ, ηj

〉
N

)∣∣∣ by Def. (2.3.15),

6 (2l + m)λ (γ) +
∣∣∣ψ ◦ πB

(
<
〈
θ, ηj

〉
N

)∣∣∣ by choice of ψ,

6 (2l + m)λ (γ) +
∣∣∣ψ ◦ πB

(〈
θ, ηj

〉
N

)∣∣∣
6 (2l + m)λ (γ) +

∣∣∣ψ (πB(
〈
θ, ηj

〉
N

)x
)∣∣∣ by Def. (2.3.1),

6 (4l + m)λ (γ) +
∣∣∣ψ (xπA(

〈
ζ, ωj

〉
M

)
)∣∣∣ by Prop. (2.3.17),

6 (4l + m)λ (γ) +
∣∣∣ψ ◦ πA

(〈
ζ, ωj

〉
M

)∣∣∣ by Def. (2.3.1),

6 (4l + m)λ (γ) +
∥∥∥〈ζ, ωj

〉
M

∥∥∥
A

6 (4l + m)λ (γ) +
∥∥∥〈ω, ωj

〉
M
−
〈
ω′, ωj

〉
M

∥∥∥
A

6 (4l + m)λ (γ) + kLω
(ω, ω′).

The same computation holds for < replaced with =, and thus we record:

|ϕ (=〈θ, ν〉N )| 6 (4l + m)λ (γ) + kLω
(ω, ω′),

and therefore by Lemma (2.3.24), we conclude:

‖〈θ, ν〉N ‖B 6
√

2
(
(4l + m)λ (γ) + kD(ω, ω′)

)
.

Thus:
kDN

(η, η′) = sup
{
‖〈θ, ν〉N ‖B : ν ∈ D1 (ΩB)

}
6
√

2
(
(4l + m)λ (γ) + kD(ω, ω′)

)
.

Our proof is thus complete. The assertion on the diameter is obtained simply by
letting ω = ω′. �

Our first relation between target sets on modules and the module algebraic
structure concerns linearity, as expressed in the following proposition.

Proposition 2.3.26. Let Hypothesis (2.3.7) be given. If:
(1) ω, ω′ ∈M ,
(2) l > DM (ω) and l′ > DM (ω′),
(3) η ∈ tγ (l|ω) and η′ ∈ tγ (ω′|l′),
(4) t ∈ R,

then:
η + tη′ ∈ tγ

(
ω + tω′

∣∣l + |t|l′).
Proof. Since DN (η) 6 l and DN (η′) 6 l′, we have DN (η + tη′) 6 l + |t|l′.

On the other hand, we note that since dnγ (·) is a seminorm M ⊕N , we con-
clude that:

dnγ

(
ω + tω′, η + tη′

)
6 dnγ (ω, η) + |t|dnγ

(
ω′, η′

)
6 (l + |t|l′)$ (γ).

This completes our proof. �
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We now prove that target sets also behave predictably with respect to the left
action on the module. This proposition is where the modular quasi-Leibniz in-
equality plays its role.

Proposition 2.3.27. Let Hypothesis (2.3.7) be given. Let a ∈ dom (LA), ω ∈ dom (DM ),
and l > DM (ω) and l′ > LA(a). Let b ∈ tγ (a|l′) and η ∈ tγ (ω|l). Then:

bη ∈ tγ
(
aω
∣∣G(‖a‖A + 2λ (γ), l, l′)

)
.

Proof. We begin with the observation that:

DN (bη) 6 G (‖b‖B, LB(b), DM (η))

6 G(‖a‖A + 2lλ (γ), l′, l),

using Proposition (2.3.21).
We also note that for any j ∈ J:∥∥∥πA

(〈
aω, ωj

〉
M

)
x− xπB

(〈
bη, ηj

〉
N

)∥∥∥
D

=
∥∥∥πA(a)πA

(〈
ω, ωj

〉
M

)
x− xπB(b)πB

(〈
η, ηj

〉
N

)∥∥∥
D

6
∥∥∥πA(a)πA

(〈
ω, ωj

〉
M

)
x− πA(a)xπB

(〈
η, ηj

〉
M

)∥∥∥
D

+
∥∥∥πA(a)xπB

(〈
η, ηj

〉
M

)
− xπB(b)πB

(〈
η, ηj

〉
N

)∥∥∥
D

6 ‖a‖A
∥∥∥πA

(〈
ω, ωj

〉
M

)
x− xπB

(〈
η, ηj

〉
M

)∥∥∥
D

+ ‖πA(a)x− xπB(b)‖D
∥∥∥πB

(〈
η, ηj

〉
N

)∥∥∥
D

6 ‖a‖Adnγ (ω, η) + bnγ (a, b)‖η‖N
6 ‖a‖Al$ (γ) + l′$ (γ)DN (η)

6 λ (γ)
(
‖a‖Al + l′l

)
6 λ (γ)G(‖a‖A, l, l′) by Def. (2.2.6),

6 λ (γ)G(‖a‖A + 2lλ (γ), l, l′).

A similar computation proves that:∥∥∥πB

(〈
ωj, aω

〉
M

)
x− xπA

(〈
ηj, bη

〉
N

)∥∥∥
D

=
∥∥∥πB

(〈
bη, ηj

〉
N

)
x∗ − x∗πA

(〈
aω, ωj

〉
M

)∥∥∥
D

6 λ (γ)G(‖a‖A + 2lλ (γ), l, l′).

Therefore, dnγ (aω, bη) 6 λ (γ)G(‖a‖A + 2lλ (γ), l, l′) since j ∈ J is arbitrary.
Thus bη ∈ tγ (ω|G(‖a‖A + 2lλ (γ), l, l′)). �

We now relate modular bridges and the inner products on modules, which il-
lustrate the role of the inner quasi-Leibniz inner inequality.

Proposition 2.3.28. Let Hypothesis (2.3.7) be given. Let ω ∈ M and l > DM (ω). If
η ∈ tγ (ω|l) and b ∈ tγ (〈ω, ω〉M |H(l, l)) then:

‖b− 〈η, η〉N ‖B 6 (8l
√

2 + H(2l, 2l) + 2H(l, l) + 2
√

2H(2l, 1))λ (γ).
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Proof. If l = 0 then ω = 0, η = 0 and b = 0 thus the proposition is trivial. Let us
assume l > 0.

Let ω ∈ dom (DM ) and l > DM (ω). Let η ∈ tΓ (ω|l). We note that:

max
{

LA

(
〈ω, ω〉ΩA

)
, LB

(
〈η, η〉ΩB

)}
6 H(l, l),

noting 〈ω, ω〉ΩA
and 〈η, η〉ΩB

are self-adjoint.
Let b ∈ tγ (〈ω, ω〉M |H(l, l)).
By Definition (2.3.15) of v (γ), there exists j ∈ J such that:

kΩA
(ω, lωj) 6 lv (γ).

It follows that
〈
ω, ω− lωj

〉
M

= l
〈
l−1ω, ω− lωj

〉
M
6 lkΩA

(ω, lωj) 6 l2v (γ).
Moreover, by Proposition (2.3.17), we have:

dnγ

(
ω, lηj

)
6 l$ (γ) 6 lλ (γ).

We then have, since ‖x‖D 6 1:

∥∥∥πA (〈ω, ω〉M ) x− xπB

(〈
lηj, lηj

〉
N

)∥∥∥
D

6 l2v (γ) +
∥∥∥πA

(〈
ω, lωj

〉
M

)
x− xπB

(〈
lηj, lηj

〉
N

)∥∥∥
D

6 l2v (γ) + l
∥∥∥πA

(〈
ω, ωj

〉
M

)
x− xπB

(〈
lηj, ηj

〉
N

)∥∥∥
D

6 l2λ (γ) + ldnγ

(
ω, lηj

)
6 2l2λ (γ).

Now, since lηj ∈ tγ (ω|l) (again Proposition (2.3.17)), we have by Proposition
(2.3.25):

kΩB
(η, lηj) 6

√
2 (4l + H(2l, 1)) λ (γ).

Let ϕ ∈ S (B). By Definition (2.3.12), there exists ψ ∈ S (D) such that kΩB
(ϕ, ψ ◦

πB) 6 ς (γ). We then have:

|ϕ(b− 〈η, η〉M )|
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6 H(2l, 2l)ς (γ) + |ψ ◦ πB(b− 〈η, η〉N )|

6 H(2l, 2l)ς (γ) +
∣∣∣ψ ◦ πB(b−

〈
lηj, lηj

〉
N

)
∣∣∣+ ∣∣∣ψ ◦ πB(

〈
lηj, lηj

〉
N
− 〈η, η〉N )

∣∣∣
6 H(2l, 2l)ς (γ) +

∣∣∣ψ (xπB

(
b−

〈
lηj, lηj

〉
M

))∣∣∣+ ∥∥∥〈lηj, lηj
〉
N
− 〈η, η〉N

∥∥∥
B

6 H(2l, 2l)ς (γ) +
∣∣∣ψ (xπB

(
b−

〈
lηj, lηj

〉
M

))∣∣∣+
+
∥∥∥〈η, η − lηj

〉
N

+
〈
η − lηj, lηj

〉
N

∥∥∥
B

6 H(2l, 2l)ς (γ) +
∣∣∣ψ (xπB

(
b−

〈
lηj, lηj

〉
M

))∣∣∣+
+ lkΩB

(η, lηj) + lkΩB
(η, lηj)

6 H(2l, 2l)ς (γ) +
∣∣∣ψ (xπB

(
b−

〈
lηj, lηj

〉
M

))
−ψ(πA (〈ω, ω〉M ) x) + ψ(πA (〈ω, ω〉M ) x)|

+ 2l
√

2 (4l + H(2l, 1)) λ (γ)

6 H(2l, 2l)ς (γ) + |ψ (xπB(b)− πA (〈ω, ω〉M ) x)|

+
∣∣∣ψ (xπB

(〈
lηj, lηj

〉
M

))
− ψ (πA (〈ω, ω〉M ) x)

∣∣∣
+ 2l
√

2 (4l + H(2l, 1)) λ (γ)

6 H(2l, 2l)λ (γ) + H(l, l)λ (γ) + H(l, l)λ (γ) + 2
√

2l (4l + H(2l, 1)) λ (γ)

6 (8l
√

2 + H(2l, 2l) + 2H(l, l) + 2
√

2H(2l, 1))λ (γ).

This concludes our proposition since b− 〈η, η〉N is self-adjoint in B. �

We now check that modular bridges are essentially symmetric objects. We shall
avoid the term inverse as we shall see that for modular bridges, in contrast to
bridges, the following notion is not quite an inverse in the sense of morphisms.

Definition 2.3.29. The reverse bridge of a bridge deck γ = (D, x, π, ρ, (ω)j∈J , (ηj)j∈J)
is γ∗ = (D, x∗, ρ, π, (ηj)j∈J , (ωj)j∈J).

Lemma 2.3.30. If γ ∈ Bridges [ΩA −→ ΩB] for any two metrized quantum vector
bundles ΩA and ΩB, then γ∗ ∈Bridges [ΩB −→ ΩA] and λ (γ∗) = λ (γ).

Proof. We use the notations of Hypothesis (2.3.7). We note that for all ω ∈M and
η ∈ N we have:

dnγ∗ (η, ω) = dnγ (ω, η)

by construction. This observation justifies the particular symmetry in Definition
(2.3.13).

Moreover for all a ∈ sa (A) and b ∈ sa (B), we have:

bnγ∗ (b, a) = ‖πB(b)x∗ − x∗πA(a)‖D
= ‖(πA(a)x− xπB(b))∗‖D = bnγ (a, b).

Thus $ (γ) = $ (γ∗). The other claims of our lemma are self-evident. �

We remark that for any modular bridge γ we have γ−1
[

= (γ∗)[, by [31, Propo-
sition 4.7].
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We will observe in the next section that we do not need the full generality af-
forded to us by Definition (2.3.4), as we could limit ourselves to working only with
finite families of anchors (and hence of co-anchors). The reason for this observa-
tion is the following lemma.

Lemma 2.3.31. Let Hypothesis (2.3.7) be given. For any ε > 0, there exists a modular
bridge γε from ΩA to ΩB such that:

(1) λ (γε) 6 λ (γ) + ε,
(2) anchors (γ) and coanchors (γ) are finite families.

Proof. Let ε > 0. Since:

D1 (ΩA) =
⋃

ω∈D1(ΩA)

M (ω, ε)

by Definition (2.3.15), and since D1 (ΩA) is compact, there exists a finite set J1 ⊆
D1 (ΩA) such that:

D1 (ΩA) =
⋃

ω∈J1

M (ω, ε).

Similarly, there exists a finite subset J2 of D1 (ΩB) such that:

D1 (ΩB) =
⋃

η∈J1

N (η, ε).

Let J3 = J1 ä J2 be the disjoint union of J1 and J2, itself a finite set.
If j ∈ J1 then we write ωj = j and we choose ηj ∈ tγ (j|1). If j ∈ J2 then we

write ηj = j and we choose ωj ∈ tγ∗ (j|1). These choices are possible since by
Proposition (2.3.23), the target sets involved are all nonempty (and as customary
in functional analysis, we work within ZFC).

Let γε = (ΩA, ΩB,D, x, πA, πB, (ωj)j∈J3 , (ηj)j∈J3).
We now make a few simple observations. We have dnγ

(
ωj, ηj

)
6 $ (γ) for all

j ∈ J3, and thus $] (γε) 6 $ (γ). On the other hand, by construction, v (γε) 6 ε.
Last, we obviously have γ◦ = (γε)◦ by construction.

Therefore, $ (γε) 6 $ (γ) + ε. This concludes our proof since ς (γ) = ς (γε). �

The generality of Definition (2.3.4) is however useful to describe modular bridges
as morphisms in a category, as we shall do now. Indeed, the we are now ready to
introduce the category of metrized quantum vector bundles with modular treks,
which generalize modular bridges and which carry a notion of length, from which
the modular propinquity is computed.

2.4. The modular propinquity. The modular propinquity is constructed using
certain morphisms for metrized quantum vector bundles, called modular treks,
which extend the notion of modular bridges to allow for the definition of compo-
sition. A modular trek, informally, is a finite path made of modular bridges whose
codomains match the domain of the next modular bridge in the trek. It is immedi-
ate to define the length of a modular trek as the sum of the lengths of its constituent
modular bridges. The length of a modular bridge, and by extension of a modular
trek, replaces the notion of distortion for a correspondence sometimes used to de-
fine the Gromov-Hausdorff distance [4]. The modular propinquity between any
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two metrized quantum vector bundles ΩA and ΩB is the infimum of the lengths
of any modular trek between ΩA and ΩB. Concatenation of treks provide a notion
of composition which translates to the fact that the modular propinquity satisfies
the triangle inequality. Symmetry of the modular propinquity follow from the
fact that treks are always reversible, in a sense to be made precise below. We will
handle the more complicated coincidence axiom in the next section.

Since modular treks involve choices of modular bridges, just as with treks in
the construction of the dual Gromov-Hausdorff propinquity [27], we have much
freedom in defining the modular propinquity to best suits a given context. In-
deed, we may reduce the class of allowed modular bridges which may appear
in a given modular trek by imposing additional constraints, such as asking the
L-seminorms involved to be defined on a dense domain in the entire C*-algebra,
additional Leibniz conditions such as the strong Leibniz property, or other addi-
tional requirements on D-norms, pivots, anchors or co-anchors (requirements on
anchors and co-anchors should be symmetric to ensure that we obtain a metric).
This flexibility proved helpful with the dual propinquity and will likely be as well
for the modular propinquity.

Let us thus define modular treks formally:

Definition 2.4.1. Let B be a nonempty class of modular bridges. A modular B-trek
Γ =

(
γj)

j∈{1,...,n} is given by n ∈ N \ {0}modular bridges γ0, . . . , γn such that:

dom
(

γj+1
)
= codom

(
γj
)

for all j ∈ {1, . . . , n− 1}.

The domain dom (Γ) of Γ is dom
(
γ1) and the codomain codom (Γ) of Γ is codom (γn).

A modular trek is a modular B-trek for some nonempty class B of modular
bridges.

We associate the following natural notion of length to modular treks:

Definition 2.4.2. The length of a modular trek Γ = (γj)j∈{1,...,n} is:

λ (Γ) =
n

∑
j=1

λ (γ).

Before introducing the modular propinquity, we first assemble the conditions
needed on a class of modular bridges to allow for the construction of an actual
metric in the following definition, which extends on [27, Definition 3.10].

Definition 2.4.3. Let (F, G, H) be an admissible triple. Let C be a nonempty class
of (F, G, H)–metrized quantum vector bundles. A class B of modular bridges is
compatible with C when:

(1) for all γ ∈ T , we have dom (γ), codom (γ) ∈ C,
(2) for all ΩA, ΩB ∈ C, there exists a modular B-trek from ΩA to ΩB,
(3) for all γ ∈ T , we have γ∗ ∈ T ,
(4) for all ΩA and ΩB in C, if there exists a full quantum isometry Θ : ΩA →

ΩA then for all ε > 0, there exists a modular B-trek Γε from ΩA to ΩB with
λ (Γε) < ε.
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Example 2.4.4. Let (F, G, H) be an admissible triple. Let C be the class of all
(F, G, H)–metrized quantum vector bundles and let B be the class of all bridges
between elements of C. Note that a modular B-trek consists of modular bridges
which only involve (F, G, H)–metrized quantum vector bundles. We check that B
is compatible with C.

Assertions (1) and (3) of Definition (2.4.3) are trivial in this case.
Assertion (2) gives us a chance to observe that a bridge gives rise to a modular

bridge. Let us use the notations of Hypothesis (2.3.7), with the additional assump-
tion that ΩA, ΩB ∈ C.

Let (D, x, πA, πB) be a bridge from A to B with ‖x‖D 6 1. If we pick any ω ∈
D1 (ΩA) and η ∈ D1 (ΩB), then (ΩA, ΩB,D, x, πA, πB, ω, η) is a modular bridge
inB from ΩA to ΩB (identifying family of a single element with the element itself).

Now by [31, Proposition 4.6], there does exist a bridge from A to B with a (self-
adjoint) pivot of norm 1. Thus, Assertion (2) holds as well.

Last, keeping the same notations, assume that (Θ, θ) is a full quantum isometry
from ΩA to ΩB. We simply define the following one-bridge trek:(

ΩA, ΩB,B, 1B, θ, idB, (a)a∈D1(ΩA)
, (Θ(a))a∈D1(ΩA)

)
where idB is the identity of B. A straightforward computation shows that λ (γ) =
0.

We will find the following notation helpful.

Notation 2.4.5. Let C be nonempty class of metrized quantum vector bundles and
let B be a compatible class of modular bridges. Let ΩA and ΩB be chosen in C.
The class of all modular B-treks from ΩA to ΩB is denoted by:

Treks
[
ΩA

B−→ ΩB

]
.

We are now ready to introduce the main definition of this work.

Definition 2.4.6. Let C be a nonempty class of (F, G, H)–metrized quantum vec-
tor bundles for some admissible triple (F, G, H) and let B be a class of modular
bridges compatible with C. The modular Gromov-Hausdorff B-propinquity between
two metrized quantum vector bundles ΩA and ΩB in C is:

Λmod
B (ΩA, ΩB) = inf

{
λ (Γ) : Γ ∈ Treks

[
ΩA

B−→ ΩB

]}
.

Notation 2.4.7. If C is the class of all Leibniz metrized quantum vector bundles and
B is the class of all modular bridges, then Λmod

B is simply denoted Λmod.

We now proceed to prove that the modular propinquity is a metric up to full
quantum isometry, for any compatible class of modular bridges. In the process,
we will show that modular treks are morphisms in some category of metrized
quantum vector bundles. The coincidence axiom is by far the most involved prop-
erty to establish, and will be the subject of the next section.

We begin by observing that the modular propinquity is always finite, and it
dominates the quantum Gromov-Hausdorff propinquity. We begin with the natu-
ral definition of a basic trek.
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Definition 2.4.8. If Γ = (γj)j∈{1,...,n} is a modular trek, then:

Γ[ =
(

bqs
(

dom
(

γj
))

, γ
j
[
, bqs

(
codom

(
γj
))

: j ∈ {1, . . . , n}
)

is a trek from bqs (dom (Γ)) to bqs (codom (Γ)).

Remark 2.4.9. In [31, Definition 3.20], treks explicitly included domains and codomains
of bridges while bridges did not in [31, Definition 3.6]. We have made a different
choice of notation, and thus our treks need not include the domain and codomain
information already contained in modular bridges.

Proposition 2.4.10. Let C be a nonempty class of (F, G, H)–metrized quantum vector
bundles for some admissible triple (F, G, H) and let B be a class of modular bridges com-
patible with C. If:

ΩA = (MA, 〈·, ·〉A, DA,A, LA) and ΩB = (MB, 〈·, ·〉B, DB,B, LB)

are two metrized quantum vector bundles in C, and if Γ ∈ Treks
[
ΩA

B−→ ΩB

]
, then:

λ (Γ[) 6 λ (Γ),

and thus:
ΛC((A, LA), (B, LB)) 6 Λmod

B T (ΩA, ΩB) < ∞.

Proof. By Definition (2.3.8), if γ ∈ B then γ[ ∈ Bridges [A −→ B]. Moreover
λ (γ[) 6 λ (γ) since ς (γ[) = ς (γ) by Definition (2.3.12) while $ (γ[) = $[ (γ) 6
$ (γ) by Definition (2.3.10).

Now, if Γ = (γj)j∈{1,...,n} ∈ Treks
[
ΩA

B−→ ΩB

]
then γ[ = (γ

j
[
)j∈{1,...,n} is a trek

from (A, LA) to (B, LB) and:

λ (γ[) =
n

∑
j=1

λ
(

γ
j
◦
)
6

n

∑
j=1

λ
(

γj
)
= λ (Γ).

This proves that by definition:

Λ((A, LA), (B, LB)) 6 Λmod
B (ΩA, ΩB).

The modular propinquity is finite since there exists at least one modular trek
from ΩA to ΩB in B by Definition (2.4.3). Now, a modular trek always has finite
length, since modular bridges always have finite length by Lemma (2.3.19). �

We now prove that the modular propinquity is symmetric in its arguments and
satisfies the triangle inequality. These facts rely on the fact that treks can be re-
versed and composed.

Definition 2.4.11. The reverse of a modular trek Γ = (γj)j∈{1,...,n} is the modular

trek Γ∗ =
(

γ∗n+1−j

)
j∈{1,...,n}

.

Lemma 2.4.12. Let C be a nonempty class of (F, G, H)–metrized quantum vector bundles,
where (F, G, H) is an admissible triple, and let B be a class of modular bridges compatible
with C. If Γ is a modular B-trek then Γ∗ is a modular B-trek from codom (Γ) to dom (Γ);
moreover λ (Γ) = λ (Γ∗).



THE MODULAR GROMOV-HAUSDORFF PROPINQUITY 45

Proof. This statement is immediate since a compatible class of modular bridges
is closed by inversion of modular bridges by Definition (2.4.3), and by Lemma
(2.3.30). �

We do not have a direct mean to compose modular bridges — similarly as the
situation with bridges in [31]. However, we can easily compose modular treks.

Definition 2.4.13. Let Γ1 =
(

γ1
j

)
j∈{1,...,n}

and Γ2 =
(

γ2
j

)
j∈{1,...,m}

be two modular

treks. The composed modular trek Γ1 ? Γ2 is the trek from dom (Γ1) to codom (Γ2)
given by

(
γ1

1, . . . , γ1
n, γ2

1, . . . , γ2
m
)
.

Lemma 2.4.14. Let C be a nonempty class of (F, G, H)–metrized quantum vector bundles,
with (F, G, H) is an admissible triple, and let B be a class of modular bridges compatible
with C. If Γ1 and Γ2 are two modular B-treks, then Γ1 ? Γ2 is a modular B-trek and:

λ (Γ1 ? Γ2) = λ (Γ1) + λ (Γ2).

Proof. The result follows immediately from the Definition (2.4.2) of the length of a
modular trek and Definition (2.4.13). �

Proposition 2.4.15. Let C be a nonempty class of (F, G, H)–metrized quantum vector
bundles, with (F, G, H) an admissible triple, and let B be a class of modular bridges com-
patible with C. If ΩA, ΩB, and ΩD are three metrized quantum vector bundles in C,
then:

Λmod
B (ΩA, ΩB) 6 Λmod

B (ΩA, ΩD) + Λmod
B (ΩD, ΩB) ,

and

Λmod
B (ΩA, ΩB) = Λmod

B (ΩB, ΩA) .

Proof. Let ε > 0. There exists modular treks Γ1 and Γ2, respectively from ΩA to
ΩB and ΩB to ΩD, such that:

λ (Γ1) 6 Λmod
B (ΩA, ΩB) +

ε

2
and λ (Γ2) 6 Λmod

B (ΩB, ΩD) +
ε

2
.

Let Γ = Γ1 ? Γ2. Then:

Λmod
B (ΩA, ΩD) 6 λ (Γ)

= λ (Γ1) + λ (Γ2)

6 Λmod
B (ΩA, ΩB) + Λmod

B (ΩB, ΩD) + ε.

As ε > 0 is arbitrary, we conclude that:

Λmod
B (ΩA, ΩB) 6 Λmod

B (ΩA, ΩD) + Λmod
B (ΩD, ΩB) ,

as desired.
Symmetry follows from Lemma (2.4.12). �

We conclude by observing that the modular propinquity is a pseudo-metric, i.e.
in addition to being finite, symmetric and satisfy the triangle inequality, it is null
whenever two metrized quantum vector bundles are full quantum isometric.



46 FRÉDÉRIC LATRÉMOLIÈRE

Proposition 2.4.16. Let C be a nonempty class of (F, G, H)–metrized quantum vector
bundles, with (F, G, H) an admissible triple, and let B be a class of modular bridges com-
patible with C. Let:

ΩA = (MA, 〈·, ·〉A, DA,A, LA) and ΩB = (MB, 〈·, ·〉B, DB,B, LB)

be two metrized quantum vector bundles in C.
If there exists a full quantum isometry (θ, Θ) from ΩA to ΩB, then Λmod

B (ΩA, ΩB) =
0.

Proof. By Definition (2.4.3), for all ε > 0, there exists a modular B-trek Γε from ΩA

to ΩB such that λ (Γε) < ε. Thus Λmod
B (ΩA, ΩB) < ε. This proves our result. �

We pause for an observation which formalizes the intuition we have followed
when working with treks. If Ω = (M , 〈·, ·〉M , D,A, LA) is a metrized quantum
vector bundle then we may define a canonical modular bridge idbridgeΩ from
ΩA to ΩB by setting:

idbridgeΩ =
(
A, 1A, idA, idA, (ω)ω∈D1(Ω), (ω)ω∈D1(Ω)

)
∈Bridges [Ω −→ Ω],

where idA is the identity *-automorphism of A. We immediately that λ (idbridge) =
0, and it is natural to think of idbridge as the identity bridge of Ω.

Identifying modular bridges with modular treks reduced to a single bridge, we
thus seem to have gathered many key ingredients for a category: modular treks
compose, and we have an identity modular trek for any metrized quantum vector
bundles. Moreover, we will extend in the next section the various properties of
target sets for modular bridges to modular treks; while not a part of the require-
ment to define a category, these morphism-like properties certainly push forth the
idea that modular treks ought to be considered a type of morphisms of metrized
quantum vector bundles.

There are two small issues to deal with to complete this picture. First of all, we
must work with modular treks up to a notion of reduction. Indeed, even compo-
sition a trek with the identity trek of its domain or co-domain does not lead to the
same modular trek with our definitions. It is however easy to define a notion of a
reduced modular trek, which is a trek with no loop. Formally, if Γ = (γj)j∈{1,...,n} is a
modular trek, then we shall say that Γ is reduced there exists no j < k ∈ {1, . . . , n}
such that dom

(
γj
)
= codom (γk) and anchors

(
γj
)
= coanchors (γk). It is trivial

to prove that any modular trek can be reduced, i.e. it admits a subfamily which is
a reduced trek with the same domain and codomain. We note that a modular trek
with a single bridge is by definition reduced.

Now, we can compose two reduced modular treks to a reduced modular trek
simply by reducing their composition as defined in Definition (2.4.13). It is a sim-
ple exercise to check that composition of reduced treks thus defined is associative
and that the identity treks act as units for the composition.

The second small issue is that our morphism sets for our prospective category
are not sets. There are simply too many possible modular treks between any two
metrized quantum vector bundles. However, this is a very minor issue. The sim-
plest and often sufficient mean to fix this is to restrict which class of metrized
quantum vector bundles we work with in a given context, making sure this class
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is a set, and then use modular treks formed only with metrized quantum vector
bundles in this set.

When working with treks, rather than modular treks, a similar construction
in [31] led to a category with reduced treks as morphisms over the class of quasi-
Leibniz quantum compact metric spaces, and all reduced treks were isomorphisms
— i.e. invertible. We note that in our current modular version, modular treks
may not be invertible, as being invertible requires that the sets of anchors and
co-anchors be the entire closed unit balls of the D-norms of their domain and
codomain. In particular, there are many single-bridge modular treks which are
not an identity bridge.

Now, the length of a modular trek is larger than the length of its reduction,
and thus we could define the modular propinquity with reduced treks only if de-
sired without changing its value. This would introduce unneeded complications,
but it is worth noting that we can bring our construction within this framework.
Indeed, it really shows that the modular propinquity is constructed via a sort of
generalized correspondences in the metric sense.

We now turn to proving that the modular propinquity is indeed a metric up to
full quantum isometry.

2.5. Distance Zero. We continue our study of the morphism-like properties of
modular treks. We extend the notion of a target set from modular bridges to mod-
ular treks, using the notion of an itinerary. There are two kind of target sets for
treks: one defined for elements in modules and one defined for elements in quasi-
Leibniz quantum compact metric spaces. The latter follows the same ideas as in
[31].

Once more, we will group certain common notations and hypothesis for multi-
ple use in this section.

Hypothesis 2.5.1. Let C be a nonempty class of (F, G, H)–metrized quantum vec-
tor bundles, with (F, G, H) be an admissible triple, and let B be a class of modular
bridges compatible with C. Let:

ΩA = (M , 〈·, ·〉M , DM ,A, LA) and ΩB = (N , 〈·, ·〉N , DN ,B, LB)

be two metrized quantum vector bundles in C. Let l > 0.
Let Γ =

(
γj
)

j∈{1,...,n} be a modular trek from ΩA to ΩB.

We begin by recalling [31, Definition 5.7], adjusted to our context.

Definition 2.5.2. Let Hypothesis (2.5.1) be given. Let l > 0. An l-itinerary from
a ∈ dom (LA) to b ∈ dom (LB) along the modular trek Γ is an l-itinerary from a to
b along the basic trek Γ[, i.e. a family (dj)j∈{0,...,n} such that:

(1) d0 = a,
(2) dn = b,
(3) dj+1 ∈ tγj+1

(
dj
∣∣l) for all j ∈ {0, . . . , n− 1}.

The set of all l-itineraries along Γ starting at a and ending at b is denoted by:

Itineraries
(

a Γ−→ b
∣∣∣l).
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We now generalize the notion of itinerary to modules.

Definition 2.5.3. Let Hypothesis (2.5.1) be given and l > 0. An l-itinerary from
ω ∈ dom (DM ) to η ∈ dom (DN ) along the modular trek Γ is a family (ξ j)j∈{0,...,n}
such that:

(1) ξ0 = ω,
(2) ξn = η,
(3) ξ j+1 ∈ tγj+1

(
ξ j
∣∣l) for all j ∈ {0, . . . , n− 1}.

The set of all itineraries along Γ starting at ω and ending at η is denoted by:

Itineraries
(

ω
Γ−→ η

∣∣∣l).

Itineraries allow us to extend the notion of a target set from modular bridges to
modular treks.

Definition 2.5.4. Let Hypothesis (2.5.1) be given. The target set for some a ∈
dom (LA) and l > LA(a) along the modular trek Γ is:

TΓ (ω|l) =
{

b : Itineraries
(

a Γ−→ b
∣∣∣l) 6= ∅

}
.

Definition 2.5.5. Let Hypothesis (2.5.1) be given. The target set for some ω ∈
dom (DM ) and l > DM along the modular trek Γ is:

TΓ (ω|l) =
{

η : Itineraries
(

ω
Γ−→ η

∣∣∣l) 6= ∅
}

.

Definition (2.3.20) was chosen to ensure that, given a modular trek Γ, for all a ∈
bqs (dom (Γ)), we have TΓ (a|l) = TΓ[

(a|l), thus allowing us to directly invoke
[31] to conclude:

Proposition 2.5.6 ([31, Propositions 5.11 and 5.12]). Let us assume Hypothesis (2.5.1).
Let a, a′ ∈ dom (LA) and let l > max{LA(a), LA(a′)}. If b ∈ TΓ (a|l) and b′ ∈
TΓ (a′|l) then the following assertions hold:
1. ‖b− b′‖B 6 ‖a− a′‖A + 4lλ (Γ).
2. diam

(
Tγ[

(a|l), ‖ · ‖B
)
6 4lλ (Γ[).

3. for all t ∈ R, we have:

ηtη′ ∈ TΓ
(
a + ta′

∣∣l(1 + |t|))
4. we have:

b ◦ b′ ∈ TΓ
(
a ◦ a′

∣∣F(‖a‖A + 2lλ (Γ), ‖a′‖A + 2lλ (Γ), l, l)
)

and: {
b, b′

}
∈ TΓ

({
a, a′

}∣∣F(‖a‖A + 2lλ (Γ), ‖a′‖A + 2lλ (γ[), l, l)
)
.

5. TΓ (a|l) is a nonempty subset of Ll (LB).

Proof. Note that γ[ =
(

γ
j
◦
)

j∈{1,...,n}
is a trek from (A, LA) to (B, LB), and TΓ (a|l) =

Tγ[
(a|l), while λ (Γ[) 6 λ (Γ). Thus we may apply our work in [31].

Alternatively, all the statements in this proposition follow from similar tech-
niques to Proposition (2.5.7) applied to Proposition (2.3.21) and Proposition (2.5.8).

�
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With our notion of target sets in hand, we now can generalize Propositions
(2.3.23), (2.3.25), (2.3.26) and (2.3.27) from modular bridges to modular treks.

Proposition 2.5.7. Let us assume Hypothesis (2.5.1), and let us assume that ΩA and
ΩB are (F, G, H)–metrized quantum vector bundle for some admissible triple (F, G, H).

Let ω, ω′ ∈ dom (DM ) and let l > max{DM (ω), DM (ω′)}. If η ∈ TΓ (ω|l) and
η′ ∈ TΓ (ω

′|l) then the following assertions hold:

1. kΩB
(η, η′) 6

√
2
(
kΩA

(ω, ω′) + (4l + H(2l, 1))λ (Γ)
)

.
2. diam

(
TΓ (ω|l), mkΩB

)
6
√

2(4l + H(2l, 1))λ (Γ).
3. for all t ∈ C, we have:

η + tη′ ∈ TΓ
(
ω + tω′

∣∣l(1 + |t|))
4. for all a ∈ dom (LA) and for all l′ > LA(a), if b ∈ TΓ (a|l′), then we have:

bη ∈ TΓ
(
aω
∣∣G(‖a‖A + 2l′λ (Γ), l′, l)

)
.

5. If b ∈ TΓ (〈ω, ω〉M |H(l, l)) then:

‖b− 〈η, η〉N ‖B 6
(

8l
√

2 + H(2l, 2l) + 6H(l, l) + 2
√

2H(2l, 1)
)

λ (Γ).

Proof. We write Ωj = codom
(
γj) for all j ∈ {1, . . . , n} and Ω0 = ΩA.

Let (ξ0, . . . , ξn) ∈ Itineraries
(

ω
Γ−→ η

∣∣∣l) and (ξ ′0, . . . , ξ ′n) ∈ Itineraries
(

ω′
Γ−→ η′

∣∣∣l).

Since ξ j+1 ∈ tγj+1

(
ξ j
∣∣l), Proposition (2.3.25) gives us:

kΩj+1(ξ j+1, ξ ′j+1) 6
√

2
(

kΩj(ξ j, ξ ′j) + (4l + H(2l, 1))λ
(
γj+1

))
.

Thus by induction, we get:

kΩB
(η, η′) 6

√
2

(
mkΩA

(ω, ω′) + (4l + H(2l, 1))
n

∑
j=1

λ
(
γj
))

=
√

2
(
mkΩA

(ω, ω′) + (4l + H(2l, 1))λ (Γ)
)

.

If ω = ω′, then we obtain that diam
(
TΓ (ω|l), mkΩB

)
6
√

2(4l + H(2l, 1))λ (Γ).

We also have ηj+1 + tη′j+1 ∈ tγj

(
ηj + tη′j

∣∣∣l + |t|l) by Proposition (2.3.26). Thus,
by induction, we get that:

η + tη′ ∈ TΓ
(
ω + tω′

∣∣l + |t|l′).
Let now:

(bj)
n
j=0 ∈ Itineraries

(
a Γ−→ b

∣∣∣l).

For each j we have bj+1ηj+1 ∈ tγj

(
bjηj

∣∣G(‖bj‖+ lλ
(
γj
)
, r, l)

)
by Proposition (2.3.27).

Now, as before, we have ‖bj‖ 6 ‖a‖A + l ∑
j
k=0 λ (γk) 6 ‖a‖A + lλ (Γ), and since

λ
(
γj
)
6 λ (Γ), we have:

dj+1ηj+1 ∈ tγj

(
djηj

∣∣G(‖a‖A + 2lλ (Γ), r, l)
)

since G(·, r, l) is weakly increasing. This proves in turn that:

bη ∈ TΓ (aω|G(‖a‖A + 2lλ (Γ), r, l)).
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Last, we address the property of target sets for treks and inner products. To
ease notations, we set:

C =
(

8l
√

2 + H(2l, 2l) + 2H(l, l) + 2
√

2H(2l, 1)
)

,

which is the constant in Proposition (2.3.28). Moreover, we set Ωj = (Mj, 〈·, ·〉j, Dj,Aj, Lj)

for all j ∈ {0, . . . , n}. Moreover, we write γj = (Dj, xj, πj, ρj, anchors
(
γj
)
, coanchors

(
γj
)
).

Let b ∈ TΓ (〈ω, ω〉M |H(l, l)) and (bj)
n
j=0 ∈ Itineraries

(
〈ω, ω〉M

Γ−→ b
∣∣∣H(l, l)

)
.

Let us assume that for some j ∈ {1, . . . , n− 1}, we have:

(2.5.1)
∥∥∥bj −

〈
ξ j, ξ j

〉
N

∥∥∥
Aj
6 (C + 4H(l, l))

j

∑
k=1

λ
(
γj
)
.

By Definition (2.5.2), we have bj+1 ∈ tγj+1

(
bj
∣∣H(l, l)

)
and ξ j+1 ∈ tγj+1

(
ξ j
∣∣l).

There is no expectation that bj+1 ∈ tγj+1

(〈
ξ j, ξ j

〉
Mj

∣∣∣∣H(l, l)
)

. So we introduce

b′j+1 ∈ tγj+1

(〈
ξ j, ξ j

〉
Mj

∣∣∣∣H(l, l)
)

. By Proposition (2.3.25), we have:∥∥∥bj+1 − b′j+1

∥∥∥
Aj+1
6 ‖bj −

〈
ξ j, ξ j

〉
Mj
‖Aj + 4H(l, l)λ

(
γj+1

)
.

On the other hand, by Proposition (2.3.28), we have:∥∥∥b′j+1 −
〈
ξ j+1, ξ j+1

〉
M+

∥∥∥
Aj+1
6 Cλ

(
γj+1

)
.

Therefore:∥∥∥∥bj+1 −
〈
ξ j+1, ξ j+1

〉
Mj+1

∥∥∥∥
Aj+1

6 (C + 4H(l, l))λ
(
γj+1

)
,

and thus using our induction hypothesis (2.5.1), we get:∥∥∥∥bj+1 −
〈
ξ j+1, ξ j+1

〉
Mj+1

∥∥∥∥
Aj+1

6 (C + 4H(l, l))
j+1

∑
k=1

λ (γk),

which is our induction hypothesis (2.5.1) for j + 1.
Now, by Proposition (2.3.28), we have:∥∥∥b1 − 〈ξ1, ξ1〉M1

∥∥∥
A1
6 Cλ (γ1)

6 (C + 4H(l, l))λ (γ1).

Therefore, by induction, we have proven that:

‖b− 〈η, η〉N ‖B 6 (C + 4H(l, l))λ (Γ).

This concludes our proof. �

We also prove that target sets of modular treks are compact.

Proposition 2.5.8. Let us assume Hypothesis (2.5.1). If ω ∈ dom (DM ) and l >
DM (ω) then TΓ (ω|l) is a nonempty and compact subset of Dr (ΩB) for ‖ · ‖N (equiv-
alently for kΩB

).
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Proof. We write Ωj = codom
(
γj) and Ωj = (Mj, 〈·, ·〉Mj

, DMj
,Aj, Lj) for all j ∈

{1, . . . , n}.
We first note that a trivial induction prove that TΓ (ω|l) is not empty using

Proposition (2.3.23).
By construction, TΓ (ω|l) is a subset of the ‖ · ‖N –compact set Dl (ΩB). Thus

it is sufficient to prove that it is closed for ‖ · ‖N .
Let (ηk)k∈N be a sequence in TΓ (ω|l), converging to some η ∈ N for ‖ · ‖N .
Now, for each k ∈ N, let (ω, η1

k , . . . , ηn
k ) be an l-itinerary from ω to ηk. By Defini-

tion (2.2.8), each sequence (η
j
k)k∈N lies in the compact set

{
ξ ∈Mj : DNj

(ξ) 6 l
}

for all j ∈ {1, . . . , n}. Thus by a trivial induction, there exists strictly increasing
functions f j : N → N for j ∈ {1, . . . , n} such that (η j

f1◦···◦ f j(k)
)k∈N converges to

some η j ∈Mj for ‖ · ‖Mj
, for all j ∈ {1, . . . , n}. Let g : k ∈ N 7→ f1 ◦ f2 ◦ · · · ◦ fn(k),

so that (η j
g(k))k∈N converges to η j for all j ∈ {1, . . . , n}.

Our goal is to prove that (ω, η1, . . . , ηn−1, η = ηn) is an l-itinerary along Γ.
To begin with, DMj

(η j) 6 l since DMj
is lower semi-continuous for all j ∈

{1, . . . , n}.
Second of all, by continuity, we also have for all j ∈ {1, . . . , n}:

dnγj

(
η j, η j+1

)
= lim

k→∞
dnγj

(
η

j
k, η

j+1
k

)
6 l$

(
γj
)
.

This concludes our proof. �

Proposition (2.5.8) shows that modular trek target sets are in the hyperspace
of a compact metric space, namely a closed unit ball for some D-norm: the norm
topology and the modular Monge-Kantorovich metric topology on these balls are
indeed the same and compact. The proof of our main Theorem (2.5.11) relies on
an important property of the topology induced by the Hausdorff distance over the
hyperspace of all nonempty closed subsets of a compact space: it only depends on
the topological equivalence class of the chosen metric. We recall this well-known
fact and include a proof for the convenience of the reader.

Lemma 2.5.9. Let X be a compact space with topology τ and let F = {Uc : U ∈ τ, U 6=
X} be the set of all nonempty closed subsets of X. The Vietoris topology is the smallest
topology on F generated from the topological basis:

O(U, V1, . . . , Vn) =
{

F ∈ F : F ⊆ U and ∀j ∈ {1, . . . , n} F ∩Vj 6= ∅
}

for all n ∈ N and U, V1, . . . , Vn ∈ τ.
If d is a metric on X which induced τ, then the topology induced by Hausd is the

Vietoris topology.
Consequently, if d1 and d2 are two metrics which induce the same topology on X then

Hausd1 and Hausd2 induce the same topology on F .

Proof. Let F ∈ F and r > 0. Since F is compact, there exists x1, . . . , xn ∈ F for some
n ∈ N such that F ⊆ ⋃n

j=1 X
(

xj, r
2
)

where the open ball in (X, d) of center any y ∈
X and radius r is denoted by X(y, r). For all j ∈ {1, . . . , n}, we set Vj = X

(
xj, r

2
)
.

Let U =
⋃n

j=1 Vj. Note that by construction, F ∈ O(U, V1, . . . , Vn). Now let
G ∈ O(U, V1, . . . , Vn). If x ∈ G, then x ∈ U and thus x ∈ Vj for some j ∈ {1, . . . , n},
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implying that d(x, F) < r
2 . If x ∈ F, then x ∈ Vj for some j ∈ {1, . . . , n}. Since

G∩Vj 6= ∅, there exists y ∈ G∩Vj and by definition of Vj, we conclude d(x, y) < r.
Hence Hausd(F, G) < r. Thus O(U, V1, . . . , Vn) ⊆ F (F, r).

Let now U, V1, . . . , Vn ∈ τ be given with F ∈ O(U, V1, . . . , Vn). Since X \U is
closed and disjoint from F, we conclude that there exists ε0 > 0 such that, for all
x ∈ F and y ∈ X \U, we have d(x, y) > ε0.

Now, for each j ∈ {1, . . . , n}, there exists xj ∈ F∩Vj and there exists ε j > 0 such
that X(xj, ε j) ⊆ Vj. Let ε = min{ε j : j ∈ {0, . . . , n}}.

Let G ∈ F (F, ε). Let x ∈ G. There exists y ∈ F such that d(x, y) < ε. Thus
x ∈ U since d(x, y) < ε0. Thus G ⊆ U.

Let j ∈ {1, . . . , n}. There exists y ∈ G such that d(xj, y) < ε 6 ε j, and thus by
construction, y ∈ X(xj, ε j) ⊆ Vj and thus G ∩ Vj 6= ∅. We thus have shown that
G ∈ O(U, V1, . . . , Vn). Thus F (F, ε) ⊆ O(U, V1, . . . , Vn).

This proves our lemma. �

We conclude our preliminary statements with a simple, useful lemma which we
will use a few times in our proof of our main theorem.

Lemma 2.5.10. Let (E, dist) be a compact metric space. Let (An)n∈N be a sequence of
closed subsets of E converging to some singleton {a} for Hausdist.

If (xn)n∈N is a sequence in E such that xn ∈ An for all n ∈ N, then (xn)n∈N converges
to a.

Proof. Let ε > 0. There exists N ∈ N such that for all n > N, we have:

Hausdist(An, {a}) < ε.

Thus dist(xn, a) < ε for all n > N. �

We are now ready to prove our main theorem.

Theorem 2.5.11. Let C be a nonempty class of (F, G, H)–metrized quantum vector bun-
dles, with (F, G, H) an admissible triple, and let B be a class of modular bridges compatible
with C. Let ΩA = (M , 〈·, ·〉M ,A, LA) and ΩB = (N , 〈·, ·〉N ,B, LB) be two metrized
quantum vector bundles in C. The following two assertions are equivalent:

I. Λmod
B (ΩA, ΩB) = 0,

II. ΩA and ΩB are fully quantum isometric, i.e. there exists a *-isomorphism θ : A→
B and a linear continuous isomorphism Θ : M → N such that:
1. LB ◦ θ = LA,
2. Θ(aω) = θ(a)Θ(ω) for all a ∈ sa (A), ω ∈M ,
3. DN ◦Θ = DM ,
4. 〈Θ(·), Θ(·)〉N = θ ◦ 〈·, ·〉M .

Proof. For all n ∈ N, let Γn ∈ Treks
[
ΩA

T−→ ΩB

]
be given such that λ (Γn) 6 1

n+1 .
We prove our theorem in a series of claim.

Claim 2.5.12. If ω ∈ dom (DM ) and l > DM (ω), and if f : N → N is a strictly
increasing function, then there exists a strictly increasing function g : N → N such that
the sequence: (

TΓ f ◦g(n) (ω|l)
)

n∈N
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converges to a singleton for the Hausdorff distance Haus‖·‖M .

The sequence
(
TΓ f (n)

(ω|l)
)

n∈N
is a sequence of closed subsets of the compact

Dl (ΩB) by Proposition (2.5.8). The hyperspace of all closed nonempty subsets of
the compact set (Dl (ΩB), kΩB

) is compact for the Hausdorff distance HauskΩB
.

Thus,
(
TΓ f (n)

(ω|l)
)

n∈N
admits a convergent subsequence

(
TΓ f ◦g(n) (ω|l)

)
n∈N

converging for HauskΩB
; let L be its limit.

By Assertion (2) of Proposition (2.5.7), we have diam
(
L, kΩB

)
= 0, i.e. it is a

singleton.
Now, on the compact set Dr (ΩB), both kΩB

and ‖ · ‖N are topologically equiv-

alent by Proposition (2.2.24). Hence,
(
TΓ f ◦g(n) (ω|l)

)
n∈N

converges to L for Haus‖·‖N
by Lemma (2.5.9).

Claim 2.5.13. Let us simplify our notations for this claim. Let (An)n∈N and (Bn)n∈N be
two sequences of nonempty closed subsets in DK (ΩB) for some K > 0 such that, for all
n ∈ N, we have An ⊆ Bn, and moreover:

lim
n→∞

diam
(

Bn, kΩB

)
= lim

n→∞}
diam

(
An, kΩA

)
= 0.

Then (An)n∈N converges for HauskΩB
if and only if (Bn)n∈N converges for HauskΩB

(noting the limit must be a singleton and it must be the same for both sequences).

Assume first that (An)n∈N converges for HauskΩB
— the limit being necessarily

a singleton {η}, since the diameter of An converges to 0 as n goes to infinity.
Let ε > 0. There exists N ∈ N such that for all n > N we have HauskΩB

(An, {η}) <
ε
2 . There exists N′ ∈ N such that for all n > N′, we have diam

(
Bn, kΩB

)
< ε

2 . Let
n > max{N, N′}. If ω ∈ Bn then there exists ξ ∈ An such that kΩB

(ω, ξ) < ε
2 ,

and then we have kΩB
(ξ, η) < ε

2 . Thus kΩB
(ω, η) < ε. It then follows that

HauskΩB
(Bn, {η}) < ε. This proves that (Bn)n∈N converges to {η}.

Assume second that (Bn)n∈N converges for HauskΩB
, again necessarily to a sin-

gleton {η}. It is then immediate that kΩB
(ω, η) 6 HauskΩB

(Bn, {η}) for all ω ∈ An

and thus in particular, (An)n∈N converges to {η} as well.

Claim 2.5.14. If ω ∈ dom (DM ) and l > DM (ω), and if f : N → N is a strictly
increasing function such that (

TΓ f (n)
(ω|l)

)
n∈N

converges to {η} for the Hausdorff distance HauskΩB
, then for all l′ > DM (ω), the

sequence: (
TΓ f (n)

(
ω
∣∣l′))

n∈N

converges to {η} for the Hausdorff distance HauskΩB
.

We note that for all l > l′ > DM (ω), we have:

TΓ f (n)

(
ω
∣∣l′) ⊆ TΓ f (n)

(ω|l)
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for all n ∈ N. Moreover, TΓ f (n)
(ω|l′),TΓ f (n)

(ω|l) ⊆ Dl (ΩB) for all n ∈ N. Last:

lim
n→∞

diam
(
TΓ f (n)

(
ω
∣∣l′), kΩB

)
= lim

n→∞
diam

(
TΓ f (n)

(ω|l), kΩB

)
= 0

by Assertion (2) of Proposition (2.5.7). This allows us to conclude our claim using
Claim (2.5.13).

Claim 2.5.15. There exists f : N→ N strictly increasing such that for all ω ∈ dom (DM )
and for all l > DM (ω), the sequence:(

TΓ f (n)
(ω|l)

)
n∈N

converges to a singleton θ(ω) for the Hausdorff distance HauskΩB
(or equivalently for

Haus‖·‖N ).

We use a diagonal argument and Claim (2.5.12). As a compact metric space, the
closed unit ball of dom (DM ) is separable; however we can be a bit more precise
in our case. For each n ∈ N, let:

(2.5.2) Γn =
(

γn
j : j ∈ {1, . . . , Kn}

)
for some Kn ∈ N \ {0}.

Since the imprint of γn
1 is less than λ (Γn), we note that anchors

(
γn

1
)

is a finite,
1

n+1 -dense subset of (D1 (ΩA), kΩA
).

Let:
S1 =

⋃
n∈N

anchors (γn
1 ).

By construction, the set S is dense in D1 (ΩA) — as well as countable.
For each N ∈ N, the set SN = N ·S1 is dense in DN (ΩA), since we note that

the modular Monge-Kantorovich metric is homogeneous, namely kΩA
(ω, η) =

NkΩA
(N−1ω, N−1η) for all ω, η ∈M .

Thus, S =
⋃

N∈NSN is countable and dense in dom (DM ). Let us write S as
{ωn : n ∈ N}.

By Claim (2.5.12), there exists g0 : N → N strictly increasing, such that the
sequence: (

TΓg0(n)
(ω0|DM (ω0))

)
n∈N

converges to a singleton {Θ(ω0)}.
Assume now that for some k ∈ N, we have built g0 : N → N, . . . , gk : N → N

strictly increasing functions such that for all j ∈ {0, . . . , k}, the sequence:(
TΓg0◦...◦gj(n)

(
ωj
∣∣DM (ωj)

))
n∈N

converges to a singleton {Θ(ωj)}.
Applying our Claim (2.5.12) again, there exists gk+1 strictly increasing, such that(

TΓg0◦...◦gk+1(n)
(ωk+1|DM (ωk+1))

)
n∈N

converges. Thus by induction, there exists

strictly increasing functions gk for all k ∈ N such that:(
TΓg0◦...◦gj(n)

(
ωj
∣∣DM (ωj)

))
n∈N

converges to a singleton denoted by
{

Θ(ωj)
}

for all j ∈ N.
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Since subsequences of converging sequences have the same limit as the original
sequence, we conclude that, if we set f : n ∈ N → f (n) = g0 ◦ · · · ◦ gn(n) ∈ N,
then f is strictly increasing and for all ω ∈ S , the sequence:(

TΓ f (m)
(ω|DM (ω))

)
m∈N

converges to a singleton {Θ(ω)}.
By Claim (2.5.14), we note that for any ω ∈ S and l > DM (ω), we also have:

lim
n→∞

HauskΩB

(
TΓ f (m)

(ω|l), {Θ(ω)}
)
= 0.

We now move to prove that Θ can be extended to dom (DM ). Let ω ∈ dom (DM ).
There exists N ∈ N such that ω ∈ DN (ΩA). We may as well assume that N > 0.

Let ε > 0. There exists ωε ∈ SN such that kΩA
(ω, ωε) <

ε
√

2
12 . Then by Proposi-

tion (2.5.7), we have, for all n ∈ N:

HauskΩB
(TΓn (ω|N),TΓn (ωε|N)) 6

√
2

(√
2ε

12
+ (4N + H(2N, 1))

1
n + 1

)
.

Let N′ ∈ N be chosen so that 1
n+1 6

√
2ε

12(4N+H(2N,1)) for all n > N′.
Therefore, for all n > N′, we have:

HauskΩB
(TΓn (ω|N),TΓn (ωε|N)) 6

ε

3
.

Since TΓ f (n)
(ωε|N) converges for HauskΩB

, it is Cauchy, and thus there exists
N′′ ∈ N such that for all p, q > N′′ we have:

HauskΩB

(
TΓ f (p)

(ωε|N),TΓ f (q)
(ωε|N)

)
6

ε

3
.

Thus if p, q > max{N′, N′′}, we have:

HauskΩB

(
TΓ f (p)

(ω|N),TΓ f (q)
(ω|N)

)
6 HauskΩB

(
TΓ f (p)

(ω|N),TΓ f (p)
(ωε|N)

)
+ HauskΩB

(
TΓ f (p)

(ωε|N),TΓ f (q)
(ωε|N)

)
+ HauskΩB

(
TΓ f (q)

(ωε|N),TΓ f (q)
(ω|N)

)
6

ε

3
+

ε

3
+

ε

3
= ε.

Thus the sequence
(
TΓ f (m)

(ω|N)
)

m∈N
is Cauchy for kΩB

inside the hyperspace

of closed subsets of the compact DN (ΩB). and thus converges by completeness.
Again by Proposition (2.5.7), the limit of

(
TΓ f (m)

(ω|N)
)

m∈N
for HauskΩB

is a

singleton which we denote by {Θ(ω)}. Moreover, by Claim (2.5.14), the sequence(
TΓ f (m)

(ω|l)
)

m∈N
converges in HauskΩB

to {Θ(ω)} for any l > DM (ω). Last,

since kΩB
and ‖ · ‖N are topologically equivalent on DK (ΩB) for any K > 0, the

Hausdorff distances HauskΩB
and Haus‖·‖N are also topologically equivalent by

Lemma (2.5.9), which concludes the proof of our claim.

Claim 2.5.16. For all ω ∈ dom (DM ) we have DN (Θ(ω)) 6 DM (ω).
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Let ω ∈ dom (DM ) and let l = DM (ω). By Claim (2.5.15) and Lemma (2.5.10),
if we pick ηn ∈ TΓ f (n)

(ω|l) for all n ∈ N, then limn→∞ ‖ηn −Θ(ω)‖N = 0. Since
DN is lower semi-continuous (as D1 (ΩB) is compact, hence closed, for the norm
‖ · ‖N ), we conclude that DN (Θ(ω)) 6 l = DM (ω).

Claim 2.5.17. There exists a unital *-morphism θ : A → B such that LB ◦ θ = LA and
a strictly increasing function g : N→ N such that:

i. for all a ∈ dom (LA) and for all l > LA(a), the sequence:(
TΓg(n)

(a|l)
)

n∈N

converges to {θ(a)} for Haus‖·‖B ;
ii. for all ω ∈ dom (DM ) and any l > DM (ω), the sequence:(

TΓg(n)
(ω|l)

)
n∈N

converges to {Θ(ω)} for Haus‖·‖N .

Moreover LB ◦ θ 6 LA.

For all n ∈ N, let Υn = (Γ f (n))[. We note that λ (Υn) 6 1
n+1 by construction.

The construction of θ follows the same techniques as used in [31, Theorem 5.13],
which provides us with a *-isomorphism θ and some strictly increasing function
f1 : N→ N such that, for all ω ∈ dom (LA), the sequence(

TΥ f1(n)
(a|l)

)
n∈N

converges to {θ(a)} for Haus‖·‖B .
The rest of the claim follows if we set g = f ◦ f1.

Claim 2.5.18. For all ω, ω′ ∈ dom (DM ) we have:

θ ◦
〈
ω, ω′

〉
M =

〈
Θ(ω), Θ(ω′)

〉
N .

In particular, ‖Θ(ω)‖N = ‖ω‖M .

Let ω ∈ dom (DM ) and l = DM (ω). For each n ∈ N we pick ηn ∈ TΓg(n)
(ω|l)

and bn ∈ TΓg(n)
(〈ω, ω〉moduleM|H(l, l)).

By Lemma (2.5.10) and Claim (2.5.17), we conclude that limn→∞ bn = θ(〈ω, ω〉M )
and limn→∞ ηn = Θ(ω).

By Proposition (2.5.7), for all n ∈ N, we have:

‖bn − 〈ηn, ηn〉N ‖B
6 λ

(
Γg(n)

) (
8l
√

2 + H(2l, 2l) + 6H(l, l) + 2
√

2H(2l, 1)
)

n→∞−−−→ 0.

Therefore:

〈Θ(ω), Θ(ω)〉N = 〈η, η〉N
= lim

n→∞
〈ηn, ηn〉N

= lim
n→∞

bn = θ(〈ω, ω〉M ).

(2.5.3)
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Let now ω′ ∈ dom (DM ). We note that:

〈
ω, ω′

〉
M =

1
4

3

∑
k=0

ik
〈

ω + ikω′, ω + ik
〉

M
.

The same polarizing identities hold in N . Thus, Equality (2.5.3) coupled with
the above polarizing identities proves our claim.

Claim 2.5.19. For all ω, ω′ ∈M , t ∈ R and a ∈ A:

Θ(ω + tω′) = Θ(ω) + tΘ(ω′)

and
Θ(aω) = θ(a)Θ(ω).

Consequently, Θ is uniformly continuous with from (dom (DM ), ‖ · ‖M ) to (dom (DN ), ‖ ·
‖N ) and thus has a unique extension as a continuous module morphism, denoted in the
same manner, from (M , ‖ · ‖M ) to (N , ‖ · ‖N ).

Let a ∈ dom (LA), ω ∈ dom (DM ) and l > max{LA(a), DM (ω)}. Let bn ∈
TΓg(n)

(a|l) and ηn ∈ TΓg(n)
(ω|l)

By Proposition (2.5.7), we have:

bnηn ∈ TΓn

(
aω
∣∣∣G(‖a‖A + 2lλ

(
Γg(n)

)
, l, l)

)
.

Thus (bnηn)n∈N converges to Θ(aω) by Claim (2.5.15) and Lemma (2.5.10). For
the same reasons, (bn)n∈N converges to θ(a) and (ηn)n∈N converges to Θ(ω). By
continuity of the left module action in N and uniqueness of the limit:

θ(a)Θ(ω) = Θ(aω).

A similar reasoning applies to prove the linearity of Θ. Let ω, ω′ ∈ dom (DM )
and t ∈ C. Let l > max{DM (ω), DM (ω′). For all n ∈ N, we let ηn ∈ TΓg(n)

(ω|l)
and η′ ∈ TΓg(n)

(ω′|l). By Proposition (2.5.7) again, we have:

ηn + tη′n ∈ TΓg(n)
(ω + tω|l + |t|l).

By Lemma (2.5.10) and Claim (2.5.15), we conclude that:

Θ(ω + tω′) = lim
n→∞

(ηn + tη′n)

= lim
n→∞

ηn + t lim
n→∞

η′n

= Θ(ω) + tΘ(ω).

Now, 〈Θ(·), Θ(·)〉N = θ ◦ 〈·, ·〉M so ‖Θ(·)‖N = ‖ · ‖M . Thus Θ, being linear,
is continuous and of norm 1. It thus can be extended to M by continuity as a linear
map.

By continuity, we have that Θ(aω) = θ(a)Θ(ω) for all a ∈ sa (A) and ω ∈
M . By linearity, it follows that (Θ, θ) is a module morphism, as desired. This
completes our claim.

Claim 2.5.20. The map Θ is a continuous module isomorphism of norm 1.
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Let Ξn = Γ∗g(n) for all n ∈ N. By construction, λ (Ξn) 6 1
n+1 . We therefore apply

all the work we have done up to now with Ξn in place of Γn for all n ∈ N. We
thus obtain maps h : N → N, ϑ : B → A and Φ : N → M such that h is strictly
increasing function, (ϑ, Φ) is a module morphism of norm 1 with the additional
property that DM (Φ(η)) 6 DN (η), and such that:

lim
n→∞

Haus‖·‖M

(
TΓ∗g(h(n))

(η|DN (η)), {Φ(η)}
)
= 0

and:
lim

n→∞
Haus‖·‖B

(
TΓ∗g(h(n))

(b|LB(b)), {ϑ(b)}
)
= 0

for all η ∈ dom (DN ) and b ∈ sa (B).
Now, let ω ∈ dom (DM ) and l > DM (ω). We begin with a simple observation,

owing to the symmetry in Definition (2.3.13) of the deck seminorm of a bridge,
which in turns implies symmetry in the notion of itinerary:

η ∈ TΓg(h(n))
(ω|l) ⇐⇒ ω ∈ TΓ∗g(h(n))

(η|l)

for all n ∈ N.
Let ε > 0. There exists N ∈ N such that for all n > N we have:

(1) 1
n+1 6

ε
8l so that max

{
λ
(

Γg(h(n))

)
, λ
(

Γ∗g(h(n))
)}
6 ε

8l ,

(2) Haus‖·‖N

(
TΓg(h(n))

(ω|l), {Θ(ω)}
)
6 ε

2 .

Let ζ ∈ TΓg(h(n))
(ω|l), so that in particular ‖ζ − Θ(ω)‖ 6 ε

2 . By symmetry,
ω ∈ TΓ∗g(h(n))

(ζ|l).
Now, let ξ ∈ TΓ∗g(h(n))

(Θ(ω)|l). We then compute, using Proposition (2.5.7):

‖ω−Φ ◦Θ(ω)‖M 6 ‖ω− ξ‖M + ‖ξ −Φ ◦Θ(ω)‖M
6 4l

ε

8l
+

ε

2
= ε.

Since ε > 0 is arbitrary, we conclude that ω = Φ(Θ(ω)). The same computation
would establish that Φ ◦ Ω is the identity on dom (DN ) as well. By continuity,
Φ = Θ−1. For similar reasons, ϑ = θ−1.

We last note that DM = DM ◦Θ ◦Θ−1 6 DN ◦Θ 6 DM . Thus DN ◦Θ = DM .
This concludes our proof. �

We now turn to our first examples of convergence of metrized quantum vector
bundles. We begin with free modules, which gives us a chance to compare the
modular Gromov-Hausdorff propinquity with the quantum Gromov-Hausdorff
propinquity when working with quasi-Leibniz quantum compact metric spaces
and their associated metrized quantum vector bundles via Example (2.2.14).

2.6. Convergence of Free modules. We wish to answer the following natural ques-
tion: if a sequence of quasi-Leibniz quantum compact metric spaces converge
in the quantum propinquity, then, do free modules over them, seen as metrized
quantum vector bundles via Example (2.2.15), converge for the modular propin-
quity? One would certainly hope that the answer is positive, and we now prove
it. An important side-product of this section is that the quantum propinquity and
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the modular propinquity restricted to the class of quasi-Leibniz quantum compact
metric spaces — using Example (2.2.14) — are in fact equivalent.

The key step in our work is to lift a bridge between quasi-Leibniz quantum
compact metric spaces to a bridge between a pair of free modules, in the manner
given by the next lemma. In this section, we will employ the notations of Examples
(2.2.14) and (2.2.15).

Lemma 2.6.1. If (A, LA) and (B, LB) are two quasi-Leibniz quantum compact metric
spaces, n ∈ N \ {0} and γ is some bridge from A to B, then there exists a modular bridge
γmod from

(
An, 〈·, ·〉A, Dn

A,A, LA

)
to
(
Bn, 〈·, ·〉B, Dn

B,B, LB

)
such that:

λ (γ) 6 λ (γmod) 6 2nλ (γ).

Proof. Let γ = (D, x, πA, πB) be a bridge from A to B of length λ.
Let:

JA = {a ∈ sa (A) : max{‖a‖A, LA(a)} 6 1} and JB = {b ∈ sa (B) : max{‖b‖B, LB(b)} 6 1} .

Let J1 = JA ä JB be the disjoint union of JA and JB. Note that to avoid confu-
sion if (A, LA) = (B, LB), we can regard JA and JB as their corresponding subsets
of J from now on.

If j ∈ JA, we let aj = a and set bj =
1

1+2λ cj where we choose cj ∈ tγ (j|1). Note
that:

‖cj‖B 6 ‖a‖A + 2λ 6 1 + 2λ

by Proposition (2.3.25). Thus ‖bj‖B 6 1 and of course LB(bj) 6 1.
If j ∈ JB then we set bj = j and aj =

1
1+2λ cj with cj ∈ tγ∗ (j|1).

We note that max{‖aj‖A, LA(aj), ‖bj‖B, LB(bj)} 6 1 for all j ∈ J1 by Proposi-
tion (2.3.25). Moreover, by construction, for all j ∈ J, we note that bnγ (a, b) 6 λ.

We now let J = (J1)
n. Let j = (j1, . . . , jn) ∈ J. We write ωj =

aj1
...

ajn

 and

ηj =

bj1
...

bjn

. We note that by construction, if j =

a1
...

an

 ∈ D1
(
Dn
A

)
, then j ∈ J and

ωj = j so {ωj : j ∈ J} = D1
(
Dn
A

)
. The same reasoning applies in with B in place

of A and η in place of ω as well.
We now set:

γmod =
(
D, x, πA, πB, (ωj)j∈J , (ηj)j∈J

)
.

By construction:

(1) v (γmod) = 0,
(2) $[ (γmod) = $ (γ),
(3) ς (γmod) = ς (γ).

We are left to compute the modular reach of γmod.
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Let j, k ∈ J. We write:

ωj =

a1
...

an

 , ωk =

c1
...

cn

 and ηj =

b1
...

bn

 , ηk =

d1
...

dn

 .

We then have:

‖πB(a∗j cj)x− xπB(b∗j dj)‖D 6 ‖πB(a∗j )πB(cj)x− πB(a∗j )xπB(dj)‖D
+ ‖πB(a∗j )xπB(dj)− xπB(bj)πB(dj)‖D
6 ‖aj‖A‖πB(cj)x− xπB(dj)‖D
+ ‖πB(aj)x− xπB(bj)‖D‖dj‖B

= bnγ

(
cj, dj

)
+ bnγ

(
aj, bj

)
6 2λ (γ) = 2λ.

Thus:∥∥∥∥∥∥∥πA

〈
a1

...
an

,

c1
...

cn

〉
A

 x− xπB

〈
b1

...
bn

,

d1
...

dn

〉
B


∥∥∥∥∥∥∥
D

=

∥∥∥∥∥ n

∑
j=1

(
πA(ajcj)x− πB(bjdj)

)∥∥∥∥∥
D

6 2
n

∑
j=1

λ = 2nλ.

Thus the modular reach of γmod is no more than 2nλ.
Therefore, the reach of γmod is 2nλ and thus so is its length. �

Theorem 2.6.2. If (A, LA) and (B, LB) are F–quasi-Leibniz quantum compact metric
spaces for some admissible function F, and if n ∈ N \ {0}, then:

Λ((A, LA), (B, LB))

6 Λmod ((An, 〈·, ·〉A, Dn
A,A, LA) , (Bn, 〈·, ·〉B, Dn

B,A, LB))

6 2nΛ((A, LA), (B, LB)),

where, for any quasi-Leibniz quantum compact metric space (D, LD), we set:

(1)

〈d1
...

dn

,

e1
...

en

〉
A

= ∑n
j=1 dje∗j for all

d1
...

dn

,

e1
...

en

 in Dn,

(2) Dd
D

d1
...

dn

 = max


∥∥∥∥∥∥∥
d1

...
dn


∥∥∥∥∥∥∥
An

, LD(<dj), LD(=dj) : j ∈ {1, . . . n}

 for all

d1
...

dn

 ∈ Dn.
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Proof. Let Γ be a trek from (A, LA) to (B, LB). Write:

Γ = (Aj, Lj, γj,Aj+1, Lj+1)j∈{1,...,k

for some bridges γj (j ∈ {1, . . . , k}) and some k ∈ N.
Now, for each j ∈ {1, . . . , k}, let γ

j
mod be the modular bridge given by Lemma

(2.6.1) applied to γj. It is then straightforward to check that Γmod = (γ
j
mod)j∈{1,...,k}

is a modular trek from
(
An, 〈·, ·〉A, Dn

A,A, LA

)
to
(
Bn, 〈·, ·〉B, Dn

B,A, LB

)
whose

length satisfies:
λ (Γ) 6 λ (Γmod) 6 4λ (Γ).

We thus conclude, by definition, that:

Λ((A, LA), (B, LB))

6 Λmod((An, 〈·, ·〉A, Dn
A,A, LA) , (Bn, 〈·, ·〉B, Dn

B,A, LB))

6 2nΛ((A, LA), (B, LB)).

This concludes our proof. �

A simple yet reassuring consequence of Theorem (2.6.2) is that we have not in-
troduced any new topology on the class of quasi-Leibniz quantum compact metric
spaces with the modular propinquity, via the canonical Hilbert module structure
carried on by any C*-algebra.

Corollary 2.6.3. For any two quasi-Leibniz quantum compact metric spaces (A, LA) and
(B, LB), we have:

Λ((A, LA), (B, LB))

6 Λmod((A, 〈·, ·〉A, D1
A,A, LA), (B, 〈·, ·〉B, D1

B,B, LB))

6 2Λ((A, LA), (B, LB)),

using the notations of Theorem (2.6.2).

Proof. This is the case n = 1 of Theorem (2.6.2). �

Free modules are the direct sums, in the sense of Hilbert modules, of the canoni-
cal module associated with a C*-algebra. The next section discuss the matter of the
continuity of the direct sum between general metrized quantum vector bundles on
certain well-behaved classes of quasi-Leibniz quantum compact metric spaces. We
note that the D-norms constructed in this section, and the ones in the later section,
differ in general: in this section, we constructed the D-norms from the underlying
Lip-norms, while in the next section, we will be given D-norms on some modules
and construct a new one on their direct sum.

2.7. Iso-pivotal families and Direct sum of convergent modules. Let (M , 〈·, ·〉M )
and (N , 〈·, ·〉N ) be two left Hilbert A-module. The direct sum M ⊕N is a left
A-module in an obvious manner, and a canonical A-inner product on this direct
sum is given by: 〈

(ω, η), (ω′, η′)
〉
A
=
〈
ω, ω′

〉
M +

〈
η, η′

〉
N

for all ω, ω′ ∈M and η, η′ ∈ N .
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Let us now assume we are given two metrized quantum vector bundles Ω =
(M , 〈·, ·〉M , DM ,A, LA) and Ω′ = (N , 〈·, ·〉N , DN ,A, LA). For all ω ∈ M and
η ∈ N , we set:

D(ω, η) = max{D(ω), D(η)}.
It is easy to check that (M ⊕N , 〈·, ·〉A, D,A, LA) is a metrized quantum vector

bundle as well. We will simply denote it by Ω⊕Ω′.
We shall now prove a continuity result for direct sums of metrized quantum

vector bundles, under a uniformity assumption. In general, the construction of
the inner product on the direct sum of two modules mixes up, in the base algebra,
the contributions of each module to the reach of a given bridge. This complication
is, however, not expected to often occur in practice. When working with modules
over quasi-Leibniz quantum compact metric spaces, we envisage that modular
bridges will be constructed out of bridges between the base quantum metric spaces
— indeed, this is what motivated our definition of the modular propinquity. Thus
one may expect that the same bridge between the base quantum spaces may be
reused for multiple modular bridges between different modules. This expectation
is formalized in the following notion, which will serve as an hypothesis for our
direct sum continuity result.

Definition 2.7.1. Let Ωj,k = (Mj,k, 〈·, ·〉j,k, Dj,k,Ak, Lk) be metrized quantum vector
bundles for j, k ∈ {1, 2}. The family ((Ω1,1, Ω1,2), (Ω2,1, Ω2,2)) is iso-pivotal when
for all ε > 0, there exist two modular treks Γ1, from Ω1,1 to Ω1,2, and Γ2, from Ω2,1
to Ω2,2, such that:

1. λ
(
Γ1) 6 Λmod(Ω1,1, Ω1,2) + ε,

2. λ
(
Γ2) 6 Λmod(Ω2,1, Ω2,2) + ε,

3. the basic treks Γ1
[ and Γ2

[ from (A1, L1) to (A2, L2) obtained from Γ1 and Γ2 are
identical.

Informally, in an iso-pivotal family, one may find modular treks whose length
is arbitrary close to the modular propinquity between each pair, and which differ
only in the choice of the anchors and co-anchors. This notion can be extended in
an obvious manner to classes of pairs of metrized quantum vector bundles over
various base spaces.

With this concept, we have the following result:

Theorem 2.7.2. Let (A, LA) and (B, LB) be two quasi-Leibniz quantum compact metric
spaces. If Ω1,A, Ω2,A are metrized quantum vector bundles over (A, LA) and Ω1,B, Ω2,B
are metrized quantum vector bundles over (B, LB) such that ((Ω1,A, Ω1,B), (Ω2,A, Ω2,B))
is iso-pivotal, then:

Λmod((Ω1,A ⊕Ω2,A), (Ω1,B ⊕Ω2,B)) 6 Λmod(Ω1,A, Ω1,B) + Λmod(Ω2,A, Ω2,B)).

Proof. We begin by setting our notations: let Ωj,k = (Mj,k, 〈·, ·〉j,k, Dj,k, k) for j ∈
{1, 2} and k ∈ {(A, LA), (B, LB)}.

Let γ1 be a modular bridge from Ω1,A to Ω1,B and γ2 be a modular bridge from
Ω2,A to Ω2,B. We assume that γ1 and γ2 are given as:

γ1 = (D, x, πA, πB, (ωj)j∈J1 , (ηj)j∈J1)
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and
γ2 = (D, x, πA, πB, (ω′j)j∈J2 , (η′j)j∈J2).

Of course, modular bridges between Ω1,A and Ω1,B, and between Ω2,A and Ω2,B,
may not share basic bridge; however, we will conclude this theorem using the
iso-pivotal hypothesis, and thus this choice of bridge will always be possible, and
sufficient for our purpose.

We first show that we may as well assume J1 = J2. Pick j∗ ∈ J1 and k∗ ∈ J2.
Set J = J1 ä J2. If j ∈ J1 \ J2, we set ω′j = ωk∗ and η′j = ηk∗ . If j ∈ J2 \ J1, we set
ωj = ωj∗ and ηj = ηj∗ .

With this procedure, we note that, for instance, (D, x, πA, πB, (ωj)j∈J , (ηj)j∈J)
has the same length and the same basic bridge as γ1. The same holds for γ2. Thus,
without loss of generality, we let J = J1 = J2.

Let now:

γ1 ∨ γ2 = (D, x, πA, πB, (ωj, ω′k)j,k∈J , (ηj, η′k)j,k∈J}).

Note that γ1 ∨ γ2 has, once again, the same basic bridge as γ1 and γ2. It is thus
straightforward that:

ς (γ1 ∨ γ2) = ς (γ1) = ς (γ2),

and:
$[ (γ1 ∨ γ2) = $[ (γ1) = $[ (γ2).

Let ω ∈ D1 (Ω1,A) and ω′ ∈ D1 (Ω2,A). By Definition (2.3.15) of the im-
print of a bridge, there exist j, k ∈ {1, . . . , n} such that kΩA

(ω, ωj) 6 v (γ1) and
kΩA

(ω′, ω′k) 6 v (γ2). Therefore:

kΩ1,A⊕Ω2,A((ω, ω′), (ωj, ω′k))

= sup
{
‖
〈
(ω, ω′)− (ωj, ωk), (η, η′)

〉
A

: D(η, η′) 6 1
}

6 sup
{
‖〈ω, η〉M1,A

−
〈
ωj, η

〉
M1,A

: D1,A(η) 6 1
}

+ sup
{
‖
〈
ω′, η′

〉
M2,A

−
〈
ω′k, η′

〉
M2,A

: D2,A(η
′) 6 1

}
6 kΩ1,A(ω, ωj) + kΩ2,A(ω

′, ω′k))

6 v (γ) + v
(
γ′
)
.

The same argument can be made in Ω2,B ⊕Ω2,B. Thus:

v (γ1 ∨ γ2) 6 v (γ1) + v (γ2).

Last, let j, k ∈ J. By Definition (2.3.14) of the modular reach, we have:∥∥∥〈ω, ωj
〉
M1,A

x− x
〈
η, ηj

〉
M1,B

∥∥∥
D
6 $] (γ1)

and ∥∥∥〈ω′, ωk
〉
M2,A

x− x〈η, ηk〉M2.B

∥∥∥
D
6 $] (γ2).

We thus compute:

dnγ1∨γ2

(
(ωj, ω′k), (ηj, η′k)

)
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= max
n,m∈J

∥∥∥πA

(〈
(ωj, ω′k), (ωn, ω′m)

〉
A

)
x− xπB

(〈
(ηj, η′k), (ηn, η′m)

〉
B

)∥∥∥
D

= max
n∈J

∥∥∥πA

(〈
ωj, ωn

〉
M1,A

)
x− xπB

(〈
ηj, ηn

〉
M1,B

)∥∥∥
D

+ max
m∈J

∥∥∥πA

(〈
ω′k, ω′m

〉
M2,A

)
x− xπB

(〈
η′k, η′m

〉
M2,B

)∥∥∥
D

6 dnγ1 (()ωj, ηj) + dnγ2 (ωk, ηk)

6 $] (γ1) + $] (γ2).

We have therefore proven:

λ (γ1 ∨ γ2) 6 λ (γ1) + λ (γ2).

Now, let ε > 0. As we work with an iso-pivotal family, there exist two treks Γ1,
from Ω1,A to Ω2,B, and Γ2, from Ω2,A to Ω2,B, such that at once:

(1) λ
(
Γ1) 6 Λmod(Ω1,A, Ω1,B) + ε

2 ,
(2) λ

(
Γ2) 6 Λmod(Ω2,A, Ω2,B) + ε

2 ,
(3) Γ1

[ = Γ2
[ .

We set Γ ∨ Γ′ = (γ
j
1 ∨ γ

j
2); using our work in the first part of this proof and a

trivial induction, we conclude that Γ1 ∨ Γ2 is a modular trek from Ω1,A ⊕Ω2,A to
Ω1,B ⊕Ω2,B such that:

λ (Γ1 ∨ Γ2) 6 λ (Γ1) + λ (Γ2)ε 6 Λmod(Ω1,A, Ω1,B) + Λmod(Ω2,A, Ω2,B)) + ε.

By Definition (2.4.6) of the modular propinquity, we thus conclude that for all
ε > 0, the following holds:

Λmod(Ω1,A ⊕Ω2,A, Ω1,B ⊕Ω2,B) 6 Λmod(Ω1,A, Ω1,B) + Λmod(Ω2,A, Ω2,B)) + ε.

Our theorem is now proven. �

We provide an extension of the concept of iso-pivotal class to classes of metrized
quantum vector bundles, by slight abuse of terminology.

Definition 2.7.3. Let L be a class of F–quasi-Leibniz quantum compact metric
spaces. A class M of (F, G, H)–metrized quantum vector bundles over elements
of L is iso-pivotal when, for any two (A, LA) and (B, LB) in L, for every ε > 0, for
any two ΩA, Ω′A ∈ M over (A, LA) and ΩB, Ω′B ∈ M over (B, LB), the family
((ΩA, ΩB), (Ω′A, Ω′B)) is iso-pivotal.

We thus can state:

Corollary 2.7.4. The direct sum is continuous on any iso-pivotal class of metrized quan-
tum vector bundles.

Proof. This follows immediately from Theorem (2.7.2). �

To fully reflect the potential of the modular propinquity, we now move toward a
much more involved example of convergence for modules. The next section deals
with non-free, finitely generated projective modules over quantum 2-tori.
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3. HEISENBERG MODULES OVER THE QUANTUM 2-TORI

Finitely generated projective modules over irrational rotation algebras can be
described, up to module isomorphism, as either free — a case with which we dealt
in the previous section — or constructed through a projective representation ofR2,
as shown in [37]. The latter type of modules were introduced by Connes [6] and
provided the background for the study of noncommutative geometry of quantum
tori. The construction of these modules was later extended by Rieffel to all quan-
tum tori in [38], where they provide a large class of (though in general, not all)
projective finitely generated modules over quantum tori. As projective represen-
tations of R2 are in fact obtained from representations of the Heisenberg group,
the modules constructed from these representations are called Heisenberg modules
in [38], and we shall follow this terminology. In fact, the Heisenberg group action
will prove essential to our construction.

Heisenberg modules over quantum 2-tori provide natural examples of metrized
quantum vector bundles, whose D-norms are constructed from a noncommutative
connection built from the action of the Heisenberg group. In particular, they are
naturally endowed with a Hilbert module structure, and a connection was con-
structed in [6] from the infinitesimal representation of the Heisenberg Lie algebra.
These connections were proven to solve the Yang-Mills problem for quantum tori
[9].

Once we bring Heisenberg modules within the realm of our modular propin-
quity, we become capable of discussing the problem of convergence of such mod-
ules. Heisenberg modules are parametrized by the quantum torus acting on them
and by a pair of integers p, q which, in particular, relate to a projective representa-
tion of the finite group of the form Z2

q where Zq = Z
/

qZ . We shall prove in this
section, as our main application of the modular propinquity for this paper, that for
a fixed pair p, q of integers, and thus in particular, for a fixed projective represen-
tation of some Zq, the family of Heisenberg modules over varying quantum tori,
form a continuous family for the modular propinquity.

We begin our section with some background on quantum 2-tori and Heisenberg
modules. We then define our D-norms candidates, and establish their basic prop-
erties. The first difficulty we address is to prove that our D-norm candidates have
compact balls in the C∗-Hilbert norm. Then, we prove that our D-norms form
a continuous family of norms. This step involves proving that the norms of the
Heisenberg modules also form a continuous field of norms.

We then use all these ingredients to prove our main result on the continuity of
families of Heisenberg modules for the modular propinquity,

3.1. Background on Quantum 2-tori and Heisenberg modules. Quantum 2-tori
are the twisted convolution C*-algebras of Z2. The projective finitely generated
modules over quantum tori have been extensively studied, and next to the free
modules, the most important class of projective, finitely generated modules over
a quantum torus are the Heisenberg modules. This subsection introduces these
modules, as well as the notations we will use throughout this section regarding
quantum tori.
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Twisted group C*-algebras are defined by twisting the convolution product
over a locally compact group by a representative of a continuous 2-cocycle of the
group.

Notation 3.1.1. For any θ ∈ R, we define the skew bicharacter of R2:

(3.1.1) eθ : ((x1, y1), (x2, y2)) ∈ R2 ×R2 7−→ exp (iπθ(x1y2 − x2y1)) .

By [20], any 2-cocycle of Z2 is cohomologous to the restriction of a skew bichar-
acter eθ to Z2 ×Z2 for some θ ∈ R. We shall use the same notation for eθ and its
restriction to Z2.

Moreover, for any θ, ϑ ∈ R, the skew bicharacters eθ and eϑ of Z2 are cohomol-
ogous if and only if θ ≡ ϑ mod 1. We note that, as skew bicharacters of R2, they
are cohomologous if and only if θ = ϑ.

We define the twisted convolution products on `1(Z2), where we use the fol-
lowing notation.

Notation 3.1.2. For any (nonempty) set E and any p ∈ [1, ∞), the set `p(E) is the
set of all absolutely p-summable complex valued functions over E, endowed with
the norm:

‖ξ‖`p(E) =

(
∑
x∈E
|ξ(x)|p

) 1
p

for all ξ ∈ `p(E).
We write δn the function which is 1 at n and 0 otherwise; this function is an

element of `p(E) for all p.
Moreover, if p = 2 then (`2(E), ‖ · ‖`2(E)) is a Hilbert space, where the inner

product 〈ξ, η〉`2(E) = ∑x∈E ξ(x)η(x) for all ξ, η ∈ `2(E).

We now define:

Definition 3.1.3. Let θ ∈ R and eθ be defined by Expression (3.1.1). The twisted
convolution product ∗θ is defined for all f , g ∈ `1(Z2) and for all n ∈ Z2:

f ∗θ g(n) = ∑
m∈Z2

f (m)g(n−m)eθ(m, n).

The adjoint of any f ∈ `1(Z2) is defined for all n ∈ Z2 by:

f ∗(n) = f (−n).

One checks easily that
(
`1(Z2), ∗θ , ·∗

)
is a *-algebra. In particular, the adjoint

operation is an isometry of
(
`1(Z2), ‖ · ‖`1(Z2)

)
. We now wish to construct its en-

veloping C*-algebra. To do so, we shall choose a natural faithful *-representation
of
(
`1(Z2), ∗θ , ·∗

)
on `2(Z2). This representation was a key ingredient in the con-

struction of bridges between quantum tori in our work in [25] on convergence of
quantum tori for the quantum propinquity, and thus will re-appear in a similar
role in this section.

Notation 3.1.4. If T : E → F is a continuous linear map between two normed
spaces, we write its norm as |||T|||EF . When E = F, we simply write |||T|||F.
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Theorem 3.1.5 ([51]). Let θ ∈ R. We define, for any n ∈ Z2 and ξ ∈ `2(Z2), the
function:

Un
θ ξ : m ∈ Z2 7→ eθ(m, n)ξ(m− n).

The map n ∈ Z2 7→ Un
θ is a unitary eθ-projective representation of Z2, i.e. Un

θ Um
θ =

eθ(n, m)Un+m
θ for all n, m ∈ Z2.

If, for all f ∈
(
`1(Z2), ∗θ , ·∗

)
, we define:

πθ( f ) = ∑
n∈Z2

f (n)Un
θ

which is a bounded operator on `2(Z2) with:

|||πθ( f )|||`2(Z2) 6 ‖ f ‖`1(Z2),

then πθ is a faithful *-representation of (`1(Z2), ∗θ , ∗).

Proof. It is a standard computation to check that n ∈ Z2 7→ Un
θ is a eθ-projective

unitary representation of Z2, and that for all f , g ∈ `1(Z2):

πθ( f ∗θ g) = πθ( f )πθ(g),

and πθ( f ∗) = (πθ( f ))∗. As proven in [51], this representation is also faithful. �

Thus, we may define a C*-norm on `1(Z2) by setting:

‖ f ‖Aθ
= |||πθ( f )|||`2(Z2)

for all f ∈ `1(Z2). We thus can define quantum 2-tori.

Definition 3.1.6. The quantum 2-torus Aθ is the completion of (`1(Z2), ∗θ , ·∗) for
the norm |||πθ(·)|||`2(Z2).

As per our general convention, the norm on Aθ is denoted by ‖ · ‖Aθ
for all

θ ∈ R.

Remark 3.1.7. Let θ ∈ R. By construction, `1(Z2) is identified with a dense *-
subalgebra of Aθ , and we shall employ this identification all throughout this pa-
per. With this identification, we also note that for all f ∈ `1(Z2) we have ‖ f ‖Aθ

6
‖ f ‖`1(Z2), a fact which we will use repeatedly in the next section.

We take one derogation to the convention of using the same symbol for an ele-
ment of `1(Z2) and its counter part in a given quantum torus, because the follow-
ing notation is at once common and convenient.

Notation 3.1.8. Let θ ∈ R. The element δ1,0 is denoted by uθ and the element δ0,1 is
denoted by vθ when regarded as elements of Aθ .

We now introduce a canonical action of T2 on quantum 2-tori. The dual action
of T2 on quantum 2-tori provides, by transport of structure, the geometry of the
quantum 2-tori. We shall discuss this matter at greater length in our next section.
Our focus, of course, will be on the metric structure of quantum tori induced by
the dual action and continuous length functions on T2, as first constructed in [40]
as the prototype for compact quantum metric spaces.
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Theorem-Definition 3.1.9. [51] For all z = (z1, z2) ∈ T2 there exists a unique *-
automorphism βz

θ of Aθ such that, for any f ∈ `1(Z2) and (n, m) ∈ Z2, we have:

βz
θ f (n, m) = zn

1 zm
2 f (n, m).

The map z ∈ T2 7→ βz
θ is a strongly continuous action ofT2 onAθ called the dual action.

Moreover: {
a ∈ Aθ : ∀z ∈ T2 βz(a) = a

}
= C1Aθ

.

An action of a group on a unital C*-algebra whose fixed point algebra is re-
duced to the scalar multiples of the unit, such as the dual action of T2 on Aθ ,
is called ergodic. In [6], this dual action, combined with the fact that T2 is a Lie
group, was used to define a quantized differential calculus on quantum tori [8]
which proved to be the start of noncommutative geometry. In [40], the dual ac-
tion, combined with a choice of a continuous length function on T2, provided the
first example of an L-seminorm and started the program within which the current
paper participate.

We now turn to the class of modules to which we shall apply our new mod-
ular propinquity. We construct these modules following [6] using the universal
property of quantum 2-tori, which we now recall.

Proposition 3.1.10 ([51]). Let θ ∈ R. If U, V are two unitary operators on some Hilbert
space H such that UV = exp(2iπθ)VU for some θ ∈ [0, 1), then there exists a *-
morphism v : Aθ → B(H ) such that v(uθ) = U and vθ(vθ) = V. The range of v is
C∗(U, V).

We note that one may construct an enveloping C*-algebra of (`1(Z2), ∗θ , ·∗)
with the universal property described in Proposition (3.1.10) by choosing as a C*-
norm of some element f , the supremum of the norm of π( f ) where π ranges over
all *-representations of (`1(Z2), ∗θ , ·∗). The completion of (`1(Z2), ∗θ , ·∗) with this
norm would be the full twisted convolution C*-algebra of Z2 for eθ . However, as
Z2 is Abelian, it is an amenable group, which implies that the full norm is in fact
equal to the C*-norm obtained from our special representation πθ . Thus amenabil-
ity is in essence behind Proposition (3.1.10).

Another way to state Proposition (3.1.10) is that, for any θ ∈ R, if ς is some
projective representation of Z2 on some Hilbert space H for some multiplier of
Z2 cohomologous to eθ , then H is a module over Aθ . Indeed, Proposition (3.1.10)
gives us a *-morphism v from Aθ to the C*-algebra B(H ) of all bounded linear
operators on H , with v(uθ) = ς1,0 and v(vθ) = ς0,1. Thus H is a Aθ module.

With this observation in mind, we now turn to the construction of some particu-
lar projective representations of Z2. The idea, found in [6] and explicited in [38], is
to take the tensor product of a projective representation ofR2, restricted toZ2, and
a finite dimensional projective representation of Zq for some q ∈ N \ {0}. By ad-
justing the choice of the multipliers associated with each projective representation,
we get the desired module structure.

Projective representations of R2 are naturally related to the representations of
the Heisenberg group, and we will make important use of this fact in our work.
We thus begin with setting our notations for the Heisenberg group.



THE MODULAR GROMOV-HAUSDORFF PROPINQUITY 69

Convention 3.1.11. The vector space Cd is endowed by default with its standard
inner product 〈(z1, . . . , zd), (y1, . . . , yd)〉Cd = ∑d

j=1 zjyj, whose associated norm is
denoted by ‖ · ‖Cd .

Notation 3.1.12. The Heisenberg group is the Lie group given by:

H3 =


1 x u

0 1 y
0 0 1

 : x, y, u ∈ R

 .

We shall identify H3 with R3 via the natural map (x, y, u) ∈ R3 7→

1 x u
0 1 y
0 0 1

,

which is a Lie group isomorphism once we equip R3 with the multiplication:

(x1, y1, u1)(x2, y2, u2) = (x1 + x2, y1 + y2, u1 + u2 + x1y2)

for all (x1, y1, u1), (x2, y2, u2) ∈ R3.
The importance of the Heisenberg group for quantum mechanics [10] may be

gleaned by looking at its Lie algebra, which is given by:

h =


0 x u

0 0 y
0 0 0

 : x, y, u ∈ R


which is a 2-nilpotent Lie algebra. We easily compute that for all x, y, u ∈ R3:

(3.1.2) exp

0 x u
0 0 y
0 0 0

 =

1 x u + 1
2 xy

0 1 y
0 0 1

 .

This expression for the exponential will be important for our construction. Note
that the exponential map is both injective and surjective.

We now set:

P =

0 1 0
0 0 0
0 0 0

 , Q =

0 0 0
0 0 1
0 0 0

 and T =

0 0 1
0 0 0
0 0 0

 .

We easily check that [P, Q] = T = −[Q, P] while other other commutators between
P, Q and T are null, and spanC{P, Q, T} = h.

We note that in particular, T is central, and thus the relations defining h from the
basis {P, Q, T} are the structural equations of quantum mechanics — the canonical
commutation relation, as proposed by Heisenberg, in order to express the uncer-
tainty principle between two conjugate observables. We refer to [10] for a de-
tailed analysis of the Heisenberg group and its connections to the Moyal product,
pseudo-differential calculus, and more fascinating topics.

Thus the study of the irreducible representations of H3 provide the irreducible
representations of the canonical commutation relations. We first note that:

H3
/
{(0, 0, u) : u ∈ R} = R2

is Abelian, and thus we get a collection of trivial, one-dimensional representations
of H3 by simply lifting the irreducible representations of R2.
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The nontrivial irreducible representations of the Heisenberg group are, up to
unitary equivalence, given by one of the following:

(3.1.3) α
x,y,u
ð,1 ξ : s ∈ R 7→ exp(2iπ(ðu + sx))ξ(s + ðy)

form some ð ∈ R \ {0}. We note that they all are infinite dimensional.
Let ð ∈ R \ {0}. For all (x, y) ∈ R2 and for all ξ ∈ L2(R), set:

σ
x,y
ð,1 ξ = α

expH3
(xP+yQ)

ð,1 ξ

= α
x,y, xy

2
ð,1 ξ : s ∈ R 7→ exp(iπðxy + 2iπsx)ξ(s + ðy).

The map σ
x,y
ð,1 is a unitary on L2(R) for all (x, y) ∈ R2. Moreover, for all (x1, y1),

(x2, y2) ∈ R2, we note that:

σ
x1,y1
ð,1 σ

x2,y2
ð,1 = eð((x1, y1), (x2, y2))σ

x1+x2,y1+y2
ð,1 ,

i.e. σð,1 is a projective representation ofR2 on L2(R) for the bicharacter eð, namely
the Schrödinger representation of “Plank constant” ð. Moreover, every nontrivial
irreducible unitary projective representation ofR2 is unitarily equivalent to one of
σ1,ð for some ð 6= 0 (by nontrivial, we mean associated with a nontrivial cocycle).

We introduce one more notation which will prove very useful in defining our
D-norm on Heisenberg modules. If d ∈ N with d > 0, we define the following
unitarry operators on L2(R)⊗Cd:

α
x,y,u
ð,d = α

x,y,u
ð,1 ⊗ id and σ

x,y
ð,d = σ

x,y
ð,1 ⊗ id

for all x, y, u ∈ R, where id is the identity map on Cd. We trivially check that
αð,d is a unitary representation of H3 on L2(R)⊗ Cd, while σð,d is a eð-projective
representation of R2 on L2(R) ⊗ Cd. Moreover, we also check immediately that
α

x,y,0
ð,d = σ

x,y
ð,d for all x, y ∈ R.

We now turn to the projective representations of Z2
q, where q ∈ N \ {0}. We

first note that, for any p ∈ Z, the skew bicharacter e p
q

of Z2 induces a skew bichar-

acter of Z2
q — which we keep denoting by e p

q
. By [20], any multiplier of Z2

q is

cohomologous to e p
q

for some p ∈ N.

For our purpose, we will thus get, up to unitary equivalence, every possible
finite dimensional unitary projective representations of the groupsZ2

q for arbitrary
q ∈ N \ {0} by considering the following family.

Notation 3.1.13. Let p ∈ Z and q ∈ N \ {0}. Let n ∈ Z 7→ [n] ∈ Zq be the canonical
surjection. Let:

up,q =


0 . . . 1
1 0 . . .
. . . . . .

1 0

 and vp,q =


1

z
z2

. . .
zq−1

 ,
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with z = exp
(

2iπp
q

)
. Since uq

p,q = vq
p,q = 1, the map:

ρp,q,1 : (z, w) ∈ Z2
q 7→ ρz,w

p,q,1 = un
p,qvm

p,q where [n] = z and [m] = w

is well-defined. An easy computation shows that ρp,q,1 is a projective action of Z2
q.

For all d ∈ qN, d > 0, we now set:

ρn,m
p,q,d = ρn,m

p,q,1 ⊗ id d
q

where id d
q

is the identity map on C
d
q .

We remark that ρp,q,d acts on Cd, i.e. we parametrized ρ by the dimension of
the space on which it acts rather than the multiplicity of ρp,q,1, as it will make our
notations much simpler.

If p and q are relatively prime, the representation ρp,q,1 is irreducible, with range
the entire algebra of q× q matrices — it is in fact, the only irreducible e p

q
-projective

representation of Z2
q up to unitary equivalence. Thus in general, any finite dimen-

sional unitary representation of Z2
q is unitarily equivalent to some ρl,r,d for some

l ∈ Z, r ∈ N \ {0}, d ∈ rN \ {0}, with l = 0 and r = 1 or l, r relatively prime.

In order to construct the inner product on the Heisenberg modules, we shall
need to first work on a space of well-behaved functions inside the Hilbert space
`2(Z2) on which quantum tori will act. This space will consist of the Schwarz
functions.

Definition 3.1.14. Let E be a finite dimensional vector space. A function f : R→ E
is a E-valued Schwarz function over R when it is infinitely differentiable on R and,
for all j ∈ N and all polynomial p ∈ R[X], we have:

lim
t→±∞

∥∥∥p(t) f (j)(t)
∥∥∥

E
= 0.

The space of all E-valued Schwarz functions over R is denoted by S(E).

We note that if f ∈ S(E) for some finite dimensional space E, then in particular,
f ∈ Lp(R) for all p ∈ [1, ∞], since for any j ∈ N, there exists M > 0 such that
‖ f (s)‖E 6

M
1+|s|j for all s ∈ R. Indeed, by assumption, lims→±∞ ‖(1 + sj) f (s)‖E =

0. Thus for some K > 0 we have ‖ f (s)‖ 6 1
1+|s|j for all s ∈ R with |s| > K.

On the other hand, since f is continuous on [−K, K], it is a bounded. Let M =
max{| f (s)| : s ∈ [−K, K]}. As s ∈ [−K, K] 7→ 1

1+|s|j is continuous as well as strictly

positive, it is bounded below by some m > 0. Thus ‖ f (s)‖E 6
max{1,Mm−1}

1+|s|j for all
s ∈ R.

We now implement the scheme which we described a few paragraphs above to
construct modules over quantum tori. We refer to the mentioned works of Connes
and Rieffel for the details and justification behind the following construction.

Theorem-Definition 3.1.15 ( [6], [37], [9] ). Let θ ∈ R and q ∈ N \ {0}. Let p ∈ Z,
q ∈ N \ {0} , and let d ∈ qN \ {0}. The Heisenberg module H

p,q,d
θ is the module over

Aθ defined as follows.
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Let ρp,q,d be the projective action of Z2
q with cocycle e p

q
, consisting of the sum of d

q

copies of the unique, up to unitary equivalence, irreducible representation with the same
cocycle. Up to unitary conjugation, we assume that ρp,q,d acts on Cd.

Let:
ð = θ − p

q
.

Let αð,1 be the action of the Heisenberg groupH3 on L2(R) given by Expression (3.1.3).

For (n, m) ∈ Z2, denoting the class of n and m in Z
/

qZ , respectively, by [n] and
[m], we set:

vn,m
p,q,ð,d = αn,m,0

ð,1 ⊗ ρ
[n],[m]
p,q .

For all n, m ∈ Z, the map vn,m
p,q,ð,d is a unitary of L2(R)⊗ Cd, and moreover vp,q,ð,d

is an eθ-projective representation of Z2.
By universality, the Hilbert space L2(R)⊗Cd is a module overAθ , with, in particular,

for all f ∈ `1(Z2) and ξ ∈ L2(R,Cd) = L2(R)⊗Cd:

f ξ = ∑
n,m∈Z

f (n, m)vn,m
p,q,ð,dξ.

Let S
p,q,d

θ = S(Cd) ⊆ L2(R)⊗Cd. For all ξ, ω ∈ S
p,q,d

θ , define 〈ξ, ω〉
H

p,q,d
θ

as the

function in `1(Z2) given by:

〈ξ, ω〉
H

p,q,d
θ

: (n, m) ∈ Z2 7−→
〈

vn,m
p,q,ð,dξ, ω

〉
L2(R)⊗E

.

The Heisenberg module H
p,q,d

θ is the completion of S
p,q,d

θ for the norm associated
with the Aθ-inner product 〈·, ·〉

H
p,q,d

θ

.

We note that S
p,q,d

θ is not closed under the action of Aθ but it is closed under
the action of the subalgebra:

{ f ∈ `1(Z2) : ∀p ∈ R[X, Y] lim
n,m→±∞

p(n, m) f (n, m) = 0}

of (`1(Z2), ∗θ , ·∗), often referred to as the smooth quantum torus. We will not
use this observation later on, though it is notable that the completion of S

p,q,d
θ is

indeed a Aθ-module.
We make some formulas explicit for clarity. We continue with the notations in

Theorem-Definition (3.1.15). We let:

W1 = ρ1,0
p,q,d and W2 = ρ0,1

p,q,d.

We thus have, in particular:

W1W2 = exp
(

2ipπ

q

)
W2W1.

We also denote by uθ and vθ the elements δ1,0 and δ0,1 of Aθ .
We then note that for all ξ ∈ S

ρ
θ :

uθξ : s ∈ R 7→W1ξ(s + ð)
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and

vθξ : s ∈ R 7→W2 exp(2iπs)ξ(s).

We observe that indeed, 〈·, ·〉
H

p,q,d
θ

is hermitian. Indeed for all n, m ∈ Z2:

〈ξ, ω〉
H

p,q,d
θ

(n, m) =
〈

vn,m
p,q,ð,dξ, ω

〉
L2(R)⊗Cd

=
〈

ξ, v−n,−m
p,q,ð,d ω

〉
L2(R)⊗Cd

= 〈ω, ξ〉
H

p,q,d
θ

(−n,−m)

=

(
〈ω, ξ〉

H
p,q,d

θ

)∗
.

(3.1.4)

Moreover, for all n, m ∈ Z and ξ, ω ∈ S
ρ

θ , we have:

〈ξ, ω〉
H

p,q,d
θ

(n, m) =
∫
R
〈Wn

1 Wm
2 ξ(s + ðm), ω(s)〉Cd exp(2iπns) ds.

Now, Aθ carries a unique tracial state tr, given for all f ∈ `1(Z2) by tr( f ) =
f (0). In particular:

tr
(
〈ξ, ω〉

H
p,q,d

θ

)
=
∫
R
〈ξ(s), ω(s)〉Cd ds,

so ‖ξ‖L2(R)⊗Cd 6 ‖ξ‖
H

p,q,d
θ

. In particular, H
p,q,d

θ is a dense subspace of L2(R)⊗

Cd.
Last, we note that if ρp,q,d = ρl,r,m for some p, l ∈ Z, q, r ∈ N \ {0}, d ∈ qN and

m ∈ rN, with d, m > 0, we may not conclude that p = l, q = r and d = m unless we
assume that p, q are relatively prime and l, r are relatively prime, or p = l = 0 and
q = r = 1. Consequently, p, q, d is not uniquely determined by the isomorphism
class of H

p,q,d
θ unless we assume relative primality of p and q. This will not be an

issue for our work.
In this section, we introduced many representations of various groups, and the

notations will be important all throughout this paper. We believe it may be conve-
nient for the reader if we summarize these notations.

Notation 3.1.16. The following table summarizes all the group (projective) repre-
sentations and related objects which will be used in this work.
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Notation Parameter(s) Meaning

eθ θ ∈ R the skew bicharacter defined by Expr.
(3.1.1) on R2, identified with its quo-
tient map on Z2, and even Z2

q when
qθ ∈ Z

ρp,q,d p ∈ Z, q ∈ N \ {0};
d ∈ qN \ {0}

direct sum of d
q ∈ N copies of the e p

q
-

projective representation ρp,q,1 of Z2
q

given in Notation (3.1.13)

αð,1 ð ∈ R \ {0} α
x,y,u
ð,1 ξ : s 7→ exp(2iπ(ðu + xs))ξ(s +

ðy) for all ξ ∈ S(C) and (x, y, u) ∈ H3,
see Notation (3.1.12)

αð,d ð ∈ R \ {0} and
d ∈ N, d > 0

αð,1 ⊗ id where id is the identity of Cd,
see Notation (3.1.12)

σð,d ð ∈ R \ {0} and
d ∈ N, d > 0

σ
x,y
ð,d = α

x,y, xy
2

ð,d for all (x, y) ∈ R2, see
Notation (3.1.12)

vp,q,ð,d p, q ∈ N; d ∈ qN >
0, ð ∈ R \ {0}

σð,1 ⊗ ρp,q,d as in Theorem (3.1.15)

βθ θ ∈ R the dual action of T2 on Aθ =
C∗(Z2, eθ) as in Theorem (3.1.9)

Uθ : n, m 7→ Un,m
θ θ ∈ R the eθ-projective representation of Z2

on `2(Z2) defined in Theorem (3.1.5)

πθ θ ∈ R the representation of Aθ on `2(Z2) ex-
tending the integrated version of Uθ as
in Theorem (3.1.5)

The purpose of this section is to show that for a fixed choice of p ∈ Z, q ∈
N \ {0}, and d ∈ qN, d > 0, the function θ ∈ R 7→ H

p,q,d
θ is continuous for the

modular propinquity. A first step in this direction is to check that the collection of
Heisenberg modules form a continuous family of normed spaces.

3.2. A continuous fields of C∗-Hilbert norms. All Heisenberg modules are com-
pletions of S(Cd) for some d ∈ N, d > 0. For a fixed d, it thus becomes possible
to ask whether the various C∗-Hilbert norms ‖ · ‖

H
p,q,d

θ

, as θ varies in R, form a

continuous family.
To this end, we establish a succession of lemmas whose primary goal is to pro-

vide us with estimates on the Heisenberg modules’ C∗-Hilbert norms in terms of
the norm of `1(Z2). While the Heisenberg modules’ C∗-Hilbert norms are in gen-
eral delicate to work with as they involve the no-less abstract quantum tori norms,
the `1(Z2) norm, which dominates all of the quantum tori norms, is much more
amenable to computations. For our purpose, we will take full advantage of the
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regularity of Schwarz functions, which will enable us to apply various analytic
tools to derive our desired result.

The first step is a lemma which provides a first upper bound to the `1(Z2) norm
of the difference between certain Heisenberg module inner products.

Lemma 3.2.1. If θ, ϑ ∈ R and p ∈ Z, q ∈ N \ {0}, d ∈ qN \ {0}, and if ω, η and ξ are
C2 functions from R to Cd such that for all f ∈ {ω, η, ξ}:

(1) all of f , f ′ and f ′′ are integrable on R,
(2) limt→±∞ f (t) = limt→±∞ f ′(t) = limt→±∞ f ′′(t) = 0,

then, writing ðθ = θ − p
q and ðϑ = ϑ− p

q , we have:

∥∥∥∥〈ω, η〉
H

p,q,d
θ

− 〈ξ, η〉
H

p,q,d
ϑ

∥∥∥∥
`1(Z2)

6 ∑
n∈Z

1
4π2n2

(∫
R

∑
m∈Z

∥∥ω′′(t + ðθm)− ξ ′′(t + ðϑm)
∥∥
Cd ‖η(t)‖Cd dt+

+
∫
R

∑
m∈Z

∥∥ω′(t + ðθm)− ξ ′(t + ðϑm)
∥∥
Cd ‖η′(t)‖Cd dt

+
∫
R

∑
m∈Z
‖ω(t + ðθm)− ξ(t + ðϑm)‖Cd ‖η′′(t)‖Cd dt

)
.

Proof. We begin with the observation that for all (n, m) ∈ Z2 we have:

〈ω, η〉
H

p,q,d
θ

(n, m)− 〈ξ, η〉
H

p,q,d
ϑ

(n, m)

=
∫
R

〈
ρ
[n],[m]
p,q,d ω(t + ðθm), η(t)

〉
Cd

exp(2iπnt) dt

−
∫
R

〈
ρ
[n],[m]
p,q,d ξ(t + ðϑm), η(t)

〉
Cd

exp(2iπnt) dt

=
∫
R

(〈
ρ
[n],[m]
p,q,d ω(t + ðθm), η(t)

〉
Cd
−
〈

ρ
[n],[m]
p,q,d ξ(t + ðϑm), η(t)

〉
Cd

)
exp(2iπnt) dt

=
∫
R

〈
ρ
[n],[m]
p,q,d (ω(t + ðθm)− ξ(t + ðϑm)), η(t)

〉
Cd

exp(2iπnt) dt.

For all n, m ∈ Z, the function:

fn,m : t 7→
〈

ρ
[n],[m]
p,q,d ω(t + ðθm)− ξ(t + ðϑm), η(t)

〉
Cd

has a first and continuous second derivative which are integrable, and:

lim
t→±∞

fn,m(t) = lim
t→±∞

f ′n,m(t) = lim
t→±∞

f ′′n,m(t) = 0.

We consequently may apply integration by part and obtain, for all m, n ∈ Z:

∫
R

〈
ρ
[n],[m]
p,q,d ω(t + ðθm)− ξ(t + ðϑm), η(t)

〉
Cd

exp(2iπnt) dt
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=
∫
R

fn,m(t) exp(2iπnt) dt

= −
∫
R

f ′n,m(t)
exp(2iπnt)

2iπn
dt

= −
∫
R

f ′′n,m(t)
exp(2iπnt)

4π2n2 dt.

We compute trivially that for all t ∈ R and m, n ∈ Z:

f ′′n,m(t) =
〈

ρ
[n],[m]
p,q,d

(
ω′′(t + ðθm)− ξ ′′(t + ðϑm)

)
, η(t)

〉
Cd

+ 2
〈

ρ
[n],[m]
p,q,d

(
ω′(t + ðθm)− ξ ′(t + ðϑm)

)
, η′(t)

〉
Cd

+
〈

ρ
[n],[m]
p,q,d (ω(t + ðθm)− ξ(t + ðϑm)), η′′(t)

〉
Cd

.

Thus using Cauchy-Schwarz and since ρ
[n],[m]
p,q,d is a unitary, we thus conclude:∥∥∥∥〈ω, η〉

H
p,q,d

θ

− 〈ξ, η〉
H

p,q,d
ϑ

∥∥∥∥
`1(Z2)

= ∑
n,m∈Z

∣∣∣∣∫
R

〈
ρ
[n],[m]
p,q,d (ω(t + ðθm)− ξ(t + ðϑm)), η(t)

〉
Cd

exp(2iπnt) dt
∣∣∣∣

6 ∑
m,n∈Z

∫
R

∣∣ f ′′n,m(t)
∣∣

4π2n2 dt

6 ∑
m,n∈Z

1
4π2n2

(∫
R
‖ω′′(t + ðθm)− ξ ′′(t + ðϑm)‖Cd‖η(t)‖Cd dt

+ 2
∫
R
‖ω′(t + ðθm)− ξ ′(t + ðϑm)‖Cd‖η′(t)‖Cd dt

+
∫
R
‖ω(t + ðθm)− ξ(t + ðϑm)‖Cd‖η′′(t)‖Cd dt

)
= ∑

n∈N

1
4π2n2

[∫
R

(
∑

m∈N
‖ω′′(t + ðθm)− ξ ′′(t + ðϑm)‖Cd

)
‖η(t)‖Cd dt

+ 2
∫
R

(
∑

m∈N
‖ω′(t + ðθm)− ξ ′(t + ðϑm)‖Cd

)
‖η′(t)‖Cd dt

+
∫
R

(
∑

m∈N
‖ω(t + ðθm)− ξ(t + ðϑm)‖Cd

)
‖η′′(t)‖Cd dt

]
by Tonelli’s theorem.

This concludes our lemma. �

Our next lemma focuses on the type of estimates given in Lemma (3.2.1), and
gives a sufficient condition for these upper bounds to converge to 0 when various
parameters are allowed to converge to appropriate values.

Lemma 3.2.2. Let d ∈ N, d > 0. LetN = N∪ {∞} be the one point compactification of
N.

If (ωk)k∈N and (ηk)k∈N are two families of C2-functions fromR to Cd and (ðk)k∈N is
a sequence of nonzero real numbers converging to some ð∞ 6= 0 such that:
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(1) (t, k) ∈ R×N 7→ ωk(t) and (t, k) ∈ R×N 7→ ηk(t) are jointly continuous,
(2) there exists M > 0 such that for all k ∈ N and t ∈ R:

max {‖ωk(t)‖Cd , ‖ηk(t)‖Cd} 6
M

1 + t2 ,

then:

(3.2.1) lim
k→∞

∑
n∈N

1
4π2n2

∫
R

∑
m∈Z
‖ωk(t+ðkm)−ω∞(t+ð∞m)‖Cd‖ηk(t)‖Cd dt = 0.

Proof. First, we observe that Expression (3.2.1) is left unchanged if we replace ðk
with −ðk for all k ∈ N, thanks to the summation over m ∈ Z. Consequently, we
may assume without loss of generality that ð∞ > 0 and assume that ðk > 0 for
all k ∈ N (since (ðk)k∈N converges to ð∞ 6= 0, we must have that ðk and ð∞ have
the same sign for k larger than some K ∈ N; we thus can truncate our sequence to
start at K and flip all the signs if necessary to work with positive values).

With this in mind, since (ðk)k∈N is positive and converges to ð∞ > 0, there
exists 0 < ð− < ð+ such that for all k ∈ N, we have ðk ∈ [ð−,ð+].

We shall employ the Lebesgue dominated convergence theorem. To this end,
we introduce the following function to serve as our upper bound. For all t ∈
R, m ∈ Zwe set:

(3.2.2) b(t, m) =


M

1+(t+mð−)2 if m > 0 and m > −t
ð− or m < 0 and m 6 −t

ð− ,
M

1+(t+mð+)2 if m > 0 and m 6 −t
ð+ or m < 0 and m > −t

ð+ ,

M if m = 0 or −t
m ∈ (ð−,ð+).

For a fixed t ∈ R, we note that:

b(t, m) ∼m→±∞
M

ð2
−m2

,

so ∑m∈Z b(t, m) < ∞. Moreover, by construction, for all t ∈ R, m ∈ Z and ð ∈
[ð−,ð+], we have:

M
1 + (t + ðm)2 6 b(t, m).

Therefore, using our hypothesis, for all t ∈ R, m ∈ Z, k ∈ N and ð ∈ [ð−,ð+]:

‖ωk(t + mð)−ω∞(t + mð∞)‖Cd 6
M

1 + (t + mð)2 +
M

1 + (t + mð∞)2

6 2b(t, m).

Thus for a fixed t ∈ R, we may apply Lebesgue dominated convergence theo-
rem to conclude:

(3.2.3) lim
k→∞

∑
m∈Z
‖ωk(t + mðk)−ω∞(t + mð∞)‖Cd = 0,

since (t, k) ∈ R×N 7→ ωk(t) is jointly continuous.
We now make another observation. For any fixed ð > 0 and k ∈ N, The func-

tion:
t ∈ R 7→ ∑

m∈Z
‖ωk(t + ðm)‖Cd
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is ð-periodic.
If t ∈ [0,ð+], k ∈ N and ð ∈ [ð−,ð+], then since:

‖ωk(t + ðm)‖Cd 6 sup
x∈[0,ð+ ]

b(x, m)

while, as can easily be checked:

sup
x∈[0,ð+ ]

b(x, m) ∼m→±∞
M

ð2
−m2

,

we conclude that the series:(
(t, k,ð) ∈ R×N× [ð−,ð+] 7→∑ ‖ωk(t + ðm)‖Cd

)
m∈Z

converges uniformly to its limit on [0,ð+]×N× [ð−,ð+]. In particular:

(t, k,ð) ∈ [0,ð+]×N× [ð−,ð+] 7→ ∑
m∈Z
‖ωk(t + ðm)‖Cd

is continuous on a compact domain and so it is bounded. Let C > 0 such that for
all (t, k,ð) ∈ [0,ð+]×N× [ð−,ð+], we have:

∑
m∈Z
‖ωk(t + ðm)‖Cd 6 C.

We conclude that t 7→ ∑m∈Z ‖ωk(t− ðkm)‖Cd is bounded by C on R, since it is
an ðk-periodic function with ðk 6 ð+, for all k ∈ N.

We thus have that for all t ∈ R and k ∈ N:

(3.2.4) ∑
m∈Z
‖ωk(t + mðk)−ω∞(t + mð∞)‖Cd‖ηk(t)‖Cd 6 2C‖ηk(t)‖Cd 6

2CM
1 + t2 .

Now t ∈ R 7→ 2CM
1+t2 is integrable over R. Once again, we apply Lebesgue domi-

nated convergence theorem, and we conclude from Expression (3.2.3) that:

(3.2.5) lim
k→∞

∫
R

∑
m∈Z
‖ωk(t + mðk)−ω∞(t + mð∞)‖Cd‖ηk(t)‖Cd dt = 0.

Last, using Inequality (3.2.4) again, we note that for all k ∈ N:∫
R

∑
m∈Z
‖ωk(t + mðk)−ω∞(t + mð∞)‖Cd‖ηk(t)‖Cd dt 6

∫
R

2CM
1 + t2 dt

and thus for all n ∈ Z and k ∈ N:

1
4π2n2

∫
R

∑
m∈Z
‖ω(t + mðk)−ω(t + mð∞)‖Cd‖η(t)‖Cd dt 6

∫
R

2CM
1+t2 dt

4π2n2 ,

with ∑n∈Z

∫
R

2CM
1+t2

dt

4π2n2 < ∞; hence we may apply Lebesgue dominated convergence
theorem once more to conclude from Expression (3.2.5):

lim
k→∞

∑
n∈Z

1
4π2n2

∫
R

∑
m∈Z
‖ωk(t + mðk)−ω∞(t + mð∞)‖Cd‖ηk(t)‖Cd dt = 0.

This concludes our lemma. �
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Remark 3.2.3. One may check that Lemma (3.2.1) and Lemma (3.2.2) together prove
that if p, q ∈ N, ξ, ω ∈ S(Cd), for any d ∈ qN with d > 0, and if θ ∈ R \

{
p
q

}
,

then 〈ξ, ω〉
H

p,q,d
θ

∈ `1(Z2). It is a well-known fact (indeed a basic fact for the very

construction of Heisenberg modules) though maybe not apparent from Theorem-
Definition (3.1.15) without consulting such sources as [37].

We now bring together Lemma (3.2.1) and Lemma (3.2.2) to obtain a first result
of continuity on the Heisenberg module inner products, albeit using the `1(Z2)
norm. This is the core result of this section, and it is phrased at a somewhat higher
level of generality that what is needed for the proof of continuity of the family
of Heisenberg C∗-Hilbert norms. Indeed, this level of generality will prove use-
ful twice later in this paper: when proving that the Heisenberg group represen-
tations αð,d define strongly continuous actions on Heisenberg modules, and when
establishing that our prospective D-norms on Heisenberg modules will also form
a continuous family of norms.

Lemma 3.2.4. Let p, q ∈ N with q > 0 and d ∈ qN with d > 0. If (ξk)k∈N is a family
of Cd-valued C2-functions such that:

(1) there exists M > 0 such that for all k ∈ N and t ∈ R:

max
{
‖ξk(t)‖Cd , ‖ξ ′k(t)‖Cd , ‖ξ ′′k (t)‖Cd

}
6

M
1 + t2 ,

(2) (t, k) ∈ R×N 7→ ξk(t) is continuous,
and if (θk)k∈N is a sequence converging to θ∞ such that θk −

p
q 6= 0 for all k ∈ N, then

we have:

lim
k→∞

∥∥∥∥〈ξk, ξk〉H p,q,d
θk

− 〈ξ∞, ξ∞〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)

= 0.

Proof. To fix notations, for all k ∈ N, we set ðk = θk −
p
q . Note that (ðk)k∈N is a

sequence of nonzero real numbers converging to ð∞ 6= 0.
We shall prove our result from the following inequality.

(3.2.6)
∥∥∥∥〈ξk, ξk〉H p,q,d

θk

− 〈ξ∞, ξ∞〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)

6

∥∥∥∥〈ξk, ξk〉H p,q,d
θk

− 〈ξk, ξ∞〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)

+

∥∥∥∥〈ξk, ξ∞〉H p,q,d
θ∞
− 〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
`1(Z2)

.

We begin with the first term of the right hand side of Inequality (3.2.6). We ob-
serve, using Expression (3.1.4) and the fact that the adjoint operation is an isometry
for ‖ · ‖`1(Z2), that:∥∥∥∥〈ξk, ξk〉H p,q,d

θk

− 〈ξk, ξ∞〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)

=

∥∥∥∥〈ξk, ξk〉H p,q,d
θk

− 〈ξ∞, ξk〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)

.

By Lemma (3.2.1), we then have for all k ∈ N:

(3.2.7)
∥∥∥∥〈ξk, ξk〉H p,q,d

θk

− 〈ξ∞, ξk〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)



80 FRÉDÉRIC LATRÉMOLIÈRE

6 ∑
n∈Z

1
4π2n2

(∫
R

∑
m∈Z

∥∥ξ ′′k (t + ðkm)− ξ ′′∞(t + ð∞m)
∥∥
Cd ‖ξk(t)‖Cd dt+

+
∫
R

∑
m∈Z

∥∥ξ ′k(t + ðkm)− ξ ′∞(t + ð∞m)
∥∥
Cd ‖ξ ′k(t)‖Cd dt

+
∫
R

∑
m∈Z
‖ξk(t + ðkm)− ξ∞(t + ð∞m)‖Cd ‖ξ ′′k (t)‖Cd dt

)
.

Our assumptions allow us to apply Lemma (3.2.2) to each term in the right hand
side of Inequality (3.2.7) to conclude that:

lim
k→∞

∥∥∥∥〈ξk, ξk〉H p,q,d
θk

− 〈ξk, ξ∞〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)

= 0.

We handle the second term of Inequality (3.2.6) in a similar manner. By Lemma
(3.2.1), we have:∥∥∥∥〈ξk, ξ∞〉H p,q,d

θ∞
− 〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
`1(Z2)

6 ∑
n∈Z

1
4π2n2

(∫
R

∑
m∈Z

∥∥ξ ′′k (t + ð∞m)− ξ ′′∞(t + ð∞m)
∥∥
Cd ‖ξ∞(t)‖Cd dt+

+
∫
R

∑
m∈Z

∥∥ξ ′k(t + ð∞m)− ξ ′∞(t + ð∞m)
∥∥
Cd ‖ξ ′∞(t)‖Cd dt

+
∫
R

∑
m∈Z
‖ξk(t + ð∞m)− ξ∞(t + ð∞m)‖Cd ‖ξ ′′∞(t)‖Cd dt

)
.

Once again, by the assumptions on (ξk)k∈N allow us to apply Lemma (3.2.2) to
conclude:

lim
k→∞

∥∥∥∥〈ξk, ξ∞〉H p,q,d
θ∞
− 〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
`1(Z2)

= 0,

and thus from Inequality (3.2.6), our lemma is proven. �

We now conclude this section with the proof that indeed, Heisenberg C∗-Hilbert
norms form continuous families of norms for a fixed projective representation of
some Z2

q.

Proposition 3.2.5. Let p, q ∈ N and d ∈ qN with d > 0. Let (ξ)k∈N be a family in
S(Cd) such that (k, t) ∈ N×R 7→ ξk(t) is (jointly) continuous and there exists M > 0
such that ‖ξ(s)k (t)‖Cd 6 M

1+t2 for all k ∈ N, t ∈ R and s ∈ {0, 1, 2}.
If (θk)k∈N is a sequence inR converging to θ∞ and such that θk −

p
q = 0 for all k ∈ N,

then:

lim
k→∞
‖ξk‖H p,q,d

θk

= ‖ξ∞‖H p,q,d
θ∞

.

Proof. For each k ∈ N∪ {∞}, we set ðk = θk −
p
q 6= 0.

We first compute:
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∣∣∣∣∣‖ξk‖2
H

p,q,d
θk

− ‖ξ∞‖2
H

p,q,d
θ∞

∣∣∣∣∣ =
∣∣∣∣∣∣
∥∥∥∥〈ξk, ξk〉H p,q,d

θk

∥∥∥∥
Aθk

−
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθ∞

∣∣∣∣∣∣
6

∣∣∣∣∣∣
∥∥∥∥〈ξk, ξk〉H p,q,d

θk

∥∥∥∥
Aθk

−
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθk

∣∣∣∣∣∣
+

∣∣∣∣∣
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθk

−
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθ∞

∣∣∣∣∣
6

∥∥∥∥〈ξk, ξk〉H p,q,d
θk

− 〈ξ∞, ξ∞〉H p,q,d
θ∞

∥∥∥∥
Aθk

+

∣∣∣∣∣
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθk

−
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθ∞

∣∣∣∣∣
6

∥∥∥∥〈ξk, ξk〉H p,q,d
θk

− 〈ξ∞, ξ∞〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)

+

∣∣∣∣∣
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθk

−
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθ∞

∣∣∣∣∣ .

(3.2.8)

We now apply Lemma (3.2.4) to conclude that:

lim
k→∞

∥∥∥∥〈ξk, ξk〉H p,q,d
θk

− 〈ξ∞, ξ∞〉H p,q,d
θ∞

∥∥∥∥
`1(Z2)

= 0.

Now, for any f ∈ `1(Z2), the function θ ∈ R 7→ ‖ f ‖Aθ
is continuous by [39,

Corollary 2.7]. Hence, using Remark (3.2.3):

lim
k→∞

∣∣∣∣∣
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθk

−
∥∥∥∥〈ξ∞, ξ∞〉H p,q,d

θ∞

∥∥∥∥
Aθ∞

∣∣∣∣∣ = 0.

Thus, we conclude from Inequality (3.2.8) that:

lim
k→∞
‖ξk‖2

H
p,q,d

θk

= ‖ξ∞‖2
H

p,q,d
θ∞

which, by continuity of the square root, proves our lemma. �

Corollary 3.2.6. Let p, q ∈ N and d ∈ qN with d > 0. Let ξ ∈ S(Cd). If (θk)k∈N is a
sequence in R converging to θ∞ and such that θk −

p
q = 0 for all k ∈ N, then:

lim
k→∞
‖ξ‖

H
p,q,d

θk

= ‖ξ‖
H

p,q,d
θ∞

.

Proof. We apply Proposition (3.2.5) to the family k ∈ N 7→ ξ. We note that since ξ
is a Schwarz function, our assumptions are met. �

We shall return to Lemma (3.2.4) and its applications in two subsequent sec-
tions. The first such occurrence is in fact in the next section, where we establish
all the basic results we will need on the Heisenberg group actions on Heisenberg
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modules. Lemma (3.2.4) will be the key ingredient to proving these actions will be
strongly continuous.

3.3. The action of the Heisenberg group on Heisenberg modules. Heisenberg
modules may be endowed with a metrized quantum vector bundle structure over
quantum 2-tori using a D-norm built from a Lie group action and inspired by the
construction of [40], albeit involving a projective action of a locally compact group,
which will not act via isometries of the D-norm. These changes will introduce new
difficulties which we will handle in the next few sections. As a first step, we study
the actions of the Heisenberg group on Heisenberg modules.

One motivation for the results in this section is to establish the properties which
will meet the hypothesis of the main results in our next section, from which our
D-norm will emerge. We also note that the actions αð,d, for all ð ∈ R \ {0} and
d ∈ N \ {0}, is a strongly continuous action by isometries of L2(R) ⊗ Cd, but
we need these results to be proven for the Heisenberg C∗-Hilbert norms, which
dominate the norm of L2(R)⊗Cd.

We shall use the same hypotheses for a series of lemmas and our main definition
in this section, and thus we group them in the following.

Hypothesis 3.3.1. Let p ∈ Z, q ∈ N \ {0}, and let d ∈ qN with d > 0. Let
θ ∈ R \

{
p
q

}
. We write ð = θ − p

q .
We shall employ the notations of Theorem-Definition (3.1.15) and of Notation

(3.1.16).

We begin with two lemmas which will prove that H32 acts via isometries of
the norm of the Heisenberg modules on the subspace of Schwarz functions —
where we have an explicit formula for our inner product — and thus can indeed
be extended to the entire module.

Lemma 3.3.2. We assume Hypothesis (3.3.1). For all (x, y, u) ∈ H3, if z1 = exp (−2iπðx)
and z2 = exp (2iπðy), and if ξ, ω ∈ S

p,q,d
θ , then:〈

α
x,y,u
ð,d (ξ), α

x,y,u
ð,d (ω)

〉
H

p,q,d
θ

= βz1,z2
θ

(
〈ξ, ω〉

H
p,q,d

θ

)
.

Proof. Let n, m ∈ Z. We compute:

〈
vn,m

p,q,ð,dα
x,y,u
ð,d ξ, α

x,y,u
ð,d ω

〉
L2(R)⊗Cd

=
〈(

σn,m
ð,1 α

x,y,u
ð,1 ⊗ ρ

[n],[m]
p,q,d

)
ξ, α

x,y,u
ð,d ω

〉
L2(R)⊗Cd

=

〈(
α
(x,y,u)−1

ð,1 αn,m,0
ð,1 α

x,y,u
ð,1 ⊗ ρ

[n],[m]
p,q,d

)
ξ, ω

〉
L2(R)⊗Cd

=
〈

exp(2iπð(xm− yn))
(

σn,m
ð,1 ⊗ ρ

[n],[m]
p,q,d

)
ξ, ω

〉
L2(R)⊗Cd

= zn
1 zm

2

〈
vn,m

p,q,ð,dξ, ω
〉

L2(R)⊗Cd
.
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Therefore, using the fact that βz1,z2
θ is a *-morphism, and writing uθ = δ1,0 and

vθ = δ0,1, we conclude:〈
α

x,y,u
ð,d (ξ), α

x,y,u
ð,d (ω)

〉
H

p,q,d
θ

= ∑
n,m∈Z

〈
vn,m

p,q,ð,dα
x,y,u
ð,1 ξ, α

x,y,u
ð,1 ω

〉
L2(R)⊗Cd

un
θ vm

θ

= ∑
n,m∈Z

zn
1 zm

2

〈
vn,m

p,q,ð,dξ, ω
〉

L2(R)⊗Cd
un

θ vm
θ

= ∑
n,m∈Z

〈
vn,m

p,q,ð,dξ, ω
〉

L2(R)⊗Cd
βz1,z2

θ (un
θ vm

θ )

= βz1,z2
θ

(
∑

n,m∈Z

〈
vn,m

p,q,ð,dξ, ω
〉

L2(R)⊗Cd
un

θ vm
θ

)

= βz1,z2
θ

(
〈ξ, ω〉

H
p,q,d

θ

)
,

as desired. �

To ease our notations in this section, we set:

Notation 3.3.3. For all (x, y) ∈ R2 and ð > 0, we define:

υð(x, y) = (exp(−2iπðx), exp(2iπðy)) ∈ T2.

We now show that the Heisenberg group acts by isometries for the C∗-Hilbert
norm.

Lemma 3.3.4. We assume Hypothesis (3.3.1). For all (x, y, u) ∈ H3, the map α
x,y,u
ð,d is an

isometry of
(

H
p,q,d

θ , ‖ · ‖
H

p,q,d
θ

)
.

Proof. Let (x, y, u) ∈ H3 and ξ ∈ S
p,q,d

θ . We compute:∥∥∥α
x,y,u
ð ξ

∥∥∥2

H
p,q,d

θ

=

∥∥∥∥〈α
x,y,u
ð,d ξ, α

x,y,u
ð,d ξ

〉
H

p,q,d
θ

∥∥∥∥
Aθ

=

∥∥∥∥β
υr(x,y)
θ 〈ξ, ξ〉

H
p,q,d

θ

∥∥∥∥
Aθ

by Lemma (3.3.2),

=

∥∥∥∥〈ξ, ξ〉
H

p,q,d
θ

∥∥∥∥
Aθ

= ‖ξ‖2
H

p,q,d
θ

.

This completes our proof. �

Notation 3.3.5. We use the notations of Hypothesis (3.3.1). The action αð,d of H3

on S
p,q,d

θ may thus be extended to H
p,q,d

θ by extending by continuity α
x,y,u
ð,d for all

(x, y, u) ∈ H3; we shall keep the notation of this extension as αð,d. We note that it

also acts via isometry on
(

H
p,q,d

θ , ‖ · ‖
H

p,q,d
θ

)
.

We also use the same notation for σð,d extended as α·,·,0ð,d to
(

H
p,q,d

θ , ‖ · ‖
H

p,q,d
θ

)
.
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The actions of the Heisenberg group on Heisenberg modules is by morphism
modules, in the sense of Definition (2.2.5). This result will play a role in the proof
that our D-norm satisfies the modular version of the Leibniz inequality.

Lemma 3.3.6. We assume Hypothesis (3.3.1). For all a ∈ Aθ , ξ ∈H
p,q,d

θ and (x, y, u) ∈
H3, then:

α
x,y,u
ð,d (aξ) = β

υð(x,y)
θ (a)αx,y,u

ð,d (ξ).

Proof. Let n, m ∈ Z and ξ ∈ S
p,q,d

θ . We compute:

α
x,y,u
ð,d (un

θ vm
θ ξ) = α

x,y,u
ð,d vn,m

p,q,ð,dξ

=
(

α
x,y,u
ð,d αn,m,0

ð,d ⊗ ρ
[n],[m]
p,q,d

)
ξ

= exp(2iπ(xm− yn))
(

αn,m,0
ð,d α

x,y.u
ð,d ⊗ ρ

[n],[m]
p,q,ð,d

)
ξ

= exp(2iπ(xm− yn))vn,m
p,q,ð,dα

x,y,u
ð,d ξ

= β
υr(x,y)
θ (un

θ vm
θ )α

x,y,u
ð,d ξ.

Since βθ is an action by *-morphisms, we conclude that for all a ∈ Aθ :

(3.3.1) α
x,y,u
ð,d (aξ) = βz1,z2

θ (a)αx,y,u
ð,d (ξ)

as desired. The lemma is concluded by extending Equality (3.3.1) to H
p,q,d

θ by
continuity. �

An important corollary of Lemma (3.3.6) is as follows:

Corollary 3.3.7. We assume Hypothesis (3.3.1). For all a ∈ Aθ , ξ ∈ H
p,q,d

θ and
(x, y, u) ∈ H3, we observe that:∥∥∥α

x,y,u
ð,d (aξ)

∥∥∥
H

p,q,d
θ

6 ‖a‖Aθ
‖ξ‖

H
p,q,d

θ

.

Proof. Let a ∈ Aθ , ξ ∈H
p,q,d

θ and (x, y, u) ∈ H3. We compute:∥∥∥α
x,y,u
ð,d (aξ)

∥∥∥
H

p,q,d
θ

=
∥∥∥β

υr(x,y)
θ (a)αx,y,u

ð,d ξ
∥∥∥

H
p,q,d

θ

by Lemma (3.3.6),

6 ‖βυr(x,y)
θ a‖Aθ

‖ξ‖
H

p,q,d
θ

by Lemma (3.3.4).

This completes our proof. �

We have checked that the actions of the Heisenberg group on Heisenberg mod-
ules, which the latter were constructed from, act by isometric module morphisms
on the entire module. Note that we already observed that Heisenberg modules can
be regarded as dense subspaces of L2(R)⊗Cd spaces on which the same action of
the Heisenberg group is defined, strongly continuous and isometric; however we
needed to ensure that these actions are well-behaved with respect to the inner
product and norm of the Heisenberg modules.

In order to define our D-norms, we shall require one more important analytic
property: we want our actions to be strongly continuous for the Heisenberg C∗-
Hilbert norms. This is the subject of the next proposition. We actually include
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in the next proposition a somewhat more general hypothesis and estimate than
needed for the strong continuity of our actions, as this stronger statement will
play an important role in our study of the continuity properties of our D-norms
later on.

Proposition 3.3.8. Let p ∈ Z, q ∈ N \ {0} and d ∈ qN with d > 0. Let C > 0
and M > 0 some constant. Let 0 < ð− < ð+. There exists K > 0 such that for all
ξ ∈ S (Cd) satisfying:

(3.3.2) max
{
‖ξ(s)‖Cd , ‖sξ(s)‖Cd , ‖ξ ′(s)‖Cd , ‖sξ ′(s)‖Cd ,

‖ξ ′′(s)‖Cd , ‖sξ ′′(s)‖Cd
}
6

M
1 + s2 ,

the following holds for all s ∈ R, ð ∈ [ð−,ð+] and (x, y, u) ∈ R3 with |x|+ |y|+ |u| 6
C:

(3.3.3) max
{∥∥∥α

x,y,u
ð,d ξ(n)(s)− ξ(n)(s)

∥∥∥
Cd

: n ∈ {0, 1, 2}
}
6

K(|x|+ |y|+ |u|)
1 + s2 .

In particular, for all ð 6= 0 and θ = ð+ p
q :

lim
(x,y,u)→0

∥∥∥α
x,y,u
ð,d ξ − ξ

∥∥∥
H

p,q,d
θ

= 0.

Proof. Let ξ ∈ S(Cd) and (x, y, u) ∈ R3. We note that for all s ∈ R, using the
continuity if ξ, we of course have:

α
x,y,u
ð,d ξ − ξ(s) = exp(2iπ(u + xs))ξ(s + ðy)− ξ(s)

(x,y,u)→0−−−−−→ 0.

However, we wish to apply Lemma (3.2.4), so we seek a more precise estimate.
To this end, let fs(t) = α

tx,ty,tu
ð,d ξ(s) = exp(2iπ(ðtu+ txs))ξ(s+ðty) for all t, s ∈ R.

We compute for all t, s ∈ R:

f ′s(t) = exp(2iπ(ðtu + txs))
(
2iπ(ðu + xs)ξ(s + ðty) + ðyξ ′(s + ðty)

)
.

Let ‖(x, y, u)‖1 = |x| + |y| + |u| for all (x, y, u) ∈ R2, i.e. ‖ · ‖1 is the usual
1-norm on R3. Let us now assume ‖(x, y, u)‖1 6 C — in particular, |y| < C. We
observe that for all s ∈ R, using the function b introduced in Expression (3.2.2) in
the proof of Lemma (3.2.2):

∥∥∥α
x,y,u
ð,d ξ(s)− ξ(s)

∥∥∥
Cd
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= ‖ fs(1)− fs(0)‖Cd

=

∥∥∥∥∫ 1

0
f ′s(t) dt

∥∥∥∥
Cd

6
∫ 1

0

∥∥exp(2iπ(ðtu + txs))
(
2iπ(ðu + xs)ξ(s + ðty) + ðyξ ′(s + ðty)

)∥∥
Cd dt

=
∫ 1

0

∥∥2iπ(ðu + xs)ξ(s + ðty) + ðyξ ′(s + ðty)
∥∥
Cd dt

6
∫ 1

0
‖(u, x, y)‖1 max


‖2iπðξ(s + ðty)‖Cd ,
‖2iπsξ(s + ðty)‖Cd ,
‖ξ ′(s + ðty)‖Cd

 dt

6 2πM max{1,ð+}‖(x, y, u)‖1

∫ 1

0
b(s, ty) dt

6 2πM max{1,ð+}‖(x, y, u)‖1

(
sup

y∈[−C,C]
b(s, y)

)
.

Since:

(3.3.4) lim
s→±∞

(1 + s2) sup
y∈[−C,C]

b(s, y) =
M
ð2
−

,

we conclude that there exists M1 > 0 such that, for all s ∈ R \ {[−Cð+ − 1, Cð− +
1], we have:

‖αx,y,u
ð,d ξ − ξ‖Cd 6

M1‖(x, y, u)‖1

1 + s2 .

We note that M1 depends only on M, ð+ and C through Expression (3.3.4), and
not on ξ.

Since s ∈ R 7→ 1
1+s2 is continuous and strictly positive, we may adjust M1 to a

larger value if necessary such that:

min
s∈[−Cð+−1,Cð−+1]

M1

1 + s2 > 2πM max{1,ð+}.

Therefore, we have, for all s ∈ R and (x, y, u) ∈ R3 with ‖(x, y, u)‖1 6 C:

‖αx,y,u
ð,d ξ(s)− ξ(s)‖Cd 6

M1‖(x, y, u)‖1

1 + s2 6
M1C

1 + s2 .

Now, all the above computations may be applied equally well to ξ ′ and ξ ′′. We
conclude that indeed, Expression (3.3.3) holds as stated.

Let now ξ ∈ S ⊗Cd be chosen. Since ξ is a Schwarz function, there exists M > 0
such that for all s ∈ R, we have:

max
{
‖ξ(s)‖Cd , ‖sξ(s)‖Cd , ‖ξ ′(s)‖Cd , ‖sξ ′(s)‖Cd , ‖ξ ′′(s)‖Cd , ‖sξ ′′(s)‖Cd

}
6

M
1 + s2 .

Thus we can apply our previous work to conclude that Expression (3.3.3) holds
for some K > 0, having chosen C = 1 for this last part of our proof.
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Furthermore, we can apply now Lemma (3.2.4). For this part, we pick ð > 0; we
need not to worry about the uniformity in ð (we may as well assume ð− = ð+ = ð
here). Thus, if (xn, yn, un)n∈N converges to 0, Lemma (3.2.4) implies that:

0 6 ‖αxn ,yn ,un
ð,d ξ − ξ‖

H
p,q,d

θ

6
√
‖
〈

α
xn ,yn ,un
ð,d ξ − ξ, α

xn ,yn ,un
ð,d ξ − ξ

〉
H

p,q,d
θ

‖`1(Z2)

limn→∞

√
‖
〈

α
xn ,yn ,un
ð,d ξ − ξ, α

xn ,yn ,un
ð,d ξ − ξ

〉
H

p,q,d
θ

‖`1(Z2) = 0

which concludes the proof of our proposition for ð > 0.
To prove our result for a general ð 6= 0, we simply observe that for all (x, y, u) ∈

R3 we have α
x,y,u
ð,d = α

x,−y,−u
−ð,d and thus our proposition is completely proven. �

We wish to use the actions ofH3 on Heisenberg modules to define our D-norms.
The next section presents a general source of possible D-norms from actions of Lie
groups satisfying the properties we have established in this section.

3.4. Seminorms from Lie group actions. Connes introduced a quantized differ-
ential calculus on quantum tori in [6] using the dual action of the tori, using the
Lie group structure of the tori. Moreover, he introduced a noncommutative con-
nection on Heisenberg modules, and these connections proved to be solutions of
the Yang-Mills problem for quantum 2-tori [9]. These connections were also useful
in Rieffel’s work on the classification of modules over quantum tori [37].

Moreover, ergodic actions of metric compact groups on C*-algebras were the
first example of L-seminorms constructed by Rieffel in [40]. In this section, we be-
gin investigating how to build D-norms from Lie group actions. We will employ
as assumptions the properties which we derived for the action of the Heisenberg
group on Heisenberg modules. Our construction, as we shall see, lies at the inter-
section of the purely metric picture of Rieffel and the differential picture of Connes,
and is a noncommutative version of Example (2.2.10).

Our D-norm will be constructed using the following theorem.

Definition 3.4.1. Let α be a strongly continuous action of a Lie group G on a Ba-
nach space E . Let w be a nonzero subspace of the Lie algebra of G. An element
ξ ∈ E is α-differentiable with respect to w when for all X ∈ w, the limit:

X(ξ) = lim
t→0

αexp(tX)ξ − ξ

t
exists.

In any vector space E, and for any function f : E→ R, we denote as usual:

lim sup
x→0

f (x) = inf
δ>0

sup { f (x) : 0 < ‖x‖ 6 δ} .

Theorem 3.4.2. Let α be a strongly continuous action by linear isometries of a Lie group
G on a Banach space E . Let g be the Lie algebra of G and let h ⊆ g be a nonzero subspace
of g.

Let S ⊆ E be the subspace of E consisting of α-differentiable elements of E with
respect to h. We note that S is dense in E .

Let ‖ · ‖ be a norm on h. For all ξ ∈ S , the norm of the linear map:

∇ξ : X ∈ h 7→ ∇Xξ = X(ξ)
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is denoted by |||∇ξ|||.
If ξ ∈ S , then, for any δ > 0:

|||∇ξ||| = sup


∥∥∥αexp(X)ξ − ξ

∥∥∥
E

‖X‖ : X ∈ h \ {0}


= sup


∥∥∥αexp(X)ξ − ξ

∥∥∥
E

‖X‖ : X ∈ h \ {0}, ‖X‖ 6 δ


= lim sup

X→0

∥∥∥αexp(X)ξ − ξ
∥∥∥

E

‖X‖ .

Proof. A smoothing argument [3] proves that the set:

{
ξ ∈ E : t > 0 7→ αexp(tX)ξ − ξ

t
has a limit at 0 for all X ∈ g

}

is dense in E . Therefore, since S contains this set, S is dense in E as well.
Fix ξ ∈ S . Let X ∈ h. We define:

F : t ∈ R 7→ αexp(tX)ξ.

The function F is continuously differentiable, and in particular, F(0) = ξ and
F(1) = αexp(X)ξ.

Moreover, using the fact that t ∈ R 7→ exp(tX) is a continuous group homo-
morphism:

F′(t) = lim
s→0

αexp((t+s)X)ξ − αexp(tX)ξ

h

= lim
s→0

αexp(tX)
(

αexp(hX)ξ − ξ
)

h
= αexp(tX)∇Xξ.

Thus:

αexp(X)ξ − ξ =
∫ 1

0
F′(t) dt

=
∫ 1

0
αexp(tX) (∇Xξ) dt
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so that:∥∥∥αexp(X)ξ − ξ
∥∥∥

E

‖X‖ =

∥∥∥∫ 1
0 F′(t) dt

∥∥∥
E

‖X‖

6
1
‖X‖

∫ 1

0

∥∥∥αexp(X) (∇Xξ)
∥∥∥

E
dt

=
1
‖X‖

∫ 1

0
‖∇Xξ‖E dt since αexp(tX) is an isometry by hypothesis,

6
1
‖X‖

∫ 1

0
|||∇ξ|||‖X‖ dt

= |||∇ξ|||.

This proves that:

sup


∥∥∥αexp(X)ξ − ξ

∥∥∥
E

‖X‖ : X ∈ h \ {0}

 6 |||∇ξ|||.

On the other hand, let us now fix some δ > 0. let us now assume that ‖X‖ = 1.
We first note that:

∇Xξ = F′(0)

= lim
t→0

F(t)− F(0)
t

where lim is used for the topology of (E , ‖ · ‖E ),

= lim
t→0

αexp(tX)ξ − ξ

t‖X‖

= lim
t→0

αexp(tX)ξ − ξ

‖tX‖ .

Thus for all X ∈ h with ‖X‖ = 1, since ‖tX‖ 6 δ for all t ∈ Rwith |t| < δ:

‖∇Xξ‖ 6 sup


∥∥∥αexp(Y)ξ − ξ

∥∥∥
E

‖Y‖ : Y ∈ h \ {0}, ‖Y‖ 6 δ


and thus:

|||∇ξ||| 6 sup


∥∥∥αexp(X)ξ − ξ

∥∥∥
E

‖X‖ : X ∈ h \ {0}, ‖X‖ 6 δ


6 sup


∥∥∥αexp(X)ξ − ξ

∥∥∥
E

‖X‖ : X ∈ h \ {0}

 .

We have thus concluded our argument, as the function:

δ ∈ (0, ∞) 7→ sup


∥∥∥αexp(X)ξ − ξ

∥∥∥
E

‖X‖ : X ∈ h \ {0}, ‖X‖ 6 δ


has been shown to be constant. �
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We now make an important and non-trivial observation. Among the seminorms
constructed via Theorem (3.4.2), we find L-seminorms built originally by Rieffel
[40] and which play the fundamental role of providing a quantum metric to quan-
tum tori. Thus Theorem (3.4.2) provide a reasonable generalization of Rieffel’s
approach to L-seminorms to the noncompact framework.

Corollary 3.4.3. Let α be a strongly continuous action by linear isometries of a compact
connected Lie group G on a Banach space E . As a compact Lie group, G admits an Ad-
invariant inner product 〈·, ·〉g on g. Let ‖ · ‖ be the norm associated with 〈·, ·〉g. For any
g ∈ G, since G is connected and compact, we may define `(g) as the distance from 1G to
g for the Riemannian metric induced by 〈·, ·〉g.

If ξ ∈ S then:

sup
{
‖αgξ − ξ‖E

`(g)
: g ∈ G \ {1G}

}
= |||∇ξ|||.

Proof. As G is a compact group, it admits a right Haar probability measure µ. Let
〈·, ·〉 be any inner product on g. If we set, for all X, Y ∈ g:

〈X, Y〉G =
∫

G

〈
AdgX, AdgY

〉
dµ(g)

then one easily verifies that 〈·, ·〉G is an Ad-invariant inner product on g.
Now, we endow G with the Riemannian metric induced by left translation of the

inner product 〈·, ·〉G. As this metric is induced by an Ad-invariant inner product,
it is in fact right invariant as well.

In particular, G, as a connected compact Riemannian manifold, is geodesically
complete by Hopf-Rinow theorem. As a first application, we let `(g) be the dis-
tance from 1G to g in G for this Riemannian metric, for all g ∈ G. As a second
application, we note that the Riemannian exponential map of G for our metric is
indeed surjective.

It is now possible to check that the exponential map for the Lie group G and
the exponential map for the Riemannian metric coincide. This is done by checking
that the Riemannian exponential map defines a 1-parameter subgroup of G.

With this in mind, we conclude that for all X ∈ g, we have:

`(exp(X)) = inf {‖Y‖ : exp(X) = exp(Y)} .

We note that the Lie exponential map is certainly not injective, at least as long as
G is of dimension at least one, though this does not affect our conclusion.

Moreover, since G is a compact connected Lie group, exp is surjective since the
Riemannian exponential is surjective. Thus, our corollary is proven using Theo-
rem (3.4.2). �

Now, Rieffel proved in [40] that the obvious necessary condition for a seminorm
of the type given in Corollary (3.4.3) to be a L-seminorm is, remarkably, sufficient
as well. This fact is highly non-trivial as well, and we record it here as it will be
the source of quantum metrics we put on quantum tori.

Theorem 3.4.4 ([40, Theorem 1.9]). Let β be a strongly continuous group action by
*-automorphisms of a compact group G on a unital C*-algebra A. Let ` be a continuous
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length function on G. For all a ∈ A, we define:

L(a) = sup
{
‖βg(a)− a‖A

`(g)
: g ∈ G \ {e}

}
,

allowing for this quantity to be infinite. Then the following are equivalent:

(1) (A, L) is a quantum compact metric space (which is necessarily Leibniz),
(2) {a ∈ A : ∀g ∈ G βg(a) = a} = C1A.

We pause for two important observations. First of all, Rieffel’s theorem does not
place much requirement on the length function used: certainly it need not be from
any sort of Lie structure, and in fact, the acting group G need not be a Lie group.
None the less, if G is a Lie group and if we choose a bi-invariant Riemannian
metric on G, then Corollary (3.4.3) applies and Rieffel’s metric is also given by the
differential calculus naturally induced by G on A. If G is a torus, i.e. a compact
Abelian Lie group, then all choices of norms on the Lie algebra of G will provide
bi-invariant metrics via translations in the usual manner, and thus in that case,
the Lipschitz approach and the differential approaches coincide. This will be our
setup in our main result.

Second of all, we note that the proof of Theorem (3.4.4) involves explicitly the
fact that the spectral subspaces of the action β are finite dimensional under the con-
dition of ergodicity [14]. This result is not trivial, and worse yet for our purpose,
does not carry to locally compact group. In fact, besides the trivial representation,
no irreducible representation of the Heisenberg group is finite dimensional — so
we are as far as we can to apply the idea in [40]. In this paper, we shall focus
on the Heisenberg modules, and we will prove in this case that the seminorms
constructed in Theorem (3.4.2) have compact unit balls using quite different tech-
niques.

The rest of this section introduces the general scheme to construct D-norms
from Lie group actions which we will employ in this paper, and prove that this
construction meets all our requirements except, maybe, for the compactness of the
unit ball which, in the case of Heisenberg modules, will be the subject of our next
section.

Theorem (3.4.2) thus suggests two expressions for L-seminorms and D-norms
constructed from actions of Lie groups. However, only one of these expression
will provide lower semicontinuous seminorms. The following proposition estab-
lishes that the inner quasi-Leibniz and modular quasi-Leibniz property hold for
this choice.

Proposition 3.4.5. Let β be the action of a compact connected Lie group G on a unital C*-
algebra A via *-automorphisms. Let α be the action by isometric C-linear isomorphisms of
a Lie group H on a Hilbert module (M , 〈·, ·〉M ) over A. We write g and h the respective
Lie algebras of G and H, and expG : g → G and expH : h → H be the respective Lie
exponential maps of G and H.

Let w be a nonzero subspace of h. Let ‖ · ‖[ be a norm on g and ‖ · ‖] be a norm on
w ⊆ h.
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We set for all a ∈ A:

L(a) = sup


∥∥∥βexp(X)a− a

∥∥∥
A

‖X‖[
: X ∈ g \ {0}

 ,

and for all ξ ∈ E :

D(ξ) = sup

‖ξ‖M ,

∥∥∥αexp(X)ξ − ξ
∥∥∥

M

‖X‖]
: X ∈ w \ {0}

 .

If there exist two linear maps j : w→ g and q : g→ w such that:
(1) for all ξ, ω ∈M and X ∈ w:

(3.4.1) βexpG(X)〈ξ, ω〉M =
〈

αexpH(j(X))ξ, αexpH(j(X))ω
〉

E

and:

(3.4.2) αexpH(X)(aξ) = βexpG(q(X))(a)αexpH(X)ξ,

(2) j is an isometry from (g, ‖ · ‖[) to (w, ‖ · ‖]),
(3) q is a surjection of norm at most 1, i.e. ‖q(X)‖[ 6 ‖X‖] for all X ∈ w,

then:
(1) L is a seminorm on a dense subspace of (A, ‖ · ‖A), and moreover:

L(a) = 0 ⇐⇒ ∀g ∈ G βg(a) = a,

(2) D is a norm on a dense subspace of (M , 〈·, ·〉M ) and D(·) > ‖ · ‖M ,
(3) L and D are lower semicontinuous,
(4) for all a ∈ A and ξ ∈M :

D(aξ) 6 ‖a‖AD(ξ) + L(a)‖ξ‖M ,

(5) for all ξ, ω ∈M :

L (〈ξ, ω〉M ) 6 ‖ξ‖M D(ω) + D(ξ)‖ω‖M .

Proof. Let Sg(A) be the subspace of A consisting of all the β-differentiable ele-
ments with respect to g, and Sh(M ) be the subspace of M consisting of all the
α-differentiable elements of M with respect to w.

For any a ∈ Sg(A), we define the linear map ∂a : X ∈ g 7→ X(a) whose norm is
denoted by |||∂a|||gA, where g is endowed with ‖ · ‖[. Since g is finite dimensional,
∂a is continuous and thus has finite norm for all a ∈ Sg(A).

For any ξ ∈ Sw(M ), we also define ∇ξ : X ∈ w 7→ X(ξ) whose norm is
|||∇ξ|||wM where w is endowed by ‖ · ‖] — since w is finite dimensional, the norm
of ∇ξ is finite as well.

By Theorem (3.4.2), for all a ∈ Sg(A) and for all ξ ∈ Sw(M ), then:

L(a) = |||∂a|||gA < ∞ and D(ξ) = |||∇ξ|||wM < ∞.

Since Sg(A) and Sw(E ) are dense, we conclude that the domains of L and D are
indeed dense.

Since D(·) > ‖ · ‖M by construction, D is in particular a norm on its domain.
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Moreover if L(a) = 0 for some a ∈ A, we immediately conclude that βga = a
for all g ∈ G since the exponential map of G is surjective.

The function ξ ∈ M 7→ αexp(X)ξ−ξ
‖X‖] is continuous for all X ∈ w \ {0} and thus

D is lower semi-continuous as the pointwise supremum of continuous functions.
The same reasoning and conclusion applies to L.

We are left to prove the two forms of the Leibniz inequalities. We take the
quickest path, which is a direct computation.

Let ξ, ω ∈M . We compute:

L (〈ξ, ω〉E ) = sup


∥∥∥βexp(X)〈ξ, ω〉E − 〈ξ, ω〉E

∥∥∥
A

‖X‖[
: X ∈ g \ {0}


= sup


∥∥∥〈αexp(j(X))ξ, αexp(j(X))ω

〉
E
− 〈ξ, ω〉E

∥∥∥
A

‖j(X)‖]
: X ∈ g \ {0}


6 sup


∥∥∥〈αexp(X)ξ, αexp(X)ω

〉
E
− 〈ξ, ω〉E

∥∥∥
A

‖X‖]
: X ∈ w \ {0}


6 sup


∥∥∥〈αexp(X)ξ, αexp(X)ω

〉
E
−
〈

αexp(X)ξ, ω
〉

E

∥∥∥
A

‖X‖]
: X ∈ w \ {0}


+ sup


∥∥∥〈αexp(X)ξ, ω

〉
E
− 〈ξ, ω〉E

∥∥∥
A

‖X‖]
: X ∈ w \ {0}


6 sup


∥∥∥αexp(X)ξ

∥∥∥
M

∥∥∥αexp(X)ω−ω
∥∥∥

E

‖X‖]
: X ∈ w \ {0}


+ sup


∥∥∥αexp(X)ξ − ξ

∥∥∥
E

‖X‖]
: X ∈ w \ {0}

 ‖ω‖M
6 ‖ξ‖M sup


∥∥∥αexp(X)ω−ω

∥∥∥
E

‖X‖]
: X ∈ w \ {0}


+ sup


∥∥∥αexp(X)ξ − ξ

∥∥∥
E

‖X‖]
: X ∈ w \ {0}

 ‖ω‖M
= ‖ξ‖M D(ω) + D(ξ) ‖ω‖M .

Now, let a ∈ A and ξ ∈M . We compute:
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sup


∥∥∥αexp(X) (aξ)− aξ

∥∥∥
M

‖X‖]
: X ∈ w \ {0}


= sup


∥∥∥βexp(q(X))(a)αexp(X) (ξ)− aξ

∥∥∥
M

‖X‖]
: X ∈ w \ {0}


6 sup


∥∥∥βexp(q(X))(a)αexp(X) (ξ)− aαexp(X)ξ

∥∥∥
M

‖q(X)‖[
: X ∈ w \ ker q


+ sup


∥∥∥aαexp(X) (ξ)− aξ

∥∥∥
M

‖X‖]
: X ∈ w \ {0}


6 sup


∥∥∥βexp(q(X))(a)− a

∥∥∥
M

‖X‖[
: X ∈ g \ {0}

 ‖ξ‖M + ‖a‖AD(ξ)

= L(a)‖ξ‖M + ‖a‖AD(ξ),

as desired. �

Thus, Proposition (3.4.5) shows that if we follow the scheme suggested by The-
orem (3.4.2), then we obtain potential D-norms on modules. The missing property
is the compactness of the closed unit ball for the D-norm candidate.

We conclude our section by connecting our metric framework with the non-
commutative differential framework of connections on modules. Let us use the
notations of Proposition (3.4.5). A direct computation shows that for all X ∈ w,
the following holds:

(3.4.3) ∇X(aξ) = q(X)a · ξ + a∇Xξ

while for all X ∈ g, we also have:

(3.4.4) X(〈ξ, ω〉M ) = 〈j(X)ξ, ω〉M + 〈ξ, j(X)ω〉M .

We also denote A⊗ g∗ by Ω1 and the space of β-differentiable elements of A by
A1. We define ∂ : A1 → Ω1 by setting, for all a ∈ A1:

∂a : X ∈ g 7→ X(a).

We observe trivially that Ω1 is an A-A-bimodule and that ∂ is a derivation, i.e.
∂(ab) = a∂(b) + ∂(a)b for all a, b ∈ A1.

We first note that to get an interesting connection, we want q to be injective, i.e.
g and w to be isomorphic. It is always possible to increase the dimension of g (the
Lie algebra structure is actually not involved in the computations to follow, so this
is always possible), but this would amount to define ∂X = 0 for all vector X not in
g, and this is rather awkward and artificial.

Since, for the differential picture, the norms ‖ · ‖[ and ‖ · ‖] do not play a role
in the construction of the connection, we will for now identify g and w and j and
q with the identity map.
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With this assumption, Expressions (3.4.3) translates to the operator ∇ : M →
M ⊗ g∗, defined by:

∇(ξ) : X ∈ g 7→ ∇Xξ

for all α-differentiable ξ ∈ M with respect to g, to be a noncommutative connec-
tion. We indeed easily check that for all a ∈ A and ξ ∈M :

∇(aξ) = a∇(ξ) + ∂(a)ξ.

Expression (3.4.4) means that the connection∇ is hermitian, i.e. it is compatible
with the noncommutative equivalent of a metric on the quantum vector bundle
M . It is tempting to call ∇ a Levi-Civita connection, although we do not address
here the computation of the torsion of ∇. Nonetheless, we see that our structure
provides a noncommutative Riemannian geometry. This is the structure which
inspired our definition of metrized quantum vector bundle, and we now can see
how it is implemented through our main example.

In summary, we have constructed a natural D-norm candidate on modules car-
rying certain Lie group actions. The key difficulty, of course, regards the compact-
ness of the unit ball of such a D-norm.

3.5. A D-norm from a connection on Heisenberg modules. We now define our
D-norms on Heisenberg modules. Our method employs the idea of Theorem
(3.4.2) and Proposition (3.4.5), where the actions of the Heisenberg group on Heisen-
berg modules defines a norm which restricts to the operator norm of a connection
constructed via the associated action of the Heisenberg Lie algebra.

As noted at the end of the previous section, we want to only work with a sub-
space of the Heisenberg Lie algebra to build our D-norm and its associated con-
nection, since the central element of the Heisenberg Lie algebra does not act, so to
speak, as a derivation — it simply acts by multiplication by a scalar. We follow
a pattern which is common in the literature on the Heisenberg group: we only
consider the action of the subspace span{P, Q} in the Lie algebra H.

We thus endow span{P, Q} with a norm. If we were to construct a metric on
the Heisenberg group using this data — by defining the length of a curve whose
tangent vector at (almost) every point lies in span{P, Q} in the usual manner by
integrating the norm of the tangent vector along the curve, and then defining the
distance between two points as the infimum of the length of all so-called hori-
zontal curves — we would actually obtain a sub-Finslerian metric (if our choice
of norm comes from a Hilbert space structure, we would have a sub-Riemannian
structure and our construction would give rise to a Carnot-Carathédory distance
on the Heisenberg group).

However, as discussed, we do not transport the Carnot-Carathédory metric
from the Heisenberg group via its action in this paper. We prefer to carry the
norm of the subspace span{P, Q} of the Heisenberg Lie algebra to our modules.
This approach means that we work with a connection, and seems more natural. In
essence, the Carnot-Caratheodory is the metric obtained on the group while our
D-norms are the quantum metrics obtained on our modules; as the acting group is
not compact, we have no reason to expect them to agree.

With this in mind, we now introduce:
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Definition 3.5.1. Let p ∈ Z, q ∈ N \ {0} and d ∈ qN with d > 0. Let θ ∈ R \
{

p
q

}
.

Let ‖ · ‖ be a norm on R2. We endow the Heisenberg module H
p,q,d

θ with the
norm:

D
‖·‖,p,q,d
θ (ξ) = sup

‖ξ‖H p,q,d
θ

,

∥∥∥∥α
expH3

(xP+yQ)

ð,d ξ − ξ

∥∥∥∥
H

p,q,d
θ

2π|ð|‖(x, y)‖ : (x, y) ∈ R2 \ {0}


where ð = θ − p

q .

We now lighten our notation for the rest of our paper.

Convention 3.5.2. We endow R2 with a fixed norm ‖ · ‖ for the rest of this paper.
We shall denote D

‖·‖,p,q,d
θ simply by D

p,q,d
θ , as the norm on R2 will not be under-

stood. We emphasize that ‖ · ‖ is independent of any of the parameters p, q, d and
θ.

The norm ‖ · ‖ on R2 provides us with a continuous length function on Aθ for
all θ ∈ R. This length function arises from the invariant Finslerian metric induced
by ‖ · ‖. A direct computation simply shows that:

`(exp(ix), exp(iy)) = inf{‖(x + 2nπ, y + 2mπ)‖ : n, m ∈ Z2}.

For all θ ∈ R, we denote by Lθ the L-seminorm onAθ associated with the action
βθ on Aθ and the length function ` via [40, Theorem 1.9]. We note that since T2 is
compact and Abelian, Corollary (3.4.3) implies that for all a ∈ Aθ :

Lθ(a) = sup

‖β
exp

T2 (x,y)
θ ξ − ξ‖Aθ

‖(x, y)‖ : (x, y) ∈ R2 \ {0}


and Lθ agrees with the operator norm of derivative for the natural differential
calculus defined by βθ on βθ-differentiable elements. We refer to the previous
section for a discussion of these matters.

We begin by listing various equivalent expressions for our D-norm candidates,
as we shall use whichever may prove useful in this paper.

Remark 3.5.3. We recall from Notation (3.1.12) that:

expH3
(xP + yQ) =

(
x, y,

1
2

xy
)

for all x, y ∈ R.
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For all p, q ∈ N, d ∈ qN with d > 0, θ ∈ R \ {pq−1} and ξ ∈ H
p,q,d

θ , the
following identities hold:

D
p,q,d
θ (ξ) = sup

‖ξ‖H p,q,d
θ

,

∥∥∥∥α
x,y, 1

2 xy
ð,d ξ − ξ

∥∥∥∥
H

p,q,d
θ

2π|ð|‖(x, y)‖ : (x, y) ∈ R2 \ {0}


= sup

‖ξ‖H p,q,d
θ

,

∥∥∥σ
x,y
ð,d ξ − ξ

∥∥∥
H

p,q,d
θ

2π|ð|‖(x, y)‖ : (x, y) ∈ R2 \ {0}

 .

Proposition 3.5.4. Let p, q ∈ N and d ∈ qN with d > 0. Let θ ∈ R \
{

p
q

}
.

We endow span{P, Q} with the norm 2π|ð|‖ · ‖. We also define, for all (x, y) ∈ R2

and ξ ∈ S
p,q,d

θ :

∇ð
x,yξ = lim

t→0

α
expH3

(t(xP+yQ))

ð,d ξ − ξ

t

= lim
t→0

α
tx,ty, 1

2 t2xy
ð,d ξ − ξ

t
.

To ease notation, let |||·|||2π|ð| denote the operator norm for linear maps from (R2, 2π|ð|‖ ·
‖) to (H p,q,d

θ , ‖ · ‖
H

p,q,d
θ

).

We record:
(1) D

p,q,d
θ is a norm on a dense subspace of H

p,q,d
θ ,

(2) For all ξ ∈ S
p,q,d

θ and for all δ > 0, the following expressions hold:

D
p,q,d
θ (ξ) = max

{
‖ξ‖

H
p,q,d

θ

, |||∇ðξ|||2π|ð|

}

= sup

‖σ
x,y
ð,d ξ − ξ‖

H
p,q,d

θ

2π|ð|‖(x, y)‖ : (x, y) ∈ R2, 0 < ‖(x, y)‖ < δ


= lim sup

(x,y)→0

∥∥∥σ
x,y
ð,d ξ − ξ

∥∥∥
H

p,q,d
θ

2π|ð|‖(x, y)‖ .

(3) If a ∈ Aθ and ξ ∈H
p,q,d

θ then:

D
p,q,d
θ (aξ) 6 ‖a‖Aθ

D
p,q,d
θ (ξ) + Lθ(a)‖ξ‖

H
p,q,d

θ

.

(4) If ξ, ω ∈H
p,q,d

θ then:

Lθ

(
〈ξ, ω〉

H
p,q,d

θ

)
6 ‖ξ‖

H
p,q,d

θ

D
p,q,d
θ (ω) + D

p,q,d
θ (ξ)‖ω‖

H
p,q,d

θ

.

Proof. The Lie algebra of T2 is R2 with the exponential map given as:

expT2 : (x, y) ∈ R2 7→ (exp(ix), exp(iy)).



98 FRÉDÉRIC LATRÉMOLIÈRE

Now, the map q : (x, y) ∈ R2 7→ (2iπðx, 2iπðy) satisfies, according to Lemma
(3.3.2), the relation:

β
exp

T2 (q(x,y))
θ 〈ξ, ω〉

H
p,q,d

θ

=

〈
α

expH3
(x,y,0)

ð,d ξ, α
expH3

(x,y,0)

ð,d ω

〉
H

p,q,d
θ

.

and, according to Lemma (3.3.6), the relation:

α
expH3

(x,y,0)

ð,d (aξ) = β
exp

T2 (q(x,y))
θ (a)α

expH3
(x,y,0)

ð,d (ξ).

In order to apply Proposition (3.4.5), since q is indeed a linear isomorphism, we
endow span{P, Q} with the norm:

‖xP + yQ‖∗ = 2π|ð|‖(x, y)‖.
We now are in the setting of Proposition (3.4.5), which allows us to conclude all
but Assertion (2) in our proposition. Assertion (2), in turn, follows from Theorem
(3.4.2), with our choice of norm. �

We now turn to the remaining, main issue of the compactness of the closed unit
balls for our D-norm candidates. The strategy we employ relies on a particular
source of finite rank operators naturally associated with the Schödinger represen-
tations of R2 via the Weyl calculus.

Our first step is to introduce the convolution-like operators at the core of our
analysis.

Lemma 3.5.5. Assume Hypothesis (3.3.1). If f ∈ L1(R2) and:

σ
f
ð,d =

∫∫
R2

f (x, y)αx,y, xy
2

ð,d dxdy

then σ
f
ð,d is a well-defined operator on H

p,q,d
θ and

∣∣∣∣∣∣∣∣∣σ f
ð,d

∣∣∣∣∣∣∣∣∣
H

p,q,d
θ

6 ‖ f ‖L1(R2).

Proof. Let ξ ∈ H
p,q,d

θ . Using Lemma (3.3.4), i.e. the fact that α
x,y,u
ð,d is an isometry

of H
p,q,d

θ for all (x, y, u) ∈ H3, we simply compute:∫∫
R2

∥∥∥∥ f (x, y)αx,y, xy
2

ð,d (ξ)

∥∥∥∥
H

p,q,d
θ

dxdy =
∫∫
R2
| f (x, y)|

∥∥∥∥α
x,y, xy

2
ð,d (ξ)

∥∥∥∥
H

p,q,d
θ

dxdy

=
∫∫
R2
| f (x, y)| ‖ξ‖

H
p,q,d

θ

dxdy

= ‖ f ‖L1(R2)‖ξ‖H p,q,d
θ

.

Thus σ
f
ð,d is well-defined, and moreover:∥∥∥σ

f
ð,d(ξ)

∥∥∥
H

p,q,d
θ

=

∥∥∥∥∫∫
R2

f (x, y)σx,y
ð,d (ξ) dxdy

∥∥∥∥
H

p,q,d
θ

6 ‖ f ‖L1(R2)‖ξ‖H p,q,d
θ

.

This completes our proof. �

We now prove the first of two core lemmas of this section, which provides us
with a mean to approximate elements in Heisenberg modules using our convolution-
type operators, in a manner which is uniform in our prospective D-norms. This
lemma is an adjustment of [49] to our context.
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Lemma 3.5.6. Assume Hypothesis (3.3.1). Let ε > 0. If f : R2 → [0, ∞) is measurable
and satisfies:

(1)
∫
R2 f = 1,

(2)
∫∫
R2 f (x, y)‖(x, y)‖ dxdy 6 ε

2π|ð| ,

then for all ξ ∈H
p,q,d

θ : ∥∥∥ξ − σ
f
ð,dξ

∥∥∥
H

p,q,d
θ

6 εD
p,q,d
θ (ξ).

Proof. If ξ ∈H
p,q,d

θ , then:∥∥∥ξ − σ
f
ð,dξ

∥∥∥
H

p,q,d
θ

=

∥∥∥∥∫∫
R2

f (x, y)ξ dxdy−
∫∫
R2

f (x, y)αx,y, xy
2

ð,d ξ dxdy
∥∥∥∥

H
p,q,d

θ

6
∫∫
R2

f (x, y)‖ξ − α
x,y, xy

2
ð,d ξ‖

H
p,q,d

θ

dxdy

6
∫∫
R2

f (x, y)2π|ð|‖(x, y)‖
‖ξ − α

x,y, xy
2

ð,d ξ‖
H

p,q,d
θ

2π|ð|‖(x, y)‖ dxdy

6
∫∫
R2

f (x, y)2π|ð|‖(x, y)‖Dρ
θ(ξ) dxdy

= D
p,q,d
θ (ξ)

(
2π|ð| ε

2π|ð|

)
= εD

ρ
θ(ξ),

as desired. �

We now ensure that we indeed have an ample source of functions which meet
the hypothesis of Lemma (3.5.6).

Notation 3.5.7. If (E, d) is a metric space then the closed ball {x ∈ E : d(x0, x) 6 r}
of center x0 ∈ E and radius r > 0 is denoted by E[x0, r].

The following lemma is valid for any norm on R2; we shall work within our
context with the fixed norm ‖ · ‖.

Lemma 3.5.8. For all n ∈ N, let ψn : R2 → [0, ∞) be an integrable function supported
on R2

[
0, 1

n+1

]
and with

∫
R2 ψn = 1.

If f : R2 → [0, ∞) is integrable on some ball centered at 0 in (R2, ‖ · ‖), and f
continuous at 0, then:

lim
n→∞

∫∫
R2

ψn(x, y) f (x, y) dxdy = f (0).

Proof. Let δ > 0 such that f is integrable on R2[0, δ].
Let ε > 0. Since f is continuous at 0, there exists δc > 0 such that | f (x)− f (0)| 6

ε for all x ∈ R2[0, δc].
Let N ∈ N be chosen so that 1

N+1 6 min{δ, δc}. For all n > N, we first note that
since ψn is supported on a subset of R2[0, δ], the function ψn f is integrable on R2.
Moreover for all n > N:
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∣∣∣∣∫∫
R2

ψn(x, y) f (x, y) dxdy− f (0)
∣∣∣∣ 6 ∫

R2
|ψn(x, y)( f (x, y)− f (0))| dxdy

=
∫∫
R2[0,n−1]

|ψn(x, y)|| f (x, y)− f (0)| dxdy

6
∫∫
R2[0,n−1]

ψn(x, y)ε dxdy 6 ε.

Thus we have shown that limn→∞
∫
R2 ψn(x, y) f (x, y) dxdy = f (0). �

As a quick digression, which will turn out to be useful in our last section, we
note that while in general, the action of the Heisenberg groups on Heisenberg
modules is not by isometry of our D-norms, we can use our approximation oper-
ators as near isometries:

Lemma 3.5.9. Let p ∈ Z, q ∈ N and d ∈ N \ {0}. For all ε > 0 there exists δ > 0 such
that, if f : R2 → R+ is an integrable function supported on aR2[0, δ], and if ð 6= 0, then
for all ξ ∈ S(Cd), we have:

D
p,q,d
p
q +ð

(
σ

f
ð,dξ

)
6 (1 + ε)D

p,q,d
p
q +ð(ξ).

Proof. Let ð ∈ R\ {0} and let θ = p
q +ð. We first record that for all (x, y, u), (z, w, v) ∈

H3:
α

x,y,u
ð,d αz,w,v

ð,d = exp (2iπð(xw− zy)) αz,w,v
ð,d α

x,y,u
ð,d .

Next, we denote by ‖ · ‖2 the standard Euclidean norm on R2 and, since R2 is
finite dimensional, we can find k > 0 such that ‖ · ‖2 6 k‖ · ‖. For all x, y, z, w ∈ R,
we then compute:

|exp (2iπð(xw− zy))− 1| = 2| sin(ðπ(xw− zy))|
6 2π|ð||xw− yz|
6 2π|ð|‖(x, y)‖2‖(z, w)‖2

6 2πk|ð|‖(x, y)‖‖(z, w)‖2.

Let ε > 0. Let f be an integrable function supported on R2[0, δ].
For all (z, w) ∈ R2[0, δ] and (x, y) ∈ R2 with ‖(x, y)‖ 6 δ = ε

k , we compute:∥∥∥∥α
x,y, xy

2
ð,d

(∫∫
K

f (z, w)α
z,w, zw

2
ð,d ξ dxdy

)
−
∫∫

f (z, w)α
z,w, zw

2
ð,d ξ dxdy

∥∥∥∥
H

p,q,d
θ

6
∫∫

K
f (z, w) |exp (2iπð(xy− zw))− 1|

∥∥∥∥α
z,w, zw

2
ð,d α

x,y, xy
2

ð,d ξ

∥∥∥∥
H

p,q,d
θ

dzdw

+
∫∫

K
f (z, w)

∥∥∥∥α
z,w, zw

2
ð,d

(
α

x,y, xy
2

ð,d ξ − ξ

)∥∥∥∥
H

p,q,d
θ

dzdw

6 2πk|ð|δ‖(x, y)‖
∫∫

K
f ‖ξ‖

H
p,q,d

θ

+
∫∫

K
f 2π|ð|‖(x, y)‖Dp,q,d

θ (ξ)

6 (kδ + 1) 2π|ð|‖(x, y)‖Dp,q,d
θ (ξ)

6 (ε + 1)2π|ð|‖(x, y)‖Dp,q,d
θ (ξ).
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By Definition (3.5.1), we now have:

D(σ
f
ð,dξ) = sup



∥∥∥∥α
x,y, xy

2
ð,d σ

f
ð,dξ − σ

f
ð,dξ

∥∥∥∥
H

p,q,d
θ

2π|ð|‖(x, y)‖ : x, y ∈ R \ {0}


6 (ε + 1)Dp,q,d

θ (ξ).

Our lemma is now proven. �

We are now ready to prove the second core lemma of this section. We begin
with an explanation of the ideas and reasons behind this lemma.

By a compact operator on a Banach space (E, ‖ · ‖Cd), we mean as usual an
operator which maps bounded subsets of E to totally bounded subsets of E.

The map f ∈ L1(R2) 7→ σ
f
ð,d is a *-representation of the twisted convolution

algebra L1(R2) for the convolution product defined for all f , g ∈ L1(R2) and x ∈
R2 by:

f ∗ðg(x) =
∫
R2

f (y)g(x− y)eð(y, x− y) dy

and the involution:

f ∈ L1(R2) 7→ f ∗ = x ∈ R2 7→ f (−x),

as can be directly checked, or is established in [10]. It is an important, well-known
fact [10, Theorem 1.30] that this representation is valued in the algebra of compact
operators on L2(R)⊗ Cd, and is faithful; the completion of (L1(R2), ∗ð, ∗) for the
norm f ∈ `1(Z2) 7→ ‖ f ‖C∗(R2,eð) =

∣∣∣∣∣∣∣∣∣σ f
ð,1

∣∣∣∣∣∣∣∣∣
L2(R)

is the entire algebra of compact

operators.
The fact that σ

f
ð,d is compact as an operator of L2(R)⊗Cd does not immediately

imply that it is compact for the Banach space
(

H
p,q,d

θ , ‖ · ‖
H

p,q,d
θ

)
since in gen-

eral, we only know that ‖ · ‖L2(R) 6 ‖ · ‖H p,q,d
θ

. We thus must prove compactness

of these operators for our C∗-Hilbert norm. However, we can extract the essential
tools for our work from the expansive work on Laguerre expansion of functions
and the study of the Moyal plane. We will prove that, at least when f is a ra-
dial function, then we can approximate σ

f
ð,d by finite rank operators, in norm. To

this end, we need a supply of finite rank operators, which provide a mean to ap-
proximate any σ

f
ð,d for f radial. The theory of the quantum harmonic oscillator

provides us with a well-suited family of finite rank projections, obtained as σ
ψ
ð,d

for ψ a properly scaled Laguerre function [10, Ch. 1, sec. 9].
To obtain the desired approximation result, however, we need to approximate

our radial functions in the norm of L1(R2) using functions obtained from Laguerre
functions. As Laguerre functions form an orthonormal basis for some L2 space,
we certainly do have a Laguerre expansion which converges in some L2 norm, but
convergence in L1(R2) is highly not trivial.
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The work of Sundaram Thangaveru in [50] comes to our rescue, however, by
proving that we may obtain the desired convergence if we replace the Laguerre
expansion series by the sequence of its Césaro averages. We now formalize our
discussion in the next key lemma.

Lemma 3.5.10. If f : R+ → R is a function such that r ∈ R 7→ r f (r) is Lebesgue
integrable, and if we set:

f ◦ : (x, y) ∈ R2 7→ f
(√

x2 + y2
)

,

then the operator σ
f ◦

ð,d is a compact operator for the Banach space
(

H
p,q,d

θ , ‖ · ‖
H

p,q,d
θ

)
.

Proof. Our goal is to write σ
f ◦

ð,d as a limit, in the operator norm, of finite rank oper-
ators. To this end, let us first assume that ð > 0 and for all n ∈ N, we let ψn

ð be the
nth Laguerre function defined for all r ∈ [0, ∞) by:

ψn
ð(r) = ð exp

(
−πðr2

2

)
Ln

(
πðr2

)
,

where Ln is the nth Laguerre polynomials, given for all x ∈ R by:

Ln(x) =
n

∑
j=1

(−1)j

j!

(
n

n− j

)
xj.

Note that these functions are given in [50, (6.1.17)] for ð = 1
π . An observation

which will be important for us in later proofs is that ψn
ð = ðψn

1 (
√
ð·), i.e. we can

obtain all the Laguerre functions we are considering via a simple rescaling.
By slight abuse of notation, we denote by Lp(R+, rdr) the p-Lebesgue space for

the measure defined, for all measurable f : [0, ∞] → [0, ∞), by
∫ ∞

0 f (r) rdr. In
particular, note that the inner product of L2(R+, rdr) is given for any two f , g ∈
L2(R, rdr), by:

〈 f , g〉L2(R+ ,rdr) =
∫ ∞

0
f (r)g(r) rdr.

With all these notations set, we define, for each n ∈ N \ {0}, the nth Césaro sum
of the series given by the Laguerre expansion of f :

Cn
ð( f ) =

n

∑
j=0

n + 1− j
n + 1

〈
f ψ

j
ð, ψ

j
ð

〉
L2(R+ ,rdr)

ψ
j
ð.

Then by the work of S. Thangavelu in [50, Theorem 6.2.1] — where our ψ
j
ð is a

rescaled version of the function denoted by ψ0
j in [50, Chapter 6] and we use the

Césaro sums for “δ = 1” in his notations — we conclude:

lim
n→∞

‖Cn
ð f − f ‖L1(R+ ,rdr) = 0.

Now, a quick computation shows that for all n ∈ N \ {0}:∥∥∥(Cj
ð( f ))◦ − f ◦

∥∥∥
L1(R2)

=
∥∥∥Cj

ð( f )− f
∥∥∥

L1(R+ ,rdr)
,
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and therefore:
lim

n→∞
‖(Cn

ð( f ))◦ − f ◦‖L1(R2) = 0

where of course, L1(R2) stands for the 1-Lebesgue space with respect to the usual
Lebesgue measure on R2.

By Lemma (3.5.5), writing κn = (Cn
ð( f ))◦ for all n ∈ N, we then conclude:

lim
n→∞

∣∣∣∣∣∣∣∣∣σκn
ð,d − σ

f ◦

ð,d

∣∣∣∣∣∣∣∣∣
H

p,q,d
θ

= 0.

By construction, σκn
ð,d is finite rank. Indeed, the operator σκn

ð,d is a linear combina-

tion of the operators σ
(ψ

j
ð)
◦

ð,d with j ∈ {0, . . . , n}. The operators σ
(ψ

j
ð)
◦

ð,d are, in turn,

projections on CHj
ð ⊗C

d ⊆ L2(R)⊗Cd, whereHn
ð is the Hermite function:

Hj
ð : t ∈ R 7→ (2ð)

1
4√

j!2j
exp

(
− t2
√

2πð
2

)
Hj

(
t
√

2πð
)

where Hj is the jth Hermite polynomial, given for instance by:

Hj : t ∈ R 7→ (−1)j exp(t2)
dj

dtj exp(−t2).

Indeed, by [10, p. 65], the operators σ
(ψ

j
ð)
◦

ð,1 are projections on CHj ⊆ L2(R) for all
j ∈ N. We note that reassuringly, we will not need the explicit form of the Hermite
polynomials or the Laguerre polynomials in our work.

Thus the image of the unit ball H
p,q,d

θ [0, 1] of
(

H
p,q,d

θ , ‖ · ‖
H

p,q,d
θ

)
by σκn

ð,d is

totally bounded in
(

H
p,q,d

θ , ‖ · ‖
H

p,q,d
θ

)
for all n ∈ N, as a bounded subset of

a finite dimensional space (as all norms are equivalent in finite dimension, this
observation does not depend on ‖ · ‖

H
p,q,d

θ

).

Thus σ
f ◦

ð,d is compact as the norm limit of compact operators.
We are left to treat the case when ð < 0. We note that for all (x, y, u) ∈ H3, we

have:
α

x,y,u
ð,d = α

x,−y,−u
−ð,d .

We thus proceed as above with −ð in place of ð, and note that σκn
ð,d = −σκn

−ð,d since
κn is a radial function. The rest of the proof is left unchanged. �

With Lemma (3.5.10) and Lemma (3.5.6), we are now able to prove the desired
property for our D-norms:

Lemma 3.5.11. We assume Hypothesis (3.3.1). The set:

D1

(
D

p,q,d
θ

)
=
{

ξ ∈H
p,q,d

θ : D
p,q,d
θ (ξ) 6 1

}
is compact in

(
H

p,q,d
θ , ‖·‖

H
p,q,d

θ

)
.
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Proof. Let (ψn)n∈N be a sequence of smooth functions from [0, ∞) to [0, ∞) such
that for all n ∈ N, the function ψn is supported on

[
− 1

n+1 , 1
n+1

]
and:∫ ∞

0
ψn(r) rdr =

1
2π

.

Thus, using the notations of Lemma (3.5.10), we note that:∫
R2

ψ◦n =
∫ π

2

− π
2

∫ ∞

0
ψn(r) rdrdθ =

2π

2π
= 1.

Let ε > 0 be given. By Lemma (3.5.8), we have:

lim
n→∞

∫∫
R2

ψ◦n(x, y)‖(x, y)‖ dxdy = 0.

Thus, there exists N ∈ N such that for all n > N, the following inequality holds:∫∫
R2

ψ◦n(x, y)‖(x, y)‖ dxdy <
ε

4πð

We may thus apply Lemma (3.5.6) to conclude that for all ξ ∈ D1

(
D

p,q,d
θ

)
and

n > N: ∥∥∥ξ − σ
ψ◦n
ð,dξ

∥∥∥
H

p,q,d
θ

6
ε

2
.

Now, σ
ψ◦n
ð,d is compact in

(
H

p,q,d
θ , ‖ · ‖

H
p,q,d

θ

)
by Lemma (3.5.10), and D1

(
D

p,q,d
θ

)
is bounded for ‖ · ‖

H
p,q,d

θ

by construction. Thus the image of D1

(
D

p,q,d
θ

)
by σ

ψ◦n
ð,d is

totally bounded in
(

H
p,q,d

θ , ‖ · ‖
H

p,q,d
θ

)
for all n ∈ N. In particular, there exists a

ε
2 -dense subset Bε in σ

ψ◦N
ð,d D1

(
D

p,q,d
θ

)
.

Consequently, if ξ ∈ D1

(
D

p,q,d
θ

)
, then there exists η ∈ Bε such that:∥∥∥η − σ

ψ◦N
ð,d ξ

∥∥∥
H

p,q,d
θ

6
ε

2
.

Thus ‖ξ − η‖
H

p,q,d
θ

6 ε.

We thus conclude that D1

(
D

p,q,d
θ

)
is totally bounded.

Moreover, for all (x, y) ∈ R2, the map ξ 7→
‖α

x,y, xy
2

ð,d ξ−ξ‖
H

p,q,d
θ

2π|ð|‖(x,y)‖ is continuous, and

thus D
p,q,d
θ is lower semi-continuous with respect to ‖ · ‖

H
p,q,d

θ

. Hence D1

(
D

p,q,d
θ

)
=(

D
p,q,d
θ

)−1
((−∞, 1]) is closed. Since H

p,q,d
θ is complete and D1

(
D

p,q,d
θ

)
is closed

and totally bounded, it is in fact compact, as desired. �

We summarize the results of this section with the following theorem announc-
ing that indeed, we have defined D-norms on Heisenberg modules, turning them
into metrized quantum vector bundles over quantum 2-tori.
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Theorem 3.5.12. Let H
p,q,d

θ be the Heisenberg module over Aθ for some θ ∈ R, p ∈ Z,
q ∈ N \ {0} and d ∈ qN \ {0}. Let ð = θ− p

q and assume ð 6= 0. Let ‖ · ‖ be a norm on

R2. If we set, for all ξ ∈H
p,q,d

θ :

D
ρ
θ(ξ) = sup


∥∥∥σ

x,y
ð,d ξ − ξ

∥∥∥
H

p,q,d
θ

2π|ð|‖(x, y)‖ : (x, y) ∈ R2 \ {0}

 ,

and for all a ∈ Aθ :

Lθ(a) = sup


∥∥∥β

exp(ix),exp(iy)
θ a− a

∥∥∥
Aθ

‖(x, y)‖ : (x, y) ∈ R2 \ {0}


then

(
H

p,q,d
θ , 〈·, ·〉

H
p,q,d

θ

, D
ρ
θ ,Aθ , Lθ

)
is a Leibniz metrized quantum vector bundle.

Proof. Proposition (3.5.4) proves that D
p,q,d
θ is a norm on a dense subspace of H

p,q,d
θ

which satisfies the inner and modular quasi-Leibniz inequalities and, by construc-
tion, D

p,q,d
θ > ‖ · ‖

H
p,q,d

θ

.

Lemma (3.5.11) moreover gives us that D1

(
D

p,q,d
θ

)
is compact for ‖ · ‖

H
p,q,d

θ

. �

We are now in a position to investigate the geometry of the space of Heisenberg
modules over quantum 2-tori under the modular propinquity. There are many
natural questions one immediately thinks about in this context, and we choose to
focus on one of them: how do Heisenberg modules, for a fixed choice of p, q, d,
vary when the base quantum torus is allowed to vary continuously?

To address this question, we first prove that our D-norms actually form a con-
tinuous field of norms. This is the key step in proving our continuity result for the
modular propinquity.

3.6. A continuous field of D-norms. Our first step in establishing a continuity
result for D-norms on Heisenberg modules is to reformulate the expression of our
D-norms.

Lemma 3.6.1. Let p ∈ Z, q ∈ N \ {0} and d ∈ qN \ {0}. Let r : R \ {0} → R \ {0}
be a continuous function.

If ξ ∈ S(Cd), then for all (x, y) ∈ R2 with ‖(x, y)‖ = 1, ð ∈ R \ {0}, the function :

t ∈ (0, ∞) 7→ ωx,y,t,ð =
exp(iπðt2xy)σtx,ty

ð,d ξr(ð) − ξr(ð)
2π|ð|t

where ξr(ð) : t ∈ R 7→ ξ(r(ð)t), can be extended by continuity at 0. Moreover, for all
ð ∈ R \ {0}:

D
p,q,d
ð+ p

q
(ξr(ð)) = sup

{∥∥ωx,y,t,ð
∥∥

H
p,q,d

θ

: (x, y) ∈ R2, ‖(x, y)‖ = 1, t ∈ [0, 1]
}

and
(x, y, t,ð) ∈ R2[0, 1]×R× (R \ {0}) 7→

〈
ωx,y,t,ð, ωx,y,t,ð

〉
H

p,q,d
ð+ p

q
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is continuous to
(
`1(Z2), ‖ · ‖`1(Z2)

)
.

Proof. We begin by setting a domain over which we shall study our functions ω.
For our purpose, we choose some arbitrary ð∞ 6= 0 and then 0 < ð− < ð+ such
that |ð∞| ∈ (ð−,ð+). We set:

Ω =
{
(x, y,ð) ∈ R3 : ‖(x, y)‖ = 1, |ð| ∈ [ð−,ð+]

}
while:

Σ = {(x, y, t,ð) ∈ R4 : (x, y,ð) ∈ Ω, t ∈ [0, 1]}
and:

Σ∗ = {(x, y, t,ð) ∈ R4 : (x, y,ð) ∈ Ω, t ∈ (0, 1]}.
Let ξ ∈ S(Cd) and let M0 > 0 be chosen so that for all s ∈ R:

max{‖ξ(n)(s)‖Cd , ‖sξ(n)(s)‖Cd : n ∈ {0, 1, 2, 3, 4}} 6 M0

1 + s2 .

Now, r is continuous on [ð−,ð+], and thus there exists R−, R+ > 0 such that
R− 6 r(ð) 6 R+ for all ð ∈ [ð−,ð+]. Thus for all s ∈ R:

max{‖ξ(n)(r(ð)s)‖Cd : n ∈ {0, 1, 2, 3, 4}} 6 M0

1 + R2
−s2

and

max
{
‖sξ(n)(r(ð)s)‖Cd : n ∈ {0, 1, 2, 3, 4}

}
6

M0

R−(1 + R2
−s2)

.

By the same reasoning as we have already seen in our paper, we thus conclude
that there exists M > 0 such that for all ð ∈ Rwith |ð| ∈ [ð−,ð+] and for all s ∈ R:

max{‖ξ(n)r(ð)(s)‖Cd , ‖sξ
(n)
r(ð)(s)‖Cd : n ∈ {0, 1, 2, 3, 4}} 6 M

1 + s2 .

We first extend (x, y, t,ð) ∈ Σ∗ 7→ ωx,y,t,ð to Σ by continuity. For all (x, y, t,ð) ∈
Σ∗, we observe that for all s ∈ R:

ωx,y,t,ð(s) =
exp(iπ

(
t2ðxy + 2txs

)
)ξr(ð)(s + ðty)− ξr(ð)(s)

2π|ð|t

=
exp(iπ(t2ðxy + 2txs))ξr(ð)(s + ðty)− ξr(ð)(s + ðty)

2π|ð|t

+
ξr(ð)(s + ðty)− ξr(ð)(s)

2π|ð|t

= ξr(ð)(s + ðyt)
exp(iπ(ðt2xy + 2txs))− 1

2π|ð|t +
ξr(ð)(s + ðty)− ξr(ð)(s)

2π|ð|t .

Since ξ is a Schwarz function, thus differentiable, we have for all (x, y) ∈ R2 with
‖(x, y)‖ = 1 and ð ∈ R \ {0}:

lim
t→0+

ωx,y,t,ð(s) = x
is
ð ξr(ð)(s) + yr(ð)

ξ ′r(ð)(s)

2π
.
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Thus we set, for all (x, y) ∈ R2 with ‖(x, y)‖ = 1 and ð ∈ R \ {0}:

ωx,y,0,ð : s ∈ R 7→ x
is
ð ξr(ð)(s) + yr(ð)

ξ ′r(ð)(s)

2π
.

We observe that our statement thus far is about pointwise convergence of the
family of functions (ωx,y,t,ð)t>0 to ωx,y,0,ð for fixed x, y ∈ R2 with ‖(x, y)‖ = 1 and
ð 6= 0. This is different from the notion of convergence in the C∗-Hilbert norm. To
obtain convergence for the Heisenberg C∗-Hilbert norm, and more information,
we now proceed to establish some regularity properties for ω, in order to apply
Lemma (3.2.4).

By Proposition (3.3.8), we already know that there exists M1 > 0 such that for
all (x, y, t,ð) ∈ Σ∗ and s ∈ R:

‖σtx,ty, 1
2 t2xyξr(ð)(s)− ξr(ð)(s)‖Cd 6

M1t‖(x, y, 1
2 txy)‖1

1 + s2 ,

where ‖(x, y, t)‖1 = |x|+ |y|+ |t| is the usual 1-norm on R3.
The map (x, y, t) ∈ R3 7→ (x, y, txy

2 ) is continuous from R3 to itself. The set
K = {(x, y) ∈ R2 : ‖(x, y)‖ = 1} × [0, 1] is compact and thus there exists M2 > 0
such that:

sup
{∥∥∥∥(x, y,

txy
2

)∥∥∥∥
1

: (x, y, t) ∈ K
}

= M2.

Thus:

‖ωx,y,t,ð(s)‖Cd 6
t‖(x, y, 1

2 txy)‖1

2π|ð|t
M1

1 + s2

6

M1 M2
2π|ð|

1 + s2 6

M1 M2
2π|ð|−
1 + s2 .

On the other hand, by assumption:

‖ωx,y,0,ð(s)‖Cd 6 |x|
M

|ð|(1 + s2)
+ |y| R+M

2π(1 + s2)
6
(

1
ð−

+
R+

2π

)
MM2

1 + s2 .

In summary, there exists M3 = max
{

M1 M2
ð− , MM2

(
1
ð− + R+

2π

)}
> 0 such that

for all (x, y,ð, t) ∈ Σ and all s ∈ R:

∥∥ωx,y,t,ð(s)
∥∥
Cd 6

M3

1 + s2 .

By construction, (ωx,y,t,ð)t>0 converges pointwise to ωx,y,0,ð as t → 0. We now
prove that this convergence is indeed uniform.

We begin with the following computation for all (x, y, t,ð) ∈ Σ∗ and for all
s ∈ R:

‖ωx,y,t,ð(s)−ωx,y,0,ð(s)‖Cd
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=

∣∣∣∣∣∣exp(iπðt2xy)σtx,ty
ð,d ξr(ð)(s)− ξr(ð)(s)

2πtð −
(

x
is
ð ξr(ð)(s) + y

r(ð)
2π

ξ ′r(ð)(s)
)∣∣∣∣∣∣

6

∣∣∣∣exp(iπ(ðt2xy + 2stx))− 1
2πtð ξr(ð)(s + ðty)− x

is
ð ξr(ð)(s + ðty)

∣∣∣∣
+

∣∣∣∣x is
ð ξr(ð)(s + ðty)− x

is
ð ξr(ð)(s)

∣∣∣∣
+

1
2π

∣∣∣∣∣ ξr(ð)(s + ðty)− ξr(ð)(s)
ðt

− yr(ð)ξ ′r(ð)(s)

∣∣∣∣∣ .

We first note that for all (x, y, t,ð) ∈ Σ∗, by the mean value theorem, if g : t >
0 7→ exp(iπ(t2xy + 2txs)), then there exists tc ∈ [0, t] such that:∣∣∣∣exp(iπ(ðt2xy + 2txs))− 1

2πtð ξr(ð)(s + tðy)− x
is
ð ξr(ð)(s + tðy)

∣∣∣∣
6

M
1 + (s + ðty)2

∣∣∣∣exp(iπ(t2ðxy + 2xts))− 1
2πtð − ixs

ð

∣∣∣∣
=

M
2π|ð| (1 + (s + ðty)2)

∣∣∣∣ g(t)− g(0)
t

− g′(0)
∣∣∣∣

=
M

2π|ð| (1 + (s + ðty)2)

∣∣∣∣ t
2

g′′(tc)

∣∣∣∣
=

M|t|
2π|ð| (1 + (s + ðty)2)

∣∣∣∣(iπðxy− π2

2
(2xs + 2tcðxy)2) exp(2iπstcx)

∣∣∣∣
6

Mπ|t|
2ð (1 + (s + ðty)2)

(|xs|+ (1 + |t|)ð+|xy|)2

6
Mπ|t|

2ð− (1 + (s + ðty)2)
(|xs|+ 2ð+|xy|)2 .

Once again, the functions (x, y,ð, t) ∈ Ω × [0, 1] 7→ |x| and (x, y,ð, t) ∈ Ω ×
[0, 1] 7→ |tyð| are continuous on the compact Ω× [0, 1], so we conclude that there
exists M4 > 0 such that:

max {|x|, |ðty| : (x, y,ð, t) ∈ Ω× [0, 1]} 6 M4.

Consequently, for all s > M4 we have:

Mπ(|xs|+ 2|ð+||xy|)2

2ð−(1 + (s + ðty)2)
6

πMM2
4(s + 2M4)

2

2ð−(1 + (s−M4)2)

while for all s < −M4 we have:

Mπ(|xs|+ |ð+||xy|)2

2ð−(1 + (s + ðty)2)
6

πMM2
4(s + 2M4)

2

2ð−(1 + (s + M4)2)

Thus, there exists M5 > 0 such that if |s| > M4 then:

Mπ(|xs|+ |ð+||xy|)2

2ð−(1 + (s + ðty)2)
6 M5.
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The function (x, y, t, s) ∈ R4 7→ Mπ(|xs|+|t|ð+ |xy|)2

2ð−(1+(s+ðty)2)
is continuous, and thus it is

bounded by some M6 > 0 on the compact Σ× [−M4, M4].
Letting M7 = max{M5, M6}, we conclude that for all (x, y,ð, t) ∈ Σ∗ and s ∈ R,

we have: ∣∣∣∣exp(2iπtxs)− 1
ðt

ξr(ð)(s + tðy)− x
2iπ
ð ξr(ð)(s + tðy)

∣∣∣∣ 6 M7|t|.

Consequently, if |t| < δ1 = ε
3M7

, then:

(3.6.1)
∣∣∣∣exp(iπ(t2ðxy + 2txs))− 1

ðt
ξr(ð)(s + tðy)− x

2iπ
ð ξr(ð)(s + tðy)

∣∣∣∣ < ε

3
.

Now, since s ∈ R 7→ sξ(s) is uniformly continuous on R as Schwarz function,
there exists δ2 > 0 such that for all 0 < r < δ2 and for all s ∈ R, we have |(s +
r)ξ(s + r)− sξ(s)| < εR−ð−

6M4
.

Moreover, since ξ is bounded onR, we may choose δ2 > 0 small enough so that
δ2 sups∈R ‖ξ(s)‖Cd < εR−ð−

6M4
.

Let now δ3 = δ2
M4R+

. If |t| < δ3 then |r(ð)ðty| < δ2 and therefore:∥∥∥∥x
is
ð ξr(ð)(s + ðty)− x

is
ð ξr(ð)(s)

∥∥∥∥
Cd

6
|x|

ð−R−
(‖r(ð)(s + ðty)ξ(r(ð)s + r(ð)ðty)− r(ð)sξ(r(ð)s)‖Cd

+|r(ð)ðty|‖ξ(r(ð)(s + ðty))‖Cd)

6
M4

R−ð−

(
εR+ð−

6M4
+ δ2 sup

s∈R
‖ξ(s)‖Cd

)
6

ε

6
+

ε

6
=

ε

3
.

We thus deduce that for all (x, y, t,ð) ∈ Σ, if |t| < δ3, then:

(3.6.2) sup
s∈R
|x is

ð ξr(ð)(s + ðty)− x
is
ð ξr(ð)(s)| <

ε

3
.

Last, since ξ ′ is also a Schwarz function and in particular, also uniformly contin-
uous onR, there exists δ4 > 0 such that |ξ ′(s + r)− ξ ′(s)| < ε

3R+
for all 0 6 r < δ4.

Thus for all (x, y, t,ð) ∈ Σ and s ∈ R, if |t| < δ5 = δ4
R+M4

, then:∣∣∣(ξr(ð)(s + tðy)− ξr(ð)(s)
)
− yξ ′r(ð)(s)

∣∣∣ 6 |r(ð)| ∫ t

0
|ξ ′r(ð)(s + rðy)− ξ ′r(ð)(s)| dr 6 t

ε

3
.

Thus for all (x, y, t,ð) ∈ Σ∗ with |t| < δ4, we have:

sup
s∈R

∣∣∣∣∣ ξr(ð)(s + ðty)− ξr(ð)(s)
t

− ξ ′r(ð)(s)

∣∣∣∣∣ < ε

3
.

In conclusion, for all (x, y, t,ð) ∈ Σ∗ with 0 < t < min{δ1, δ3, δ5} and for all
s ∈ R, we have established:

sup
s∈R
|ωx,y,t,ð(s)−ωx,y,0,ð(s)| < ε.
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In other words, setting for all t ∈ (0, 1]:

ft : (x, y,ð, s) ∈ Ω×R 7→ ωx,y,t,ð(s)

converges uniformly on Ω×R to:

f0 : (x, y,ð, s) ∈ Ω×R 7→ ωx,y,0,ð(s)

when t goes to 0.
Since (x, y, t,ð, s) ∈ Σ∗ ×R 7→ ft(x, y,ð, s) and f0 are both continuous, we de-

duce, in particular, that:

(x, y, t,ð, s) ∈ Σ×R 7→ ωx,y,t,ð(s)

is (jointly) continuous.
The entire reasoning up to now may be applied equally well to ξ(n) for n ∈

{0, 1, 2} — as one may check that ω(n) is indeed obtained by substituting ξ with
ξ(n).

Therefore, we are now able to apply Lemma (3.2.4) to conclude that:

(x, y, t, θ) ∈ Σ 7→
〈
ωx,y,t,ð, ωx,y,t,ð

〉
H

p,q,d
θ

∈
(
`1(Z2), ‖ · ‖`1(Z2)

)
is continuous as desired (to make notations clear: we pick a sequence (θn)n∈N
converging to some θ, and we choose (xn)n∈N ∈ RN, (yn)n∈N ∈ RN, and tn ∈
[0, 1]N such that for all n ∈ N, we have (xn, yn, tn, θn − p

q ) ∈ Σ, and then we set,
in the notations of Lemma (3.2.4), the functions ξn = ftn(xn, yn,ðn, ·) and ξ∞ =
ft∞(x∞, y∞,ð∞, ·)).

We conclude our proof by observing that by Theorem (3.4.2):

D
p,q,d
θ (ξr(ð)) = sup



∥∥∥∥α
x,y, 1

2 xy
ð,d ξr(ð) − ξr(ð)

∥∥∥∥
H

p,q,d
θ

2π|ð|‖(x, y)‖ : (x, y) ∈ R2, ‖(x, y)‖ 6 1


= sup

{∥∥ωx,y,t,ð
∥∥

H
p,q,d

θ

: ‖(x, y)‖ = 1, t ∈ [0, 1]
}

as stated. �

We now prove that D-norms on Heisenberg modules form continuous fields.

Proposition 3.6.2. Let p ∈ Z, q ∈ N \ {0} and d ∈ qN \ {0}. Let ξ ∈ S(Cd).
Let r : R \ { p

q } → R \ {0} be a continuous function. If (θk)k∈N is a sequence in R
converging to θ∞ and such that θk 6=

p
q for all k ∈ N, then:

lim
k→∞

D
p,q,d
θk

(ξr(θk)
) = D

p,q,d
θ∞

(ξr(θ∞)),

where ξr(θ) : t ∈ R 7→ ξ(r(θ)t) for all θ 6= p
q .

Proof. The result is trivial if ξ = 0, which is equivalent to D
ρ
ϑ(ξ) = 0 for all ϑ ∈ R

with ϑ 6= p
q .

Now, fix θ ∈ R \ { p
q }. We shall prove that ϑ 7→ D

ρ
ϑ(ξr(ϑ)) is continuous at θ.

Let δ1 > 0 such that I = [θ − δ1, θ + δ1] ⊆ R \
{

p
q

}
.
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Let:

Υ =
{
(x, y, t) ∈ R3 : ‖(x, y)‖ = 1, t ∈ [0, 1]

}
.

Let ξ ∈ S(Cd). We set:

t ∈ (0, ∞) 7→ ωx,y,t,ð =
exp(iπðt2xy)σtx,ty

ð,d ξr(ð+p/q) − ξr(ð+p/q)

2π|ð|t .

By Lemma (3.6.1):

D
p,q,d
ϑ (ξr(ϑ))

2 = sup


∥∥∥∥∥
〈

ωx,y,t,ϑ− p
q
, ωx,y,t,ϑ− p

q

〉
H

p,q,d
ϑ

∥∥∥∥∥
Aϑ

: (x, y, t) ∈ Υ


6 sup


∥∥∥∥∥
〈

ωx,y,t,ϑ− p
q
, ωx,y,t,ð,ϑ− p

q

〉
H

p,q,d
ϑ

∥∥∥∥∥
`1(Z2)

: (x, y, t) ∈ Υ


where Υ is a compact subset of R3, independent of ϑ.

Now, since:

ν : (x, y, t, ϑ) ∈ Υ× I 7→
〈

ωx,y,t,ϑ− p
q
, ωx,y,t,ϑ− p

q

〉
H

p,q,d
ϑ

is continuous in
(
`1(Z2), ‖ · ‖`1(Z2)

)
by Lemma (3.6.1), it is uniformly continuous

on the compact Υ2 = Υ× I.
Let ‖(z, w, s,})‖∞ = max{|z|, |w|, |s|, |}|} for all (z, w, s,}) ∈ R4.
Let δ2 > 0 be chosen so that for all (x, y, t,ð), (z, w, r, s) ∈ Υ2 with ‖(x, y, t,ð)−

(z, w, s,})‖∞ < δ2 we have:

|ν(x, y, t,ð)− ν(z, w, r,})| < ε

4
.

Let G ⊆ Υ2 be a δ2-dense finite subset of Υ2 in the sense of the norm ‖ · ‖∞. Let:

F =
{
(z, w, r) ∈ R3 : ∃} ∈ R (z, w, r,}) ∈ G

}
.

By construction, F is finite and δ2-dense in Υ for the restriction of ‖ · ‖∞ to R3 ∼
R3 × {0}.

Fix any ð ∈ [θ − p
q − δ1, θ − p

q + δ1] and set ϑ = ð+ p
q . Now, let (x, y, t) ∈ Υ.

There exists (z, w, r) ∈ F with max{|x− z|, |y−w|, |t− r|} < δ2. We then observe:

‖αtx,ty, t2xy
2

ð,d ξr(ϑ) − ξr(ϑ)‖2
H

p,q,d
ϑ

2π|ð|t
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6

∣∣∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥α
tx,ty, t2xy

2
ð,d ξr(ϑ) − ξr(ϑ)

∥∥∥∥∥
2

H
p,q,d

ϑ

2π|ð|t −

∥∥∥∥α
rz,rw, r2zw

2
ð,d ξr(ϑ) − ξϑ

∥∥∥∥2

H
p,q,d

ϑ

2π|ð|r

∣∣∣∣∣∣∣∣∣∣∣∣
+

∥∥∥∥α
rz,rw, r2zw

2
ð,d ξr(ϑ) − ξr(ϑ)

∥∥∥∥2

H
p,q,d

ϑ

2π|ð|r

6

∣∣∣∣∣
∥∥∥∥〈ωx,y,t,ð, ωx,y,t,ð

〉
H

p,q,d
ϑ

∥∥∥∥
Aϑ

−
∥∥∥∥〈ωz,w,r,ð, ωz,w,r,ð〉H p,q,d

ϑ

∥∥∥∥
Aϑ

∣∣∣∣∣+
∥∥∥∥α

rz,rw, r2zw
2

ð,d ξr(ϑ) − ξr(ϑ)

∥∥∥∥2

H
p,q,d

ϑ

2π|ð|r

6

∥∥∥∥〈ωx,y,t,ð, ωx,y,t,ð
〉
H

p,q,d
ϑ

− 〈ωz,w,r,ð, ωz,w,r,ð〉H p,q,d
ϑ

∥∥∥∥
Aϑ

+

∥∥∥∥α
rz,rw, r2zw

2
ð,d ξr(ϑ) − ξr(ϑ)

∥∥∥∥2

H
p,q,d

ϑ

2π|ð|r

6

∥∥∥∥〈ωx,y,t,ð, ωx,y,t,ð
〉
H

p,q,d
ϑ

− 〈ωz,w,r,ð, ωz,w,r,ð〉H p,q,d
ϑ

∥∥∥∥
`1(Z2)

+

∥∥∥∥α
rz,rw, r2zw

2
ð,d ξr(ϑ) − ξr(ϑ)

∥∥∥∥2

H
p,q,d

ϑ

2π|ð|r

6
ε

4
+

∥∥∥∥α
z,w, r2zw

2
ð,d ξr(ϑ) − ξr(ϑ)

∥∥∥∥2

H
p,q,d

ϑ

2π|ð|r .

Let F
p,q,d
ϑ (η) be given by:

F
p,q,d
ϑ (η) = max



∥∥∥∥α
rz,rw, r2zw

2
ð,d η − η

∥∥∥∥
H

p,q,d
ϑ

2π
(

ϑ + p
q

)
r

: (z, w, r) ∈ F


for all η ∈ S(Cd).

We thus have proven:

F
p,q,d
ϑ (ξr(ϑ))

2 6 D
p,q,d
ϑ (ξr(ϑ))

2 6
ε

4
+ F

p,q,d
ϑ (ξr(ϑ))

2.

Therefore:∣∣∣Dp,q,d
ϑ (ξr(ϑ))

2 −D
p,q,d
θ (ξr(θ))

2
∣∣∣ 6 ε

2
+ |Fp,q,d

ϑ (ξr(ϑ))
2 − F

p,q,d
θ (ξr(θ))

2|.(3.6.3)

Note that for any η ∈ S(Cd), the quantity F
p,q,d
ϑ (η) is finite as the maximum

of finitely many values. Also note that the set F does not change with ϑ ∈ I —
the only dependence of F

p,q,d
ϑ on ϑ is via the choice of the quantum torus norm

‖ · ‖
H

p,q,d
ϑ

.

Now the key observation is that ϑ ∈ I 7→ F
p,q,d
ϑ (ξ) is continuous. Fix (z, w, r) ∈

F. By Proposition (3.2.5), the function:

ϑ ∈ I 7→

∥∥∥∥∥∥α
z,w, zw

2
ð,d ξr(ϑ) − ξr(ϑ)

2π|ð|r

∥∥∥∥∥∥
H

p,q,d
ϑ
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is continuous (we note that ϑ ∈ I 7→ α
z,w, zw

2
ð,d ξr(ϑ) − ξr(ϑ) satisfies the necessary

hypothesis, owing to ξ being a Schwarz function and r being continuous. The
details follow similar lines to our proof of Lemma (3.6.1) and we shall omit them
this time around).

Thus ϑ ∈ I 7→ F
p,q,d
ϑ (ξr(ϑ)) is the maximum of finitely many continuous func-

tions, and is therefore continuous as well.
Thus there exists δ3 > 0 such that for all ϑ ∈ [θ − δ3, θ + δ3] we have:

|Fp,q,d
ϑ (ξr(ϑ))

2 − F
p,q,d
θ (ξr(θ))

2| < ε

2
.

Thus if δ = min{δ1, δ3} > 0 then for all ϑ ∈ [θ − δ, θ + δ] we have:∣∣∣Dp,q,d
ϑ (ξr(ϑ))

2 −D
p,q,d
θ (ξr(θ))

2
∣∣∣ < ε.

Since Dϑ(ξr(ϑ)) > 0 for all ϑ ∈ [θ − δ, θ + δ] and 2
√
· is a continuous function on

[0, ∞), we have shown that:

ϑ 7→ D
p,q,d
ϑ (ξr(ϑ))

is continuous. �

Corollary 3.6.3. Let p ∈ Z, q ∈ N \ {0} and d ∈ qN \ {0}. If ξ ∈ S(Cd), then:

θ ∈ R \
{

p
q

}
7→ D

p,q,d
θ (ξ)

is continuous.

Proof. This follows from Proposition (3.6.2) using r : x ∈ R 7→ 1. �

3.7. Convergence. We now present our main convergence result for the modular
propinquity. Our first step consists in finding an appropriate choice of anchors.
We establish two lemmas to this end. The first lemma extends Lemma (3.5.10) by
proving that while the range of the operators involved in Lemma (3.5.10) depends
on the parameters used to define the Heisenberg modules, its dimension does not.
The second lemma then uses the particular basis of Hermite functions obtained in
the first lemma to construct our anchors.

Lemma 3.7.1. For all j ∈ N and ð > 0, let:

ψ
j
ð : x ∈ [0, ∞) 7→ ð exp

(
−πðr2

2

)
Lj

(
πðr2

)
where Lj : t ∈ R 7→ ∑n

k=0
(−1)k

k! ( j
j−k)t

k is the jth Laguerre polynomial.

Note that ψ
j
ð(t) = ðψ

j
1(
√
ðt) for all t > 0, with ψ

j
1 the j-Laguerre function.

Let f be compactly supported continuous. For all j ∈ N and ð 6= 0, we set:

Cj
ð( f ) =

1
j

j

∑
k=0

j + 1− k
j + 1

〈
f ψ

j
ð, ψ

j
ð

〉
L2(R,r dr)

ψ
j
ð.
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For all ε > 0 and ð0 6= 0, there exists N ∈ N and δ ∈ (0, |ð0|) such that, for all
ð ∈ [ð0 − δ,ð0 + δ], we have:∥∥∥∥∥ f −

N

∑
j=0

Cj
ð( f )

∥∥∥∥∥
L1(R+ ,rdr)

6 ε.

Proof. We fix ð0 6= 0. By [50, Theorem 6.2.1], as in the proof of Lemma (3.5.10),
there exists N > 0 such that:∥∥∥∥∥ f −

N

∑
j=0

Cj
ð0
( f )

∥∥∥∥∥
L1(R+ ,rdr)

6
ε

2
.

Let Q = ∑N
j=0

N+1−j
N+1 .

Let K1 > 0 be chosen so that f (x) = 0 whenever x > K1 (as f is compactly
supported by assumption). Let M1 =

∫ ∞
0 | f (r)| rdr.

Let M2 = max{‖ψj
ð0
‖L1(R+ ,rdr) : j ∈ {0, . . . , N}}. Now, there exists C > 0 and

K2 > 0 such that for all x > K2 and for all j ∈ {0, . . . , N}:

|ψj
1(r)| 6 C exp

(
− r2

4

)
.

Indeed, one checks trivially that limr→∞ exp
(

1
4 r2
)

ψ
j
1(r) = 0 and once again, we

work with finitely many functions.
Let K3 > K2 > 0 be chosen so that

∫ ∞
K3

exp
(
− r2

4

)
rdr 6 ε

16CM3QN .

Last, let M3 = max
{∣∣∣∣〈 f ψ

j
ð0

, ψ
j
ð0

〉
L2(R+ ,rdr)

∣∣∣∣ : j ∈ {0, . . . , N}
}

.

For all j ∈ {0, . . . , N}, the function ψ
j
1 is continuous on R+, so (ψ

j
1)

2 is con-

tinuous on [0, K3], and thus the family {ψj
1, (ψj

1)
2 : j ∈ {0, . . . , N}} is uniformly

equicontinuous on this compact interval. Thus there exists δ1 > 0 such that if
|x − y| 6 δ1 then |(ψj

1)
2(x) − (ψ

j
1)

2(y)| 6 ε
8Qð2

0 M1 M2 N
and |ψj

1(x) − ψ
j
1(y)| 6

ε
16Qð0 NM3

for all j ∈ {0, . . . , N} (note that of course, it is important here that we
work with finitely many functions, so we trivially have a uniformly equicontinu-
ous family).

Using the continuity of the square root function and the square function, there
exists δ2 ∈ (0, δ1) such that if |ð− ð0| 6 δ2 then |

√
ð−
√
ð0| 6 δ1

K1
and |ð2 − ð2

0| 6
ε

8QM2
2 N

. Therefore, |
√
ðx−

√
ð0x| 6 δ1 for all x ∈ R+ with |x| 6 K1, so that for all

j ∈ {0, . . . , N}:∣∣∣∣∫ ∞

0
f (r)

(
(ψ

j
ð)

2(r)− (ψ
j
ð0
(r))2

)
rdr
∣∣∣∣ 6 M1 sup

|r|6K1

|ð2(ψ
j
1)

2(
√
ðr)− ð2

0(ψ
j
1)

2(
√
ð0r)|

6 M1 sup
|r|6K1

ð2
0|(ψ

j
1)

2(
√
ðr)− (ψ

j
1)

2(
√
ð0r)|

+ 2M2|ð2 − ð2
0|

6
ε

4QM2N
.
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We thus conclude that for all ð ∈ [ð0 − δ2,ð0 + δ2] and j ∈ {0, . . . , N}:∣∣∣∣〈 f ψ
j
ð, ψ

j
ð

〉
L2(R+ ,rdr)

−
〈

f ψ
j
ð0

, ψ
j
ð0

〉
L2(R+ ,rdr)

∣∣∣∣ 6 ε

4QM2N

Moreover, for ð ∈ [ð0 − δ2,ð0 + δ2]:∣∣∣∣∫ ∞

0
|ψj

ð(r)| − |ψ
j
ð0
(r)| rdr

∣∣∣∣
6
∫ K3

0
|ðψ

j
1(
√
ðr)− ð0ψ

j
1(
√
ð0r)| rdr +

∫ ∞

K3

|ðψ
j
1(
√
ðr)− ð0ψ

j
1(
√
ð0r)| rdr

6 2ð0

(
ε

16ð0QM3N
+
∫
{K

2C exp(−Dr2) rdr
)

6
ε

4QM3N
.

Therefore, for all j ∈ {0, . . . , N} and for all ð ∈ [ð0 − δ2,ð0 + δ2]:

∥∥∥∥〈 f ψ
j
ð, ψ

j
ð

〉
L2(R+ ,rdr)

ψ
j
ð −

〈
f ψ

j
ð0

, ψ
j
ð0

〉
L2(R+ ,rdr)

ψ
j
ð0

∥∥∥∥
L1(R+ ,rdr)

6

∥∥∥∥〈 f ψ
j
ð, ψ

j
ð

〉
L2(R+ ,rdr)

ψ
j
ð −

〈
f ψ

j
ð0

, ψ
j
ð0

〉
L2(R+ ,rdr)

ψ
j
ð

∥∥∥∥
L1(R+ ,rdr)

+

∣∣∣∣〈 f ψ
j
ð0

, ψ
j
ð0

〉
L2(R+ ,rdr)

∣∣∣∣ ∥∥∥ψ
j
ð − ψ

j
ð0

∥∥∥
L1(R+ ,rdr)

6 ‖ψj
ð‖L1(R+ ,rdr)

∣∣∣∣〈 f ψ
j
ð, ψ

j
ð

〉
L2(R+ ,rdr)

−
〈

f ψ
j
ð0

, ψ
j
ð0

〉
L2(R+ ,rdr)

∣∣∣∣
+ M3‖ψ

j
ð − ψ

j
ð0
‖L1(R+ ,rdr)

6
ε

4QNM2
M2 + M3

ε

4QNM3

6
ε

2QN
.

Consequently, for all ð ∈ [ð0 − δ2,ð0 + δ2] and j ∈ {0, . . . , N}:∥∥∥Cj
ð( f )−Cj

ð0
( f )
∥∥∥

L1(R+ ,rdr)

6
j

∑
k=1

j + 1− k
j + 1

∥∥∥∥〈 f ψ
j
ð, ψ

j
ð

〉
L2(R+ ,rdr)

ψ
j
ð −

〈
f ψ

j
ð0

, ψ
j
ð0

〉
L2(R+ ,rdr)

ψ
j
ð0

∥∥∥∥
L1(R+ ,rdr)

6
ε

2N
.

Thus for all ð ∈ [ð0 − δ2,ð0 + δ2]:∥∥∥∥∥ f −
N

∑
j=1

Cj
ð( f )

∥∥∥∥∥
L1(R+ ,rdr)



116 FRÉDÉRIC LATRÉMOLIÈRE

6

∥∥∥∥∥ f −
N

∑
j=1

Cj
ð0
( f )

∥∥∥∥∥
L1(R+ ,rdr)

+

∥∥∥∥∥ N

∑
j=0

(Cj
ð − Cj

ð0
)

∥∥∥∥∥
L1(R+ ,rdr)

6
ε

2
+ N max{‖Cj

ð( f )− Cj
ð0
( f )‖L1(R+ ,rdr) : j ∈ {0, . . . , N}}

6
ε

2
+

ε

2
= ε.

This concludes our lemma. �

Lemma 3.7.2. Let p ∈ Z, q ∈ N \ {0} and d ∈ qN \ {0}. Let ð0 6= 0. For all ε > 0,

there exist δ ∈
(

0, |ð0|
2

)
and a finite subset F of D1

(
D

p,q,d
ð+ p

q

)
\ {0} for ‖ · ‖

H
p,q,d
p
q +ð0

such

that, for all ð ∈ [ð0 − δ,ð0 + δ], the set:
D

p,q,d
p
q +ð0

(ω)

D
p,q,d
p
q +ð(ω)

ω : ω ∈ F


is a ε-dense subset of D1

(
D

p,q,d
p
q +ð

)
for ‖ · ‖

H
p,q,d
p
q +ð

.

Proof. Let ε > 0 be given. By Lemmas (3.5.8), (3.5.6) and (3.5.9), there exists a
function f : R+ → R+ such that, if g : (x, y) ∈ R2 7→ f

(√
x2 + y2

)
then:

(1)
∫
R+

f (r) rdr = 1
2π ,

(2)
∫∫
R2 g(x, y)‖(x, y)‖ dxdy 6 ε

48πð0
=

ε
16

2π
3ð0

2

,

(3) D
p,q,d
ϑ (σ

g
ð,dξ) 6 (1 + ε

16 )D
p,q,d
ϑ (ξ) for all ϑ 6= p

q and all ξ ∈ S(Cd).

as in Lemma (3.5.11), for instance given by Lemma (3.5.8). By Lemma (3.5.6), we
have that for all ω ∈ S(Cd), we have:∥∥∥ω− σ

g
ð,dω

∥∥∥
H

p,q,d
p
q +ð

6
ε

16
D

p,q,d
p
q +ð(ω),

for all ð ∈
[
ð0
2 , 3ð0

2

]
.

We apply Lemma (3.7.1) to obtain some N ∈ N and δ0 ∈
(

0, |ð0|
2

)
such that:∥∥∥∥∥ f −

N

∑
j=0

Cj
ð( f )

∥∥∥∥∥
L1(R+ ,rdr)

6
ε

8
.

We now note that thanks to a change of variable in the definition of the operator
σ

g
ð,d, it is sufficient to prove our result for ð > 0. We shall henceforth assume ð > 0.

Let hð : (x, y) ∈ R2 7→ ∑N
j=0 Cj

ð( f )(
√

x2 + y2) for all ð 6= 0.
For each ð ∈ [ð0 − δ0,ð0 + δ0], we then have, in a manner similar to the proof

of Lemma (3.5.10):∣∣∣∣∣∣∣∣∣σg
ð,d − σhð

ð,d

∣∣∣∣∣∣∣∣∣
H

p,q,d
θ

6 ‖ f −
N

∑
j=0

Cj
ð( f )‖L1(R+ ,rdr) 6

ε

8
.
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Consequently, for all ð ∈ [ð0− δ0,ð0 + δ0] and for all ω ∈ D1

(
D

p,q,d
p
q +ð

)
, we have:

∥∥∥ω− σhð
ð,dω

∥∥∥
H p,q,d

6
3ε

16
,

therefore: ∥∥∥∥ω− 1
1 + ε

16
σhð
ð,dω

∥∥∥∥
H

p,q,d
ð+ p

q

6
ε

16
1 + ε

16
‖ω‖H p,q,d +

3ε

16
6

ε

4

while D
p,q,d
p
q +ð

(
1

1+ ε
16

σhð
ð,dω

)
6 1.

Our efforts thus far show that the range of σhð
ð,d is of dimension N + 1, spanned

by: {
Hj

ð = ð
1
4Hj

1

(√
ð·
)

: j ∈ {0, . . . , N}
}

where:

Hj
1 : t ∈ R 7→ (2)

1
4√

j!2j
exp

(
− t2
√

2π

2

)
Hj

(
t
√

2π
)

and Hj is the jth Hermite polynomial, as seen in Lemma (3.5.10).

Let V = CN . For any ð > 0 we define ηð : (cj)j∈{1,...,N} ∈ V 7→ ∑N
j=1 cjH

j
ð. The

map ηð is a linear injection from V to S ⊗ Cd. For each ð > 0 and c ∈ V, we set
‖c‖ð = D

p,q,d
p
q +ð(ηð(c)); of course ‖ · ‖ð is a norm on V.

We now set ‖c‖V = supð∈[ð0−δ0,ð0+δ0]
‖c‖ð. By construction, it is sufficient to

check that ‖ · ‖V is valued in R+ (i.e. is never infinite) to conclude that ‖ · ‖V is a
norm on V.

Let c = (cj)j∈{0,...,N} ∈ V. Note that for all t ∈ R and ð > 0:

ηð(c)(t) =
N

∑
j=0

cjH
j
ð(t)

= (ð)
1
4

N

∑
j=0
Hj

1(
√
ðt)

= (ð)
1
4 η1(c)(

√
ðt).

(3.7.1)

and of course, η1 ∈ S(Cd). Thus by Proposition (3.6.2), we conclude that ð ∈
[ð0 − δ0,ð0 + δ0] 7→ D

p,q,d
p
q +ð(ηð(c)) is continuous as well as the product of the two

continuous functions ð ∈ [ð0 − δ0,ð0 + δ0] 7→ D
p,q,d
p
q +ð(η1(c)(

√
ð·)) (by Proposition

(3.6.2)), and ð ∈ [ð0 − δ0,ð0 + δ0] 7→ 4
√
ð.

Therefore, it reaches its maximum on the compact [ð0− δ0,ð0 + δ0], which is by
definition the number ‖c‖V .

Thus ‖ · ‖V is a norm on V.
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We now make another observation. We have, for all ð ∈ [ð0 − δ0,ð0 + δ0]:∣∣‖c‖ð − ‖d‖ð0

∣∣ 6 ∥∥‖c‖ð − ‖c‖ð0

∣∣+ ∣∣‖c‖ð0 − ‖d‖ð0

∣∣
6
∥∥‖c‖ð − ‖c‖ð0

∣∣+ |‖c− d‖ð0

6
∥∥‖c‖ð − ‖c‖ð0

∣∣+ |‖c− d‖V .

Thus the function:

n : (ð, c) ∈ [ð0 − δ0,ð0 + δ0]×V 7→ ‖c‖ð
is continuous. It is in particular continuous on the compact [ð0 − δ0,ð0 + δ0]× B
where B is the closed unit ball for ‖ · ‖V .

Therefore there exists k > 0 such that for all c ∈ V, ð ∈ [ð0 − δ0,ð0 + δ0], we
have:

k‖c‖V 6 ‖c‖ð 6 ‖c‖V .

Let now E = {c ∈ V : ‖c‖V 6
1
k}. Since V is finite dimensional, E is compact.

Therefore, the function n is uniformly continuous on the compact [ð0 − δ0,ð0 +
δ0]× E. Let δ1 ∈ (0, δ0) be chosen so that, for all ð ∈ [ð0 − δ1,ð0 + δ1], and for all
c, d ∈ E with ‖c− d‖V 6 δ1, we have:

|n(ð, c)− n(ð0, d)| 6 kε

8
.

In particular, for all ð ∈ [ð0 − δ1,ð0 + δ1] and all c ∈ E, we have:∣∣‖c‖ð − ‖c‖ð0

∣∣ 6 kε

8
.

Let E = 1
1+ ε σ

g
ð0,d

(
D1

(
D

p,q,d
p
q +ð0

))
. By definition, E is a bounded subset of V

which is finite dimensional. Thus E is totally bounded for ‖ · ‖V . Let F be a finite
ε
8 -dense subset of E for ‖ · ‖V . We assume 0 6∈ F (we can simply pick a ε

16 -dense
subset of E and then remove 0 from it if needed).

For all c ∈ F, the function:

lc : η ∈ [ð0 − δ1,ð0 + δ1] 7→
D

p,q,d
p
q +ð0

(ηð0(c))−D
p,q,d
p
q +ð(ηð0(c))

D
p,q,d
p
q +ð(ηð0(c))

is continuous on a compact, and it is null at ð0; hence there exists δ2 ∈ (0, δ1) such
that for all ð ∈ [ð0 − δ2,ð0 + δ2] and c ∈ F, we have:

lc(ð) 6
kε

4
.

We emphasize that in the definition of lc, for any c ∈ F, only involves the element
ηð0(c), and the only dependence on the variable is through the choice of D-norm.

Last, for all d ∈ F, the function ð ∈ [ð0 − δ2,ð0 + δ2] 7→ ‖ηð(d)− ηð0(d)‖H p,q,d
p
q +ð

is continuous by Proposition (3.2.5) and Expression (3.7.1). Therefore, since F is
finite, there exists δ3 ∈ (0, δ2) such that for all ð ∈ [ð0 − δ3,ð0 + δ3] and for all
d ∈ F: ∥∥ηð(d)− ηð0(d)

∥∥
H

p,q,d
p
q +ð
6

ε

4
.
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Fix now ð ∈ [ð0 − δ3,ð0 + δ3]. Let now η ∈ D1

(
D

p,q,d
p
q +ð

)
. Let c ∈ V so that

1
1+ ε

16
σhð
ð,d(η) = ηð(c) and note that by construction, ‖η − ηð(c)‖H p,q,d

ð+ p
q

6 ε
4 while

D p
q +ð(ηð(c)) 6 1.

Since D
p,q,d

H
p,q,d
p
q +ð

(ηð(c)) 6 1 so ‖c‖V 6
1
k . Thus, ‖ηð0(c)‖ 6 1 + kε

8 .

Thus, 1
1+ k

8 ε
ηð0(c) ∈ E, and thus there exists d ∈ F such that ‖ 1

1+ k
8 ε

c− d‖V 6
ε
8 .

Thus:

‖c− d‖V 6
k
8 ε

1 + k
8 ε
‖c‖V +

ε

8
6

ε

4
.

We conclude by observing that:∥∥∥∥∥∥∥
D

p,q,d
p
q +ð0

(ηð0(d))

D
p,q,d
p
q +ð(ηð0(d))

ηð0(d)− η

∥∥∥∥∥∥∥
H

p,q,d
p
q +ð

6

∥∥∥∥∥∥∥
D

p,q,d
p
q +ð0

(ηð0(d))

D
p,q,d
p
q +ð(ηð0(d))

ηð0(d)− ηð(c)

∥∥∥∥∥∥∥
H

p,q,d
p
q +ð

+
ε

4

6 ld(ð)‖d‖V + ‖ηð0(d)− ηð(c)‖H p,q,d
p
q +ð

+
ε

4

6
ε

4
+ ‖ηð(d)− ηð0(d)‖H p,q,d

p
q +ð

+ ‖ηð(d)− ηð(c)‖H p,q,d
p
q +ð

+
ε

4

6
ε

4
+

ε

4
+ ‖c− d‖V +

ε

4
6 ε.

This concludes our lemma. �

We now summarize, in the following lemma, all the elements of the proof of
convergence for quantum tori, as worked in [25], which we will employ in the
current paper.

Notation 3.7.3. Let µ be the probability Haar measure on the 2-torus T2.
For any f ∈ L1(T2, µ) and θ ∈ R, we denote by β

f
θ the operator on Aθ defined

for all a ∈ Aθ by:

β
f
θ (a) =

∫
T2

f (z)βz
θ(a) dµ(z)

which is continuous with
∣∣∣∣∣∣∣∣∣β f

θ

∣∣∣∣∣∣∣∣∣
Aθ

6 ‖ f ‖L1(T2,µ).

Lemma 3.7.4. Let ` be a continuous length function on T2. Let θ ∈ R and ε > 0.
There exists δε > 0, a trace-class operator T on `2(Z2) with nonempty 1-level set and
operator norm equals to 1, a finite dimensional subspace V ⊆ `1(Z2) and a nonnegative
continuous function Fe : T2 7→ [0, ∞) such that, for all ϑ ∈ [θ − δε, θ + δε]:

(1) if a ∈ V then a∗ ∈ V,
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(2) βFeθ is a finite rank operator and βFeθ (sa (Aθ)) = V,
(3) 1Aϑ

∈ V,
(4) the function:

(ϑ, a) ∈
(
R \

{
p
q

})
×V 7→ Lϑ(a)

is continuous,
(5) if τ : f ∈ `1(Z2) 7→ f (0), i.e. the restriction of the unique βϑ-invariant tracial

state of Aϑ to `1(Z2) (noting τ does not depend on ϑ), and if E = V ∩ ker(τ)
while Σ is the unit sphere in E for ‖ · ‖`1(Z2), then for any a ∈ Σ, if s(a, ϑ) =
Lθ(a)
Lϑ(a) > 0 then:

|||πθ(a)T − Tπϑ(s(a)a)|||`2(Z2) 6 L(a)ε,

while:
|1− s(a, ϑ)| < ε;

(6) the length of the bridge
(
B(`2(Z2)), T, πθ , πϑ

)
is no more than ε, where B(`2(Z2))

is the C*-algebra of all bounded linear operators on `2(Z2).

Proof. The construction of the bridges in this lemma is the matter of [25] — includ-
ing the construction of T. We will only need its existence and the properties listed
here, which involve all the work in [25] to be established.

We note that Assertions (1), (2), (3) and (4) were established in [49]; a summary
is presented in [25, Theorem 3.19] (all these assertions are extended to fuzzy tori
in [21]).

Assertion (5) is established as part of [25, Claim 5.15]. Assertion (6) is [25, Claim
5.15]. Of course, the computation of the length of the bridges defined in Assertion
(6) provides the upper bound on the quantum propinquity between quantum tori
in [25]. �

Corollary 3.7.5. Let ε > 0; let δ > 0 be given by Lemma (3.7.4). If for all a ∈ E \ {0}
and ϑ ∈ [θ − δ, θ + δ], we set s(a, ϑ) = Lθ(a)

Lϑ(a) > 0, then:

|||πθ(a)T − Tπϑ(s(a)a)|||`2(Z2) 6 Lϑ(a)ε.

Proof. Fix ϑ ∈ [θ − δ, θ + δ]. If Lϑ(a) = 0 then a ∈ R1Aϑ
; as a ∈ E we conclude that

a = 0. Thus s(a, ϑ) is well-defined.
We then note that s(a) = s(ra) for any r > 0 by definition. Moreover, if a ∈ E

and a 6= 0, then 1
‖a‖

`1(Z2)
a ∈ Σ and thus by Lemma (3.7.4) :

|||πϑ(a)T − Tπϑ(s(a)a)|||`2(Z2)

= ‖a‖`1(Z2)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣πθ

(
1

‖a‖`1(Z2)
a

)
T − Tπϑ

 s(‖a‖−1
`1(Z2)

a)

‖a‖`1(Z2)
a

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
`2(Z2)

6 ‖a‖`1(Z2)Lϑ

(
1

‖a‖`1(Z2)
a

)
ε = Lϑ(a)ε.

This concludes our corollary. �
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We now conclude our paper with the main result of its second part, which
demonstrates that the modular propinquity endows the moduli space of Heisen-
berg modules over quantum 2-tori with a nontrival geometry.

Theorem 3.7.6. Let ‖ · ‖ be a norm on R2. For all θ ∈ R, we equip the quantum torus
Aθ with the L-seminorm:

Lθ : a ∈ sa (A) 7→ sup


∥∥∥β

exp(ix),exp(iy)
θ a− a

∥∥∥
Aθ

‖(x, y)‖ : (x, y) ∈ R2 \ {0}

 .

For all p ∈ Z, q ∈ N \ {0} and d ∈ qN \ {0} and for all θ ∈ R \
{

p
q

}
, we endow the

Heisenberg module H
p,q,d

θ with the D-norm:

D
p,q,d
θ : ξ ∈H

p,q,d
θ 7→

sup

‖ξ‖H p,q,d
θ

,

∥∥∥exp
(

iπ
(

θ − p
q

)
xy
)

σ
x,y
ð,d ξ − ξ

∥∥∥
H

p,q,d
θ

2π
(

θ − p
q

)
‖(x, y)‖

: (x, y) ∈ R2 \ {0}

 .

Let p ∈ Z and q ∈ N \ {0}. Let d ∈ qN \ {0}. For any θ ∈ R \
{

p
q

}
, we have:

lim
ϑ→θ

Λmod
((

H
p,q,d

ϑ , 〈·, ·〉
H

p,q,d
ϑ

, D
p,q,d
ϑ ,Aϑ, Lϑ

)
,(

H
p,q,d

θ , 〈·, ·〉
H

p,q,d
θ

, D
p,q,d
θ ,Aθ , Lθ

))
= 0.

Proof. Let p ∈ Z and q ∈ N \ {0}. Let d ∈ qN \ {0}. Let X = R \
{

p
q

}
.

Let θ ∈ X and let ε > 0.
We shall apply Lemma (3.7.4) and use its notations for ε

16 > 0 (rather than ε).
To begin with, for all ϑ ∈ R, we note that if a ∈ `1(Z2), then βz

ϑ(a) = βz(a)
does not depend on ϑ ∈ R for any z ∈ T2. Thus, the restriction of βFeϑ to `1(Z2) is
independent of ϑ, valued in V, and will be denoted by βFe.

By Lemma (3.7.2), there exists a finite subset F = {ωj : j ∈ {1, . . . , N}} of

D1

(
H

p,q,d
θ

)
\ {0} for some N ∈ N and δ0 > 0 such that, for all ϑ ∈ [θ− δ0, θ + δ0],

the set: {
D

p,q,d
θ (ωj)

D
p,q,d
ϑ (ωj)

ωj : j ∈ {1, . . . , N}
}

is ε
16 -dense in D1

(
D

p,q,d
ϑ

)
.

We thus record:

Summary 3.7.7. Any modular bridge from
(

H
p,q,d

ϑ , 〈·, ·〉
H

p,q,d
ϑ

, D
p,q,d
ϑ ,Aϑ, Lϑ

)
to(

H
p,q,d

ϑ , 〈·, ·〉
H

p,q,d
ϑ

, D
p,q,d
ϑ ,Aϑ, Lϑ

)
whose anchors are (ωj)j∈{1,...,N} and co-anchors

are
(

D
p,q,d
θ (ωj)

D
p,q,d
ϑ (ωj)

ωj

)
j∈{1,...,N}

, has imprint at most ε
16 .
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For each ω ∈ F, the map ϑ ∈ X 7→ D
p,q,d
ϑ (ω) is continuous by Proposition

(3.6.2). The function ϑ 7→ Lϑ(〈ω, η〉
H

p,q,d
θ

) is also continuous for all ω, η ∈ F (see

Lemma (3.7.4)). Last, for any ω ∈ F, we note that the continuous function ϑ ∈
X 7→ D

p,q,d
ϑ (ω), reaches its minimum on the compact [θ− δ ε

16
, θ + δ ε

16
], and thus in

particular, since ω 6= 0 and D
p,q,d
ϑ is a norm, this minimum is not zero (note that

δ ε
16

> 0 is given by Lemma (3.7.4) ).
Thus the functions:

y<j,k : ϑ ∈ X 7→
Lθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
Lϑ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
ϑ

) − D
p,q,d
θ (ωj)D

p,q,d
θ (ωk)

D
p,q,d
ϑ (ωj)D

p,q,d
ϑ (ωk)

and

y=j,k : ϑ ∈ X 7→
Lθ

(
=βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
Lϑ

(
=βFe

〈
ωj, ωk

〉
H

p,q,d
ϑ

) − D
p,q,d
θ (ωj)D

p,q,d
θ (ωk)

D
p,q,d
ϑ (ωj)D

p,q,d
ϑ (ωk)

are continuous as well for all j, k ∈ {1, . . . , N}. Consequently, the function:

y = max
j,k∈{1,...,N}

{∣∣∣y<j,k∣∣∣ ,
∣∣∣y=j,k∣∣∣}

is continuous as the maximum of finitely many continuous functions. We also note
that y(θ) = 0.

Thus there exists δ2 > 0 such that:

|y| < ε

16
on [θ − δ2, θ + δ2].

For each j ∈ {1, . . . , N}, let:

ηj =
Dθ(ωj)

Dϑ(ωj)
ωj.

By construction, we have:

Dϑ(ηj) = Dθ(ωj).

Last, by Lemma (3.2.4), there exists δ3 > 0 such that for all ϑ ∈ [θ − δ3, θ + δ3]
we have, for all j, k ∈ {1, . . . , N}:∥∥∥∥〈ηj, ηk

〉
H

p,q,d
θ

−
〈
ηj, ηk

〉
H

p,q,d
ϑ

∥∥∥∥
`1(Z2)

6
ε

16
.

Let δ4 = min{δ ε
16

, δ2, δ3} and ϑ ∈ [θ − δ4, θ + δ4].
We now begin a string of inequalities for two given j, k ∈ {1, . . . , N}. To begin

with, we apply Lemma (3.7.4) to obtain for all a ∈ Aϑ:

‖a− βFea‖Aϑ
6 ‖<a− βFe<a‖Aϑ

+ ‖=a− βFe=a‖Aϑ
6

ε

16
(Lϑ(<a) + Lϑ(=a)) 6

ε

8
Lϑ(a).

Therefore, using the inner quasi-Leibniz inequality:

(3.7.2)
∣∣∣∣∣∣∣∣∣∣∣∣πθ

(〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(〈
ηj, ηk

〉
H

p,q,d
ϑ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)
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6

∥∥∥∥〈ωj, ωk
〉
H

p,q,d
θ

− βFe
〈
ωj, ωk

〉
H

p,q,d
θ

∥∥∥∥
Aθ

+

∥∥∥∥〈ηj, ηk
〉
H

p,q,d
θ

− βFe
〈
ηj, ηk

〉
H

p,q,d
θ

∥∥∥∥
Aϑ

+

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
ϑ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6
ε

8

(
Lθ

(〈
ωj, ωk

〉
H

p,q,d
θ

)
+ Lϑ

(〈
ηj, ηk

〉
H

p,q,d
ϑ

))
+

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
ϑ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6
ε

8
(D

p,q,d
θ (ωj)‖ωk‖H p,q,d

θ

+ D
p,q,d
θ (ωk)‖ωj‖H p,q,d

θ

+ D
p,q,d
ϑ (ηj)‖ηk‖H p,q,d

ϑ

+ D
p,q,d
ϑ (ηk)‖ηj‖H p,q,d

ϑ

)

+

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
ϑ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6
ε

2
+

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
ϑ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

.

Our next step is to replace βFe
〈
ηj, ηk

〉
H

p,q,d
ϑ

with βFe
〈
ηj, ηk

〉
H

p,q,d
θ

, because our

work in [25] follows a single element in V from Aθ to Aϑ.
Now, noting that βFe has norm 1:∥∥∥∥βFe

〈
ηj, ηk

〉
H

p,q,d
ϑ

∥∥∥∥
Aϑ

6

∥∥∥∥βFe
〈
ηj, ηk

〉
H

p,q,d
θ

∥∥∥∥
Aϑ

+

∥∥∥∥βFe
〈
ηj, ηk

〉
H

p,q,d
ϑ

− βFe
〈
ηj, ηk

〉
H

p,q,d
θ

∥∥∥∥
Aϑ

6

∥∥∥∥βFe
〈
ηj, ηk

〉
H

p,q,d
θ

∥∥∥∥
Aϑ

+

∥∥∥∥〈ηj, ηk
〉
H

p,q,d
ϑ

−
〈
ηj, ηk

〉
H

p,q,d
θ

∥∥∥∥
Aϑ

6

∥∥∥∥βFe
〈
ηj, ηk

〉
H

p,q,d
θ

∥∥∥∥
Aϑ

+

∥∥∥∥〈ηj, ηk
〉
H

p,q,d
ϑ

−
〈
ηj, ηk

〉
H

p,q,d
θ

∥∥∥∥
`1(Z2)

6

∥∥∥∥βFe
〈
ηj, ηk

〉
H

p,q,d
θ

∥∥∥∥
Aϑ

+
ε

16
.

Thus we conclude, as |||T|||`2(Z2) = 1:

(3.7.3)
∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
ϑ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

+
ε

16
.

Inserting Inequality (3.7.3) in Inequality (3.7.2) we thus have:
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(3.7.4)
∣∣∣∣∣∣∣∣∣∣∣∣πθ

(〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(〈
ηj, ηk

〉
H

p,q,d
ϑ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6
9ε

16
+

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

.

We now insert the factor s(·) of Lemma (3.7.4) into our inequality. To make
notations somewhat easier to read, we set:

s<j,k = s
(
<
〈
ωj, ωk

〉
H

p,q,d
θ

, ϑ

)
=

Lθ

(
<
〈
ωj, ωk

〉
H

p,q,d
θ

)
Lϑ

(
<
〈
ωj, ωk

〉
H

p,q,d
θ

)
and:

s=j,k = s
(
=
〈
ωj, ωk

〉
H

p,q,d
θ

, ϑ

)
=

Lθ

(
=
〈
ωj, ωk

〉
H

p,q,d
θ

)
Lϑ

(
=
〈
ωj, ωk

〉
H

p,q,d
θ

) .

We thus compute:

(3.7.5)
∣∣∣∣∣∣∣∣∣∣∣∣<(πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
θ

))∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

 D
p,q,d
θ (ωj)D

p,q,d(ωk)
θ

D
p,q,d
ϑ (ωj)D

p,q,d
ϑ (ωj)

<βFe
〈
ωj, ωk

〉
H

p,q,d
θ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
`2(Z2)

6

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
s<j,k<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣πϑ

((
s<j,k −

D
p,q,d
θ (ωj)D

p,q,d
θ (ωk)

D
p,q,d
ϑ (ωj)D

p,q,d
ϑ (ωk)

)
<βFe

〈
ωj, ωk

〉
H

p,q,d
ϑ

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
`2(Z2)

6

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
s<j,k<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

+

∥∥∥∥∥
(

s<j,k −
D

p,q,d
θ (ωj)D

p,q,d
θ (ωk)

D
p,q,d
ϑ (ωj)D

p,q,d
ϑ (ωk)

) 〈
ωj, ωk

〉
H

p,q,d
ϑ

∥∥∥∥∥
qtϑ

.

By assumption on ϑ, we have:

(3.7.6)

∥∥∥∥∥
(

s<j,k −
D

p,q,d
θ (ωj)D

p,q,d
θ (ωk)

D
p,q,d
ϑ (ωj)D

p,q,d
ϑ (ωk)

) 〈
ωj, ωk

〉
H

p,q,d
ϑ

∥∥∥∥∥
Aϑ

6 y(ϑ) <
ε

16
,

and thus, plugging Inequality (3.7.6) in Inequality (3.7.5), we obtain:

(3.7.7)
∣∣∣∣∣∣∣∣∣∣∣∣<(πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
<βFe

〈
ηj, ηk

〉
H

p,q,d
θ

))∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
sj,k<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

+
ε

16
.
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The elements <βFe
〈
ωj, ωk

〉
H

p,q,d
ϑ

, for all ϑ ∈ X, lie in V. We now wish them to

lie in E = ker τ ∩ V with τ : f ∈ `1(Z2) 7→ f (0) to use Lemma (3.7.4). Again to
ease notations, let:

τ
j,k
ϑ = τ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
ϑ

)
.

Of course, τ
j,k
ϑ = τ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
ϑ

)
= τ

(
=βFe

〈
ωj, ωk

〉
H

p,q,d
ϑ

)
.

We thus evaluate:∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
sj,k<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

− τ
j,k
θ

)
T − Tπϑ

(
sj,k<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

− sj,kτ
j,k
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

+
∣∣∣τ j,k

θ − sj,kτ
j,k
θ

∣∣∣ .

Now
∣∣∣τθ − sj,kτθ

∣∣∣ 6 |1− sj,k|τj,k 6 |1− sj,k| < ε
16 since τj,k 6 ‖

〈
ωj, ωk

〉
H

p,q,d
θ

‖Aϑ
6

1. We thus have:

(3.7.8)
∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
sj,k<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6

∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

− τ
j,k
θ

)
T − Tπϑ

(
sj,k<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

− sj,kτ
j,k
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

+
ε

16
.

We are now in the position to apply Lemma (3.7.4) and conclude:

(3.7.9)∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

− τ
j,k
θ

)
T − Tπϑ

(
sj,k<βFe

〈
ωj, ωk

〉
H

p,q,d
θ

− sj,kτ
j,k
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6
ε

16
.

We now insert Inequality (3.7.9) into Inequality (3.7.8) and the result in Inequal-
ity (3.7.7) to conclude:

(3.7.10)∣∣∣∣∣∣∣∣∣∣∣∣<(πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
θ

))∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6
3ε

16
.

We get the same inequality as Inequality (3.7.10) for = in place of < by the same
reasoning, so we get:

(3.7.11)
∣∣∣∣∣∣∣∣∣∣∣∣πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
θ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)
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6

∣∣∣∣∣∣∣∣∣∣∣∣<(πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
θ

))∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

+

∣∣∣∣∣∣∣∣∣∣∣∣=(πθ

(
βFe
〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(
βFe
〈
ηj, ηk

〉
H

p,q,d
θ

))∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6
3ε

8
.

Thus inserting Inequality (3.7.11) in Inequality (3.7.4), we conclude:

(3.7.12)∣∣∣∣∣∣∣∣∣∣∣∣πθ

(〈
ωj, ωk

〉
H

p,q,d
θ

)
T − Tπϑ

(〈
ηj, ηk

〉
H

p,q,d
ϑ

)∣∣∣∣∣∣∣∣∣∣∣∣
`2(Z2)

6
9ε

16
+

3ε

8
=

15ε

16
.

By construction, the following is a modular bridge (note that |||T|||`
2(Z2)
= 1):

γϑ =
(
B(`2(Z)), T, πθ , πϑ, (ωj)j∈{1,...,n}, (ηj)j∈{1,...,n}

)
.

By Lemma (3.7.4), the length of the basic bridge γ[ is no more than ε
16 , so the

basic reach and the height of γ are bounded by ε
16 . Now, Expression (3.7.12) states

that the modular reach of γ is bounded above by 15ε
16 . Thus by Definition (2.3.16),

the reach of γ is no more than ε
16 + 15ε

16 = ε.
By Summary (3.7.7), the imprint of γ is no more than ε

16 .
Thus by Definition (2.3.18), the length of γ is no more than ε = max

{
ε, ε

16
}

. If
we identify γ with the modular trek (γ), we conclude by Definition (2.4.6) that:

Λmod
((

H
p,q,d

ϑ , 〈·, ·〉
H

p,q,d
ϑ

, D
p,q,d
ϑ ,Aϑ, Lϑ

)
,(

H
p,q,d

θ , 〈·, ·〉
H

p,q,d
θ

, D
p,q,d
θ ,Aθ , Lθ

))
6 ε.

This concludes our proof. �

We conclude with an interesting observation. The proof of Theorem (3.7.6) re-
veals that the class of Heisenberg modules over all quantum 2-tori is actually iso-
pivotal. Trivially, we can include in this class all the free modules over quantum
2-tori and keep the class iso-pivotal. Hence we conclude that the direct sum of
metrized quantum vector bundles on the class of all free modules of finite rank
and all Heisenberg modules over all quantum 2-tori is in fact jointly continuous
with respect to the modular propinquity by Theorem (2.7.2). We thus get some
additional convergence results from our work for our new metric.
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