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SCHUR-WEYL DUALITY FOR HEISENBERG COSETS

THOMAS CREUTZIG, SHASHANK KANADE, ANDREW R. LINSHAW, AND DAVID RIDOUT

ABSTRACT. Let V be a simple vertex operator algebra containing a rankn Heisenberg vertex algebraH and
let C = Com(H,V) be the coset ofH in V. Assuming that the representation categories of interest are vertex
tensor categories in the sense of Huang, Lepowsky and Zhang,a Schur-Weyl type duality for both simple and
indecomposable but reducible modules is proven. Families of vertex algebra extensions ofC are found and
every simpleC-module is shown to be contained in at least oneV-module. A corollary of this is that ifV is
rational andC2-cofinite and CFT-type, and Com(C,V) is a rational lattice vertex operator algebra, then so is
C. These results are illustrated with many examples and theC1-cofiniteness of certain interesting classes of
modules is established.

1. INTRODUCTION

Let V be a vertex operator algebra.1 If G is a subgroup of the automorphism group ofV, then the

invariantsVG form a vertex operator subalgebra called theG-orbifold of V. If W is any vertex operator

subalgebra ofV, then theW-coset ofV is the commutantC = Com(W,V). Both the orbifold and coset

constructions provide a way to construct new vertex operator algebras from known ones. Unfortunately,

few general results concerning the structure of the resulting vertex operator subalgebras are known, but

it is believed that many nice properties ofV are inherited by its orbifolds and cosets. We remark that

while most of the literature is primarily concerned with completely reducible representations of vertex

operator algebras, we are also interested in the logarithmic case in which the vertex operator algebra admits

indecomposable but reducible representations.

We begin by recalling some important results in the invariant theory of vertex operator algebras that are

connected to the questions that we address in this work.

1.1. From classical to vertex-algebraic invariant theory. It is valuable to view invariant-theoretic results

about vertex operator algebras as generalizations of the classical results, à la Howe and Weyl [Ho, We],

concerning Lie algebras and groups. For example, a well-known result of Dong, Li and Mason [DLM1]

amounts to a type of Schur-Weyl duality for orbifolds, stating that for a simple vertex operator algebraV

and a compact subgroupG of AutV (acting continuously and faithfully), the following decomposition holds

as aG×VG-module:

V =
⊕

λ
λ ⊗Vλ . (1.1)

Here, the sum runs over all the simpleG-modulesλ and is multiplicity-free in the sense thatVλ 6∼= Vµ if

λ 6= µ . They moreover prove that theVλ are simple modules for the orbifold vertex operator algebraVG.

Similar results have also been obtained by Kac and Radul [KR](see Section 2.4).
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Invariant theory for the classical groups [We] can be used toobtain generators and relations for orbifold

vertex operator algebrasVG, provided thatV is of free field type (meaning that the only field appearing in the

singular terms of the operator product expansions of the strong generators is the identity field). Interestingly,

the relations can be used to show that these vertex operator algebras are strongly finitely generated and, in

many cases, explicit minimal strong generating sets can be obtained [CL3, L2–L6]. Questions concerning

cosets are usually more involved than their orbifold counterparts. However, the notion of a deformable

family of vertex operator algebras [CL2] can sometimes be used to reduce the identification of a minimal

strong generating set for a coset to a known orbifold problemfor a free field algebra [CL1].

It is of course desirable to understand the representation theory of coset vertex operator algebras. An

important first question to ask is if there is also a Schur-Weyl type duality, as in the orbifold case. LetV be

a simple vertex operator algebra that is self-contragredient and letA,B⊆ V be vertex operator subalgebras

satisfying

A= Com(B,V) and B= Com(A,V). (1.2)

Under the further assumption thatA andB are both simple, self-contragredient, regular and of CFT-type,

V =
⊕

i

Mi ⊗Ni (1.3)

as anA⊗B-module, where eachMi is a simpleA-module and eachNi is a simpleB-module. Under further

conditions, Lin finds [Lin] that this decomposition is multiplicity-free and the argument relies on knowing

that the representation categories ofA andB are both semisimple modular tensor categories.

We are aiming for similar results, but generalised to include decompositions of modules that are not

necessarily semisimple. Our setup is thatV is a simple vertex operator algebra containing a Heisenberg

vertex operator subalgebraH. We then study the commutantC = Com(H,V). For this, we assume thatC

has a module categoryC that is a vertex tensor category in the sense of Huang, Lepowsky and Zhang [HLZ]

and that theC-modules obtained upon decomposingV as anH⊗C-module belong toC . In Section 2.1,

we summarize some known statements about vertex tensor categories that are relevant for our study. These

statements make it clear thatC1-cofiniteness of modules is a key concept. In Section 6, we establish the

C1-cofiniteness of Heisenberg coset modules in two families ofexamples.

1.2. Rational parafermion vertex operator algebras. Heisenberg cosets of rational affine vertex oper-

ator algebras are usually called parafermion vertex operator algebras. They first appeared in the form of

theZ-algebras discovered by Lepowsky and Wilson in [LW1, LW2, LW3, LW4], see also [LP]. In physics,

parafermions first appeared in the work of Fateev and Zamolodchikov [FZ] where they were given their

standard appellation. The relation between parafermion vertex operator algebras andZ-algebras was sub-

sequently clarified in [DL].

Parafermions are surely among the best understood coset vertex operator algebras and there has been

substantial recent progress towards establishing a complete picture of their properties. Key results include

C2-cofiniteness [ALY], see also [DLY, DW1], and rationality [DR], using previous results on strong gen-

erators [DLWY]. In principle, strong generators can now also be determined as in [CL1], where this was

detailed for the parafermions related tosl3. We remark thatC2-cofiniteness also follows from a recent re-

sult of Miyamoto on orbifold vertex operator algebras [M4].These powerful results also allow one, for

example, to compute fusion coefficients [DW2].

It has, for some time, been believed that if a simple, rational, C2-cofinite, self-contragredient vertex op-

erator algebra of CFT-type contains a lattice vertex operator subalgebra (corresponding to an even positive-

definite lattice), then the corresponding coset vertex operator algebra will also be rational. For example,
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this was recently shown using indirect methods for the rational Bershadsky-Polyakov vertex operator alge-

bras [ACL]. We prove this statement in general (see Theorem 4.12).

1.3. Results. This work is, at least in part, a continuation of our previouswork on simple current extensions

of vertex operator algebras [CKL]. In this vein, we start by proving some properties of simple currents

(Proposition 2.5), in particular that fusing with a simple current defines an autoequivalence of any suitable

category of modules. As further preparation, we also prove (Theorem 3.1) that ifV is simple,G is an abelian

group ofV-automorphisms acting semisimply onV, and

V =
⊕

λ∈L⊂Ĝ

Vλ , (1.4)

thenVλ is a simple current for everyλ in L. The proof essentially amounts to adding details to a very

similar result of Miyamoto [M2, Sec. 6], [CaM].

1.3.1. Schur-Weyl duality.We then prove a Schur-Weyl duality for Heisenberg cosetsC = Com(H,V).

The set-up is as follows. LetV be a simple vertex operator algebra,H⊆ V be a Heisenberg vertex operator

subalgebra that acts semisimply onV, C=C0 be the commutant ofH in V andL be the lattice of Heisenberg

weights ofV. HereV is regarded as anH-module. ThenW= Com(C,V) is an extension ofH by an abelian

intertwining algebra. Of course, it might happen that the extension is trivial, that is,H = W. Eq. (1.4)

translates into

V =
⊕

λ∈L
Fλ ⊗Cλ . (1.5)

Let N be the sublattice of allλ ∈ L for whichCλ ∼= C. Theorem 3.5 now says that the abelian groupL/N

controls the decomposition ofV as aW⊗C-module:

V =
⊕

[λ ]∈L/N

W[λ ]⊗C[λ ]. (1.6)

Moreover, theC[λ ], λ ∈ L/N are simple currents forC whose fusion products include

C[λ ]⊠CC[µ] = C[λ+µ].

This decomposition is multiplicity free in the sense thatC[λ ] 6∼=C[µ] if [λ ] 6= [µ ]. The vertex operator algebra

W =
⊕

λ∈N
Fλ

is a simple current extension ofH and theW[λ ], [λ ] ∈L/N, are simple currents forW with fusion products

W[λ ]⊠WW[µ] =W[λ+µ].

We note that Li has proven [Li] that
⊕

λ∈L/N

C[λ ] is a generalized vertex algebra.

The main Schur-Weyl duality result is then a similar decomposition for vertex operator algebra modules,

see Theorem 3.8. For this letV, H, C, W, L andN be as above and letM be aV-module upon whichH acts

semisimply. Then,M decomposes as

M=
⊕

µ∈M
Mµ =

⊕

µ∈M
Fµ ⊗Dµ =

⊕

[µ]∈M/N

W[µ]⊗D[µ], (1.7)

whereM is a union ofL-orbits and theDµ =D[µ] areC-modules satisfyingCλ ⊠CDµ =Dλ+µ , for all λ ∈L

andµ ∈M. Next, in Theorem 3.8 we show that each of theDµ have the same decomposition structure as

that ofM. One example of this is if 0→M′ →M→M′′ → 0 is exact, withM′ andM′′ non-zero, thenM′
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andM′′ decompose as in (1.7):

M
′ =

⊕

µ∈M
M

′
µ =

⊕

µ∈M
Fµ ⊗D

′
µ , M

′′ =
⊕

µ∈M
M

′′
µ =

⊕

µ∈M
Fµ ⊗D

′′
µ . (1.8)

Moreover, 0→ D′
µ → Dµ → D′′

µ → 0 is also exact, for allµ ∈M.

However, in general, multiplicity-freeness does not hold,for example, the parafermion coset ofL2(sl2)

yields an example of a coset module that appears twice in the decomposition of a simpleL2(sl2)-module.

We give three criteria to guarantee that a given decomposition is multiplicity-free. One based on characters,

one based on the signature of the latticeL, and one based on open Hopf link invariants following [CG1,

CG2].

1.3.2. Extensions of vertex operator algebras.Let E be a sublattice ofL. We would like to know if

CE =
⊕

λ∈E
Cλ (1.9)

carries the structure of a vertex operator algebra extending that ofC=C0. Theorem 4.1, which itself follows

immediately from [Li], implies that this is the case provided that

WE =
⊕

λ∈E
Wλ (1.10)

is a vertex operator algebra. IfE is a rank one subgroup, then this conclusion also follows from [CKL].

1.3.3. Lifting Modules.Let D be aC-module. We would like to know if it lifts to aCE-module and also if

there exists aH-moduleFβ such thatFβ ⊗D lifts to aV-module.

This question is decided by the monodromy (composition of braidings)

MCλ ,D : Cλ ⊠D→ Cλ ⊠D. (1.11)

We have (Theorem 4.3): LetD be a generalizedC-module that appears as a subquotient of the fusion

product of some finite collection of simpleC-modules. LetL′ be the dual lattice ofL and letU = L⊗ZR.

Then, there existsα ∈U such that

MCλ ,D = e−2π i〈α ,λ 〉 IdCλ⊠D (1.12)

andFβ ⊗D lifts to aV-module if and only ifβ ∈ α +L′. Moreover, the lifted module isV⊠H⊗C

(
Fβ ⊗D

)
.

Note that the lifting problem when all involved vertex operator algebras are regular was treated in [KrM].

Further,D lifts to aCE-module if and only ifα is in a certain lattice associated toE (see Corollary 4.4)

and everyCE-module is a quotient of a lifted module (this follows essentially from [Lam]). The lifted

module is thenCE⊠CD.

1.3.4. Rationality. Miyamoto [M4] has proven thatC-isC2-cofinite providedW is a lattice vertex operator

algebra of a positive definite even lattice and providedV isC2-cofinite. Together with our ability of control-

ling modules that lift toV-modules and exactness of fusion with simple currents this implies a rationality

theorem (Theorem 4.12):

LetV be simple, rational,C2-cofinite of CFT-type. Then, every grading-restricted generalizedC module

is completely reducible.

Especially, we thus have an alternative proof of the rationality of the parafermion cosets [DR], [CaM] as

well as of the Heisenberg cosets of the rational Bershadsky-Polyakov algebras [ACL].
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1.3.5. Examples.We illustrate our results with various examples, both rational and non-rational ones,

though our main interest are applications to vertex operator algebras of logarithmic conformal field the-

ory, that is especially to indecomposable but reducible modules. Schur-Weyl duality is exemplified in the

well-known rational example ofL2(sl2) (Example 1) and then in much detail in the case ofL−4/3(sl2) (Ex-

ample 2). We especially explain how Schur-Weyl duality works for the projective covers of simple modules.

Extensions of the Heisenberg cosets ofLk(g) for rational and non-zerok are discussed in Example 3. Exam-

ple 4 then deals with the relation via Heisenberg cosets of various archetypical logarithmic vertex operator

algebras, most notably theI(2)-singlet algebra andVk(gl(1|1)). Especially we give the decomposition of

the projective indecomposable modules ofVk(gl(1|1)) in terms of projectiveH⊗H⊗ I(2)-modules. The

triplet algebraW(2) is then an example of an extended vertex operator algebra that isC2-cofinite. The lifting

of modules is illustrated in Example 5 for the modules of theN = 2 super Virasoro algebra. Finally, we use

the opportunity to prove thatL−1(sl(m|n)) appears as a Heisenberg coset of appropriateβ γ andbc-vertex

operator algebras. This generalizes the casen= 0 of [AP]. Also the casem= 2 andn= 0 is exceptional

and identified with a rectangular W-algebra ofsl4.

1.3.6. On C1-cofiniteness.Our results rely on the applicability of the vertex tensor theory of [HLZ]. Our

belief is that the key criterion for this applicability is the C1-cofiniteness of the modules with finite com-

position length, see also [CMR, Sec. 6]. In Section 6, we prove a fewC1-cofiniteness results for modules

of Heisenberg cosets of the affine vertex operator algebras of type sl2 as well as those of the Bershadsky-

Polyakov algebras.

1.3.7. Outlook on fusion.The main concern of this work is the relationship between themodules of the

Heisenberg coset vertex operator algebraC and those of its parent algebraV. A valid question is then if there

is also a clear relation between the fusion product of theC-modules and the correspondingV-modules. This

question is work in progress and here we announce that one canprove that the induction functor is a tensor

functor under appropriate assumptions on the module category [CKM]. This rigorously establishes the

connection between fusion and extended algebras that has been proposed in the physics literature [RW2].

1.4. Application: Towards new C2-cofinite logarithmic vertex operator algebras. Presently, there are

very few known examples ofC2-cofinite non-rational vertex operator algebras; these include the triplet

algebras [AM2, TW1, TW2] and their close relatives [Ab]. In order to gain more experience with such

logarithmicC2-cofinite vertex operator algebras, new examples are needed. The main application we have

in mind for the work reported here is the construction of new examples of this type.

The idea is a two-step process illustrated as follows:

V
H-coset−−−−−−−→ C

extension−−−−−−−−→ CE.

A series of examples that confirms this idea were explored in [CRW], see also Example 3. There, the

I(p) singlet algebras of Kausch [Ka] were (conjecturally) obtained as Heisenberg cosets of the Feigin-

Semikhatov algebras [FS], see also [Gen]. The extension in the above process is then an infinite order

simple current extension and the results [CM1,RW1] are the best understoodC2-cofinite logarithmic vertex

operator algebras, theW(p) triplet algebras.

New examples may be obtained by takingV to be the simple affine vertex operator algebra associated

to the simple Lie algebrag at admissible, but negative, levelk andH to be the Heisenberg vertex operator

subalgebra generated by the affine fields associated to the Cartan subalgebra ofg. Here,H is a subgroup of

G of maximal rank. The module categories of such admissible level affine vertex operator algebras remain
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quite mysterious despite strong results concerning category O [KW1, Ar1]. Beyond categoryO, detailed

results are currently only known forg= sl2 [AM1,Ga,CR3,CR5,RW3,R1–R3] andg= sl3 [AFR]. A first

feasible task here would be to compute the characters of coset modules appearing in the decomposition of

modules inO. We expect the appearance of Kostant false theta functions [CM2] as they are the natural

generalization of ordinary false theta functions that appear in the case of the admissible level parafermion

coset ofLk(sl2) [ACR].

In [ACR], we will studyCE wheng = sl2 andk is negative and admissible. Under the assumption that

the tensor theory of Huang-Lepowsky-Zhang applies toC, we can prove that there are only finitely many

inequivalent simpleCE-modules. It is thus natural to conjecture thatCE is C2-cofinite. A consequence

of C2-cofiniteness is modularity of characters (supplemented bypseudotrace functions) [M1]. In [ACR],

we can also demonstrate this modularity of characters (pluspseudotraces) for all modules that are lifts of

C-modules. We will prove theC2-cofiniteness ofCE, for various choice ofE in subsequent works.

A third family of examples that fit this idea concern simple minimal W-algebras in the sense of Kac

and Wakimoto [KW2]. These are quantum Hamiltonian reductions that are strongly generated by fields in

conformal dimension one and 3/2 together with the Virasoro field. For certain levels, theseW-algebras

have a one-dimensional associated variety and they containa rational affine vertex operator subalgebra.

The Heisenberg coset of the coset of the minimalW-algebra by the rational affine vertex operator algebra

thus seems to be another candidate for newC2-cofinite algebras as infinite order simple current extensions.

These cosets are explored in [ACKL].

1.5. Organization. We start with a background section. There we review the vertex tensor theory of

Huang, Lepowsky and Zhang and especially discuss it in the case of the Heisenberg vertex operator algebra.

Next, we prove various properties of simple currents and then discuss vertex operator algebra orbifolds

following Kac and Radul. Section 3 is then on Schur-Weyl duality. Section 4 is concerned with extended

algebras, lifting of modules and as a special application proves our rationality theorem. in Section 5 we give

a short proof thatL−1(sl(m|n)) is a Heisenberg coset of appropriateβ γ andbc-vertex operator algebras. In

Section 6 we proveC1-cofiniteness of modules appearing in Heisenberg cosets of Bershadsky-Polyakov

algebras andLk(sl2).

1.6. Acknowledgments. T.C. and S.K. would like to thank Yi-Zhi Huang and Robert McRae for helpful

discussions regarding vertex tensor categories, [HLZ]. T.C. also thanks Antun Milas for discussions on the

applicability of the theory of vertex tensor categories.

2. BACKGROUND

In this section, we give a brief exposition of the results of Huang, Lepowsky and Zhang regarding the

vertex tensor categories that we shall use. We mention the case of Heisenberg vertex operator algebras

separately in detail. Then, we present our new results regarding properties of simple currents under fusion.

After that, we review a useful result of Kac and Radul on the simplicity of orbifold models.

2.1. Conditions and assumptions regarding the theory of Huang-Lepowsky-Zhang. We begin with a

quick glossary of the terminology that we shall use.

• By a generalizedmodule of a vertex operator algebra, we shall mean a module that is graded by gener-

alized eigenvalues ofL0. A generalized module need not satisfy any of the other restrictions mentioned

below regarding grading. Forn ∈ C and a generalized moduleW, we letW[n] denote the generalized

L0-eigenspace with generalized eigenvaluen.
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• A generalized moduleW is calledlower truncatedif W[n] = 0 whenever the real part ofn is sufficiently

negative.

• A generalized moduleW is calledgrading-restrictedif it is lower truncated and if, moreover, for alln,

dim(W[n])< ∞.

• A generalized moduleW is calledstrongly gradedif dim(W[n]) < ∞ and, for eachn ∈ C, W[n+k] = 0

for all sufficiently negative integersk. This notion is slightly more general than that of being grading-

restricted.

• In the definitions above, we shall replace the qualifier “generalized” with “ordinary” if the module is

graded by eigenvalues ofL0 as opposed to generalized eigenvalues.

• Henceforth, by “module”, without qualifiers, we shall mean agrading-restricted generalized module. For

convenience in the applications to follow, we shall also assume that every vertex operator algebra module

is of at most countable dimension. This implies, of course, that the dimension of all vertex operator

algebras will also be at most countable.

• We will sometimes need broader analogues of the concepts above, wherein the restrictions pertain to

doubly-homogeneous spaces with respect to Heisenberg zeromodes andL0. The actual statements in

[HLZ] pertain to such broader situations. However, the theorems in [Hu3], that guarantee that [HLZ]

may be applied in specific scenarios, assume the definitions that we have recalled above. We expect that

the theorems and concepts in [Hu3] may be generalized to the broader setting we require.

Recall the notion [HLZ, Def. 3.10] of a(logarithmic) intertwining operatoramong a triple of modules.

When the formal variable in a logarithmic intertwining operator is carefully specialized to a fixedz∈ C×,

one gets the notion of aP(z)-intertwining map, [HLZ, Def. 4.2]. These maps form the backbone of the

logarithmic tensor category theory developed in [HLZ]. There, tensor products (fusion products) of modules

are defined via certain universalP(z)-intertwining maps⊠P(z) and the monoidal structure on the module

category is obtained by fixingz∈ C×, typically chosen to bez= 1 for convenience.2 We remark that the

products⊠P(z), for different values ofz, together form a structure richer than that of a braided monoidal

category, calledvertex tensor category. This richer structure is exploited in the proofs of many important

theorems, see [HKL] for some examples.

For convenience, and especially with a view towards the proof of Proposition 3.3 below, we give a

definition of the fusion product of two modules, equivalent to that of [HLZ], using intertwining operators

instead of intertwining maps.

Definition 2.1. Given modulesW1 andW2, thefusion productW1⊠W2 is the pair(W1⊠W2,Y
⊠), where

W1 ⊠W2 is a module andY⊠ is an intertwining operator of type
(
W1⊠W2
W1W2

)
, that satisfies the following

universal property: Given any other “test module”W and an intertwining operatorY of type
(

W

W1W2

)
, there

exists auniquemorphismη : W1⊠W2 →W such thatY= η ◦Y⊠ .

Note that the universal intertwining operatorY⊠ will often be clear from the context and hence we shall

often refer to the fusion product by its underlying module.

Now, letV be a vertex operator algebra and letC be a category of generalizedV-modules that satisfies

the following properties:

(1) C is a full abelian subcategory of the category of all stronglygraded generalizedV-modules.

2We mention that the same notation is generally used to denoteboth the fusion product operation and the universalP(z)-intertwining
map corresponding to said fusion product.



8 THOMAS CREUTZIG, SHASHANK KANADE, ANDREW R. LINSHAW, AND DAVID RIDOUT

(2) C is closed under taking contragredient duals and theP(z)-tensor product⊠P(z) (recall [HLZ, Def. 4.15]).

(3) V is itself an object ofC .

(4) For each objectW of C , the (generalized)L0-eigenvalues are real and the size of the Jordan blocks of

L0 is bounded above (the bound may depend onW).

(5) Assumption 12.2 of [HLZ] holds.

Then,C is a vertex tensor category in the sense of Huang-Lepowsky [HLZ, Thm. 12.15]. In particular, it

is an additive braided monoidal category. A precise formulation of (5) may be found in [HLZ]. In essence,

this assumption guarantees the convergence of products anditerates of intertwining operators in a specific

class of multivalued analytic functions. It, moreover, guarantees that products of intertwining operators can

be written as iterates and vice versa.

Theorem 2.2( [Hu3]). LetV be a vertex operator algebra satisfying the following conditions:

• V is Calg.
1 -cofinite, meaning that the space spanned by

{
Reszz−1Y(u,z)v

∣∣u,v∈ V[n] with n> 0
}
∪L−1V

has finite codimension inV.

• There exists a positive integer N that bounds the differences between the real parts of the lowest conformal

weights of the simpleV-modules and is such that the N-th Zhu algebra AN(V) (see [DLM3]) is finite-

dimensional.

• Every simpleV-module isR-graded and C1-cofinite.

Then, the category of grading-restricted generalized modules ofV satisfies the conditions(1)–(5) given

above, hence is a vertex tensor category.

If V isC2-cofinite, has no states of negative conformal weight, and the space of conformal weight 0 states is

spanned by vacuum, then these conditions are satisfied [Hu3]and so the theory of vertex tensor categories

may be applied to the grading-restricted generalizedV-modules.

As is amply clear from Theorem 2.2, [M3] and [HLZ, Rem. 12.3],C1-cofiniteness already takes us a long

way towards establishing that a given category ofV-modules is a vertex tensor category. Our hope is that, in

the future,C1-cofiniteness will be, along with other minor conditions (such as conditions on the eigenvalues

and Jordan blocks ofL0), essentially enough to invoke the theory developed by Huang, Lepowsky and

Zhang. With this hope in mind, we shall prove several usefulC1-cofiniteness results in Section 6.

We would also like to remark that there are still many examples of vertex operator algebras, some quite

fundamental, which do not meet the known conditions that guarantee the applicability of the vertex tensor

theory of [HLZ]. It is an important problem to analyse the module categories of these examples and bring

them “into the fold”, as it were. Not only will this make the theory more wide-reaching, but we expect

that accommodating these new examples will lead to further crucial insights into the true nature of vertex

operator algebra module categories.

2.2. Vertex tensor categories for the Heisenberg algebra.For Heisenberg vertex operator algebras, there

exist simple modules with non-real conformal weights and, therefore, one can not invoke Theorem 2.2. In

this section, we shall deal with general Heisenberg vertex operator algebras, bypassing Theorem 2.2 and

instead relying (mostly) on the results in [DL]. For relateddiscussions, including self-extensions of simple

modules (which are not relevant for our purposes), see [Mi,CMR,Ru].
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We shall verify that a certain semi-simple categoryCR of modules with real conformal weights (see

(4) below) is closed under fusion and satisfies the associativity requirements for intertwining operators, by

invoking results in [DL]. Once this is done, it is straightforward to verify thatCR satisfies the assumptions

for being vertex tensor category as in [HLZ, Sec. 12].

Let h be a finite-dimensional abelian Lie algebra overC, equipped with a symmetric non-degenerate

bilinear form 〈·, ·〉. We shall identifyh and its dualh∗ via this form. As in [LL, Ch. 6], letĥ denote

the Heisenberg Lie algebra andH the corresponding Heisenberg vertex operator algebra (of level 1, for

convenience). Givenα ∈ h, we denote the (simple) Fock module ofH, with highest weightλ ∈ h, by Fλ .

It is known (see [LW2]), as an algebraic analogue of the Stone-von Neumann theorem, that these simple

Fock modules exhaust the isomorphism classes of the simpleH-modules. LetC be the semisimple abelian

category ofH modules generated by these simpleH-modules and letCR be the full subcategory generated

by the Fock modules with real highest weights.

Theorem 2.3. The subcategoryCR can be given the structure of a vertex tensor category.

Proof. The proof splits into the following steps. Letλ ,µ ,ν ∈ h= h∗.

(1) Using [DL, Eq. (12.10)], the fusion coefficient
(

W

Fµ Fν

)
is zero if W does not haveFµ+ν as a direct

summand.

(2) Proceeding exactly as in [DL, Lem. 12.6–Prop. 12.8], we see that the fusion coefficient
(
Fµ+ν
Fµ Fν

)
is either

0 or 1.

(3) LetL be the lattice spanned byµ andν. One can check that the (generalised) lattice vertex operator

algebraVL satisfies the Jacobi identity given in [DL, Thm. 5.1], even thoughL is not necessarily

rational. This implies that the vertex mapY of VL furnishes explicit (non-zero) intertwining operators

of type
(
Fµ+ν
Fµ Fν

)
, thereby implying that the fusion coefficient

(
Fµ+ν
Fµ Fν

)
is always 1.

(4) We conclude thatC is closed under⊠P(z) (recall [HLZ, Def. 4.15]). In general, ifM is a subgroup of

h, regarded as an additive abelian group, and ifC ′ is the semi-simple category generated by the Fock

modules with highest weights inM, thenC ′ is closed under⊠P(z). In particular, the subcategoryCR is

closed under⊠P(z).

(5) Givenµ1, . . . ,µ j ∈ hR, let L be the lattice that they span. Then,VL again satisfies the Jacobi identity

[DL, Thm. 5.1] and the duality results of [DL, Ch. 7] also go through. As a consequence, the expected

convergence and associativity properties of intertwiningoperators among Fock modules inCR hold.

(6) Since the conformal weights of all modules inCR are real, the associativity of the intertwining operators

yields a natural associativity isomorphism forCR [HLZ].

(7) Finally, one can proceed as in [HLZ, Sec. 12] to verify theremaining properties satisfied by the braid-

ing and associativity isomorphisms. Thus,CR forms a vertex tensor category in the sense of Huang-

Lepowsky and, in particular, is a braided tensor category. �

2.3. Simple Currents. An important concept in the theory of vertex operator algebras is the simple current

extension, wherein a given algebraV is embedded in a larger oneW that is constructed from certainV-

modules called simple currents. The utility of this construction is that, unlike general embeddings, the

representation theories ofV andW are very closely related.

Definition 2.4. A simple currentJ of a vertex operator algebraV is aV-module that possesses a fusion

inverse:J⊠ J−1 ∼= V ∼= J−1
⊠ J.
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Simple currents and simple current extensions were introduced by Schellekens and Yankielowicz in [SY].

We note that more general definitions of a simple current exist, see [DLM2] for example, but that the one

adopted above will suffice for the vertex operator algebras that we treat below. Pertinent examples of simple

currents are the Heisenberg Fock modulesFλ discussed in Section 2.2: the fusion inverse ofFλ is F−λ .

The great advantage of requiring invertibility is that eachsimple currentJ gives rise to a functorJ⊠−
which is an autoequivalence of anyV-module category that is closed under⊠. The following proposition

gives some consequences of this; we provide proofs in order to prepare for the similar, but more subtle

arguments of the next section. We remark that the isomorphism classes of the simple currents naturally

form a group, sometimes called the Picard group of the category.

Proposition 2.5. LetJ be a simple current of a vertex operator algebraV.

(1) If M is a non-zeroV-module, thenJ⊠M is non-zero.

(2) If M is an indecomposableV-module, thenJ⊠M is indecomposable.

(3) If M is a simpleV-module, thenJ⊠M is simple. In particular,J is simple ifV is.

(4) The covariant functorJ⊠− is exact (hence, so is−⊠ J).

(5) If M has a composition series with composition factorsSi , 1 ≤ i ≤ n, thenJ⊠M has a composition

series with composition factorsJ⊠ Si , 1≤ i ≤ n.

(6) If M has a radical or socle, then so doesJ⊠M. Moreover, the latter radical or socle is then given by

J⊠ radM∼= rad(J⊠M) or J⊠ socM∼= soc(J⊠M).

(7) If M has a radical or socle series, then so doesJ⊠M. In particular, the corresponding Loewy diagrams

of J⊠M are obtained by replacing each composition factorSi of M byJ⊠ Si .

Proof. If J⊠M= 0, then 0= J−1
⊠ J⊠M∼= V⊠M ∼=M. Thus, (1) follows:

M 6= 0 ⇒ J⊠M 6= 0. (2.1)

Similarly, if J⊠M ∼= M′ ⊕M′′, thenM ∼= J−1
⊠ J⊠M ∼= (J−1

⊠M′)⊕ (J−1
⊠M′′). In other words,M

indecomposable implies thatJ⊠M is indecomposable, which is (2).

Suppose now thatM is simple, but thatJ⊠M has a proper submoduleM′. Then,

0−→M′ −→ J⊠M−→M′′ −→ 0 (2.2)

is exact, forM′′ ∼= (J⊠M)/M′ 6= 0. But, fusion is right-exact [HLZ, Prop. 4.26], so

J−1
⊠M′ −→M−→ J−1

⊠M′′ −→ 0 (2.3)

is exact. However,M′′ 6= 0 implies thatJ−1
⊠M′′ is a non-zero quotient ofM, by (1), so we must have

J−1
⊠M′′ ∼=M, asM is simple. Fusing withJ now givesJ⊠M∼=M′′, so we conclude thatM′ = 0 and that

J⊠M is simple. The simplicity ofJ∼= J⊠V now follows from that ofV, completing the proof of (3).

To prove (4), note that applying right-exactness to the short exact sequence 0→ M′ → M → M′′ → 0

results in

J⊠
M

M′
∼= J⊠M

(J⊠M′)/ker f
, (2.4)

where f is the induced map fromJ⊠M′ to J⊠M that might not be an inclusion. Fusing withJ−1 and

applying (2.4), we arrive at

M

M′
∼= J

−1
⊠

J⊠M

(J⊠M′)/ker f
∼= M

(
J−1⊠

J⊠M′

ker f

)
/kerg

, (2.5)



SCHUR-WEYL DUALITY FOR HEISENBERG COSETS 11

whereg: J−1
⊠
(
(J⊠M′)/ker f

)
→M might not be an inclusion. Thus,

M′ ∼=
J−1

⊠
J⊠M′

ker f
kerg

∼=

M′

(J−1⊠ ker f )/kerh
kerg

, (2.6)

whereh: J−1
⊠ ker f →M′ might not be an inclusion. We conclude that kerg= 0 and kerh= J−1

⊠ ker f .

But, both require that

M
′ ∼= J

−1
⊠

J⊠M′

ker f
⇒ J⊠M

′ ∼= J⊠M′

ker f
⇒ ker f = 0. (2.7)

f : J⊠M′ → J⊠M is therefore an inclusion, henceJ⊠− is exact.

Suppose now that 0= M0 ⊂ M1 ⊂ ·· · ⊂ Mn−1 ⊂ Mn =M is a composition series forM, so that each

Si =Mi/Mi−1 is simple. By (4), applyingJ⊠− to each exact sequence 0→Mi−1 →Mi → Si → 0 gives an-

other exact sequence 0→ J⊠Mi−1 → J⊠Mi → J⊠Si → 0. Moreover,J⊠Si is simple, by (3). Assembling

all of these exact sequences gives (5).

For (6), first recall that radM is the intersection of the maximal proper submodules ofM and thatMi ⊂M

is maximal proper if and only ifM/Mi is simple. In this case, (3) and (4) now imply thatJ⊠ (M/Mi) is

simple and isomorphic to(J⊠M)/(J⊠Mi), whenceJ⊠Mi is maximal proper inJ⊠M. ApplyingJ−1
⊠−

gives the converse. Second, given a collectionMi ⊆M, (4) also implies thatJ⊠ (∩iMi) is a submodule of

eachJ⊠Mi , hence of∩i(J⊠Mi). But now,∩i(J⊠Mi)∼= J⊠ J−1
⊠
(
∩i(J⊠Mi)

)
⊆ J⊠ (∩iMi), hence we

haveJ⊠ (∩iMi)∼= ∩i(J⊠Mi). These two conclusions together giveJ⊠ radM∼= rad(J⊠M). A similar, but

easier, argument establishesJ⊠ socM∼= soc(J⊠M).

Finally, (7) follows by combining (6) with slight generalisations of the arguments used to prove (5).�

This proposition has a simple summary: fusing with a simple current preserves module structure. We

remark, obviously, that a simple currentJ need not be simple if the vertex operator algebraV is not simple.

2.4. Orbifold modules. Here, we review a result of Kac and Radul [KR] on the simplicity of orbifold

modules. For a very similar result see [DLM1].

Let A be an associative algebra, for example the mode algebra of a vertex operator algebra, and letG

be a subgroup of AutA acting semisimply onA. We considerA-modulesM which admit a semisimple

G-action that is compatible with theG-action onA and which decompose as a countable direct sum of

finite-dimensional simpleG-modules. This compatibility means that

g(am) = (ga)(gm), for all g∈ G, a∈ V andm∈M. (2.8)

If we now defineA0 to be the space ofG-invariantsa∈ A, soga= a for all g∈ G, then the actions of each

g∈ G and eacha∈ A0 commute on every such moduleM.

Choose anM satisfying (2.8) and letN be a simpleG-module. Then, we may define theG-module

MN = ∑{Ni ⊆M : Ni
∼= N} . (2.9)

As the action ofA0 commutes with that ofG, everya ∈ A0 maps a givenNi to someN j or 0, by Schur’s

lemma. Thus,MN is anA0-module.

If we choose a one-dimensional subspaceC ⊆ N, then Schur’s lemma picks out a one-dimensional

subspaceCi ⊆ Ni , for each i. Then, eacha∈ A0 maps eachCi to someC j or to 0, hence

MN = ∑
Ni∼=N

Ci (2.10)
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is anA0-module. But, becauseNi
∼=N∼= N⊗Ci, we may write

MN
∼= ∑

Ni∼=N

N⊗Ci = N⊗M
N (2.11)

as aCG⊗A0-module. The semisimplicity ofM, as aG-module, now gives us the decomposition

M∼=
⊕

[N]

MN
∼=

⊕

[N]

N⊗MN, (2.12)

again as aCG⊗A0-module. Here,[N] denotes the isomorphism class of the simpleG-moduleN.

The result of Kac and Radul gives conditions under which theA0-modulesMN, appearing in (2.12), are

guaranteed to be simple.

Theorem 2.6( [KR, Thm. 1.1 and Rem. 1.1]). With the above setup, the (non-zero)MN appearing in(2.12)

will be simpleA0-modules provided thatM is a simpleA-module.

3. SCHUR-WEYL DUALITY

In this section, we state and prove results concerning the decomposition of a vertex operator algebra and

its modules into modules over a Heisenberg vertex operator subalgebra and its commutant. We regard this

decomposition as a vertex-algebraic analogue of the well known Schur-Weyl duality familiar for symmetric

groups and general linear Lie algebras. These results are enhanced by deducing sufficient conditions for

the decompositions, and their close relations, to be multiplicity-free. Finally, we illustrate our results with

several carefully chosen examples.

3.1. Heisenberg cosets.Let G be a finitely generated abelian subgroup of the automorphismgroup of a

simple vertex operator algebraV. We assume thatG gradesV, meaning that the actions of these automor-

phisms may be simultaneously diagonalised, hence thatV decomposes into a direct sum ofG-modules:

V =
⊕

λ∈L
Vλ . (3.1)

Here, theλ are elements of the (abelian) dual groupĜ of inequivalent (complex, not necessarily unitary)

one-dimensional representations ofG (recall that addition is tensor product and negation is contragredient

dual),Vλ denotes the simultaneous eigenspace upon which eachg∈ G acts as multiplication byλ (g) ∈ C,

andL is the subset ofλ ∈ Ĝ for whichVλ 6= 0. Note that the cardinality ofL is at most countable.

The action ofV on itself restricts to an action of eachVλ on eachVµ . Forλ = µ = 0, where 0 denotes

the trivialG-module, this implies thatV0 is a vertex operator subalgebra ofV; for λ = 0, this implies that

eachVµ is aV0-module. From the simplicity ofV, it now easily follows thatL is a subgroup of̂G: closure

under addition follows from annihilating ideals being trivial [LL, Cor. 4.5.15] and closure under negation

follows similarly, see [LX, Prop. 3.6].

Applying Theorem 2.6, withM=V andA being the mode algebra ofV, we can now improve upon (3.1).

Indeed, in this setting, (2.12) becomes

V =
⊕

λ∈L
Cλ ⊗Vλ , (3.2)

whereCλ denotes the one-dimensional module upon whichg∈ G acts as multiplication byλ (g), and we

learn that theVλ are simple asV0-modules. In particular,V0 is a simple vertex operator algebra.

If we assume thatV0 satisfies the conditions required to invoke the tensor category theory of Huang,

Lepowsky and Zhang (Section 2.1), then more is true. As Miyamoto has shown, theVλ are then simple

currents forV0 see [CaM, M2]. It should be noted that the proofs in [CaM, M2] assume that the group of
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automorphisms under consideration is finite, however, the proof works more generally under the assumption

that tensor category theory for the fixed-point algebra can be invoked. For completeness, we include an

exposition of their proof in our slightly more general setting in Appendix A.

Theorem 3.1( [M2, Sec. 6]). Assume the above setup and thatV0 = VG satisfies conditions sufficient to

invoke Huang, Lepowsky and Zhang’s tensor category theory,for example those of Theorem 2.2. Then, the

Vλ are simple currents forV0 with Vλ ⊠V0 Vµ ∼= Vλ+µ , for all λ ,µ ∈L.

Let us now restrict to vertex operator algebrasV that contain a Heisenberg vertex operator subalgebraH,

generated byr fieldshi(z), i = 1, . . . , r, of conformal weight 1. We will assume throughout that the action of

H onV is semisimple3 and that the eigenvalues of the zero modeshi
0, i = 1, . . . , r, are all real. LetC denote

the commutant vertex operator algebra ofH in V and letG∼= Zr be the lattice generated by thehi
0. EachVλ

of theG-decomposition (3.1) is a module forH since the fields ofH commute with the zero modes ofG. As

G acts semisimply onVλ and the only simpleH-module withhi
0-eigenvaluesλ = (λ 1, . . . ,λ r) is the Fock

moduleFλ , we must have the followingH⊗C-module decomposition:

Vλ = Fλ ⊗Cλ , for all λ ∈ L. (3.3)

In this setting, we may takeL to be the lattice of allλ ∈Rr for whichVλ 6= 0. Moreover, theC-moduleCλ

is simple becauseVλ andFλ are. In particular, the commutantC= C0 is a simple vertex operator algebra.

We summarise this as follows.

Proposition 3.2. LetV be a simple vertex operator algebra with a Heisenberg vertexoperator subalgebra

H that acts semisimply onV. Then, the coset vertex operator algebraC= Com(H,V) is likewise simple.

From here on, we make the following natural assumption:

We assume that we are working with categories of (generalized) V0- andC-modules for

which the tensor category theory of Huang, Lepowsky and Zhang [HLZ] may be invoked.

Of course, we have confirmed in Section 2.2 that this theory may be invoked for semisimpleH-modules

with real weights. In general, we would like to apply our results to vertex operator algebras for which

we are not currently able to verify this assumption. Such illustrations should therefore be regarded as

conjectural. However, we view the results in these cases as strong evidence that the conditions required to

invoke Huang-Lepowsky-Zhang are, in fact, significantly weaker than those that were given in Section 2.1.

Given now the fusion rulesFλ ⊠H Fµ ∼= Fλ+µ andVλ ⊠V0 Vµ ∼= Vλ+µ , which imply that
(
Fλ ⊗Cλ

)
⊠V0

(
Fµ ⊗Cµ

) ∼= Fλ+µ ⊗Cλ+µ, (3.4)

one is naturally led to suppose thatCλ ⊠CCµ ∼= Cλ+µ . Proving this, however, is a little subtle because we

are not assuming that the corresponding representation categories are semisimple. We therefore present a

technical result that we shall use to confirm this supposition and other similar assertions. We remark that

this result can be greatly strengthened when one of the vertex operator algebras involved is of Heisenberg

or lattice type, or when the vertex operator algebras involved are rational (see [Lin]).

Proposition 3.3. LetA andB be vertex operator algebras and letAi andBi , for i = 1,2,3, beA-modules

andB-modules, respectively. Suppose that
(
(A1⊗B1)⊠A⊗B (A2⊗B2),Y

⊠

A⊗B

)
= (A3⊗B3,Y

⊠

A⊗B
). (3.5)

3Examples on which a Heisenberg vertex operator subalgebra does not act semisimply are provided by the Takiff vertex operator
algebras of [BR, BC].



14 THOMAS CREUTZIG, SHASHANK KANADE, ANDREW R. LINSHAW, ANDDAVID RIDOUT

Also assume that either of the fusion coefficients
(

A3
A1 A2

)
or

(
B3

B1 B2

)
is finite. Then,(A3⊗B3,Y

⊠

A⊗B
) may be

taken to be
(
(A1⊠AA2)⊗ (B1⊠BB2),Y

⊠

A
⊗Y

⊠

B

)
. In particular,

A1⊠AA2
∼= A3 and B1⊠BB2

∼= B3. (3.6)

Proof. The key here is [ADL, Thm. 2.10] which, as stated, applies to non-logarithmic intertwining operators

but in fact also holds in when logarithmic intertwiners are present. Using this, we may write

Y
⊠

A⊗B
=

N

∑
j=1

Ỹ
( j)
A

⊗ Ỹ
( j)
B
, (3.7)

for someN, where each̃Y( j)
A

is an intertwiner forA of type
(

A3
A1A2

)
and eachỸ( j)

B
is of type

(
B3

B1B2

)
for

B. The universality of the fusion product now guaranteesA-modules, the existence of (unique)A-module

morphismsµ ( j)
A

: A1⊠AA2 → A3, such thatµ ( j)
A

◦Y⊠

A
= Ỹ

( j)
A

, andB-module morphismsµ ( j)
B

: B1⊠BB2 →
B3, such thatµ ( j)

B
◦Y⊠

B
= Ỹ

( j)
B

. Settingµ = ∑
N
j=1 µ ( j)

A
⊗ µ ( j)

B
, we obtain

µ ◦
(
Y
⊠

A
⊗Y

⊠

B

)
=

N

∑
j=1

(
µ ( j)
A

⊗ µ ( j)
B

)
◦
(
Y
⊠

A
⊗Y

⊠

B

)
=

N

∑
j=1

Ỹ
( j)
A

⊗ Ỹ
( j)
B

= Y
⊠

A⊗B
. (3.8)

Now, letX be a “test”A⊗B-module and letY be an intertwining operator of type
(

X

A1⊗B1A2⊗B2

)
. By

the universal property satisfied by(A3 ⊗B3,Y
⊠

A⊗B
), there exists a (unique)η : A3 ⊗B3 → X such that

η ◦Y⊠

A⊗B
= Y. It follows that

(η ◦ µ)◦
(
Y
⊠

A
⊗Y

⊠

B

)
= η ◦Y⊠

A⊗B
= Y. (3.9)

It remains to prove thatη ◦ µ : (A1 ⊠A A2)⊗ (B1 ⊠B B2) → X is the uniqueA⊗B-module morphism

satisfying (3.9). However,Y⊠

A
andY⊠

B
are surjective intertwining operators — this surjectivitygoes hand-

in-hand with the “uniqueness” requirement in the universalproperty, see [HLZ, Prop. 4.23] — and so,

therefore, isY⊠

A
⊗Y

⊠

B
. This means that equation (3.9) uniquely specifies the morphism η ◦ µ , completing

the proof. �

From this proposition, we immediately obtain the followingcorollary.

Corollary 3.4. If A andB are simplevertex operator algebras andM⊗N is a simple current forA⊗B,

thenM andN are simple currents forA andB, respectively. Moreover, the inverse ofM⊗N isM−1⊗N−1.

Proof. BecauseA⊗B is assumed to be simple,M⊗N and its inverse are simpleA⊗B-modules, by Proposi-

tion 2.5(3). Moreover, this simplicity hypothesis also guarantees that the inverse has the formM̃⊗ Ñ [FHL,

Thm. 4.7.4]. Applying Proposition 3.3 to(M̃⊗ Ñ)⊠A⊗B (M⊗N) ∼= A⊗B, we obtainM̃⊠AM ∼= A and

Ñ⊠BN∼= B, henceM̃∼=M−1 andÑ∼= N−1. �

In any case, (3.4) and Proposition 3.3 give the desired conclusion:

Cλ ⊠CCµ ∼= Cλ+µ . (3.10)

In particular, theCλ are simple currents for allλ ∈ L. We have therefore arrived at the following decom-

position ofV into simple currents ofH andC:

V =
⊕

λ∈L
Fλ ⊗Cλ . (3.11)

However, this may be further refined ifλ 6= µ in L does not imply thatCλ 6= Cµ (this implication is

obviously true for Fock modules). Suppose thatCλ = Cλ+µ for someλ ,µ ∈ L. Then, we must have
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Cµ = C and henceCnµ = C for all n∈ Z. More generally, letN denote the sublattice ofµ ∈ L for which

Cµ = C. Then, we may define

W[λ ] =
⊕

µ∈N
Fλ+µ (3.12)

and note thatW=W[0] will be a lattice vertex operator algebra if the conformal weights of the fields ofFµ ,

with µ ∈N, are all integers.4 The decomposition (3.11) then becomes a decomposition as aW⊗C-module:

V =
⊕

[λ ]∈L/N

W[λ ]⊗C[λ ]. (3.13)

Now theC[λ ] ≡ Cλ , with [λ ] ∈ L/N, are mutually inequivalent:[λ ] 6= [µ ] implies thatC[λ ] ≇ C[µ]. We

remark thatL/N may still be infinite because the rank ofN may be smaller than that ofL.

We summarise these results as follows.

Theorem 3.5. Let:

• V be a simple vertex operator algebra.

• H⊆ V be a Heisenberg vertex operator subalgebra that acts semisimply onV.

• C= C0 be the commutant ofH in V.

• L be the lattice of Heisenberg weights ofV (V being regarded as anH-module).

Then the decompositions(3.11)and (3.13)hold, where:

• TheCλ , λ ∈ L, are simple currents forC whose fusion products includeCλ ⊠CCµ = Cλ+µ .

• W =
⊕

λ∈NFλ is a simple current extension ofH (N is the sublattice ofλ ∈ L for whichCλ ∼= C).

• TheW[λ ], [λ ] ∈ L/N, are simple currents forW with fusion productsW[λ ]⊠WW[µ] =W[λ+µ].

In particular, theC[λ ], [λ ] ∈L/N, of (3.13)are mutually non-isomorphic.

Remark 3.6. Note that we may instead chooseN to be any subgroup ofL in which everyλ ∈ N satisfies

Cλ ∼= C. In particular, we may takeN= 0, in which case the decomposition (3.13) reduces to that of (3.11).

Obviously, the conclusion that theC[λ ] are mutually non-isomorphic will only hold ifN is taken to be

maximal.

The corresponding decomposition forV-modules proceeds similarly. LetM be a non-zeroV-module

upon whichH acts semisimply. TheH-weight space decomposition ofM then givesM =
⊕

µ∈MMµ ,

whereM =
{

µ ∈ Rr : Mµ 6= 0
}

is countable. Using the triviality of annihilating ideals [LL, Cor. 4.5.15]

as before, we see thatM is closed under the additive action ofL, meaning thatλ ∈ L andµ ∈M imply

that λ + µ ∈ M. It follows that eachMµ is a V0-module. Decomposing as anH⊗C-module, we get

Mµ =Fµ ⊗Dµ , for someC-moduleDµ . The key step towards proving a decomposition theorem for modules

is now to establish certain fusion products involving theMµ andDµ .

Proposition 3.7. LetV, H, C, W andL be as in Theorem 3.5 and letM, M andMµ = Fµ ⊗Dµ be as in the

previous paragraph. Then, the following fusion rules hold for all λ ∈L andµ ∈M:

Vλ ⊠V0 Mµ ∼=Mλ+µ , (3.14a)

Cλ ⊠CDµ ∼= Dλ+µ . (3.14b)

4If the conformal weights are not all integers, thenW is a vertex operator superalgebra, or another type of generalised vertex operator
algebra. This does not significantly affect the following analysis.
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We mention that whenM = V, the fusion rule (3.14a) is precisely the result of Miyamotoreported in

Theorem 3.1. However, we cannot use Miyamoto’s proof in thismore general setting because it would

amount to assuming the simplicity of theMµ asV0-modules.

Proof. We will detail the proof of the fusion rule (3.14a), noting that (3.14b) will then follow immediately

by applying Proposition 3.3.

To prove (3.14a), let̃M denote theV-submodule ofM generated byMµ . Then,(M/M̃)µ = 0. If v∈ V−λ

is non-zero, for someλ ∈ L, andw ∈ (M/M̃)λ+µ , then it follows thatv must annihilatew, hence that

w = 0 by the triviality of annihilating ideals [LL, Cor. 4.5.15]. We conclude that(M/M̃)λ+µ = 0, that is

M̃λ+µ =Mλ+µ, for all λ ∈L.

The action ofV onM now restricts to an action ofVλ onMµ . The space generated by the latter action is

therefore preciselyMλ+µ [LL, Prop. 4.5.6]. It now follows from the universal property of fusion products

that there exists a surjection

Vλ ⊠V0 Mµ −։Mλ+µ , (3.15)

for eachλ ∈ L andµ ∈M. Fusing with the simple currentV−λ therefore gives

Mµ ∼= V−λ ⊠V0 (Vλ ⊠V0 Mµ)−։ V−λ ⊠V0 Mλ+µ −։Mµ , (3.16)

the second surjection just being (3.15) with(λ ,µ) replaced by(−λ ,λ +µ). Since these surjections preserve

conformal weights and the dimensions of the generalised eigenspaces ofL0 are finite, by hypothesis, it

follows thatV−λ ⊠V0 Mλ+µ =Mµ , for all λ ∈ L, proving (3.14a). �

If λ ∈N, then the fusion rules (3.14b) imply thatDλ+µ =Dµ , hence that theD[µ] ≡Dµ are well defined.

The decomposition ofM as aW⊗C-module now follows as before. Before stating this formally, it is

convenient to observe that ifM =M1∪ ·· · ∪Mn is a disjoint union of orbits under the action ofL, then

M=M1⊕·· ·⊕Mn as aV-module, whereMi =
⊕

µ∈Mi Mi
µ . While theMi need not be indecomposable as

V-modules, several of the arguments to come will be simplifiedif we assume thatM consists of a single

L-orbit. Conclusions about more generalM then follow immediately from the properties of direct sums.

Theorem 3.8. LetV, H, C, W, L andN be as in Theorem 3.5 and letM be aV-module upon whichH acts

semisimply. Then,M decomposes as

M=
⊕

µ∈M
Mµ =

⊕

µ∈M
Fµ ⊗Dµ =

⊕

[µ]∈M/N

W[µ]⊗D[µ], (3.17)

whereM is a union ofL-orbits and theDµ = D[µ] are C-modules satisfyingCλ ⊠CDµ = Dλ+µ , for all

λ ∈L andµ ∈M. Moreover, if we assume (for convenience) thatM is a singleL-orbit, then:

(1) If M is a non-zeroV-module, then all of theDµ are non-zero.

(2) If M is a simpleV-module, then all of theDµ are simple.

(3) If M is an indecomposableV-module, then all of theDµ are indecomposable.

(4) If 0→M′ →M→M′′ → 0 is exact, withM′ andM′′ non-zero, thenM′ andM′′ decompose as in(3.17):

M
′ =

⊕

µ∈M
M

′
µ =

⊕

µ∈M
Fµ ⊗D

′
µ , M

′′ =
⊕

µ∈M
M

′′
µ =

⊕

µ∈M
Fµ ⊗D

′′
µ . (3.18)

Moreover,0→ D′
µ → Dµ → D′′

µ → 0 is also exact, for allµ ∈M.
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(5) If M has a composition series with composition factorsSi , 1≤ i ≤ n, then eachSi decomposes into an

H⊗C-module asSi =
⊕

µ∈MFµ ⊗Ti
µ , where theTi

µ , 1≤ i ≤ n, are the composition factors ofDµ , for

eachµ ∈M. In particular, eachDµ has the same composition length asM.

(6) If M has a socle, then so do theDµ andsocM=
⊕

µ∈MFµ ⊗ socDµ .

If M has a radical, then so do theDµ . If, in addition,M has no subquotient isomorphic to the direct

sum of two isomorphic simpleV-modules, thenradM =
⊕

µ∈MFµ ⊗ radDµ .

(7) If M has a socle series, then so do theDµ and the corresponding Loewy diagram is obtained by replac-

ing each composition factorSi byTi
µ , whereSi =

⊕
µ∈MFµ ⊗Ti

µ.

If M has a radical series, then so do theDµ . If, in addition,M has no subquotient isomorphic to the

direct sum of two isomorphic simpleV-modules, then the corresponding Loewy diagram is obtainedby

replacing each composition factorSi byTi
µ , whereSi =

⊕
µ∈MFµ ⊗Ti

µ.

Proof. We have already proven the non-numbered statements. For (1), suppose thatDµ = 0, for some

µ ∈ M. Then,Mµ = Fµ ⊗Dµ would be 0, contradicting the definition ofM. The argument for (2) is

likewise short:M simple implies that eachMµ , with µ ∈M, is simple, by Theorem 2.6, which forces each

of theDµ to be simple. To prove (3), note that if someDν , ν ∈ M, were decomposable, then everyDµ ,

µ ∈M, would be decomposable becauseµ −ν ∈ L, henceDµ ∼= Cµ−ν ⊠CDν . But then, everyMµ would

be decomposable, hence so wouldM, a contradiction.

Given the exact sequence in (4), it is clear thatH acts semisimply on bothM′ andM′′, hence that we have

the decompositions (3.18) except that some of theM′
µ orM′′

µ might be zero, for someµ ∈M. However,M

is assumed to consist of a singleL-orbit, so either all theM′
µ are zero or none of them are (and the same

for theM′′
µ ). But, either being zero would imply that the correspondingmodule is zero, which is ruled out

by hypothesis. Thus, theM′
µ andM′′

µ are non-zero, for allµ ∈M.

Since restricting to aV0-module and projecting onto the (simultaneous) eigenspaces of thehi
0 (which

commute withV0 = H⊗C) are exact functors, the sequence 0→ Fµ ⊗D′
µ → Fµ ⊗Dµ → Fµ ⊗D′′

µ → 0 is

exact, for allµ ∈M. However, EndHFµ ∼= C implies that each non-trivial map in this exact sequence has

the form idFµ ⊗dµ , wheredµ is aC-module homomorphism. The required exactness of the sequence of

C-modules thus follows, proving (4).

For (5), let 0= M0 ⊂ M1 ⊂ ·· · ⊂ Mn−1 ⊂ Mn = M be a composition series, so thatSi = Mi/Mi−1 is

simple, for all 1≤ i ≤ n. Then, 0→Mi−1 →Mi → Si → 0 is exact, hence so is 0→Di−1
µ →Di

µ →Ti
µ → 0,

for all 1≤ i ≤ n andµ ∈M, by (4). Here, we have decomposed eachMi asMi =
⊕

µ∈MFµ ⊗Di
µ , so that

D0
µ = 0 andDn

µ = Dµ , and eachSi asSi =
⊕

µ∈MFµ ⊗Ti
µ . Since theTi

µ are non-zero and simple, by (1)

and (2), they are the composition factors ofDµ .

We turn to (6). Let
{
Mi

}
i∈I be the set of all simple submodules ofM so that socM = ∑i∈I M

i . Then,

eachMi decomposes asMi =
⊕

µ∈MFµ ⊗Di
µ , whereDi

µ is a simple submodule ofDµ , for eachi ∈ I and

µ ∈M, by (2) and (4). As sums distribute over tensor products, we have

socM= ∑
i∈I

[ ⊕

µ∈M
Fµ ⊗Di

µ

]
=

⊕

µ∈M
Fµ ⊗

(
∑
i∈I

Di
µ

)
. (3.19)

It remains to show that for eachµ ∈M, every simple submodule ofDµ is one of theDi
µ .

Consider therefore a simple submoduleEµ ⊆ Dµ , for some givenµ ∈M. FormEν = Cν−µ ⊠C Eµ , for

all ν ∈ M (so thatν − µ ∈ L), and note that eachEν is a simple submodule ofDν , by parts (3) and (4)

of Proposition 2.5. Tensoring overC is exact, so
⊕

ν∈MFν ⊗Eν is a submodule of
⊕

ν∈MFν ⊗Dν =M.
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Moreover, it is a simple submodule because it has the same number of composition factors asEµ , by (5). It

is therefore one of theMi, henceEµ is one of theDi
µ . It follows that∑i∈I D

i
µ = socDµ , as required.

The same argument works for the radical, which we recall is the intersection of the maximal proper sub-

modules, except that intersections need not distribute over sums. The additional condition onM guarantees

this [Ben]. The proof of (6) is thus complete and the proof of (7) now follows similarly to that of (5). �

Remark 3.9. It is not clear if the condition imposed onM in the radical parts (6) and (7) is required.

However, if radM decomposes as radM =
⊕

µ∈MFµ ⊗Rµ , then without this condition, the argument used

in the proof only establishes thatRµ ⊆ radDµ , for eachµ ∈M.

Unlike theC[µ] in (3.13), the coset modulesD[µ], [µ ] ∈M/N, appearing in (3.17) need not be mutually

non-isomorphic. We shall illustrate this with a simple example in Section 3.3. In the following section, we

first give three useful criteria which guarantee that theD[µ] are all non-isomorphic.

3.2. Criteria for being multiplicity-free. In this section, we discuss whether the decomposition (3.17)

is multiplicity-free or not. In other words, we investigatewhen one can assert that theDµ or theD[µ] are

mutually non-isomorphic, in the notation of Theorem 3.8.

3.2.1. Criterion based on conformal weights.It may so happen that the conformal weights of the highest-

weight vectors of the Heisenberg subalgebraH immediately rule out multiplicities. For example, consider

the case of an affine vertex operator algebraV of negativelevel k and aV-moduleM whose conformal

weights are bounded below. We shall assume, as in Theorem 3.8, that the corresponding setM is a single

orbit of L. Suppose that the decomposition ofM is not multiplicity-free, so thatDµ+λ = Dµ , for some

λ ∈ L. Then,Cλ ⊠CDµ = Dµ and soDµ+nλ = Dµ , for all n∈ Z. However, the conformal weight of the

highest-weight vector ofFµ+nλ is 1
2k ‖µ +nλ‖2, which becomes arbitrarily negative for|n| large, because

k < 0. It follows that the conformal weights ofFµ+nλ ⊗Dµ+nλ = Fµ+nλ ⊗Dµ would become arbitrarily

negative, for allµ ∈M. This contradicts the hypothesis that the conformal weights ofM=
⊕

µ∈MFµ ⊗Dµ

are bounded below, hence theDµ , with µ ∈M, must all be mutually non-isomorphic.

3.2.2. Criterion based on symmetries of characters.We can also derive a simple test to rule out multiplic-

ities using the characters

ch
[
Fµ

](
z;q

)
= tr

Fµ
zh0qLH0 −c/24=

zµ q‖µ‖2/2

η(q)
(3.20)

of the Fock modules. This relies on the fact that the characters of theDµ appearing in (3.17) will not

depend onz. We remark that the factorszh0 andzµ should be interpreted here asz
h1

0
1 · · ·zhr

0
r andzµ1

1 · · ·zµr
r ,

respectively, wherer is the rank of the Heisenberg vertex operator algebraH.

Suppose, for simplicity, thatM consists of a singleL-orbit, as in Theorem 3.8. DefineN′ to be the

sublattice of Heisenberg weightsλ such thatDµ =Dλ+µ , for everyµ ∈M, so thatN ≤N′ ≤L. It follows

that for everyλ ∈N′, the character of the decomposition (3.17) must satisfy

ch
[
M
](

z;q; . . .
)
= ∑

µ∈M

zµq‖µ‖2/2

η(q)
ch
[
Dµ

](
q; . . .

)
= ∑

µ∈M

zλ+µq‖λ+µ‖2/2

η(q)
ch
[
Dµ

](
q; . . .

)

= zλ q‖λ‖2/2 ∑
µ∈M

zµq〈λ ,µ〉q‖µ‖2/2

η(q)
ch
[
Dµ

](
q; . . .

)
(3.21)

= zλ q‖λ‖2/2ch
[
M
](

zqλ ;q; . . .
)
,
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whereqλ acts on a Heisenberg weightµ to giveq〈λ ,µ〉. If the character ofM only satisfies this equation

whenλ ∈ N, then we may conclude that theD[µ], with [µ ] ∈M/N, are mutually non-isomorphic. In the

case thatN = 0, this conclusion gives the mutual inequivalence of theDµ , for all µ ∈M.

3.2.3. Criterion based on open Hopf links.In the case of rational vertex operator algebras, the closed

Hopf links are, up to normalization, the same as the entries of the modular S-matrix [Hu2]. There is

also a close connection between Hopf links and properties ofcharacters for non-rational vertex operator

algebras [CG1, CG2, CMR]. We will now explain how Hopf links give a criterion for the existence of

fixed points under the action of fusing with a simple current.For this subsection, we assume that we are

working in a ribbon categoryC of vertex operator algebra modules [EGNO]; such categoriesallow us to

take (partial) traces of morphisms.

Let J ∈ C be a simple current and fix a moduleX ∈ C . Assume that there exists a positive integers

such thatJs
⊠X ∼= X, so thatX is a fixed point ofJs. Recall that the monodromy of two modulesA andB

is defined byMA,B = RB,A ◦RA,B, whereR denotes their braiding. Recall the notion [EGNO, Def. 8.10.1]

of categorical twist,θ , which is a system of natural isomorphisms. The monodromy satisfies the following

balancing for any two modulesA,B:

θA⊠B = MA,B ◦ (θA⊠ θB).

In vertex-tensor-categorical setup,θ is given bye2iπL0. We will also need the open Hopf link operators

from [CG1, CG2]. These are defined as the partial tracesΦA,B = ptrLeft(MA,B) ∈ End(B) and have the

important property that they define a representation of the fusion ring on End(B). In particular, it follows

thatΦJ⊠X,P = ΦJ,P ◦ΦX,P, for any moduleP ∈ C , and hence that

ΦX,P = ΦJs⊠X,P = ΦJs,P ◦ΦX,P = Φs
J,P ◦ΦX,P. (3.22)

We shall assume now thatP is indecomposable with a finite number of composition factors, so that every

endomorphism ofP has a single eigenvalue, and thatMJ,P, ΦJ,P are a semi-simple endomorphisms ofJ⊠P

andP, respectively. The latter assumption will be automatically satisfied ifJ is a simple current of finite

order and both End(P) and End(J⊠ P) are finite-dimensional [CKL, Lem. 2.13]. It will also be satisfied if

P may be identified with a subquotient of an iterated fusion product of simple modules [CKL, Lem. 3.19].

With these assumptions onP, Eq. (3.22) shows that the image ofΦX,P is contained in the eigenspace of

Φs
J,P with eigenvalue 1 and that this eigenspace is either 0 orP itself. We therefore have two possible

conclusions:ΦX,P = 0 or Φs
J,P = IdP.

Following [CG1], we say that a full subcategoryP of C is a left ideal if for allQ ∈ P, we have both

D⊠Q ∈ P, for all D ∈ C , and thatD ∈ P whenever the compositionD → Q → D is the identity. We

shall assume thatP is equipped with a modified tracet• [CG1, GKP] (forP = C , the modified trace is

just the ordinary tracet = tr) and a modified dimensiond(•) = t•(Id•). We also let dim(•) = tr(Id•) denote

the ordinary trace of the identity morphism.

We now assume thatP, as introduced above, belongs to a left idealP of C . For any objectD of C , the

properties of the modified trace imply that

tD⊠P(IdD⊠P) = tD⊠P(IdD⊠ IdP) = tP(ptrLeft(IdD⊠ IdP)) = tP(tr(IdD)⊠ IdP)

= dim(D)tP(IdP) = dim(D)d(P) (3.23)

and hence that

tP(ΦJs,P) = tP(ptrLeft(MJs,P)) = tJs⊠P(MJs,P) = tJs⊠P(θJs⊠P ◦ (θ−1
Js ⊠ θ−1

P
))
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= dim(Js)d(P)(θJs⊠P ◦ (θ−1
Js ⊠ θ−1

P
)). (3.24)

Here, we have used the balancing property of monodromy and have identifiedθJs⊠P ◦ (θ−1
Js ⊠ θ−1

P
) with

the scalar by which it acts. In the case thatΦJs,P = IdP, so tP(ΦJs,P) = tP(IdP) = d(P), it follows that

dim(J)s(θJs⊠P ◦ (θ−1
Js ⊠ θ−1

P
)) = 1, wheneverd(P) 6= 0. We summarize this as follows.

Proposition 3.10. LetC be a ribbon category,J ∈ C be a simple current andX ∈ C be a fixed point ofJs

so thatJs
⊠ X ∼= X, for some s∈ Z>0. Let P be a left ideal ofC , equipped with a modified trace t• and

modified dimension d(•). LetP ∈ P be indecomposable such that d(P) 6= 0 and MJ,P, ΦJ,P ∈ End(P) are

semisimple endomorphisms. Then, one of the following must hold:

(1) ΦX,P = 0, which in turn implies that tP(ΦX,P) = 0. If C is a modular tensor category, then this implies

that the corresponding modular S-matrix entry is zero.

(2) dim(J)s(θJs⊠P ◦ (θ−1
Js ⊠ θ−1

P
)) = 1, where we have identifiedθJs⊠P ◦ (θ−1

Js ⊠ θ−1
P

) with the scalar by

which it acts.

As these quantities are computable, in principle, we can rule out fixed points forJ=Cλ orW[λ ] and thereby

deduce a multiplicity-free decomposition. We shall illustrate this proposition below in a rational example.

3.3. Examples. Here, we give a selection of simple examples involving the so-called parafermion cosets

[FZ,Gep] to illustrate the theory developed in this section. LetLk(g) denote the simple vertex operator alge-

bra of levelk associated with the affine Kac-Moody (super)algebraĝ. Given a Cartan subalgebrah⊂ g, let

H⊂ Lk(g) be the corresponding Heisenberg vertex operator subalgebra. The commutantC=Com(H,Lk(g))

is called the levelk parafermion vertex operator algebra of typeg.

Example 1. For g = sl2 andk = 2, the parafermion coset is the Virasoro minimal modelM
(
3,4

)
, also

known as the Ising model. The decompositions (3.11) and (3.13) become

L2(sl2) =
⊕

λ∈4Z

[
Fλ ⊗K0⊕Fλ+2⊗K1/2

]
=W[0]⊗K0⊕W[2]⊗K1/2, (3.25)

whereKh denotes the simpleM
(
3,4

)
-module of highest weighth, the lattice ofH-weights ofL2(sl2) is

L = 2Z, and the sublattice ofH-weights giving isomorphic coset modules isN = 4Z. The convention

here forFλ is thatλ indicates thesl2-weight so that the conformal dimension of this Heisenberg module is
λ 2

8 . The lattice vertex operator algebraW is thus obtained by extendingH by the group of simple currents

generated byF4.

The representation theory ofL2(sl2) is semisimple and it has three simple modulesMω , ω = 0,1,2,

which are distinguished by the Dynkin labels(k−ω ,ω) of their highest weights.L2(sl2) is identified

with M0 and the decomposition corresponding to (3.25) forM2 is obtained by swappingK0 with K1/2. In

particular, theL-orbit forM2 is alsoM= 2Z. The situation forM1 is, however, slightly different:

M
1 =

⊕

µ∈2Z+1

Fµ ⊗K1/16=W[1]⊗K1/16⊕W[−1]⊗K1/16. (3.26)

Here,M= 2Z+1 andN′ = 2Z 6=N (the non-isomorphic lattice modules are paired with isomorphic coset

modules). In other words, this decomposition fails to be multiplicity-free.

To see that this is consistent with the criterion of Section 3.2.2, recall that̂sl2 admits a familyσ ℓ, ℓ ∈ Z,

of spectral flowautomorphisms that lift to automorphisms of the corresponding affine vertex algebras. The

latter may be used to twist the action on anLk(sl2)-moduleM and thereby construct new modulesσ ℓ(M).
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Using the conventions of [R1], the characters ofM andσ ℓ(M) are related by

ch
[
σ ℓ(M)

](
z;q

)
= zℓkqℓ

2k/4ch
[
M
](

zqℓ/2;q
)
. (3.27)

For k = 2, spectral flow acts on the simple modules asσ (Mω ) = M2−ω , ω = 0,1,2. Identifying the

weight space ofsl2 with C and noting that the scalar product on this space is then〈λ ,µ〉 = 1
4λ µ , the

criterion of Section 3.2.2 asks us to check whichλ ∈ C satisfy the relation

ch
[
M

ω](z;q
)
= zλ qλ 2/8ch

[
M

ω](zqλ/4;q
)
= ch

[
σλ/2(Mω )

](
z;q

)
, (3.28)

for a givenMω . Sinceσ2 acts as the identity, this relation holds for eachω if λ ∈N = 4Z. If ω 6= 1, then

it does not hold forλ = 2, henceN′ = 4Z and bothM0 andM2 have multiplicity-free decompositions in

terms of lattice modules. However, this relation does hold for ω = 1 andλ = 2, so we cannot conclude that

the lattice decomposition ofM1 is multiplicity-free (consistent with our explicit calculation that it is not).

With a little more work, we can also see how this failure is consistent with the criterion of Section 3.2.3.

LetX=K1/16 and letJ be the simple currentK1/2, so thatX is a fixed point forJ: J⊠X∼=X. SinceL2(sl2)

is a unitary vertex operator algebra, dim(J) = 1. Also, as recalled above,θ is given bye2iπL0, hence, in our

notation, it acts onKt by e2iπt , wheret = 0,1/2,1/16. Further, it is easy to check that the categoryC of

M
(
3,4

)
-modules has no non-trivial ideals except forC itself.

We now verify that for every indecomposableP in C , either condition (1) or (2) of our Hopf link criterion

is satisfied.

P= K0: In this case,θJ⊠P ◦ (θ−1
J

⊠ θ−1
P

) = θK1/2
◦ (θ−1

K1/2
⊠ θ−1

K0
) = 1.

P= K1/2: In this case,θJ⊠P ◦ (θ−1
J

⊠ θ−1
P

) = θK0 ◦ (θ−1
K1/2

⊠ θ−1
K1/2

) = 1.

P= K1/16: In this case,θJ⊠P ◦ (θ−1
J

⊠ θ−1
P

) = θK1/16
◦ (θ−1

K1/2
⊠ θ−1

K1/16
) = −1, but the modular S-matrix of

M
(
3,4

)
has entrySK1/16,K1/16

= 0.

So we see that in the first two cases condition (2) is satisfied while condition (1) holds in the last. This is, of

course, consistent with the fact that the decomposition is not multiplicity-free. As an aside, we remark that if

we had only known thatK1/16 was a fixed-point of the simple current (which implies that the decomposition

is not multiplicity-free), then we could have instead deduced thatSK1/16,K1/16
must vanish, as above.

Example 2. A more interesting example is the parafermion coset withg= sl2 at levelk = − 4
3. In [Ad3],

Adamović showed that the resulting coset vertex operator algebra is the (simple) singlet algebraI(1,3) of

central chargec=−7. This is strongly generated by the energy-momentum tensorand a single conformal

primary of weight 5. We can revisit and extend this study using the results of this section. However, we

stress that the parent vertex operator algebraL−4/3(sl2) does not satisfy the conditions of Section 2.1 that

would allow us to apply the theory of Huang-Lepowsky-Zhang.Nevertheless, we shall proceed with the

analysis, assuming that this theory may be applied. The results suggest that this assumption is, in this case,

not unreasonable.

Let Λ0 andΛ1 denote the fundamental weights ofŝl2. The vertex operator algebraL−4/3(sl2) admits

precisely three highest-weight modules, namely the simplemodulesMω whose highest weights have the

form (k−ω)Λ0+ωΛ1, whereω ∈
{

0,− 2
3,− 4

3

}
, as well as an uncountable number of simple non-highest-

weight modules [AM1,Ga,RW3]. In particular,I(1,3) is not a rational vertex operator algebra. As the level

is negative and these highest-weight modules have conformal weights that are bounded below, the criterion

of Section 3.2.1 applies and we conclude that their decompositions are multiplicity-free.
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Explicitly, the decomposition (3.11) takes the form

L−4/3(sl2) =
⊕

λ∈2Z

Fλ ⊗Cλ , (3.29)

whereCλ is a simple highest-weightI(1,3)-module whose highest-weight vector has conformal weight

∆λ = 1
16 |λ |(3|λ |+ 8). The convention here forFλ is again thatλ indicates thesl2-weight so that the

conformal dimension of this Heisenberg module is− 3
16λ 2. Of course,Cλ andC−λ are not isomorphic for

λ 6= 0 because the decomposition (3.29) is multiplicity-free — they must therefore be distinguished by the

action of the zero mode of the weight 5 conformal primary.

The theory of Section 3.1 shows that theCλ , with λ ∈ 2Z, are all (non-isomorphic) simple currents. This

had been previously deduced [RW1,CM1] from the (conjectural) standardVerlinde formula of [CR4,RW2]

for non-rational vertex operator algebras. Noting that∆±4 = 5, we remark [CRW, RW1] that the simple

current extension ofI(1,3) by theCλ , with λ ∈ 4Z, is the triplet algebraW(1,3) of Kausch [Ka].

Consider now theL−4/3(sl2)-modulesσ−2(M−2/3) andσ (M−2/3), obtained by twisting the action on

M−2/3 by the spectral flow automorphismsσ ℓ, ℓ ∈ Z. Whilst both these modules have conformal weights

that are unbounded below, their decompositions intoH⊗ I(1,3)-modules are nevertheless multiplicity-free:

σ−2(M−2/3) = ∑
µ∈2Z

Fµ ⊗D
(−2)
µ , σ (M−2/3) = ∑

µ∈2Z

Fµ ⊗D
(1)
µ . (3.30)

Here, theD(−2)
µ andD

(1)
µ are simple highest-weightI(1,3)-modules whose highest-weight vectors have

conformal weights given by

∆(−2)
µ =

{ 1
16µ(3µ +8) if µ ≤−2,

1
16(µ +4)(3µ +4) if µ ≥−2

and ∆(1)
µ =

{ 1
16(µ −4)(3µ −4) if µ ≤ 2,

1
16µ(3µ −8) if µ ≥ 2,

(3.31)

respectively.

The interesting thing about theL−4/3(sl2)-modulesσ−2(M−2/3) and σ (M−2/3) is that they appear,

together with two copies of the vacuum moduleM0, as the composition factors of an indecomposable

L−4/3(sl2)-moduleP0. This module was first constructed as a fusion product in [Ga]and was structurally

characterised in [CR3] (see [AM3] for a construction and characterisation of a different indecomposable

L−4/3(sl2)-module). The action of the Virasoro zero modeL0 onP0 is non-semisimple. The Loewy diagram

for P0 has the form
M0

σ−2(M−2/3) σ (M−2/3)

M0

P0 , (3.32)

where our convention is that the socle appears at the bottom.An immediate consequence of Theorem 3.8 is

that there exists a countably-infinite number of mutually non-isomorphic indecomposableI(1,3)-modules

P0
µ , µ ∈ 2Z, on which theI(1,3) Virasoro zero mode acts non-semisimply. The Loewy diagramsof these
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indecomposables are
Cµ

D
(−2)
µ D

(1)
µ

Cµ

P0
µ . (3.33)

The existence of suchI(1,3)-modules was predicted in [RW1] from the fact that similar indecomposables

have been constructed [AM3,TW1] for a simple current extension, the triplet algebraW(1,3).

4. PROPERTIES OFHEISENBERGCOSETS

Recall from the introduction that one of our main applications for Heisenberg cosets is to construct new,

potentiallyC2-cofinite, vertex operator algebras as extensions:

V
H−coset−−−−−−−−→ C

extension−−−−−−−−→ E.

So far, we understand howV-modules decompose asH⊗C-modules. The remaining tasks are to identify

whenC may be extended by certain abelian intertwining algebras toa larger algebraE. This will be stated

in Theorem 4.1. Since abelian intertwining algebra extensions are mild generalizations of simple current

extensions, analogous arguments to [CKL] allow us to give precise criteria for the lifting ofH⊗C-modules

to V-modules, see Theorem 4.3. An analogous criterion for the lifting of C-modules toE-modules is given

in Corollary 4.4.

4.1. Extended Algebras. If certain Fock modules involved in the vertex operator algebra decomposition

yield a lattice (super) vertex operator algebra, then the corresponding coset modules form a (super) vertex

operator algebra as well. Thus, we get extensions of the coset.

Theorem 4.1. Let

V =
⊕

λ∈L
Fλ ⊗Cλ .

If E is a sub-lattice ofL, such that
⊕

λ∈EFλ forms a lattice vertex operator algebra, thenE =
⊕

λ∈ECλ

has a natural vertex operator algebra structure.

Proof. This result is an immediate corollary of [Li, Thm. 3.1, 3.2] with ℓ= 1, see also [DL]. [Li, Thm. 3.1,

3.2] in fact guarantee a generalized vertex algebra structure on
⊕

λ∈LCλ . Note that no restrictions with

regards to vertex tensor category theory are needed onV orC. �

For a more general scenario involving mirror extensions, see [Lin].

Example 3. Let g be a simple simply laced Lie algebra and letk = p
q 6= 0 be a rational number (p,q co-

prime). We do not require it to be an admissible level. ThenLk(g) is graded by 1√
k
Q =

√
q
pQ with Q the

root lattice, that is

Lk(g) =
⊕

λ∈
√

q
pQ

Fλ ⊗Cλ .

The sublatticep
√

q
pQ=

√
pqQ is an even sublattice so that

V√
pqQ =

⊕

λ∈√pqQ

Fλ
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is a lattice vertex operator algebra. It follows by Theorem 4.1 that

Ek,g :=
⊕

λ∈√pqQ

Cλ

is also a vertex operator algebra.

We believe that these extended vertex operator algebras have a good chance to beC2-cofinite. The main

outcome of [ACR] is that in the caseg= sl2 andk+2∈Q \ { 1
n|n∈ Z>0} the characters of modules of the

extended vertex operator algebra are modular if supplemented by pseudotraces.

In two specific examplesC2-cofiniteness is already known. One of them isL−4/3(sl2). This is then a

continuation of Example 2. Recall that

L−4/3(sl2) =
⊕

λ∈2Z

Fλ ⊗Cλ ,

whereCλ is a simple highest-weightI(1,3)-module whose highest-weight vector has conformal weight

∆λ = 1
16 |λ |(3|λ |+8) and the Heisenberg Fock moduleFλ has conformal dimension−3

16 λ 2. It follows that

VL =
⊕

λ∈4Z

Fλ (4.1)

is the lattice vertex operator algebra of the latticeL=
√
−6Z and hence

W(1,3) =
⊕

λ∈4Z

Cλ (4.2)

is also a vertex operator algebra. It is actually theW(1,3)-triplet that is well-known to beC2-cofinite

[AM2]. This relation between singlet vertex operator algebra andL−4/3(sl2) has been first realized by

Adamović [Ad3] and has a nice generalization to a relation between singlet vertex operator algebras and

certainW-algebras [CRW].

Example 4. I(2)-singlet algebra andVk(gl(1|1))
We first illustrate how well-known somehow archetypical logarithmic VOAs are related via simple cur-

rent extensions and Heisenberg cosets thus nicely illustrating the picture advocated in this work together

with [CKL]. The picture is as follows:

Vk(gl(1|1))
extension

//

coset

��

L−1/2(sl(2|1))
extension

//

coset

��

β γ ⊗VZ

coset

��

H⊗ I(2)
extension

//

coset

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

L−1/2(sl2)
extension

//

coset
��

β γ
coset

uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

I(2)
extension

// W(2)

I(2) is thep= 2 singlet VOA [AM1,CM1] andW(2) is itsC2-cofinite but non-rational infinite order simple

current extensions, called the triplet. See e.g. [AM2].

These and other extensions have been worked out in [CR1, CR2,AC] while the coset picture has been

part of [CR1, CRo, CRW]. Here, the situation of the singlet algebraI(2) is thatC1-cofiniteness of all

known admissible modules is established [CMR], fusion coefficients are known [AM4] and the category

of C1-cofinite modules is a vertex tensor category in the sense of [HLZ] provided that everyC1-cofinite

N-gradable module is of finite length [CMR, Thm. 17].
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For reference onI(2)-modules we refer to [AM1,CM1]. As reference onVk(gl(1|1)) we refer to [CR1].

I(2) has simple typical modulesFλ of conformal weight12λ (λ −1) for λ ∈ R \Z. For λ = 1− r integer,

we have

0→Mr,1 → F1−r →Mr+1,1 → 0

for simple atypical modulesMr,1 andr integer. Similarly,Vk(gl(1|1)) has simple highest-weight modules

Ve,n where the real numberse,n are the weight labels, ande/k not integer. Ife/k is integer sayℓ, then the

higest-weight-module decomposes as

0→ An−1,ℓk → Vn,ℓk → An,ℓk → 0

with simple atypical modulesAn,ℓk parameterized by realn and integersℓ. The projective coversPn,ℓk have

the form

0→ Vn+1,ℓk → Pn,ℓk → Vn,ℓk → 0.

The commutant ofI(2) in Vk(gl(1|1)) is a rank two Heisenberg vertex operator algebra, and we de-

note their Fock-modules byFe,n where we take the notation of [CRo]. Using the explicit realization of

Vk(gl(1|1))-modules of [CRo] we can compute the decomposition of modules. The answer is as follows

Vk(gl(1|1)) =
⊕

m∈Z
F0,m⊗Mm+1,1, An,ℓk =

⊕

m∈Z
F−ℓ,m−n⊗Mm,1 and

V−e,−n+1 =
⊕

m∈Z
F e

k ,n+m⊗F e
k−m.

(4.3)

It follows with Theorem 3.8 that

Pn,ℓk =
⊕

m∈Z
F−ℓ,−n+m⊗Sm,

whereSm is an indecomposableI(2)-module that has non-split short-exact sequence

0→ F1−m → Sm → F2−m → 0.

In terms of Loewy diagrams, we have the following:

Pn,ℓk =

An,ℓk

✈✈
✈✈ ❍❍

❍❍

An+1,ℓk

❍❍
❍❍

An−1,ℓk

✈✈
✈✈

✈✈
✈✈

An,ℓk

=
⊕

m∈Z
F−ℓ,m−n⊗




Mm,1

✉✉
✉✉ ■■

■■

Mm+1,1

■■
■■

Mm−1,1

✉✉
✉✉

✉✉
✉✉

Mm,1



.

The triplet algebraW(2) is known to beC2-cofinite but non-rational. It is a simple current extensionof I(2),

namely

W(2) =
⊕

m∈Z
M1+2m,1.

4.2. Lifting Coset Modules. In this subsection, we show that whether certain generalized C-modulesD

could be tensored with appropriate Fock modules so that the product can be induced (lifted) to aV-module

is essentially decided by the monodromy

MCλ ,D = RD,Cλ ◦RCλ ,D : Cλ ⊠D→ Cλ ⊠D.

For properties of the monodromy used here, we refer to [CKL].

The following lemma could be easily proved as in [CKL] and will be used frequently below. For a

vertex operator algebraV, and its vertex tensor categoryC . Let PicC (V) denote the Picard groupoid
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(see [Ca, FRS]). That is, PicC (V) is the full subcategory of simple currents. Clearly PicC (V) is closed

under tensor product.

Lemma 4.2. Let X ∈ C be such that forJi ∈ PicC (V), MJi ,X = λJi ,X IdJ⊠X whereλJ1,X ∈ C for i = 1,2.

Then,λJ1,XλJ2,X = λJ1⊠J2,X.

Theorem 4.3. LetV, H, C, L be as in Theorem 3.5, letL′ be the dual lattice, U= L⊗ZR and letD be

a generalizedC-module that appears as a subquotient of fusion product of some simpleC-modules. Then,

there existsα in U, such that for allλ ∈L,

MCλ ,D = e−2π i〈α ,λ 〉 IdCλ⊠D

andFβ ⊗D lifts to aV-module if and only ifβ ∈ α +L′.

Proof. Recall that we are working with categories ofC andH that have real weights for the respectiveL0s.

Additionally, recall that we are working over semi-simple category forH and a category forC each object

of which has globally boundedL0-Jordan blocks.

We know thatL is equipped with a symmetric nondegenerate bilinear form〈·, ·〉, and this form takes

real values since the conformal weights with respect to the Heisenberg are real. By non-degeneracy of〈·, ·〉,
given a homomorphismf : L→ S1, there exists anα ∈U such that

f (λ ) = e2iπ〈α ,λ 〉 (4.4)

for all λ ∈ L. Moreover,β ∈U satisfies Eq. (4.4) if and only ifβ ∈ α +L′.

Since each of theCλ is a simple current, by results in [CKL], we know that the monodromyMCλ ,D =

Mλ IdCλ⊠D for some scalar, sayMλ ∈ C×. SinceMCλ ,D is semi-simple andCλ ,D,Cλ ⊠ D have glob-

ally boundedL0-Jordan blocks, proceeding as in the proof of [CKL, Eq. (3.10)], we gather thatMCλ ,D =

(θCλ ⊠D)ss◦((θ−1
Cλ

)ss⊠ (θ−1
D

)ss), wheressdenotes the semi-simple part. Since each of the modules involved

has real conformal weights, we get thatMλ = e2iπrλ for somerλ ∈ R. So,Mλ ∈ S1 for all λ ∈ L. Using

Lemma 4.2 we deduce thatλ 7→ Mλ is a homomorphismL→ S1 and so isλ 7→ M−1
λ sinceS1 is abelian.

Now, in Eq. (4.4), we takef (λ ) = M−1
λ and we get anα ∈U such thatM−1

λ = e2iπ〈α ,λ 〉 = MFλ ,Fα . Using

Proposition 3.3 we conclude that(Fλ ⊗Cλ )⊠ (Fα ⊗D) ∼= Fλ+α ⊗ (Cλ ⊠D), and therefore, monodromy

factors over the⊗ tensorands. We conclude thatMFλ⊗Cλ ,Fα⊗D = MFλ ,Fα ⊗MCλ ,D = 1. It now follows

thatFα ⊗D lifts. Moreover, from the arguments above we can conclude that Fβ ⊗D lifts if and only if

β ∈ α +L′. �

We now combine this with extensions ofC as in Theorem 4.1 to deduce the following.

Corollary 4.4. Assume the setup of Theorem 4.3. LetE be a sublattice ofL such thatE = ⊕λ∈ECλ has a

vertex operator algebra structure inherited fromV exactly as in Theorem 4.1. ThenD lifts to a E-module

⊕λ∈ECλ ⊠D iff α ∈ E′, whereE′ is the dual lattice ofE.

Proof. Recall that eachCλ is a simple current forC. Therefore, using [HKL] (for the “if” direction)

and [CKL] (for the “only if” direction), we know that⊕λ∈ECλ ⊠ D is an E-module iff MCλ ,Cµ⊠D =

IdCλ⊠(Cµ⊠D), for all λ ,µ ∈ E. SinceE is a vertex operator algebra, we know thatMCλ ,Cµ = IdCλ⊠Cµ

for all λ ,µ ∈ E. By properties of monodromy, we gather thatMCλ ,Cµ⊠D = IdCλ⊠(Cµ⊠D) for λ ,µ ∈ E iff

MCλ ,D = IdCλ⊠D for all λ ∈ E, which in turn holds iffα ∈ E′. �

Remark 4.5. SinceE is a simple current extension ofC, we can utilize arguments similar to [Lam,

Thm. 4.4] in order to analyze certain simpleE-modules. LetX be a simpleE-module such that there
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exists a simpleC-moduleX0 ⊂ X. (In the notation of [Lam], the role of groupG is played byP and theVχ

areCλ for λ ∈ P.) Then,F(X0) = ⊕λ∈PCλ ⊠ X0 has a natural structure of an (induced)E-module and it

surjects ontoX.

Example 5. We now illustrate the lifting properties with unitary minimal models of theN = 2 super Vi-

rasoro algebra. We refer the reader to [Ad1], [Ad2], [DPYZ] and [S] for additional information on these

minimal models.

We start with some well-known results whose proofs can be found e.g. in [CL1]. Letk be a positive

integer, thenLk(sl2) contains the lattice vertex operator algebraVLα with Lα = αZ andα2 = 2k, soLα ∼=√
2kZ. Thebc-ghost vertex operator algebraE(1) is isomorphic toVLβ with Lβ = βZ andβ 2 = 1, so

Lβ ∼= Z. Then the latticeLα ⊕Lβ contains the latticeLγ = γZ with γ = α + kβ as sublattice. The

orthogonal complement isN= µZ with µ = α −2β . Note, thatγ2 = k(k+2) andµ2 = 2(k+2). In [CL1,

Sec. 8] it is proved that

Sk := Com
(
VLµ ,Lk(sl2)⊗E(1)

)

is the simple and rationalN = 2 super Virasoro algebra at central chargec= 3k/(k+2).

We will now explain how to obtain simpleSk-modules. For this letλ be an integer with 0≤ λ ≤ k.

Further letΛ0 andΛ1 be the usual fundamental weights ofŝl2. Then the simpleLk(sl2)-modules are the

integrable highest weight modulesL(λ ) of weight(k−λ )Λ0+λ Λ1. V n
2k α+Lα appears inL(λ ) if and only

if λ +n is even. This follows directly sinceV n
2k α+Lα appears in the decomposition ofLk(sl2) if and only if

n is even. We now express lattice vectors ofL′
α ⊕Lβ in terms of those ofL′

γ ⊕L′
µ , namely,

a
2k

α +bβ = (a+bk)
γ

k(k+2)
+ (a−2b)

µ
2(k+2)

a,b∈ Z.

It follows thatV n
2(k+2)+N′ is contained inL(λ )⊗VLβ if and only if λ +n is even as well. We thus get

L(λ )⊗VLβ
∼=





⊕
ν∈2N′/N

Vν+N⊗M(λ ,ν) if ν +λ is even

⊕

ν∈ 1
2(k+2)+2L′/L

Vν+L⊗M(λ ,ν) if ν +λ is odd

asVLµ ⊗ Sk-modules. By Theorem 3.8 (2) allM(λ ,ν) are simpleSk-modules. On the other hand, by

Theorem 4.3 for everyLk-moduleM there exists aVN-moduleVν+N such that

Vν+ρ+N⊗M

lifts to a VN ⊗ Sk-module if and only ifρ ∈ (2N′)′/N = 1
2N/N. Finally, we announce that the relation

between the tensor category of a vertex operator algebra andits extensions can be made quite explixit

[CKM] and that these results imply that every simpleSk-module appears in the decomposition of at least

one of theL(λ )⊗VLβ and moreover

M(λ ,ν)∼= M(λ ′,ν ′) if and only if λ ′ = k−λ and ν ′ = ν +
µ
2

modLµ .

4.3. Rationality. In this section we prove an interesting rationality result:Let V be simple, rational, CFT-

type (that is, conformal weights ofV are non-negative and the zeroth weight space is spanned by vacuum)

andC2-cofinite. Then, Theorem 4.12 states that every grading-restricted generalizedC-module is com-

pletely reducible.

We work with the following setup: LetC= Com(H,V). Assume that Com(C,V) = VL, where(L,〈·, ·〉)
is a positive definite even lattice. With this,(VL,C) form a commuting pair andC is simple. We now collect
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well-known results from the literature that guarantee thatwe can invoke vertex tensor category theory for

C, under suitable assumptions onV.

Lemma 4.6. If V is C2-cofinite then so isC. In particular, if V = Lk(ĝ) with k∈N thenC is C2-cofinite.

Proof. The proof of the most general statement can be found in [M4]. For the case ofV= Lk(ĝ) with k∈N,

see [ALY]. �

Lemma 4.7. If V is simple and CFT-type, then so isC.

Proof. Firstly, sinceVL andC form a commuting pair, there exists a non-zero mapVL ⊗C→ V. Since

VL andC are both simple, so isVL⊗C and hence this map is an injection. Now,1⊗Cn ⊂ Vn for anyn, in

particular, we conclude thatCn = 0 for n< 0 andC0 = C1C. �

Lemma 4.8. If V is simple, CFT-type and self-contragredient, then so isC.

Proof. Note thatC is simple and we have an injectionVL⊗C →֒ V. SinceV′ ∼= V, there exists an invariant

bilinear form onV [FHL]. Any invariant form onV is automatically symmetric, by [Li, Prop. 2.6] (see

also [FHL]). Moreover, the space of symmetric invariant forms onV is naturally isomorphic to(V0/L1V1)
∗

[Li, Thm. 3.1]. SinceV0 = C1, we conclude thatL1V1 = 0. Now, L1V1 = 0 implies thatL1(1⊗C1) =

1⊗ ((LC)1C1) = 0. This implies that(LC)1C1 = 0. This implies thatC0/(LC)1C1 6= 0, and hence there

exists a symmetric invariant bilinear form onC, by [Li, Cor. 3.2]. In other words,C′ ∼= C. �

Lemma 4.9. If V is simple, C2-cofinite and CFT-type, then

(1) The category of grading-restricted generalized modules for V andC satisfy the conditions needed to

invoke Huang, Lepowsky and Zhang’s tensor category theory.

(2) Denoting the finite abelian groupL′/L byG, there exists a subgroupH of G such that

V =
⊕

λ∈H
Vλ ⊗Cλ .

(3) EachCλ appearing above is a simple current forC.

Proof. (1) follows from [Hu3] and previous lemmas. (2) and (3) follow from our results above. �

Lemma 4.10. Let(L,〈·, ·〉) be a postive definite even lattice,L′ be the dual lattice and letG=L′/L. Then,

f : µ 7→ Qµ where Qµ(ν) = exp(2π i〈µ ,ν〉) for µ ,ν ∈ G is an isomorphismG∼= Ĝ.

Proof. It is clear that the image off is in Ĝ. Let λ be in the kernel off . Then, we see that〈λ ,L′〉 ⊂ Z,

therefore,λ ∈L′′ = L, henceλ = 0 in G. �

Lemma 4.11. LetC be C2-cofinite and CFT-type. Then the endomorphism space of any grading-restricted

generalized module forC is finite dimensional. Moreover, each grading-restricted generalized module has

finite length and has L0-Jordan blocks of bounded length.

Proof. These are the results [Hu3, Thm. 3.24, Prop. 4.1 and Prop. 4.7]. In fact, the conclusions hold under

weaker hypotheses. �

Theorem 4.12. LetV be simple, rational, C2-cofinite and CFT-type. Then, every grading-restricted gener-

alizedC-module is completely reducible.
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Proof. We shall freely use the lemmas above. LetW be a grading-restricted generalizedC-module. We

know thatW decomposes as a finite direct sum of indecomposable modules.Therefore, without loss of

generality, letW be indecomposable.

SinceW is indecomposable andCλ are finite order simple currents for everyλ ∈ H, by [CKL, Lem.

3.17], we know thatMCλ ,W is a scalar multiple, sayMλ ∈C×, of identity morphism. Let us assume thatW

is such that for some non-zeroC-modulesR andS, we have an exact sequence:

0→ R→W→ S→ 0.

We know from [CKL, Lem. 3.19(b)] thatMCλ ,R = Mλ idCλ ⊠R andMCλ ,S = Mλ idCλ⊠S. From Lemma 4.2,

we know thatλ 7→ M±1
λ are homomorphismsH→ S1.

We now seek aµ ∈L′ such that for theVL moduleVµ+L, the monodromy ofVλ+L⊗Cλ with Vµ+L⊗X

is trivial, for X= R,S,W and for allλ ∈H. In other words, we want to find aµ such that for allλ ∈H,

MVµ+L,Vλ+L
= M−1

λ .

SinceH ≤ G are finite abelian groups, every character ofH can be extended to a character ofG. Pick a

χ ∈ Ĝ that extendsλ 7→ M−1
λ . We will be done if we can find aµ such that for eachλ ∈ G= L′/L,

exp(2π i〈µ ,λ 〉) = MVµ+L,Vλ+L
= χ(λ ).

By Lemma 4.10, we know that there indeed exists aµ ∈ L′ such thatQµ = χ .

ForX= R,S,W, denoteVµ+L⊗X by X̃ and let

X̃e =
⊕

λ∈H
(Vλ+L⊠Vµ+L)⊗ (Cλ ⊠X) =

⊕

λ∈H
Vλ+µ+L⊗ (Cλ ⊠X).

We now invoke [HKL, Thm. 3.4] to get that̃Xe is indeed a generalized (untwisted) module forV when

X= R,S,W.

Using flatness of simple currents, we deduce the exact sequence ofV-modules

0→ R̃e → W̃e → S̃e → 0.

However, every such exact sequence splits by rationality ofV. Note that any morphism ofV-modules must

preserve Heisenberg weights. Hence, we get that 0→ R→W→ S→ 0 splits.

�

Now we can combine our results with those of [Hu2,Hu3] to obtain the following corollary.

Corollary 4.13. If V is simple, rational, CFT-type and self-contragredient then we have the following:

(1) Finite reductivity: EveryC-module is completely reducible, there exist finitely many inequivalent irre-

ducible modules, fusion coefficients amongst irreducible modules are finite.

(2) Each finitely generated generalizedC-module is aC-module.

(3) The categoryC-modules has a structure of a modular tensor category.

Example 6. The Bershadsky-Polyakovalgebra [Ber,Pol] is the quantum Hamiltonian reduction ofLℓ− 3
2
(sl3)

for the non-principal nilpotent embedding ofsl2 in sl3. This vertex operator algebra is strongly generated

by four fields of conformal dimension 1,2, 3
2 and 3

2. We denote its simple quotient byWℓ. This vertex

operator algebra is rational providedℓ is a positive integer [Ar2]. In this case it contains the lattice vertex

operator algebraVL of the latticeL =
√

6(ℓ−1)Z as sub vertex operator algebra [ACL]. Furthermore the
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coset is rational, since it is isomorphic to the principalW-algebraW(sl2ℓ) at levelk=−2ℓ+ 2ℓ+3
2ℓ+1 and cen-

tral chargec= − 3(2ℓ−1)2

2ℓ+3 [ACL], but the latter is rational [Ar3]. Our results give thus another more direct

proof of rationality of this coset.

5. HEISENBERG COSETS INSIDE FREE FIELD ALGEBRAS ANDL−1(sl(m|n))

We use the opportunity to prove thatL−1(sl(m|n)) arise as certain Heisenberg cosets inside free field

algebras, i.e. tensor products ofbc andβ γ systems. It had been known for a while that the affine vertex

operator subalgebra is a sub-vertex operator algebra of thecoset [KW3]. Moreover this gives a different

proof to a recent result on the casen = 0 andm≥ 3 [AP]. As simple affine vertex operator subalge-

bras are poorly understood at present we hope that one can usethis realization to clarify the structure of

L−1(sl(m|n))-modules.

Let S denote theβ γ-system, which has even generatorsβ ,γ and OPE relations

β (z)γ(w)∼ (z−w)−1, γ(z)β (w) ∼−(z−w)−1, β (z)β (w)∼ 0, γ(z)γ(w) ∼ 0.

Let H be the copy of the Heisenberg algebra with generatorh = : β γ :, and letC = Com(H,S). By a

theorem of Wang [Wa],C is isomorphic to the simple ZamolodchikovW3-algebra withc=−2. The explicit

generators, suitably normalized, are as follows:

L = : β β γγ : +2 : β ∂γ : −2 : (∂β )γ :,

W = : β β β γγγ : +3 : β β (∂γ)γ : −6 : (∂β )β γγ : −6 : (∂β )∂γ : +3 : (∂ 2β )γ : .

Now letS(n) denote the rankn β γ-system, which has generatorsβ i , γ j for i = 1, . . . ,n satisfying

β i(z)γ j (w)∼ δi, j(z−w)−1, γ i(z)β j(w)∼−δi, j(z−w)−1,

β i(z)β j(w) ∼ 0, γ i(z)γ j(w) ∼ 0.

Let H be the Heisenberg algebra with generator

h=
n

∑
i=1

: β iγ i :,

and letC(n) = Com(H,S(n)). Note thatC(n) containsn commuting copies ofW3 with generatorsLi ,Wi ,

obtained fromL andW above by replacingβ andγ with β i andγ i . Moreover,C(n) contains the fields

X jk =− : β jγk :, j,k= 1, . . . ,n, j 6= k,

Hℓ =− : β 1γ1 : + : β ℓ+1γℓ+1 :, 1≤ ℓ < n,

which generate a homomorphic image of the affine vertex algebraV−1(sln).

A consequence of Theorem 7.3 of [L1] is

Lemma 5.1. C(n) is generated as a vertex algebra by{Li ,Wi ,X jk,Hℓ} for i, j,k, ℓ as above.

Proof. In the notation of [L1], the latticeA⊂Zn is spanned by(1,1, . . . ,1) soA⊥ is precisely the root lattice

of sln. �

By a recent theorem of Adamović and Perše [AP], forn ≥ 3 C(n) is precisely the image of the map

V−1(sln) → C(n), and is therefore isomorphic to thesimpleaffine vertex algebraL−1(sln) Using Lemma

5.1, we now provide a much shorter proof of this result. It suffices to show thatLi andWi lie in the image

of the mapV−1(sln)→ C(n), and by symmetry it is enough to prove this forL1 andW1. This is immediate
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from the following calculations:

L1 = : H1H2 : + : X12X21 : + : X13X31 : − : X23X32 : −∂H1.

W1 =− : H1H2H2 : − : X12X21H2 : − : X13X31H1 : − : X13X31H2 :

+ : X23X32H2 : − : X13X32X21 : +
1
2

: X12∂X21 : −3
2

: (∂X12)X21 :

+
7
2

: X13∂X31 : −9
2

: (∂X13)X31 : −1
2

: X23∂X32 : +
3
2

: (∂X23)X32 :

−1
2

: H1∂H2 : +
1
2

: (∂H1)H2 : +
1
2

∂ 2H1.

Next, we find a minimal strong generating set for the remaining caseC(2). In this case, it is readily

verified thatL1 andW1 donot lie in the affine vertex algebra generated byX12,X21,H1. However, consider

the following elements ofC(2):

P=−1
2

L2
(0)X

12+
1
3

: H1X12 : +
2
3

∂X12

= : β 1∂γ2 : − : (∂β 1)γ2 : +
1
3

: β 1β 1γ1γ2 : +
2
3

: β 1β 2γ2γ2 :,

Q=−1
2

L1
(0)X

21− 2
3

: H1X21 : +
1
3

∂X21

= : β 2∂γ1 : − : (∂β 2)γ1 : +
1
3

: β 1β 2γ1γ1 : +
2
3

: β 2β 2γ1γ2 :,

R= L1−L2,

L = : X12X21 : +
1
4

: H1H1 : −1
2

∂H1.

HereL is the Sugawara Virasoro field of the affine vertex algebra ofV−1(sl2), which has central charge

1, andX12,X21,H1 are primary of weight one with respect ofL. It is easily verified thatP,Q,Rare primary

of weight 2 with respect toL, and that{X12,X21,H1,P,Q,R} close under operator product expansion, so

they strongly generate a vertex subalgebraC′(2)⊂ C(2). Moreover, we have

L1 =
1
2

R+ : X12X21 : +
1
2

: H1H1 : −1
2

∂H1,

L2 =−1
2

R+ : X12X21 : +
1
2

: H1H1 : −1
2

∂H1,

W1 =−1
2

: RH1 : − : PX21 : −1
2

: H1H1H1 : −5
3

: X12X21H1 : −13
3

: (∂X12)X21 : +
10
3

: X12∂X21 :

−1
6

: (∂H1)H1 : +
1
3

∂ 2H1,

W2 =−1
2

: RH1 : − : PX21 : +
1
2

: H1H1H1 : +
4
3

: X12X21H1 : +
19
6

: (∂X12X21 : −25
6

: X12∂X21 :

−5
3

: (∂H1)H1 : +
3
4

∂R+
7
12

∂ 2H1.

SinceC(2) is generated byL1,L2,W1,W2,X12,X21,H1, this shows thatC′(2) = C(2). We obtain

Theorem 5.2. C(2) is of typeW(1,1,1,2,2,2). In fact, it is the simple quotient of an algebra of type

W(1,1,1,2,2,2,2) where the Virasoro field in weight2 coincides with the Sugawara field.

Remark 5.3. Recall that each embedding ofsl2 inside a reductive Lie super algebrag gives an associated

affineW-super algebra from the affine vertex super algebra ofg at levelk [KW2]. Denote byWk(sl4)

the universal affineW-algebra ofsl4 for the embedding ofsl2 such thatsl4 decomposes into four copies

of the adjoint representation ofsl2 plus three copies of the trivial one. This implies thatWk(sl4) is of
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type(1,1,1,2,2,2,2) and in fact the three fields of dimension one generate the sub vertex operator algebra

V2k+2(sl2). Let k = −5/2 then the central charge ofWk(sl4) is −3 and it containsL−1(sl2) as sub vertex

operator algebra. A free field realization ofWk(sl4) is given in Example 3.3 of [ArMo]. A computation

then reveals that the simple quotientW−5/2(sl4) is isomorphic toC(2).

Next we consider Heisenberg cosets insidebc-systems andbcβ γ-system. First, consider the rankn

bc-systemE(n) with odd generatorsbi ,ci satisfying

bi(z)c j (w)∼ δi, j(z−w)−1, ci(z)b j(w)∼ δi, j(z−w)−1,

bi(z)b j(w) ∼ 0, ci(z)c j (w)∼ 0.

Consider the Heisenberg algebraH with generatorsh= −∑
n
i=1 : bici :, and letD(n) = Com(H,E(n)). It is

well-known to be trivial forn= 1 and isomorphic toL1(sln) for n≥ 2.

Now we consider the Heisenberg algebraH insideS(n)⊗E(m) with generator

h=
n

∑
i=1

: β iγ i : −
m

∑
j=1

: bici : .

Let C(n,m) = Com(H,S(n)⊗E(m)). It is easy to verify thatC(n,m) contains the following fields:

X jk =− : β jγk :, j,k= 1, . . . ,n, j 6= k,

Hℓ =− : β 1γ1 : + : β ℓ+1γℓ+1 :, 1≤ ℓ < n,

X̄rs = : brcs :, r,s= 1, . . . ,m, r 6= s,

H̄u = : b1c1 : − : bu+1cu+1 :, 1≤ u< m,

Ji,r = : β iγ i : − : brcr :, 1≤ i ≤ n, 1< r < m,

φ r,k = : brγk :, ψ j ,s = : β jcs :, j,k = 1, . . . ,n, r,s= 1, . . . ,m.

Moreover, these generate a homomorphic image ofV1(sl(n|m)). By a similar argument to the proof of

Lemma 5.1, we obtain

Lemma 5.4. For all n ≥ 1 and m≥ 1, C(n,m) is generated as a vertex algebra by Li ,Wi for i = 1, . . . ,n,

together with the image of the mapV1(sl(n|m))→ C(n,m).

Theorem 5.5. For all n ≥ 1 and m≥ 1, C(n,m) is isomorphic to the simple affine vertex superalgebra

L1(sl(n|m)).

Proof. SinceC(n,m) is simple, it suffices to show thatLi ,Wi lie in the image of the mapV1(sl(n|m)) →
C(n,m). By symmetry it is enough to show this forL1 andW1. Consider the following fields in the image

of V1(sl(n|m)):

J1,1 = : β 1γ1 : − : b1c1 :, ψ1,1 = : β 1c1 :, φ1,1 = : b1γ1 : .

A straightforward calculation shows that

L1 = : J1,1J1,1 : −2 : ψ1,1φ1,1 : +∂J1,1,

W1 = : J1,1J1,1J1,1 : −3 : J1,1ψ1,1φ1,1 : +3 : (∂ψ1,1)φ1,1 : −1
2

∂ 2J1,1.

�
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6. SOME C1-COFINITENESS RESULTS

In this section, we show that the simple parafermion algebraof sl2, as well as the coset of the Heisenberg

algebra inside the Bershadsky-Polyakov algebra, both admit large categories ofC1-cofinite modules.

6.1. The sl2 parafermion algebra. We work with the usual generating setX,Y,H for the universal affine

vertex algebraVk(sl2). Let Ik ⊂ Vk(sl2) denote the maximal proper ideal graded by conformal weight,

so that the simple affine vertex algebraLk(sl2) is isomorphic toVk(sl2)/Ik. By abuse of notation, we use

the same symbolsX,Y,H for the generators ofLk(sl2). Let Nk(sl2) = Com(H,Lk(sl2)) denote the simple

parafermion algebra ofsl2. We will prove the following.

Theorem 6.1. For all k 6= 0, every irreducibleNk(sl2)-module appearing inLk(sl2) has the C1-cofiniteness

property according to Miyamoto’s definition.

In the case wherek is a positive integer,Nk(sl2) is rational, so theC1-cofiniteness of the above modules

is already known. Therefore we will assume for the rest of this discussion thatk is not a positive integer.

SinceIn is generated by either :(Xn+1) : or (Yn+1) : for any positive integern, it follows that if k is not a

positive integer,Ik does not contain :(Xn) : or : (Yn) : for anyn.

Recall thatLk(sl2)
U(1) ∼= H⊗Nk(sl2) where theU(1) action is infinitesimally generated by the zero

mode of the fieldH. Since each irreducibleLk(sl2)
U(1)-moduleM appearing inLk(sl2) is isomorphic to

H⊗N whereN is an irreducibleNk(sl2)-module, it suffices to prove theC1-cofiniteness of the irreducible

modulesM.

Recall that for allk∈ C, Vk(sl2)
U(1) has a strong generating set

{H,U0,i = : X∂ iY : | i ≥ 0}.

For all k 6= 0 andi ≥ 4, there is a relation of weighti +2 for the form

U0,i = Pi(H,U0,0,U0,1,U0,2,U0,3),

wherePi is a normally ordered polynomial inH,U0,0,U0,1,U0,2,U0,3, and their derivatives. Therefore

Vk(sl2)
U(1) is strongly generated by{H,U0,0,U0,1,U0,2,U0,3} and hence is of typeW(1,2,3,4,5) for all

k 6= 0. Moreover, since the mapVk(sl2)
U(1) → Lk(sl2)

U(1) is surjective, the same strong generating set

works forLk(sl2)
U(1).

SinceU(1) is compact andLk(sl2) is simple, we have a decomposition

Lk(sl2) =
⊕

n∈Z
Ln⊗Mn,

whereLn is the irreducible, one-dimensionalU(1)-module indexed byn∈ Z and theMn’s are inequivalent,

irreducibleLk(sl2)
U(1)-modules. HereMn consists of elements whereH(0) acts by 2n. Since :(Xn) : 6= 0

and :(Yn) : 6= 0 in Lk(sl2), and these elements lie inMn andM−n and have minimal conformal weightn, it

follows thatMn andM−n are generated asLk(sl2)
U(1)-modules by :(Xn) : and :(Yn) :, respectively. Note

that we have a similar decomposition

Vk(sl2) =
⊕

n∈Z
Ln⊗ M̃n,

where theM̃n’s areVk(sl2)
U(1)-modules which are no longer irreducible whenVk(sl2) is not simple.

Recall that a moduleM for a vertex algebraV is calledC1-cofinite if M/C1(M) is finite-dimensional,

whereC1(M) is spanned by

{α(k)m| m∈M, k< 0, wt(α) > 0}.
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To prove theC1-cofiniteness property ofMn as aLk(sl2)
U(1)-module for alln, it suffices to prove theC1-

cofiniteness ofM±1. In fact, we shall prove a stronger statement:M̃±1 areC1-cofinite asVk(sl2)
U(1)-

modules. Since the map̃M±1 → M±1 is surjective and compatible with the actions ofVk(sl2)
U(1) and

Lk(sl2)
U(1), this implies theC1-cofiniteness ofM±1. We only prove theC1-cofiniteness ofM̃−1; the proof

for M̃1 is the same.

SinceVk(sl2) is freelygenerated byX,Y,H, it has a good increasing filtration

Vk(sl2)(0) ⊂ Vk(sl2)(1) ⊂ ·· · , Vk(sl2)(0) =
⋃

d≥0

Vk(sl2)(d),

whereVk(sl2)(d) is spanned by iterated Wick products ofX,Y,H and their derivatives, of length at mostd.

ThenM̃−1 inherits this filtration, and(M̃−1)(d) has a basis consisting of

: (∂ i1H) · · · (∂ ir H)(∂ j1X) · · ·(∂ jsX)(∂ k1Y) · · · (∂ ksY)(∂ ks+1Y) :, (6.1)

where

i1 ≥ ·· · ≥ ir ≥ 0, j1 ≥ ·· · ≥ js ≥ 0, k1 ≥ ·· · ≥ ks ≥ ks+1 ≥ 0, d ≥ r +2s+1.

In particular,(M̃−1)(1) has a basis

{∂ jY| j ≥ 0}.

Lemma 6.2. Anyω ∈ M̃−1 of weight m> 0 is equivalent to a scalar multiple of∂ m−1Y, modulo C1(M̃−1).

Proof. It suffices to assume thatω is a monomial of the form (6.1) withr + 2s> 0, which has filtration

degreer +2s+1. Let

ν = : (∂ i1H) · · ·(∂ ir H)(Ui1, j1) · · · (Uis, js)(∂
s+1Y) :, Ua,b = : ∂ aX∂ bY : .

and observe thatν has weightm and lies inC1(M̃−1), andω −ν has filtration degreer +2s. Therefore by

induction on filtration degree,ω is equivalent to an element of filtration degree one and weight m. The only

such element up to scalar multiples is∂ m−1Y. �

Now we are ready to prove Theorem 6.1. By the preceding lemma,is enough to prove that

∂ iY ∈C1(M̃−1),

for i sufficiently large. For this purpose, we compute

(U0,4)(0)(∂ iY) =
(
k+2/5

)
∂ i+5Y+ · · · ,

where the remaining terms are of the form

: (∂ rH)(∂ i+4−rY) :, 0≤ r ≤ i,

and hence lie inC1(M̃−1). Recall that for allk 6= 0, we have a relation

U0,4 = P4(H,U0,0,U0,1,U0,2,U0,3).

We claim that

P4(H,U0,0,U0,1,U0,2,U0,3)(0)(∂ iY) ∈C1(M̃−1).

To see this, letω be a term appearing inP4(H,U0,0,U0,1,U0,2,U0,3) of the form :α1 . . .αt : wheret > 1 and

eachα j is one of the fieldsH,U0,0,U0,1,U0,2,U0,3 or their derivatives. Thenω(0)(∂ iY) ∈C1(M̃−1) because

the zero mode of such an operator cannot consist of only annihilation operators (i.e., non-negative modes
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of α j ). If t = 1, thenω is a total derivative by weight considerations, soω(0)(∂ iY) = 0. It follows that for

all k 6=−2/5, ∂ iY ∈C1(M̃−1) for all i ≥ 5.

Finally, suppose thatk=−2/5. A similar computation shows that

(U0,5)(0)(∂ iY) =− 1
15

∂ i+6Y+ · · · ,

where the remaining terms are of the form

: (∂ rH)(∂ i+5−rY) :, 0≤ r ≤ i,

and hence lie inC1(M̃−1). The same argument using the relationU0,5 = P5(H,U0,0,U0,1,U0,2,U0,3) shows

that∂ iY ∈C1(M̃−1) for all i ≥ 6.

6.2. Bershadsky-Polyakov algebras.Let Wk denote the universal Bershadsky-Polyakov algebra which

is freely generated by fieldsJ,T,G± of weights 1,2, 3
2,

3
2, respectively, and whose OPE structure can be

found in [FS]. This algebra appeared originally in [Ber] [Pol], and it coincides with the Feigin-Semikhatov

algebraW(2)
3 [FS] as well as the minimalW-algebra ofWk(sl3, fmin) [KW2]. Let Ik ⊂ Wk denote the

maximal proper ideal graded by conformal weight, and letWk =Wk/Ik be the simple quotient.

The fieldJ generates a Heisenberg algebraH, and we define

C
k = Com(H,Wk), Ck = Com(H,Wk).

In [ACL] it was shown thatCk is of typeW(2,3,4,5,6,7) for all k except for{−1,− 3
2}, and since there is

a projectionCk → Ck, the generators ofCk descend to give strong generator forCk as well.

Theorem 6.3. For all k 6= −1,− 3
2, every irreducibleCk-module appearing inWk has the C1-cofiniteness

property according to Miyamoto’s definition.

The proof of this result is similar to the case of parafermionalgebras above. First, suppose thatk =

p/2−3 for p = 5,7,9, . . . ,. As shown in [ACL],Cp/2−3 is isomorphic to the simple, rationalW(slp−3)-

algebra with central chargec=− 3
p(p−4)2, andWp/2−3 is a simple current extension ofCp/2−3⊗VL where

VL is the lattice vertex algebra forL=
√

3p−9Z. From this result, it is immediate that Theorem 6.3 holds in

these cases, so from now on we assume thatk is not of this form. SinceIp/2−3 is generated by :(G+)p−2) :

for p= 5,7,9, . . . , it follows that if k 6= p/2−3, Ik does not contain :(G±)n : for anyn> 0.

Recall that(Wk)
U(1) ∼= H⊗Ck where theU(1) action is infinitesimally generated by the zero mode of

J. Since each irreducible(Wk)
U(1)-moduleM appearing inWk is isomorphic toH⊗N whereN is an

irreducibleCk-module, it suffices to prove theC1-cofiniteness of the irreducible modulesM.

By Theorem 5.3 of [ACL], for allk 6=−1,− 3
2, (Wk)U(1) has a strong generating set

{J,L,U0,i = : G+∂ iG− : | i ≥ 0}.

For all k 6=−1,− 3
2 andi ≥ 5, there is a relation of weighti +3 for the form

U0,i = Pi(J,L,U0,0,U0,1,U0,2,U0,3,U0,4),

wherePi is a normally ordered polynomial inJ,L,U0,0,U0,1,U0,2,U0,3,U0,4, and their derivatives. Therefore

(Wk)
U(1) is strongly generated by{J,L,U0,0,U0,1,U0,2,U0,3,U0,4} and hence is of typeW(1,2,3,4,5,6,7)

for all k 6=−1,− 3
2. Since the map(Wk)U(1) → (Wk)

U(1) is surjective, the same strong generating set works

for (Wk)
U(1).
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We have a decomposition

Wk =
⊕

n∈Z
Ln⊗Mn,

whereLn is the irreducible, one-dimensionalU(1)-module indexed byn∈ Z and theMn’s are inequivalent,

irreducible(Wk)
U(1)-modules. HereMn consists of elements whereJ(0) acts byn. This contains a unique

up to scalar elementωn of minimal weight3n
2 . Hereω0 = 1, ωn = (: G−)−n : for n< 0, andωn = (: G+)n :

for n> 0. It follows that soMn is generated as a(Wk)
U(1)-module byωn for all n.

As usual, to prove theC1-cofiniteness ofMn as a(Wk)
U(1)-module for alln, it suffices to prove theC1-

cofiniteness ofM±1. For this purpose, it is enough to prove thatM̃±1 areC1-cofinite as(Wk)U(1)-modules.

We only prove theC1-cofiniteness ofM̃−1; the proof forM̃1 is the same.

Recall from [ACL] thatWk has a weak filtration

(Wk)(0) ⊂ (Wk)(1) ⊂ ·· · , (Wk) =
⋃

d≥0

(Wk)(d),

where(Wk)(d) is spanned by iterated Wick products ofJ,L,G± and their derivatives, where at mostd of the

fieldsG± and their derivatives appear. ThenM̃−1 inherits this filtration, and(M̃−1)(d) has a basis consisting

of

: (∂ a1L) · · · (∂ ai L)(∂ b1J) · · · (∂ b j J)(∂ c1G+) · · · (∂ cr G+)(∂ d1G−) · · · (∂ dr+1G−) :, (6.2)

wherer ≥ 0 and 0≤ a1 ≤ ·· · ≤ ai , 0≤ b1 ≤ ·· · ≤ b j , 0≤ c1 ≤ ·· · ≤ cr , and 0≤ d1 ≤ ·· · ≤ dr+1.

Lemma 6.4. Any ω ∈ M̃−1 of weight m+ 3
2 > 0 is equivalent to a scalar multiple of∂ mG−, modulo

C1(M̃−1).

Proof. By the same argument as previous,ω is equivalent moduloC1(M̃−1) to a linear combination of

terms of the form

: (∂ a1L) · · · (∂ ai L)(∂ b1J) · · ·(∂ b j J)(∂ cG−) : .

All such terms except possibly∂ mG− clearly lie inC1(M̃−1). �

To prove Theorem 6.3, it is enough to show that

∂ iG− ∈C1(M̃−1),

for i sufficiently large. For this purpose, we compute

(U0,5)(0)(∂ iG−) =

(
k2+

2
21

k+
1
28

)
∂ i+7G−+ · · · ,

where the remaining terms lie inC1(M̃−1). Recall that for allk 6=−1,− 3
2, we have a relation

U0,5 = P5(J,L,U0,0,U0,1,U0,2,U0,3,U0,4).

We claim that

P5(J,L,U0,0,U0,1,U0,2,U0,3,U0,4)(0)(∂ iG−) ∈C1(M̃−1).

To see this, letω be a term appearing inP5(J,L,U0,0,U0,1,U0,2,U0,3,U0,4) of the form :α1 . . .αt : where

t > 1 and eachα j is one of the fieldsJ,L,U0,0,U0,1,U0,2,U0,3,U0,4 or their derivatives. Thenω(0)(∂ iG−) ∈
C1(M̃−1) because the zero mode of such an operator cannot consist of only annihilation operators. Ift = 1,

thenω is a total derivative by weight considerations, soω(0)(∂ iG−) = 0. It follows that ifk is not a root of

x2+ 2
21x+ 1

28, ∂ iG− ∈C1(M̃−1) for all i ≥ 7.
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Finally, suppose thatk is a root ofx2+ 2
21x+ 1

28. A similar computation shows that

(U0,6)(0)(∂ iG−) =

(
k2+

1
56

k+
3

112

)
∂ i+8G−+ · · · ,

where the remaining terms lie inC1(M̃−1). Sincek is not a root ofx2+ 1
56x+ 3

112, the same argument using

the relationU0,6 = P6(J,L,U0,0,U0,1,U0,2,U0,3,U0,4) shows that∂ iG− ∈C1(M̃−1) for all i ≥ 8.

APPENDIX A. A PROOF OFTHEOREM 3.1

Let V be a simple vertex operator algebra and letG be a finitely generated abelian group of semi-simple

automorphisms ofV. Assume thatV =
⊕

λ∈LVλ for some subgroupλ of Ĝ. Assume that we are working

with a category ofV0-modules that satisfies the conditions required to invoke the Huang, Lepowsky, Zhang’s

tensor category theory.

We denote the vertex operator map ofV by Y. Fix ani ∈ L. We shall prove thatV−i ⊠Vi
∼= V0. In other

words, we shall prove thatVi is a simple current. The proof we provide below is essentially the proof given

in [M2], [CaM].

We break the proof in several steps.

(1) Let us think ofY as aV-intertwining operator of type
(

V

VV

)
. We have already assumed thatV is a

simple VOA, i.e.,V is simple as aV-module. Using Proposition 11.9 of [DL], we see that for any

t1, t2 ∈ V, Y(t1,x)t2 6= 0. This implies that coefficients ofY(t1,x)t2 ast1 runs overV j andt2 runs over

Vk span a non-zeroV0-submodule ofV j+k. SinceV j+k is a simpleV0-module, we get that coefficients

of Y(t1,x)t2 for t1 ∈ V j andt2 ∈ Vk spanV j+k.

(2) Given generalizedV0-modulesA,B, we denote byY⊠

A,B the “universal” intertwining operator of type(
A⊠B

AB

)
furnished by the universal property of tensor products. IfV0 is a direct summand ofA, then we

assume thatY⊠

A,B is normalized so thatY⊠

A,B(v0,x)b=YB(v0,x)b for all v0 ∈ V0 andb∈ B, whereYB is

the module map for theV0-moduleB. Moreover, for finite direct sums,A=
⊕

Ai , we will assume that

Y
⊠

A,B

∣∣
Ai ,B

= Y
⊠

Ai ,B
.

(3) In what follows, we will often make the identificationV0⊠Vr
∼= Vr .

(4) Recall that we have fixed ani ∈ L. By [HLZ], we have the associativity of intertwining operators, and

hence, there exists a logarithmic intertwining operatorYr,s;i of type
(

Vs⊠Vi
Vr+s⊠Vi Vr

)
such that for complex

numbersx,y with |x|> |y|> |x− y|> 0,

〈w′,Y⊠

Vr+s,Vi
(Y(ur ,x− y)us,y)vi〉= 〈w′,Yr,s;i(ur ,x)Y

⊠

Vs,Vi
(us,y)vi〉, (A.1)

for anyur ∈ Vr ,us ∈ Vs andvi ∈ Vi , w′ ∈ (Vr+s⊠Vi)
′.

(5) Takingur = 1, we get:

〈w′,Y⊠

Vs,Vi
(us,y)vi〉= 〈w′,Y0,s;i(1,x)Y

⊠

Vs,Vi
(us,y)vi〉, (A.2)

combining with the observation that coefficients ofY
⊠

Vs,Vi
(ts,y)vi spanVs⊠Vi , we get that:

Y0,s;i(1,x)ve = ve (A.3)

for all ve ∈ Vs⊠ Vi . Now, using Jacobi identity we get thatY0,s+i(u0,x)ve, whereu0 ∈ V0 andve ∈
Vs⊠Vi equals the action ofu0 by theV0-module map.

(6) Takingus = 1 in (A.1), and identifyingV0⊠Vi with Vi , we get that:

〈w′,Yr,0;i(ur ,x)vi〉= 〈w′,Yr,0;i(ur ,x)Y
⊠

V0,Vi
(1,y)vi〉= 〈w′,Y⊠

Vr ,Vi
(Y(u1,x− y)1,y)vi〉
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= 〈w′,Y⊠

Vr ,Vi
(e(x−y)L−1u1,y)vi〉= 〈w′,Y⊠

Vr ,Vi
(u1,y+ x− y)vi〉,

where all the equalities hold for complex numbersx,y with |x|> |y|> |x−y|> 0. We may now choose

y= 2
3x, as this satisfies the required constraints, and deduce that

Yr,0;i(ur ,x)vi = Y
⊠

Vr ,Vi
(ur ,x)vi (A.4)

for all tr ∈ Vr andvi ∈ Vi .

(7) For complex numbers|x|> |y|> |z|> |x− z|> |y− z|> |x− y|> 0 we have that:

〈w′,Yr,s+t;i(ur ,x)Ys,t;i(us,y)Y
⊠

Vt ,Vi
(ut ,z)vi〉= 〈w′,Yr,s+t;i(ur ,x)Y

⊠

Vs⊠Vt ,Vi
(Y(us,y− z)ut ,z)vi〉

= 〈w′,Y⊠

Vr+s+t ,Vi
(Y(ur ,x− z)Y(us,y− z)ut ,z)vi〉

= 〈w′,Y⊠

Vr+s+t ,Vi
(Y(Y(ur ,x− y)us,y− z)ut ,z)vi〉

= 〈w′,Yr+s,t;i(Y(ur ,x− y)us,y)Y
⊠

Vt ,Vi
(ut ,z)vi〉.

Again, since coefficients ofY⊠

Vt ,Vi
spanVt ⊠Vi , we get that for allur ∈ Vr andus∈ Vs andve∈ Vt ⊠Vi ,

Yr,s+t;i(ur ,x)Ys,t;i(us,y)v
e = Yr+s,t;i(Y(ur ,x− y)us,z)v

e. (A.5)

(8) Now we considerV−i ⊠Vi . Since theY map for the vertex operator algebraV furnishes aV0-intertwining

operator of type
(

V0
V−i Vi

)
, by universal property of tensor products, there exists a morphism from

V−i ⊠ Vi to V0. Since the coefficients ofY(u−i ,x)ui for u−i ∈ V−i and ui ∈ Vi spanV0, V−i ⊠ Vi

in fact surjects ontoV0. Since the latter is simple, proving simplicity ofV−i ⊠ Vi will give us that

V−i ⊠Vi
∼= V0.

(9) LetB be a non-zeroV0 submodule ofV−i ⊠Vi (V−i ⊠Vi is non-zero since it surjects ontoV0) and let

E= Span{Coefficients ofYi,−i;i(ui ,x)b|ui ∈ Vi ,b∈ B}.

Since the type ofYi,−i;i is
(
V0⊠Vi∼=Vi
Vi V−i⊠Vi

)
, E can be regarded as aV0-submodule ofVi .

(10) E is in fact a non-zero submodule ofVi . Indeed, if it were 0, then, the left-hand side of (A.5) with

r = t =−i,s= i would be 0 and hence we would get thatY0,−i;i(Y(u−i ,x−y)ui,y)b is 0 for allu−i ∈V−i ,

ui ∈ Vi andb∈ B. However, in this case, coefficients ofY(u−i ,x− y)ui spanV0 andY0,−i;i(u0,x)b for

u0 ∈ V0 is equal toYB(u0,x)b whereYB is the module map for theV0-moduleB. Since the coefficients

of the module map span the entire module, we have a contradiction.

(11) Since 0( E⊂ Vi andVi is simple,E= Vi .

(12) UsingE= Vi and using equation (A.4),

Span{Coefficients ofY−i,0;i(v−i ,x)Yi,−i;i(vi ,y)b|v−i ∈ V−i ,vi ∈ Vi ,b∈ B}

= Span{Coefficients ofY−i,0;i(v−i ,x)ε |v−i ∈ V−i ,ε ∈ E}
= Span{Coefficients ofY−i,0;i(v−i ,x)vi |v−i ∈ V−i ,vi ∈ Vi}

= Span{Coefficients ofY⊠

V−i ,Vi
(v−i ,x)vi |v−i ∈ V−i ,vi ∈ Vi}

= V−i ⊠Vi

However, using the right-hand side of equation (A.5),

Span{Coefficients ofY−i,0;i(v−i ,x)Yi,−i;i(vi ,y)b|v−i ∈ V−i ,vi ∈ Vi ,b∈ B}

= Span{Coefficients ofY0,−i;i(Y(v−i ,x− y)vi,y)b|v−i ∈ V−i ,vi ∈ Vi ,b∈ B}
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= Span{Coefficients ofY0,−i;i(v0,x− y)b|v0 ∈ V0,b∈ B}

= Span{Coefficients ofYB(v0,x− y)b|v0 ∈ V0,b∈ B}

= B.

This shows thatV−i ⊠Vi = B for any non-zero submoduleB of V−i ⊠Vi . We conclude thatV−i ⊠Vi

is simple. Hence, it equalsV0.
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[Ad1] D. Adamović,Representations of the N= 2 superconformal vertex algebra, Int. Math. Res. Not. (1999), no. 2, 61–79.
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