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SCHUR-WEYL DUALITY FOR HEISENBERG COSETS

THOMAS CREUTZIG, SHASHANK KANADE, ANDREW R. LINSHAW, AND DA/ID RIDOUT

ABSTRACT. LetV be a simple vertex operator algebra containing a rahleisenberg vertex algebid and

let C = Com(H,V) be the coset oH in V. Assuming that the representation categories of interesvertex
tensor categories in the sense of Huang, Lepowsky and Zka&ghur-Weyl type duality for both simple and
indecomposable but reducible modules is proven. Familiegxiex algebra extensions &f are found and
every simpleC-module is shown to be contained in at least dmodule. A corollary of this is that iV is
rational andC;-cofinite and CFT-type, and Coffi,V) is a rational lattice vertex operator algebra, then so is
C. These results are illustrated with many examples andCtheofiniteness of certain interesting classes of
modules is established.

1. INTRODUCTION

Let V be a vertex operator algebtalf G is a subgroup of the automorphism group\af then the
invariantsVY form a vertex operator subalgebra called grerbifold of V. If W is any vertex operator
subalgebra oV, then theW-coset ofV is the commutan€ = Com(W, V). Both the orbifold and coset
constructions provide a way to construct new vertex opetgebras from known ones. Unfortunately,
few general results concerning the structure of the reguliertex operator subalgebras are known, but
it is believed that many nice properties \¢fare inherited by its orbifolds and cosets. We remark that
while most of the literature is primarily concerned with qaletely reducible representations of vertex
operator algebras, we are also interested in the logaiGtbasie in which the vertex operator algebra admits
indecomposable but reducible representations.

We begin by recalling some important results in the invariaeory of vertex operator algebras that are
connected to the questions that we address in this work.

1.1. From classical to vertex-algebraic invariant theory. It is valuable to view invariant-theoretic results
about vertex operator algebras as generalizations of #ssichl results, a la Howe and Weyl [Ho, We],
concerning Lie algebras and groups. For example, a wellvkn@sult of Dong, Li and Mason [DLM1]
amounts to a type of Schur-Weyl duality for orbifolds, stgtthat for a simple vertex operator algebta
and a compact subgro@of AutV (acting continuously and faithfully), the following decpuwsition holds
as ag x V9-module:
V=PAraV,. (1.1)
A

Here, the sum runs over all the sim@emodulesA and is multiplicity-free in the sense they 2V, if
A # 1. They moreover prove that thé, are simple modules for the orbifold vertex operator algabta
Similar results have also been obtained by Kac and Radul [K&§ Section 2.4).
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Invariant theory for the classical groups [We] can be useabtain generators and relations for orbifold
vertex operator algebra&’, provided thav is of free field type (meaning that the only field appearindni t
singular terms of the operator product expansions of tlagtgenerators is the identity field). Interestingly,
the relations can be used to show that these vertex opetgtdiras are strongly finitely generated and, in
many cases, explicit minimal strong generating sets carbtered [CL3, L2—-L6]. Questions concerning
cosets are usually more involved than their orbifold corpads. However, the notion of a deformable
family of vertex operator algebras [CL2] can sometimes lexlus reduce the identification of a minimal
strong generating set for a coset to a known orbifold protitama free field algebra [CL1].

It is of course desirable to understand the representatigory of coset vertex operator algebras. An
important first question to ask is if there is also a SchurMjge duality, as in the orbifold case. L¥tbe
a simple vertex operator algebra that is self-contragredied letA, B C V be vertex operator subalgebras
satisfying

A =Com(B,V) and B=ComA,V). (1.2)

Under the further assumption thatandB are both simple, self-contragredient, regular and of GfpEf

V=PMioN; (1.3)

as anA ® B-module, where eachl; is a simpleA-module and eacN; is a simpleB-module. Under further
conditions, Lin finds [Lin] that this decomposition is mplicity-free and the argument relies on knowing
that the representation categoriedadndB are both semisimple modular tensor categories.

We are aiming for similar results, but generalised to inel@gg&compositions of modules that are not
necessarily semisimple. Our setup is tNais a simple vertex operator algebra containing a Heisenberg
vertex operator subalgebka We then study the commutaGit= Com(H, V). For this, we assume thét
has a module catego® that is a vertex tensor category in the sense of Huang, Lepoavel Zhang [HLZ]
and that theC-modules obtained upon decomposM@s anH ® C-module belong t&’. In Section 2.1,
we summarize some known statements about vertex tensgocigtethat are relevant for our study. These
statements make it clear th@t-cofiniteness of modules is a key concept. In Section 6, wabésh the
C;-cofiniteness of Heisenberg coset modules in two familiesxafmples.

1.2. Rational parafermion vertex operator algebras. Heisenberg cosets of rational affine vertex oper-
ator algebras are usually called parafermion vertex opeedgiebras. They first appeared in the form of
the Z-algebras discovered by Lepowsky and Wilson in [LW1, LW2,2\WWW4], see also [LP]. In physics,
parafermions first appeared in the work of Fateev and Zancbi&dv [FZ] where they were given their
standard appellation. The relation between parafermioiex®perator algebras adalgebras was sub-
sequently clarified in [DL].

Parafermions are surely among the best understood codek wgrerator algebras and there has been
substantial recent progress towards establishing a ceenpieture of their properties. Key results include
Co-cofiniteness [ALY], see also [DLY, DW1], and rationality i), using previous results on strong gen-
erators [DLWY]. In principle, strong generators can nowodi® determined as in [CL1], where this was
detailed for the parafermions relatedsta. We remark tha€C,-cofiniteness also follows from a recent re-
sult of Miyamoto on orbifold vertex operator algebras [M4]hese powerful results also allow one, for
example, to compute fusion coefficients [DW2].

It has, for some time, been believed that if a simple, ratid@acofinite, self-contragredient vertex op-
erator algebra of CFT-type contains a lattice vertex opeatbalgebra (corresponding to an even positive-
definite lattice), then the corresponding coset vertex atperalgebra will also be rational. For example,
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this was recently shown using indirect methods for the nai®ershadsky-Polyakov vertex operator alge-
bras [ACL]. We prove this statement in general (see Theordi2)4

1.3. Results. Thiswork s, at least in part, a continuation of our previaaask on simple current extensions
of vertex operator algebras [CKL]. In this vein, we start npying some properties of simple currents
(Proposition 2.5), in particular that fusing with a simplement defines an autoequivalence of any suitable
category of modules. As further preparation, we also prote¢rem 3.1) that i¥/ is simple,G is an abelian
group ofV-automorphisms acting semisimply ¥nand

V= P Vi, (1.4)
AeLc§
thenV, is a simple current for every in £. The proof essentially amounts to adding details to a very
similar result of Miyamoto [M2, Sec. 6], [CaM].

1.3.1. Schur-Weyl dualityWe then prove a Schur-Weyl duality for Heisenberg cosets Com(H, V).
The set-up is as follows. L&t be a simple vertex operator algebiaC V be a Heisenberg vertex operator
subalgebra that acts semisimply\énC = Cg be the commutant df in V and{ be the lattice of Heisenberg
weights ofV. HereV is regarded as ad-module. ThetWwW = Com(C, V) is an extension dfl by an abelian
intertwining algebra. Of course, it might happen that theeesion is trivial, that isH = W. Eq. (1.4)
translates into

V=PF,eC,. (1.5)
Ael
Let N be the sublattice of all € £ for whichC, = C. Theorem 3.5 now says that the abelian gréyfN

controls the decomposition & as aw ® C-module:
V= EB W[,\]@C[,\]. (1.6)
AleL/N

Moreover, theCjy}, A € £L/N are simple currents faf whose fusion products include
CipBe Cy = Cprvp

This decomposition is multiplicity free in the sense tlgt % Cyy) if [A] # [u]. The vertex operator algebra
W= EPF,
AeN
is a simple current extension bfand thew, |, [A] € £/N, are simple currents fol with fusion products
Wi Bw Wiy =Wy

We note that Li has proven [Li] that@ C;,) is a generalized vertex algebra.
AeL/N
The main Schur-Weyl duality result is then a similar decosityan for vertex operator algebra modules,

see Theorem 3.8. For this &t H, C, W, £ andN be as above and |&1 be aV-module upon whicli acts
semisimply. ThenlM decomposes as
M= @ My=EP FueDu= Wy @Dy, (1.7)
HeM HeM [H]eM/N
whereM is a union of{-orbits and thé, = D) areC-modules satisfying, Xc Dy =D, ., forallA € £
andp € M. Next, in Theorem 3.8 we show that each of thg have the same decomposition structure as
that of M. One example of this is if 8+ M’ — M — M” — 0 is exact, withM’ andM” non-zero, thetM’
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andM” decompose as in (1.7):

M=M= F,eD,, M=M= F,xD]. (1.8)
ueM ueM ueM ueM
Moreover, 0— D), — Dy, — D}, — 0O is also exact, for ajls € M.

However, in general, multiplicity-freeness does not hédd,example, the parafermion cosetlof(s(;)
yields an example of a coset module that appears twice ingherdposition of a simple,(slz)-module.
We give three criteria to guarantee that a given decompaosgimultiplicity-free. One based on characters,
one based on the signature of the latticeand one based on open Hopf link invariants following [CG1,
CG2].

1.3.2. Extensions of vertex operator algebrdset € be a sublattice of. We would like to know if
Ce = @ C, (1.9)
Acé
carries the structure of a vertex operator algebra extgrttat ofC = Cy. Theorem 4.1, which itself follows
immediately from [Li], implies that this is the case provitkhat

We = P W, (1.10)
Aeé

is a vertex operator algebra.dfis a rank one subgroup, then this conclusion also followsffGKL].

1.3.3. Lifting Modules. Let D be aC-module. We would like to know if it lifts to & ¢ -module and also if
there exists &l-moduleFg such thafg © D lifts to aV-module.
This question is decided by the monodromy (composition afdings)

Mc, o : Cy D — C, K D. (1.11)

We have (Theorem 4.3): Ldd be a generalize€-module that appears as a subquotient of the fusion
product of some finite collection of simp@&modules. Letl’ be the dual lattice of and letU = £ ®7z R.
Then, there exista € U such that
Mc, .0 = e 2™ 1de, mp (1.12)

andFg ® D lifts to aV-module if and only ifg € a + £'. Moreover, the lifted module ¥ Xy c (FB ® D).
Note that the lifting problem when all involved vertex operaalgebras are regular was treated in [KrM].

Further,D lifts to a C¢-module if and only ifa is in a certain lattice associateddqsee Corollary 4.4)
and everyC¢-module is a quotient of a lifted module (this follows essaiyt from [Lam]). The lifted
module is therC¢ K¢ D.

1.3.4. Rationality. Miyamoto [M4] has proven that-is C,-cofinite provided/V is a lattice vertex operator
algebra of a positive definite even lattice and providad C,-cofinite. Together with our ability of control-
ling modules that lift tovV-modules and exactness of fusion with simple currents thigies a rationality
theorem (Theorem 4.12):

LetV be simple, rationalz,-cofinite of CFT-type. Then, every grading-restricted gatizedC module
is completely reducible.

Especially, we thus have an alternative proof of the ratipnaf the parafermion cosets [DR], [CaM] as
well as of the Heisenberg cosets of the rational Bershaésityakov algebras [ACL].
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1.3.5. Examples.We illustrate our results with various examples, both raloand non-rational ones,
though our main interest are applications to vertex opeitgebras of logarithmic conformal field the-
ory, that is especially to indecomposable but reducibleutesd Schur-Weyl duality is exemplified in the
well-known rational example df(slz) (Example 1) and then in much detail in the casé of 3(sl2) (Ex-
ample 2). We especially explain how Schur-Wey! duality vediide the projective covers of simple modules.
Extensions of the Heisenberg cosets(ig) for rational and non-zeroare discussed in Example 3. Exam-
ple 4 then deals with the relation via Heisenberg cosets ridwa archetypical logarithmic vertex operator
algebras, most notably tHé€2)-singlet algebra and(gl(1]1)). Especially we give the decomposition of
the projective indecomposable modulesvigfgl(1|1)) in terms of projectiveH ® H ® 1(2)-modules. The
triplet algebraN (2) is then an example of an extended vertex operator algelris acofinite. The lifting

of modules is illustrated in Example 5 for the modules oflthe 2 super Virasoro algebra. Finally, we use
the opportunity to prove thdt_;(sl(m|n)) appears as a Heisenberg coset of appropfgtandbc-vertex
operator algebras. This generalizes the c¢ase0 of [AP]. Also the casen= 2 andn = 0 is exceptional
and identified with a rectangular W-algebrasty.

1.3.6. On G-cofiniteness Our results rely on the applicability of the vertex tensardty of [HLZ]. Our
belief is that the key criterion for this applicability isetlC;-cofiniteness of the modules with finite com-
position length, see also [CMR, Sec. 6]. In Section 6, we @@¥ewC;-cofiniteness results for modules
of Heisenberg cosets of the affine vertex operator algelirgpe sl, as well as those of the Bershadsky-
Polyakov algebras.

1.3.7. Outlook on fusion.The main concern of this work is the relationship betweenntioelules of the
Heisenberg coset vertex operator algebead those of its parent algebva A valid question is then if there
is also a clear relation between the fusion product ofiimodules and the correspondiigmodules. This
guestion is work in progress and here we announce that ongroaa that the induction functor is a tensor
functor under appropriate assumptions on the module catd@iKM]. This rigorously establishes the
connection between fusion and extended algebras that kagibeposed in the physics literature [RW2].

1.4. Application: Towards new C,-cofinite logarithmic vertex operator algebras. Presently, there are
very few known examples df,-cofinite non-rational vertex operator algebras; theséudethe triplet
algebras [AM2, TW1, TWZ2] and their close relatives [Ab]. Inder to gain more experience with such
logarithmicC,-cofinite vertex operator algebras, new examples are ne@dedmain application we have
in mind for the work reported here is the construction of neamaples of this type.

The idea is a two-step process illustrated as follows:

H-coset extension
\% C Ce.

A series of examples that confirms this idea were explorecCRRVY], see also Example 3. There, the
I(p) singlet algebras of Kausch [Ka] were (conjecturally) ob¢ai as Heisenberg cosets of the Feigin-
Semikhatov algebras [FS], see also [Gen]. The extensiohdrabove process is then an infinite order
simple current extension and the results [CM1, RW1] are #&t bnderstoo@,-cofinite logarithmic vertex
operator algebras, th&(p) triplet algebras.

New examples may be obtained by takivigo be the simple affine vertex operator algebra associated
to the simple Lie algebrg at admissible, but negative, ledehndH to be the Heisenberg vertex operator
subalgebra generated by the affine fields associated to ttenGabalgebra af. Here,J is a subgroup of
G of maximal rank. The module categories of such admissibvigl iEfine vertex operator algebras remain
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quite mysterious despite strong results concerning cagegdKW1, Arl]. Beyond category’, detailed
results are currently only known far= sl; [AM1, Ga, CR3, CR5, RW3,R1-R3] ang= sl3 [AFR]. A first
feasible task here would be to compute the characters of oas#ules appearing in the decomposition of
modules in&. We expect the appearance of Kostant false theta functiok®2] as they are the natural
generalization of ordinary false theta functions that @ppe the case of the admissible level parafermion
coset ofLg(sl,) [ACR].

In [ACR], we will study Ce wheng = sl; andk is negative and admissible. Under the assumption that
the tensor theory of Huang-Lepowsky-Zhang applie§ tave can prove that there are only finitely many
inequivalent simpleCe-modules. It is thus natural to conjecture ti@at is C,-cofinite. A consequence
of Cy-cofiniteness is modularity of characters (supplementeddgudotrace functions) [M1]. In [ACR],
we can also demonstrate this modularity of characters fpdasdotraces) for all modules that are lifts of
C-modules. We will prove th€,-cofiniteness of ¢, for various choice o in subsequent works.

A third family of examples that fit this idea concern simplenimal W-algebras in the sense of Kac
and Wakimoto [KW2]. These are quantum Hamiltonian redundtitihat are strongly generated by fields in
conformal dimension one and 3 together with the Virasoro field. For certain levels, theéalgebras
have a one-dimensional associated variety and they coateational affine vertex operator subalgebra.
The Heisenberg coset of the coset of the minikvahlgebra by the rational affine vertex operator algebra
thus seems to be another candidate for @gweofinite algebras as infinite order simple current extarsio
These cosets are explored in [ACKL].

1.5. Organization. We start with a background section. There we review the xadasor theory of
Huang, Lepowsky and Zhang and especially discuss it in the aBthe Heisenberg vertex operator algebra.
Next, we prove various properties of simple currents and tfiscuss vertex operator algebra orbifolds
following Kac and Radul. Section 3 is then on Schur-Weyl dyaBection 4 is concerned with extended
algebras, lifting of modules and as a special applicationgs our rationality theorem. in Section 5 we give
a short proof that _1(sl(m/n)) is a Heisenberg coset of appropriftgandbc-vertex operator algebras. In
Section 6 we prov€;-cofiniteness of modules appearing in Heisenberg coseteshadsky-Polyakov
algebras andly(sly).

1.6. Acknowledgments. T.C. and S.K. would like to thank Yi-Zhi Huang and Robert MeRar helpful
discussions regarding vertex tensor categories, [HLA]. @&lso thanks Antun Milas for discussions on the
applicability of the theory of vertex tensor categories.

2. BACKGROUND

In this section, we give a brief exposition of the results afaHg, Lepowsky and Zhang regarding the
vertex tensor categories that we shall use. We mention tbe chHeisenberg vertex operator algebras
separately in detail. Then, we present our new results daggproperties of simple currents under fusion.
After that, we review a useful result of Kac and Radul on tingpdicity of orbifold models.

2.1. Conditions and assumptions regarding the theory of Huang-epowsky-Zhang. We begin with a
quick glossary of the terminology that we shall use.

e By ageneralizednodule of a vertex operator algebra, we shall mean a modatestyraded by gener-
alized eigenvalues dfp. A generalized module need not satisfy any of the otherictistns mentioned
below regarding grading. Fere C and a generalized modul¥/, we letW; denote the generalized
Lo-eigenspace with generalized eigenvaiue
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¢ Ageneralized modulgV is calledlower truncatedf W, = 0 whenever the real part ofis sufficiently
negative.

e A generalized modul®V is calledgrading-restrictedf it is lower truncated and if, moreover, for ail
dlm(W[n]) < 00,
e A generalized modul®V is calledstrongly gradedf dim(W/y) < « and, for eacm € C, W,y =0

for all sufficiently negative integefls This notion is slightly more general than that of being gnge
restricted.

¢ In the definitions above, we shall replace the qualifier “galiwed” with “ordinary” if the module is
graded by eigenvalues bf as opposed to generalized eigenvalues.

e Henceforth, by “module”, without qualifiers, we shall meagrading-restricted generalized module. For
convenience in the applications to follow, we shall alsaassthat every vertex operator algebra module
is of at most countable dimension. This implies, of courbat the dimension of all vertex operator
algebras will also be at most countable.

o We will sometimes need broader analogues of the conceptgeahbdierein the restrictions pertain to
doubly-homogeneous spaces with respect to Heisenbergraedes and.g. The actual statements in
[HLZ] pertain to such broader situations. However, the teets in [Hu3], that guarantee that [HLZ]
may be applied in specific scenarios, assume the definiti@swe have recalled above. We expect that
the theorems and concepts in [Hu3] may be generalized tortdaslbr setting we require.

Recall the notion [HLZ, Def. 3.10] of dogarithmic) intertwining operatoeamong a triple of modules.
When the formal variable in a logarithmic intertwining optar is carefully specialized to a fixeds C*,
one gets the notion of B(z)-intertwining map [HLZ, Def. 4.2]. These maps form the backbone of the
logarithmic tensor category theory developed in [HLZ]. fieheéensor products (fusion products) of modules
are defined via certain univers(z)-intertwining mapsxp, and the monoidal structure on the module
category is obtained by fixinge C*, typically chosen to be = 1 for conveniencé.We remark that the
productsXlp,), for different values of, together form a structure richer than that of a braided ritaio
category, calledertex tensor categoryThis richer structure is exploited in the proofs of many artant
theorems, see [HKL] for some examples.

For convenience, and especially with a view towards the fpobd’roposition 3.3 below, we give a
definition of the fusion product of two modules, equivalenthat of [HLZ], using intertwining operators
instead of intertwining maps.

Definition 2.1. Given module$V; andW,, thefusion productV; X W5 is the pair(W1 X W,,Y¥), where
W; X W5 is a module and/® is an intertwining operator of typ V\\,’\}?V\\’/\f
universal property: Given any other “test modui&”and an intertwining operatéy of type (Wl"’wz), there

exists auniquemorphismn : W1XW, — W such thatj = n o Y&.

), that satisfies the following

Note that the universal intertwining operatgi¥ will often be clear from the context and hence we shall
often refer to the fusion product by its underlying module.

Now, letV be a vertex operator algebra and#be a category of generaliz&dmodules that satisfies
the following properties:

(1) ¥ is afull abelian subcategory of the category of all strorggigded generalized-modules.

2\We mention that the same notation is generally used to démokethe fusion product operation and the univeRa)-intertwining
map corresponding to said fusion product.
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(2) ¢ is closed under taking contragredientduals andP(lzg-tensor produdkp, (recall [HLZ, Def. 4.15]).
(3) Vs itself an object off’.

(4) For each objectV of ¥, the (generalized)o-eigenvalues are real and the size of the Jordan blocks of
Lo is bounded above (the bound may depent\n

(5) Assumption 12.2 of [HLZ] holds.

Then,% is a vertex tensor category in the sense of Huang-Lepowsky [FThm. 12.15]. In particular, it

is an additive braided monoidal category. A precise fortiateof (5) may be found in [HLZ]. In essence,
this assumption guarantees the convergence of producitesatks of intertwining operators in a specific
class of multivalued analytic functions. It, moreover, gardees that products of intertwining operators can
be written as iterates and vice versa.

Theorem 2.2( [Hu3]). LetV be a vertex operator algebra satisfying the following cdiodis:

e V is C¥9-cofinite, meaning that the space spanned by
{Resz 'Y(u,2)v|u,v € Vjy withn>0} UL_1V
has finite codimension .

e There exists a positive integer N that bounds the differebetveen the real parts of the lowest conformal
weights of the simpl¥-modules and is such that the N-th Zhu algebgg¥A) (see [DLM3)) is finite-
dimensional.

e Every simpléev-module isR-graded and G-cofinite.

Then, the category of grading-restricted generalized neslofV satisfies the condition&l)—(5) given
above, hence is a vertex tensor category.

If V is Cy-cofinite, has no states of negative conformal weight, aagpace of conformal weight O states is
spanned by vacuum, then these conditions are satisfied jhaB$o the theory of vertex tensor categories
may be applied to the grading-restricted generalizedodules.

As is amply clear from Theorem 2.2, [M3] and [HLZ, Rem. 12} cofiniteness already takes us a long
way towards establishing that a given category ahodules is a vertex tensor category. Our hope is that, in
the future C;-cofiniteness will be, along with other minor conditionsdsas conditions on the eigenvalues
and Jordan blocks dfp), essentially enough to invoke the theory developed by iguaepowsky and
Zhang. With this hope in mind, we shall prove several uséfutofiniteness results in Section 6.

We would also like to remark that there are still many examplevertex operator algebras, some quite
fundamental, which do not meet the known conditions thatajutae the applicability of the vertex tensor
theory of [HLZ]. It is an important problem to analyse the mtalcategories of these examples and bring
them “into the fold”, as it were. Not only will this make theetbry more wide-reaching, but we expect
that accommodating these new examples will lead to furthesial insights into the true nature of vertex
operator algebra module categories.

2.2. Vertex tensor categories for the Heisenberg algebrafFor Heisenberg vertex operator algebras, there
exist simple modules with non-real conformal weights ahdréfore, one can not invoke Theorem 2.2. In
this section, we shall deal with general Heisenberg verpmeator algebras, bypassing Theorem 2.2 and
instead relying (mostly) on the results in [DL]. For relatidcussions, including self-extensions of simple
modules (which are not relevant for our purposes), see [MIRCRu].
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We shall verify that a certain semi-simple categ@iy of modules with real conformal weights (see
(4) below) is closed under fusion and satisfies the asseityatequirements for intertwining operators, by
invoking results in [DL]. Once this is done, it is straightfieard to verify thatéy satisfies the assumptions
for being vertex tensor category as in [HLZ, Sec. 12].

Let h be a finite-dimensional abelian Lie algebra o@requipped with a symmetric non-degenerate
bilinear form (-,-). We shall identifyh and its dualh* via this form. As in [LL, Ch. €], leth denote
the Heisenberg Lie algebra ahtithe corresponding Heisenberg vertex operator algebraeyed 1, for
convenience). Given € b, we denote the (simple) Fock moduletef with highest weighA € b, by F) .

It is known (see [LW2]), as an algebraic analogue of the StmreNeumann theorem, that these simple
Fock modules exhaust the isomorphism classes of the sifypt@dules. Lets” be the semisimple abelian
category ofH modules generated by these simplenodules and letr be the full subcategory generated
by the Fock modules with real highest weights.

Theorem 2.3. The subcategorgk can be given the structure of a vertex tensor category.

Proof. The proof splits into the following steps. L&t L, v € h = bh*.

(1) Using [DL, Eq. (12.10)], the fusion coeﬁicier@p;"’Fv) is zero if W does not havé ., as a direct
summand.

(2) Proceeding exactly as in [DL, Lem. 12.6—Prop. 12.8], eethat the fusion coefficiet(uﬁﬁ*F‘;) is either
Oorl.

(3) LetL be the lattice spanned yandv. One can check that the (generalised) lattice vertex operat
algebraV; satisfies the Jacobi identity given in [DL, Thm. 5.1], eveough £ is not necessarily
rational. This implies that the vertex mapof V furnishes explicit (non-zero) intertwining operators
of type (EL”F‘;) thereby implying that the fusion coeﬁicie(ﬁ:ﬁ:) is always 1.

(4) We conclude that’ is closed undeKp, (recall [HLZ, Def. 4.15]). In general, iV is a subgroup of
h, regarded as an additive abelian group, arid’ifs the semi-simple category generated by the Fock
modules with highest weights M(, then%” is closed undeKp, . In particular, the subcatego® is
closed undeKp ;).

(5) Givenpy,...,Hj € bg, let £ be the lattice that they span. Thén; again satisfies the Jacobi identity
[DL, Thm. 5.1] and the duality results of [DL, Ch. 7] also gadhgh. As a consequence, the expected
convergence and associativity properties of intertwirdpgrators among Fock modulesdy hold.

(6) Since the conformal weights of all modulesdh are real, the associativity of the intertwining operators
yields a natural associativity isomorphism &g [HLZ].

(7) Finally, one can proceed as in [HLZ, Sec. 12] to verify thmaining properties satisfied by the braid-
ing and associativity isomorphisms. Thi#g; forms a vertex tensor category in the sense of Huang-
Lepowsky and, in particular, is a braided tensor category. O

2.3. Simple Currents. An important concept in the theory of vertex operator algslis the simple current
extension, wherein a given algebvais embedded in a larger oW that is constructed from certaivt
modules called simple currents. The utility of this constien is that, unlike general embeddings, the
representation theories WfandW are very closely related.

Definition 2.4. A simple current) of a vertex operator algebi is aV-module that possesses a fusion
inverse:J XJ 1V J~ix ]
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Simple currents and simple current extensions were intredby Schellekens and Yankielowicz in [SY].
We note that more general definitions of a simple currentesée [DLM2] for example, but that the one
adopted above will suffice for the vertex operator algelitaswe treat below. Pertinent examples of simple
currents are the Heisenberg Fock modigsliscussed in Section 2.2: the fusion inversé& pisF_,.

The great advantage of requiring invertibility is that eaghple currentl gives rise to a functat X —
which is an autoequivalence of almodule category that is closed undér The following proposition
gives some consequences of this; we provide proofs in oadprdpare for the similar, but more subtle
arguments of the next section. We remark that the isomanrphlasses of the simple currents naturally
form a group, sometimes called the Picard group of the cagego

Proposition 2.5. Let J be a simple current of a vertex operator algeifa

(1) If M is a non-zerd/-module, then) X M is non-zero.

(2) If M is an indecomposabl-module, then X M is indecomposable.

(3) If M is a simpleV-module, thed X M is simple. In particular] is simple ifV is.
(4) The covariant functod X — is exact (hence, so is X J).

(5) If M has a composition series with composition factbrsl < i < n, thenJX M has a composition
series with composition factosdXl S;, 1 <i <n.

(6) If M has a radical or socle, then so do¢& M. Moreover, the latter radical or socle is then given by
JXradM = radJX M) or JX socM =2 sodJ X M).

(7) If M has aradical or socle series, then so ddé&$M. In particular, the corresponding Loewy diagrams
of JIX M are obtained by replacing each composition facdpof M by JX ;.

Proof. If JIM =0, then 0= J 1R JXM = VKM = M. Thus, (1) follows:
M #£0 = JXIM £ 0. (2.1)

Similarly, if JRM = M @ M”, thenM = J7IRIJKM = (J7IKM) @ (J"1XM”). In other wordsM
indecomposable implies thai M is indecomposable, which is (2).
Suppose now tha#l is simple, but thai XI M has a proper submodulé'. Then,

0—M—IJKXM—M —0 (2.2)
is exact, fotM” = (JXI M) /M’ # 0. But, fusion is right-exact [HLZ, Prop. 4.26], so
JIIRM — M — JI’RM —0 (2.3)

is exact. HoweverM” # 0 implies that)~1 X M” is a non-zero quotient d¥l, by (1), so we must have
J7IRM” =2 M, asM is simple. Fusing withl now givesJX M = M”, so we conclude tha#’ = 0 and that
JXIM is simple. The simplicity ofl = JX V now follows from that oV, completing the proof of (3).

To prove (4), note that applying right-exactness to the tsexact sequence & M’ — M — M” — 0
results in M 1=M

N = TRM) ket (2.4)

where f is the induced map frordX M’ to J &I M that might not be an inclusion. Fusing with?® and
applying (2.4), we arrive at

M JXM M
— oyl o (2.5)
M’ (JXIM") /kerf 1 I M’ ’

(J X kerf )/kerg
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whereg: J71X ((J&M')/kerf) — M might not be an inclusion. Thus,

J1pg JEM M’
M/ kerf _ (J-'Xkerf)/kerh 2.6)
o kerg o kerg ’ '

whereh: J=1X kerf — M’ might not be an inclusion. We conclude that et 0 and keh = J=* K kerf.
But, both require that

JXM o JEM
kerf = JRM = kerf

f: JXM’ — JX M is therefore an inclusion, hend& — is exact.

Suppose now that & Mg C M1 C --- C Mp_1 C My = M is a composition series fdvl, so that each
Si = Mi/M;_1 is simple. By (4), applyind X — to each exact sequencefM;_; — M; — S; — 0 gives an-
other exact sequence® JX M;_1 — JXM; — JXS; — 0. MoreoverJX S; is simple, by (3). Assembling
all of these exact sequences gives (5).

For (6), first recall that rai! is the intersection of the maximal proper submoduldg aind thatvi; c M
is maximal proper if and only iM/M; is simple. In this case, (3) and (4) now imply thd® (M/M;) is
simple and isomorphic to)X M) /(JX M;), whencel X M; is maximal proper in X M. Applying J=1 X —
gives the converse. Second, given a collechbric M, (4) also implies that X (NjM;) is a submodule of
eachJ X M, hence ofj(JX M;). But now,Ni(JX M;) = JX J 1K (mi (X l\/Ii)) C JX (NiM;), hence we
havelX (NM;) 2 N (JX M;). These two conclusions together gl radM = rad JX M). A similar, but
easier, argument establishEd socM 2 sod JX M).

Finally, (7) follows by combining (6) with slight generadisons of the arguments used to prove (5)J

M~ 1R

= kerf =0. (2.7)

This proposition has a simple summary: fusing with a simplerent preserves module structure. We
remark, obviously, that a simple currehteed not be simple if the vertex operator algelia not simple.

2.4. Orbifold modules. Here, we review a result of Kac and Radul [KR] on the simpli@f orbifold
modules. For a very similar result see [DLM1].

Let A be an associative algebra, for example the mode algebra eftexvoperator algebra, and gt
be a subgroup of AW acting semisimply orA. We consideA-modulesM which admit a semisimple
G-action that is compatible with thg-action onA and which decompose as a countable direct sum of
finite-dimensional simpl§-modules. This compatibility means that

g(am) = (ga)(gm), forallge §,aeVandme M. (2.8)

If we now defineA to be the space @-invariantsa € A, soga= afor all g € G, then the actions of each
g € § and eacla € Ap commute on every such moduié
Choose amM satisfying (2.8) and lelil be a simpleG-module. Then, we may define t§emodule

My =) {NiCM:N;j=N}. (2.9)

As the action ofA; commutes with that of;, everya € Ag maps a giverl\; to someN; or 0, by Schur’s
lemma. ThusMy is anAg-module.
If we choose a one-dimensional subsp&te N, then Schur’s lemma picks out a one-dimensional
subspac€; C N;, for eachi. Then, eache Ag maps eaclf to someC;j or to 0, hence
MN = Z G (2.10)

Ni=N
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is anAg-module. But, becaudd; =~ N = N ® Cj, we may write
My ) N®Ci=NoMY (2.11)
N;i=N

as aC9 ® Ap-module. The semisimplicity d¥1, as ag-module, now gives us the decomposition

M=@PMy=PHNoM, (2.12)
] ]

again as £ 3 ® Ap-module. Here|N] denotes the isomorphism class of the sinpimoduleN.
The result of Kac and Radul gives conditions under whichAenodulesMN, appearing in (2.12), are
guaranteed to be simple.

Theorem 2.6( [KR, Thm. 1.1 and Rem. 1.1])With the above setup, the (non-zekj appearing in(2.12)
will be simpleAg-modules provided tha¥l is a simpleA-module.

3. SCHUR-WEYL DUALITY

In this section, we state and prove results concerning tberdposition of a vertex operator algebra and
its modules into modules over a Heisenberg vertex operatmlgebra and its commutant. We regard this
decomposition as a vertex-algebraic analogue of the wellvkrSchur-Weyl duality familiar for symmetric
groups and general linear Lie algebras. These results &@nead by deducing sufficient conditions for
the decompositions, and their close relations, to be niidgitiyp-free. Finally, we illustrate our results with
several carefully chosen examples.

3.1. Heisenberg cosetsLet G be a finitely generated abelian subgroup of the automorpisup of a
simple vertex operator algeb¥a We assume th& gradesV, meaning that the actions of these automor-
phisms may be simultaneously diagonalised, hencéfligicomposes into a direct sum$imodules:

V=@ V,. (3.1)

Here, theA are elements of the (abelian) dual gr(ﬁxpf inequivalent (complex, not necessarily unitary)
one-dimensional representations$frecall that addition is tensor product and negation is remredient
dual),V, denotes the simultaneous eigenspace upon whichgadhacts as multiplication by (g) € C,
andZ is the subset of € G for which V), # 0. Note that the cardinality of is at most countable.

The action ofV on itself restricts to an action of eatty on eachv,. ForA = u =0, where 0 denotes
the trivial G-module, this implies that/y is a vertex operator subalgebra\gffor A = 0, this implies that
eachV, is aVg-module. From the simplicity 0¥, it now easily follows thag is a subgroup of: closure
under addition follows from annihilating ideals being taM[LL, Cor. 4.5.15] and closure under negation
follows similarly, see [LX, Prop. 3.6].

Applying Theorem 2.6, wittM =V andA being the mode algebra ¥f we can now improve upon (3.1).
Indeed, in this setting, (2.12) becomes

V= @(C)\ ®Vj, (3.2)
Ael
whereC, denotes the one-dimensional module upon wigeh§ acts as multiplication by (g), and we

learn that the/, are simple a¥p-modules. In particulalyy is a simple vertex operator algebra.

If we assume thaV/, satisfies the conditions required to invoke the tensor cayetheory of Huang,
Lepowsky and Zhang (Section 2.1), then more is true. As Miytanmas shown, th¥/, are then simple
currents foVg see [CaM, M2]. It should be noted that the proofs in [CaM, M&ume that the group of
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automorphisms under consideration is finite, however, tbefvorks more generally under the assumption
that tensor category theory for the fixed-point algebra camisoked. For completeness, we include an
exposition of their proof in our slightly more general sggtin Appendix A.

Theorem 3.1( [M2, Sec. 6]) Assume the above setup and thigt= V9 satisfies conditions sufficient to
invoke Huang, Lepowsky and Zhang’s tensor category thémrgxample those of Theorem 2.2. Then, the
V) are simple currents foWo with V), Xy, V,, =V, , forall A, u € £.

Let us now restrict to vertex operator algebyvathat contain a Heisenberg vertex operator subalgebra
generated by fieldsh'(z),i=1,...,r, of conformal weight 1. We will assume throughout that thiomcof
H onV is semisimpléand that the eigenvalues of the zero moh{gs =1,...,r,are all real. LeC denote
the commutant vertex operator algebradoh V and let§ = Z' be the lattice generated by th'g EachV,
of the G-decomposition (3.1) is a module fbirsince the fields off commute with the zero modes §f As
G acts semisimply oV, and the only simpléd-module Withhb-eigenvalues}\ = (AL,...,A") is the Fock
moduleF,, we must have the followingl ® C-module decomposition:

V) =F,®C,, forallA € £. 3.3)

In this setting, we may také to be the lattice of alh € R" for whichV, # 0. Moreover, theC-moduleC,
is simple becaus¥, andF, are. In particular, the commuta@t= Cg is a simple vertex operator algebra.
We summarise this as follows.

Proposition 3.2. LetV be a simple vertex operator algebra with a Heisenberg vermrator subalgebra
H that acts semisimply ov. Then, the coset vertex operator algeldra= Com(H, V) is likewise simple.

From here on, we make the following natural assumption:

We assume that we are working with categories of (genedjligg- and C-modules for
which the tensor category theory of Huang, Lepowsky and glieihZ] may be invoked.

Of course, we have confirmed in Section 2.2 that this theory beainvoked for semisimplél-modules

with real weights. In general, we would like to apply our riéstio vertex operator algebras for which

we are not currently able to verify this assumption. Sudbsthations should therefore be regarded as

conjectural. However, we view the results in these cases@sgsevidence that the conditions required to

invoke Huang-Lepowsky-Zhang are, in fact, significantlyaker than those that were given in Section 2.1.
Given now the fusion ruleB) Xy F, = F) ., andV, Ky, V, =V, ,, which imply that

(F)\ ®C)\)|EV0 (FN®CN) gF)\+“®C)\+u7 (3.4)

one is naturally led to suppose that Xc C, = C, ;. Proving this, however, is a little subtle because we
are not assuming that the corresponding representatiegaéts are semisimple. We therefore present a
technical result that we shall use to confirm this suppasiéiod other similar assertions. We remark that
this result can be greatly strengthened when one of thexvepierator algebras involved is of Heisenberg

or lattice type, or when the vertex operator algebras irekre rational (see [Lin]).

Proposition 3.3. Let A andB be vertex operator algebras and l&t andB;, for i = 1,2, 3, be A-modules
andB-modules, respectively. Suppose that

((A1®B1) Kask (A2®B2), Ynus) = (A3 ® Bs, Ynsp). (3.5)

3Examples on which a Heisenberg vertex operator subalgei®a ot act semisimply are provided by the Takiff vertex afmer
algebras of [BR, BC].
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Also assume that either of the fusion coefficigRf$, ) or (73 ) is finite. Then(As @ Bs, Y. 5) may be
taken to be((A1 X Az) ® (B1Kg B),Yx @ Yg ). In particular,

AL Xpa Ay =2 Az and B; Xg By = Bs. (36)

Proof. The key here is [ADL, Thm. 2.10] which, as stated, appliesaio-ftogarithmic intertwining operators
but in fact also holds in when logarithmic intertwiners aregent. Using this, we may write

Yaon = ZyA ®13:3 ; (3.7)

for someN, where eaci@&j) is an intertwiner forA of type (Af/iz) and eachgéj> is of type (318332) for
B. The universality of the fusion product now guarant@emodules, the existence of (uniqu&module
morphismsuf\”: AL XA As — Az, such tha;uA oyA 9A , andB-module morphismﬂé‘): B1Xg By —

Bs, such thapy o Y% =Y. setting = Y ; u’ @ p, we obtain

N _ _ N o
o (Ynevg) =Y (WWeul)o (R evy) = L i e i =i, 3.8)
=1 i=1
Now, let X be a “test”’A ® B-module and leY be an intertwining operator of typ@lelAﬁBz) By
the universal property satisfied 3 ® Bg,HA®B), there exists a (unique): Az ® Bz — X such that
NoYx.g =Y. Itfollows that

(nomyo (Y5 @ Y5 ) =noYa.e =Y. (3.9)

It remains to prove thaf o 1: (A1 Xa Ay) ® (B1Xg By) — X is the uniqueA ® B-module morphism
satisfying (3.9). Howevei%% andyg are surjective intertwining operators — this surjectigtyes hand-
in-hand with the “uniqueness” requirement in the univepmaperty, see [HLZ, Prop. 4.23] — and so,
therefore, isgj% ® HE. This means that equation (3.9) uniquely specifies the mismph o 1, completing
the proof. O

From this proposition, we immediately obtain the followicagyollary.

Corollary 3.4. If A andB are simplevertex operator algebras anil ® N is a simple current foA ® B,
thenM andN are simple currents foA andB, respectively. Moreover, the inverseMf2 Nis M1 @ N1,

Proof. Becausé\ ® B is assumed to be simpl®l® N and its inverse are simphex B-modules, by Proposi-
tion 2.5(3). Moreover, this simplicity hypothesis also targtees that the inverse has the favho N [FHL,
Thm. 4.7.4]. Applying Proposition 3.3 tM ® N) Mass (M@ N) = A® B, we obtainM X M = A and
NXgN 2 B, henceM =2 M~1 andN = N1, O

In any case, (3.4) and Proposition 3.3 give the desired osiui:
¥ Cpu=Cypy (3.10)

In particular, theC, are simple currents for al € £. We have therefore arrived at the following decom-
position ofV into simple currents ofl andC:
V=P F aG. (3.11)
Ael
However, this may be further refined Af # u in £ does not imply thaC, # C, (this implication is
obviously true for Fock modules). Suppose thgt= C) ., for someA,u € £. Then, we must have
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Cu = Cand hence,, = C for all n € Z. More generally, lelN denote the sublattice @f € £ for which
Cy = C. Then, we may define

Wi = P Faiu (3.12)
HEN

and note thatV = W g will be a lattice vertex operator algebra if the conformalghgs of the fields of ,
with u € N, are all integeré.The decomposition (3.11) then becomes a decompositioiés &-module:

V= P WpaCy. (3.13)
AleL/N

Now the Cjy; = C,, with [A] € £/N, are mutually inequivalentfA] # [u] implies thatCp; 2 C,. We
remark thatl /N may still be infinite because the rankX¥fmay be smaller than that df.
We summarise these results as follows.

Theorem 3.5. Let:

e V be a simple vertex operator algebra.

e H CV be a Heisenberg vertex operator subalgebra that acts semigionV.

o C = Cgbe the commutant ¢f in V.

e [ be the lattice of Heisenberg weights\6{V being regarded as aH-module).

Then the decompositioi8.11)and (3.13)hold, where:

e TheC), A € £, are simple currents fo€ whose fusion products includg Xc C, = C) .

o W =@, nF, is asimple current extension Hf(N is the sublattice oA € £ for whichC, = C).
e TheW),), [A] € £L/N, are simple currents fow with fusion product®V | Kw Wy = W 4 -

In particular, theCpy), [A] € £/N, of (3.13)are mutually non-isomorphic.

Remark 3.6. Note that we may instead chodieto be any subgroup of in which everyA € N satisfies
C, = C. In particular, we may tak& = 0, in which case the decomposition (3.13) reduces to th&.af].

Obviously, the conclusion that th&,; are mutually non-isomorphic will only hold iN is taken to be
maximal.

The corresponding decomposition fdrmodules proceeds similarly. L& be a non-zerd/-module
upon whichH acts semisimply. Théi-weight space decomposition &f then givesM = @ ¢ My,
whereM = {u eR": My # O} is countable. Using the triviality of annihilating idealsl|, Cor. 4.5.15]
as before, we see that is closed under the additive action 6f meaning tha € £ andu € M imply
thatA + € M. It follows that eachM, is a Vo-module. Decomposing as &h® C-module, we get
My =F,®Dy, for someC-moduleD,,. The key step towards proving a decomposition theorem faiuies
is now to establish certain fusion products involving Mg andD,,.

Proposition 3.7. LetV, H, C, W and £ be as in Theorem 3.5 and Iet, M andM, = F, ® D, be as in the
previous paragraph. Then, the following fusion rules holddll A € £ andu € M:

V) &VO MIJ%M)HL“, (3.144a)
Cp Mc Dy =Dy 4y (3.14b)

4If the conformal weights are not all integers, théhis a vertex operator superalgebra, or another type of gisetavertex operator
algebra. This does not significantly affect the followinglysis.
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We mention that whem =V, the fusion rule (3.14a) is precisely the result of Miyamogported in
Theorem 3.1. However, we cannot use Miyamoto’s proof in thae general setting because it would
amount to assuming the simplicity of thé, asVo-modules.

Proof. We will detail the proof of the fusion rule (3.14a), notingit{3.14b) will then follow immediately
by applying Proposition 3.3.

To prove (3.14a), leM denote the/-submodule oM generated bl . Then,(M/|\~/I)“ =0.1fveV_,
is non-zero, for som@ € £, andw € (I\/I/l\~/I)A+“, then it follows thatv must annihilatew, hence that
w = 0 by the triviality of annihilating ideals [LL, Cor. 4.5.15We conclude thaJtM/l\N/I),\H, =0, thatis
My y =M, forall € L.

The action ofV on M now restricts to an action af, onM,,. The space generated by the latter action is
therefore preciseliv, ., [LL, Prop. 4.5.6]. It now follows from the universal propguf fusion products
that there exists a surjection

Va By My — My, (3.15)

for eachA € £ andu € M. Fusing with the simple currei_, therefore gives
My = Vo) Ry, (V) Ry My) — Vo) Ry My 4y —» My, (3.16)

the second surjection just being (3.15) with u) replaced by —A , A 4 ). Since these surjections preserve
conformal weights and the dimensions of the generaliseginsjgaces ok are finite, by hypothesis, it
follows thatV_, Ky, M, ., = My, forall A € £, proving (3.14a). O

If A €N, then the fusion rules (3.14b) imply tha, , , = Dy, hence that th®,; = D, are well defined.
The decomposition oM as aW & C-module now follows as before. Before stating this formaitlyis
convenient to observe that ¥ = M*uU---UM" is a disjoint union of orbits under the action 6f then
M=Ml®...@M"as aV-module, wherd/ll = B Miu. While theM; need not be indecomposable as
V-modules, several of the arguments to come will be simplifiete assume thai consists of a single
L-orbit. Conclusions about more geneké&lthen follow immediately from the properties of direct sums.

Theorem 3.8. LetV, H, C, W, £ andN be as in Theorem 3.5 and Ist be aV-module upon which acts
semisimply. Therl decomposes as

M=EP My=EP Fueby= @ WDy, (3.17)
HeM HeM [H]eM/N
whereM is a union of£-orbits and theD,, = Dy, are C-modules satisfying, Xc Dy = D, ., for all
A € L andu € M. Moreover, if we assume (for convenience) thiis a single£-orbit, then:

(1) If M is a non-zerd/-module, then all of th®, are non-zero.
(2) If M is a simpleV-module, then all of th®, are simple.
(3) If M is an indecomposabM-module, then all of th®, are indecomposable.
4) f0— M — M — M” — 0is exact, withM’ andM” non-zero, thet’ andM” decompose as i{8.17)
M=M= F,eD, M=M= F,aDj. (3.18)
HeM peM HeM peM

Moreover,0 — D), — Dy, — D}, — Oiis also exact, for alu € M.



SCHUR-WEYL DUALITY FOR HEISENBERG COSETS 17

(5) If M has a composition series with composition fact®isl < i < n, then eacl$' decomposes into an
H® C-module a$s' = @<y Fu ® T}, where theT!,, 1 < i < n, are the composition factors B, for
eachu € M. In particular, eachD,, has the same composition lengthMs

(6) If M has a socle, then so do tig, andsocM = @ e Fu @ socDy.
If M has a radical, then so do thg,,. If, in addition,M has no subquotient isomorphic to the direct
sum of two isomorphic simp¥-modules, themadM = @ ¢ Fy @ radD,.

(7) If M has a socle series, then so do thg and the corresponding Loewy diagram is obtained by replac-
ing each composition factdi' by T}, whereS' = @ ey Fu © T,
If M has a radical series, then so do tBg. If, in addition, M has no subguotient isomorphic to the
direct sum of two isomorphic simplémodules, then the corresponding Loewy diagram is obtdiyed
replacing each composition fact6t by T}, whereS' = @ ey Fu @ T,

Proof. We have already proven the non-numbered statements. Fosugpose thab, = 0, for some

p e M. Then,M, = F, ® D, would be 0, contradicting the definition af. The argument for (2) is
likewise short:M simple implies that each,, with 1 € M, is simple, by Theorem 2.6, which forces each
of the D, to be simple. To prove (3), note that if sordg, v € M, were decomposable, then evédy,

p € M, would be decomposable becayse v € £, henceD,, = C;,_, X Dy. But then, everM, would

be decomposable, hence so wolllda contradiction.

Given the exact sequence in (4), it is clear tHatcts semisimply on bothl’ andM”, hence that we have
the decompositions (3.18) except that some oﬂ\ﬂjpor M//, might be zero, for somg € M. HoweverM
is assumed to consist of a singleorbit, so either all theMi, are zero or none of them are (and the same
for the I\/I;Q). But, either being zero would imply that the correspondimadule is zero, which is ruled out
by hypothesis. Thus, thé), andM}; are non-zero, for ajls € M.

Since restricting to &o-module and projecting onto the (simultaneous) eigenspatéhehy (which
commute withVo = H® C) are exact functors, the sequencexdF, @ D), — F,® Dy — Fy, ® D}, — 0is
exact, for allu € M. However, End F;, = C implies that each non-trivial map in this exact sequence has
the form id-, @d,, whered, is aC-module homomorphism. The required exactness of the seguzn
C-modules thus follows, proving (4).

For (5), let 0=M° c M* c --- ¢ M™1 c M" = M be a composition series, so tigt=M' /M1 is
simple, forall 1<i <n. Then, 0— M'~* — M' — S' — O is exact, hence so is® Dj;* — D}, -+ T}, =0,
forall1<i<nandu € M, by (4). Here, we have decomposed edttasM' = @,y Fu ® D), so that
DY =0 andDl, = Dy, and eact$' asS' = @, Fy ® T,. Since theT}, are non-zero and simple, by (1)
and (2), they are the composition factordxf.

We turn to (6). Let{l\/li}iel be the set of all simple submodulesidfso that sotl =) Mi. Then,
eachM' decomposes ad' = @ ¢y Fy ® D}, whereD, is a simple submodule @, for eachi € | and
Ut € M, by (2) and (4). As sums distribute over tensor products, aveh

socM _2{ ) Fu®DL] =P Fuw <2DL>. (3.19)
iel HeM HeM iel
It remains to show that for eaghe M, every simple submodule &, is one of theD‘u.
Consider therefore a simple submodE|eC Dy, for some giveru € M. FormE, = C,_, Xc E, for
all v e M (so thatv — u € £), and note that each, is a simple submodule d,, by parts (3) and (4)
of Proposition 2.5. Tensoring ovéris exact, saP,cn: Fv ® Ey is a submodule ofp, 5 Fy ® Dy = M.
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Moreover, it is a simple submodule because it has the sambewwhcomposition factors &5, by (5). It
is therefore one of th®l', henceE, is one of theD,. It follows thaty;. D}, = socD,, as required.

The same argument works for the radical, which we recall@gntersection of the maximal proper sub-
modules, except that intersections need not distributesavas. The additional condition dvi guarantees
this [Ben]. The proof of (6) is thus complete and the proof&friow follows similarly to that of (5). O

Remark 3.9. It is not clear if the condition imposed dvl in the radical parts (6) and (7) is required.
However, if radVl decomposes as rétl= P e Fu ® Ry, then without this condition, the argument used
in the proof only establishes thRy, C radD,,, for eachu € M.

Unlike theC in (3.13), the coset moduldy,;, [u] € M/N, appearing in (3.17) need not be mutually
non-isomorphic. We shall illustrate this with a simple exdenin Section 3.3. In the following section, we
first give three useful criteria which guarantee thatlig are all non-isomorphic.

3.2. Criteria for being multiplicity-free. In this section, we discuss whether the decomposition §3.17
is multiplicity-free or not. In other words, we investigatéien one can assert that tbg or theD, are
mutually non-isomorphic, in the notation of Theorem 3.8.

3.2.1. Criterion based on conformal weight$. may so happen that the conformal weights of the highest-
weight vectors of the Heisenberg subalgelireanmediately rule out multiplicities. For example, conside
the case of an affine vertex operator alge¥raf negativelevel k and aV-moduleM whose conformal
weights are bounded below. We shall assume, as in Theorenhat8he corresponding sdt is a single
orbit of £. Suppose that the decompositionMfis not multiplicity-free, so thab, ., = Dy, for some

A € L. Then,Cy Xc Dy = Dy and soD ;) = Dy, for all n € Z. However, the conformal weight of the
highest-weight vector df ., is ﬁ [+ nA ||2, which becomes arbitrarily negative fn large, because

k < 0. It follows that the conformal weights &%, ny ® Dy na = Fiymp ® Dy would become arbitrarily
negative, for allu € M. This contradicts the hypothesis that the conformal weigh = @ e Fu © Dy

are bounded below, hence tbg, with it € M, must all be mutually non-isomorphic.

3.2.2. Criterion based on symmetries of characte¥§e can also derive a simple test to rule out multiplic-
ities using the characters
HqlHl?/2

n(a)
of the Fock modules. This relies on the fact that the charsatthe D, appearing in (3.17) will not

depend orz. We remark that the factoz® andz should be interpreted here aihé .29 andzt... 2",
respectively, where is the rank of the Heisenberg vertex operator algébra

Suppose, for simplicity, thab( consists of a singl&-orbit, as in Theorem 3.8. Defirl¥’ to be the
sublattice of Heisenberg weighissuch thaD,, = D, , ,, for everyu € M, so thatN <N’ < L. It follows
that for everyd € N/, the character of the decomposition (3.17) must satisfy

ch[Fy] (zq) =tr, ZogHs —o/24 — (3.20)

L P2 Ly g/ _
ch[M](zq;...) = ugm ~h@ ch[Dy](g;...) = ugm @ ch[Dy] (q;...)
Yo X%{z“q“:gg)u /Zch[D,,} @) a2
He

— g 2eh[M] (25 ;.. )



SCHUR-WEYL DUALITY FOR HEISENBERG COSETS 19

whereq® acts on a Heisenberg weightto give q*:*). If the character oM only satisfies this equation
whenA € N, then we may conclude that thk,;, with [u] € M/N, are mutually non-isomorphic. In the
case thalN' = 0, this conclusion gives the mutual inequivalence ofiifye for all u € M.

3.2.3. Criterion based on open Hopf linkdn the case of rational vertex operator algebras, the closed
Hopf links are, up to normalization, the same as the entrfethe modular S-matrix [Hu2]. There is
also a close connection between Hopf links and propertiehafacters for non-rational vertex operator
algebras [CG1, CG2,CMR]. We will now explain how Hopf linkavg a criterion for the existence of
fixed points under the action of fusing with a simple currdrar this subsection, we assume that we are
working in a ribbon category¢” of vertex operator algebra modules [EGNO]; such categatiess us to
take (partial) traces of morphisms.

Let J € ¥ be a simple current and fix a modtec ¥. Assume that there exists a positive integer
such that)SX X = X, so thatX is a fixed point ofJS. Recall that the monodromy of two modulésandB
is defined byMa g = Rg a o Ra g, WhereR denotes their braiding. Recall the notion [EGNO, Def. 81]0.
of categorical twistp, which is a system of natural isomorphisms. The monodrorigfiss the following
balancing for any two modules, B:

Baxe =Mapgo (64X Bg).

In vertex-tensor-categorical setu,is given bye?™o. We will also need the open Hopf link operators
from [CG1, CG2]. These are defined as the partial trabgg = ptr-s"(Ma g) € EndB) and have the
important property that they define a representation ofais@h ring on En¢B). In particular, it follows
that®,gx p = P, p o Px p, for any module® € ¢, and hence that

q)X,P = (DJS@X,P = q)JS’p o] q)X,P = (Dip O q)X,P. (322)

We shall assume now thBtis indecomposable with a finite number of composition fagteo that every
endomorphism oP has a single eigenvalue, and thtp, @, p are a semi-simple endomorphismsi@ P
andP, respectively. The latter assumption will be automatjcadtisfied ifJ is a simple current of finite
order and both En@) and EndJ X P) are finite-dimensional [CKL, Lem. 2.13]. It will also be sted if
P may be identified with a subquotient of an iterated fusiordpat of simple modules [CKL, Lem. 3.19].
With these assumptions dh Eq. (3.22) shows that the image @k p is contained in the eigenspace of
@3 with eigenvalue 1 and that this eigenspace is either B @self. We therefore have two possible
conclusions®x p = 0 or d5 , = Idp.

Following [CG1], we say that a full subcatego®¥ of ¥ is a left ideal if for allQ € £, we have both
DX Qe £, for all D € ¥, and thatD € & whenever the compositiod — Q — D is the identity. We
shall assume tha#’ is equipped with a modified tradg [CG1, GKP] (for &2 = ¢, the modified trace is
just the ordinary trace= tr) and a modified dimensiai(e) =1t,(ld,). We also let dinfe) = tr(Id,) denote
the ordinary trace of the identity morphism.

We now assume th#t, as introduced above, belongs to a left idgalof ¢. For any objecD of ¢, the
properties of the modified trace imply that

tD&P(IdD&P) =tpxp(ldpXIdp) = tp(ptrLeﬁ(IdD® |dp)) = tp(tl’(|dD) X |dp)
— dim(D)tp (Idp) = dim(D)d(P) (3.23)

and hence that

tp(Pysp) = tp (Pr-"(Mysp)) = tysmp (Mysp) = tyssap (Bysmp 0 (0;s° X 65 1))
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=dim(J%)d(P)(Bysmp o (8,1 X 65 1)). (3.24)

Here, we have used the balancing property of monodromy awel identified6sxp o (6;1 X 6,;1) with
the scalar by which it acts. In the case thdatp = Idp, sotp(Pysp) =tp(Idp) = d(P), it follows that
dim(J)S(Bysmp o (0> X 65 1)) = 1, wheneved(P) # 0. We summarize this as follows.

Proposition 3.10. Let% be a ribbon category] € ¢ be a simple current an{ € ¢ be a fixed point of®
so thatJSX X = X, for some < Z-o. Let & be a left ideal of¢’, equipped with a modified trace and
modified dimension(@). LetP € &2 be indecomposable such tha) # 0and My p, ®;p € EndP) are
semisimple endomorphisms. Then, one of the following nolct h

(1) ®xp =0, which in turn implies thatg(Px p) = 0. If " is a modular tensor category, then this implies
that the corresponding modular S-matrix entry is zero.

(2) dim(J)S(Bysmp o (6K 65 1)) = 1, where we have identifiefsxp o (6> X 6, 1) with the scalar by
which it acts.

As these quantities are computable, in principle, we canaut fixed points fog = C, or W|,; and thereby
deduce a multiplicity-free decomposition. We shall ilhase this proposition below in a rational example.

3.3. Examples. Here, we give a selection of simple examples involving theated parafermion cosets
[FZ,Gep] toillustrate the theory developed in this sectioet L (g) denote the simple vertex operator alge-
bra of levelk associated with the affine Kac-Moody (super)alggpr&iven a Cartan subalgebijac g, let

H C Lk(g) be the corresponding Heisenberg vertex operator subalgébe commutant = Com(H, Lk(g))

is called the levek parafermion vertex operator algebra of type

Example 1. For g = sl, andk = 2, the parafermion coset is the Virasoro minimal mduIE(B,4), also
known as the Ising model. The decompositions (3.11) an@BjXécome

Lo(sl2) = €D [Fa @ Ko® Fay2@ Ky o] = Wi @ Ko Wiy @ Ky)z, (3.25)
A€dz
whereK;, denotes the simpIM(3,4)-moduIe of highest weight, the lattice ofH-weights ofL,(sly) is
L = 27, and the sublattice dfi-weights giving isomorphic coset moduleshié= 47. The convention
here forF, is thatA indicates thel,-weight so that the conformal dimension of this Heisenbeogute is
A—Sz. The lattice vertex operator algebfais thus obtained by extendindby the group of simple currents
generated by 4.

The representation theory &b(sl) is semisimple and it has three simple modui¢$, w =0,1,2,
which are distinguished by the Dynkin labéls— w, w) of their highest weights.L,(sl,) is identified
with M and the decomposition corresponding to (3.25)NBris obtained by swapping with K12 In
particular, theC-orbit for M2 is alsoM = 2Z. The situation foM? is, however, slightly different:

M= P Fu@Kiie=Wy @K@ W1 ®Kye. (3.26)
ue2Z+1
Here, M = 2Z + 1 andN’ = 2Z # N (the non-isomorphic lattice modules are paired with isquhar coset
modules). In other words, this decomposition fails to betiplitity-free.

To see that this is consistent with the criterion of Secti¢hZ recall thasl, admits a familyo?, ¢ € Z,
of spectral flonautomorphisms that lift to automorphisms of the corresjpupdffine vertex algebras. The
latter may be used to twist the action onlassl,)-moduleM and thereby construct new module§M).
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Using the conventions of [R1], the characterdbanda’(M) are related by
ch[a(M)] (zq) = Z%q"¥/*ch[M] (zf/%;q). (3.27)

For k = 2, spectral flow acts on the simple modulesgg$1®) = M?~®, w = 0,1,2. Identifying the
weight space ofl; with C and noting that the scalar product on this space is {lep) = zllx\u, the
criterion of Section 3.2.2 asks us to check whick C satisfy the relation

ch[M®] (zq) = 2'¢*/8ch[M®] (2¢/*;q) = ch[a*/2(M®)] (zq), (3.28)

for a givenM®. Sinceo? acts as the identity, this relation holds for eaclif A € N = 4Z. If w # 1, then
it does not hold fol = 2, henceN’ = 4Z and bothM® andM? have multiplicity-free decompositions in
terms of lattice modules. However, this relation does hotdd = 1 andA = 2, so we cannot conclude that
the lattice decomposition &fit is multiplicity-free (consistent with our explicit calation that it is not).
With a little more work, we can also see how this failure isgistent with the criterion of Section 3.2.3.
LetX =Ky 16 and let) be the simple currer{, ,, so thaiX is a fixed point for): JX X = X. Sincel(sl2)
is a unitary vertex operator algebra, dil= 1. Also, as recalled abov8,is given bye? ™o, hence, in our
notation, it acts orK; by @™, wheret = 0,1/2,1/16. Further, it is easy to check that the categsrpf
M (3,4)-modules has no non-trivial ideals except iitself.
We now verify that for every indecomposalplén ¢, either condition (1) or (2) of our Hopf link criterion
is satisfied.

P =Ko: In this casefyzp o (6, "M 6 1) = 6k, , 0 (6} KO ) = 1.

P =Ky Inthis casefyxpo (6 X 6, ) = bk, 0 (6,;11/2 X e,gll/z) =1

P =Kjy,16 In this casefzp o (6,6, 1) = R (9@1/2 X 9,211/16) = —1, but the modular S-matrix of
M(3,4) has entnS, gk, 56 = O-

So we see that in the first two cases condition (2) is satisflabwondition (1) holds in the last. This is, of

course, consistent with the fact that the decompositiontismultiplicity-free. As an aside, we remark that if

we had only known tha; /16 was a fixed-point of the simple current (which implies that decomposition

is not multiplicity-free), then we could have instead dwmmats(mm/m must vanish, as above.

Example 2. A more interesting example is the parafermion coset yithsl, at levelk = —%. In [Ad3],
Adamovit showed that the resulting coset vertex operdgmbaa is the (simple) singlet algehi@, 3) of
central charge = —7. This is strongly generated by the energy-momentum tearstbia single conformal
primary of weight 5. We can revisit and extend this study gghre results of this section. However, we
stress that the parent vertex operator algehras(slz) does not satisfy the conditions of Section 2.1 that
would allow us to apply the theory of Huang-Lepowsky-ZhaNgvertheless, we shall proceed with the
analysis, assuming that this theory may be applied. Thédtsesuggest that this assumption is, in this case,
not unreasonable.

Let Ag andA\; denote the fundamental Weightsai. The vertex operator algebta 4/3(slz) admits
precisely three highest-weight modules, namely the simpldulesM® whose highest weights have the
form (k— w)Ao+ w1, wherew € {O, —%, — % } as well as an uncountable number of simple non-highest-
weight modules [AM1,Ga, RW3]. In particuld(]1,3) is not a rational vertex operator algebra. As the level
is negative and these highest-weight modules have confeveights that are bounded below, the criterion

of Section 3.2.1 applies and we conclude that their decoitipos are multiplicity-free.
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Explicitly, the decomposition (3.11) takes the form

L_as3(sle) = P Fa®Cy, (3.29)
Ae2Z

whereC, is a simple highest-weight1,3)-module whose highest-weight vector has conformal weight
Ny = 1—16|)\ |(3|A]+8). The convention here fdf, is again thatA indicates thesl,-weight so that the
conformal dimension of this Heisenberg modulei%)\z. Of courseC, andC_, are not isomorphic for

A #£ 0 because the decomposition (3.29) is multiplicity-freeReytmust therefore be distinguished by the
action of the zero mode of the weight 5 conformal primary.

The theory of Section 3.1 shows that thg, with A € 27, are all (hon-isomorphic) simple currents. This
had been previously deduced [RW1,CM1] from the (conjettstandardVerlinde formula of [CR4,RW2]
for non-rational vertex operator algebras. Noting thaj = 5, we remark [CRW, RW1] that the simple
current extension df 1,3) by theC, , with A € 4Z, is the triplet algebr&V(1,3) of Kausch [Ka].

Consider now thé 4 3(sl2)-moduleso2(M~2/3) and o (M~2/3), obtained by twisting the action on
M~2/3 by the spectral flow automorphisra$, ¢ € Z. Whilst both these modules have conformal weights
that are unbounded below, their decompositions Hhtol(1, 3)-modules are nevertheless multiplicity-free:

oM %)= Y FyeDy oM =Y FyoDy. (3.30)
Ue2Z ue2Z
Here, theDEfZ) and Di,l) are simple highest-weight1, 3)-modules whose highest-weight vectors have
conformal weights given by

1 ifu<— Lu— - if u<
A(72> _ 16“(3u +8) If I«‘ —_ 2! and A(l> _ 16(“ 4)(3“ 4) If I«‘ = 21 (3 31)
U 1 . H 1 . y
6(H+4)(Bu+4) if u>-2 16H (3 —8) if u>2,
respectively.

The interesting thing about thie 4 ;3(sl2)-moduleso~2(M~%/3) and o(M~2/3) is that they appear,
together with two copies of the vacuum modi¥, as the composition factors of an indecomposable
L,4/3(5[2)-moduIeP°. This module was first constructed as a fusion product in pal was structurally
characterised in [CR3] (see [AM3] for a construction andrahgerisation of a different indecomposable

L_4/3(sl2)-module). The action of the Virasoro zero mddeon PCis non-semisimple. The Loewy diagram

for PO has the form

M 2/3 po M 2/3)

\/

where our convention is that the socle appears at the boftiorimmediate consequence of Theorem 3.8 is
that there exists a countably-infinite number of mutuallps&omorphic indecomposablél, 3)-modules
P?,, U € 27, on which thel(1,3) Virasoro zero mode acts non-semisimply. The Loewy diagrahtisese

: (3.32)



SCHUR-WEYL DUALITY FOR HEISENBERG COSETS 23

indecomposables are

/\
\/

The existence of suclfl, 3)-modules was pred|cted in [RW1] from the fact that similadteécomposables
have been constructed [AM3, TW1] for a simple current extemghe triplet algebrav(1, 3).

(3.33)

4. PROPERTIES OFHEISENBERGCOSETS

Recall from the introduction that one of our main applicatidor Heisenberg cosets is to construct new,
potentiallyC,-cofinite, vertex operator algebras as extensions:

H—coset extension
\% C E.

So far, we understand howmodules decompose & C-modules. The remaining tasks are to identify
whenC may be extended by certain abelian intertwining algebraslémger algebr&. This will be stated

in Theorem 4.1. Since abelian intertwining algebra extamsare mild generalizations of simple current
extensions, analogous arguments to [CKL] allow us to gieeige criteria for the lifting oH ® C-modules

to V-modules, see Theorem 4.3. An analogous criterion for fhiediof C-modules toE-modules is given

in Corollary 4.4.

4.1. Extended Algebras. If certain Fock modules involved in the vertex operator bigedecompaosition
yield a lattice (super) vertex operator algebra, then tlreesponding coset modules form a (super) vertex
operator algebra as well. Thus, we get extensions of the.cose

Theorem 4.1. Let

V= @ Fr® C)\.
Ael
If € is a sub-lattice ofl, such that®, . F) forms a lattice vertex operator algebra, thén= @, ¢ C,

has a natural vertex operator algebra structure.

Proof. This result is an immediate corollary of [Li, Thm. 3.1, 3.2fhv¢ = 1, see also [DL]. [Li, Thm. 3.1,
3.2] in fact guarantee a generalized vertex algebra stcn@®, . . C,. Note that no restrictions with
regards to vertex tensor category theory are needédan(. O

For a more general scenario involving mirror extensions[sm].

Example 3. Let g be a simple simply laced Lie algebra and ket g = 0 be a rational numbemp(q co-

prime). We do not require it to be an admissible level. Thefy) is graded by%(Q = \/%Q with Q the
root lattice, that is
@ Fr®C,.

/\e\/EpQ

The sublatticep\/%Q = ,/PgQ is an even sublattice so that

V. pge = P Fa
)\e\/WJQ
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is a lattice vertex operator algebra. It follows by Theorefnthat

Ek,g = @ C,\

A€/paQ
is also a vertex operator algebra.

We believe that these extended vertex operator algebrasehgood chance to li&-cofinite. The main
outcome of [ACR] is that in the cage=sl; andk+2 € Q\ {%|n € Z-o} the characters of modules of the
extended vertex operator algebra are modular if supplesddnt pseudotraces.

In two specific example§;-cofiniteness is already known. One of thenlisy 3(sl2). This is then a
continuation of Example 2. Recall that

L_ss3(sl) = @ Fa®Cy,
A€2Z

whereC, is a simple highest-weigHht1, 3)-module whose highest-weight vector has conformal weight
Ay = £ |A[(3|A|+8) and the Heisenberg Fock moddig has conformal dimensiogA2. It follows that
Ve=EPF, (4.1)

A€dZ

is the lattice vertex operator algebra of the lattice- /—67Z and hence
W(1,3)= P G, (4.2)
A€l
is also a vertex operator algebra. It is actually W1, 3)-triplet that is well-known to beC,-cofinite
[AM2]. This relation between singlet vertex operator algeandL_4/3(sl2) has been first realized by
Adamovit [Ad3] and has a nice generalization to a relatietween singlet vertex operator algebras and
certainW-algebras [CRW].

Example 4. (2)-singlet algebra and/,(gl(1]1))

We first illustrate how well-known somehow archetypicalddghmic VOAs are related via simple cur-
rent extensions and Heisenberg cosets thus nicely iltirsgréhe picture advocated in this work together
with [CKL]. The picture is as follows:

extension extension

Vi(l(1]1)) ———— L12(sl(2|1)) ———— By@Vz

L coset l coset l coset

extension extension
Hol(2) ——————— L_12(sl2) By
\ l COV
|(2) extension W(Z)

[(2) is thep = 2 singlet VOA [AM1,CM1] andW(2) is its C,-cofinite but non-rational infinite order simple
current extensions, called the triplet. See e.g. [AM2].

These and other extensions have been worked out in [CR1,AR2yhile the coset picture has been
part of [CR1, CRo, CRW]. Here, the situation of the singlejediral(2) is thatC;-cofiniteness of all
known admissible modules is established [CMR], fusion ficiehts are known [AM4] and the category
of C;-cofinite modules is a vertex tensor category in the sensélbf] provided that everyC;-cofinite
N-gradable module is of finite length [CMR, Thm. 17].
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For reference oi(2)-modules we refer to [AM1, CM1]. As reference ¥iR(gl(1|1)) we refer to [CR1].
[(2) has simple typical modulgs, of conformal weight%/\ (A —=1)for A € R\ Z. ForA =1—r integer,
we have

0— Mr’j_ — F]_,r — Mr+1’1 —0

for simple atypical modulel!, ; andr integer. Similarly,Vi(gl(1/1)) has simple highest-weight modules
Ve n Where the real numbeesn are the weight labels, arelk not integer. Ife/k is integer say, then the
higest-weight-module decomposes as

0— An_1k =V — An — 0

with simple atypical module&, , parameterized by realand integerg. The projective coverB, ¢ have
the form
0— Vi — Pk — Vi — 0.

The commutant of(2) in Vi(gl(1|1)) is a rank two Heisenberg vertex operator algebra, and we de-
note their Fock-modules blyen where we take the notation of [CRo]. Using the explicit reation of
Vk(g!(1]1))-modules of [CRo] we can compute the decomposition of madulae answer is as follows

Vk(gl(1]1)) = @ Fom®Mmi11, Ank = @ F_otm-n®Mm1 and

meZ meZ
Veen1=6EP Fenim®@Fe_m.
meZ
It follows with Theorem 3.8 that

(4.3)

Pnok = @ F_t,—ntm® Sm,

meZ
whereS, is an indecomposablé?)-module that has non-split short-exact sequence

O—-Fim—>Sm—Form—0.

In terms of Loewy diagrams, we have the following:

An ik Mm,1
e N yd N
Pnk = Ani1k An1k =EPF imn® | Mmi1a Mm-1,1
N e meZ AN e
An,Ek Mm,l

The triplet algebrdV(2) is known to beC,-cofinite but non-rational. Itis a simple current extensibh(2),
namely

W(2) = P M1oma.

meZ

4.2. Lifting Coset Modules. In this subsection, we show that whether certain genedhlizenodulesD
could be tensored with appropriate Fock modules so thatritdugt can be induced (lifted) to\&module
is essentially decided by the monodromy

Mc, o =Ro,c, oRc,p: (KD — C, XD.

For properties of the monodromy used here, we refer to [CKL].
The following lemma could be easily proved as in [CKL] andIviié used frequently below. For a
vertex operator algebrdl, and its vertex tensor catego#. Let Pic,(V) denote the Picard groupoid
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(see [Ca, FRS]). Thatis, Ri¢V) is the full subcategory of simple currents. Clearly Pi¥) is closed
under tensor product.

Lemma 4.2. Let X € ¥ be such that fot; € Picx(V), My, x = Ay, xIdjxx whereA;, x € Cfori=1,2.
ThenAy xAj,x = Ay, X-

Theorem 4.3. LetV, H, C, £ be as in Theorem 3.5, l&t’ be the dual lattice, U= £ ®7 R and letD be
a generalizedC-module that appears as a subquotient of fusion product miessimpleC-modules. Then,
there existsx in U, such that for alll € £,

Mc, p = € 2N ide, mp
andFg ® D lifts to aV-module if and only i € a + £'.

Proof. Recall that we are working with categories@fandH that have real weights for the respectivs.
Additionally, recall that we are working over semi-simpka@gory forH and a category fo€ each object
of which has globally bounddd,-Jordan blocks.

We know thatC is equipped with a symmetric nondegenerate bilinear form, and this form takes
real values since the conformal weights with respect to teis¢hberg are real. By non-degeneracy of,
given a homomorphisrh : £ — St, there exists aor € U such that

f(A) = mar) (4.4)

forall A € £. Moreover,3 € U satisfies Eq. (4.4) ifandonly 8 € a + £'.

Since each of th€, is a simple current, by results in [CKL], we know that the mdramyMc, p =
M, Idc,xp for some scalar, sail, € C*. SinceMc, p is semi-simple andC,,D,C, X D have glob-
ally bounded.o-Jordan blocks, proceeding as in the proof of [CKL, Eq. (§.10e gather thaMc, p =
(6c, =D )ss0 ((GgAl)SSX (651)ss), wheressdenotes the semi-simple part. Since each of the modulelvet/o
has real conformal weights, we get thdt = €™ for somer, € R. So,M, € St for all A € £. Using
Lemma 4.2 we deduce that— M, is a homomorphisng — St and so isA — M;l sinceSt is abelian.

Now, in Eq. (4.4), we také (A) = M, and we get am € U such thaM; * = €#™@4) = Mg, ¢, . Using
Proposition 3.3 we conclude théff, ® C,) X (Fo ® D) 2 F,, 4 ® (C, K D), and therefore, monodromy
factors over thex tensorands. We conclude thét, oc, F,op = MF, . F, ® Mc,,p = 1. It now follows
thatFq @ D lifts. Moreover, from the arguments above we can concludéRp © D lifts if and only if

Bea+ /L. O
We now combine this with extensions 6fas in Theorem 4.1 to deduce the following.

Corollary 4.4. Assume the setup of Theorem 4.3. L&k a sublattice of such thatt = @,¢C, has a
vertex operator algebra structure inherited frovhexactly as in Theorem 4.1. Thénlifts to a E-module
PrceC) XD iff a € &', whereé’ is the dual lattice of.

Proof. Recall that eaclC, is a simple current foC. Therefore, using [HKL] (for the “if” direction)
and [CKL] (for the “only if" direction), we know thatb,-cC) X D is an E-module iff Mc, c,xp =
Idc)\g(cugD>, forall A,u € €. SinceE is a vertex operator algebra, we know th\a¢, c, = ldc,xc,
forall A, u € €. By properties of monodromy, we gather thag, c,xp = |dc,\®(c“®D) for A,u € € iff
Mc, p = ldc,xp forall A € €, which in turn holds iffa € &, O

Remark 4.5. SinceE is a simple current extension @, we can utilize arguments similar to [Lam,
Thm. 4.4] in order to analyze certain simgfemodules. LetX be a simpleE-module such that there
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exists a simplé&-moduleXqy C X. (In the notation of [Lam], the role of group is played by? and thev X
areC, for A € P.) Then,F(Xo) = P, »C, ¥ Xo has a natural structure of an (induc&djnodule and it
surjects onteX.

Example 5. We now illustrate the lifting properties with unitary minagdhmodels of theN = 2 super Vi-
rasoro algebra. We refer the reader to [Ad1], [Ad2], [DPYBH{S] for additional information on these
minimal models.

We start with some well-known results whose proofs can badaeig. in [CL1]. Letk be a positive
integer, therly(sly) contains the lattice vertex operator algelbrg with £, = aZ anda? = 2k, s0Lq =
V/2kZ. Thebc-ghost vertex operator algebE41) is isomorphic toVLB with £g = BZ and B?=1, so
Lg = Z. Then the latticely © L contains the latticel, = yZ with y = a + kB as sublattice. The
orthogonal complement IS = uZ with 4 = a — 2. Note, thaty? = k(k+ 2) andu? = 2(k+ 2). In [CL1,
Sec. 8] itis proved that

Syi= cOm(vL“ Li(slo) @ E(l))
is the simple and ration&l = 2 super Virasoro algebra at central chatge 3k/(k+ 2).

We will now explain how to obtain simpl§c-modules. For this leA be an integer with GZ A < k.
Further letA\g and/A; be the usual fundamental weightsgﬁ. Then the simplé.(sl)-modules are the
integrable highest weight module$§t) of weight(k— A)Ag+ AA;. Viaaic, appears in(A) if and only
if A +niseven. This follows directly sinc\e%awa appears in the decompositionlaf{sl,) if and only if
nis even. We now express lattice vectors(gf @ £ g in terms of those of|, & £/, namely,

a _ 4 B H
2ka+bﬁ_(a+bk)7k(k+2)+(a 2b)72(k+2) abeZ.
It follows thatva%u)”\f’ is contained ir1_(/\)®VLB if and only if A +nis even as well. We thus get
D Vin®M(A,v) if v+Aiseven
LA &V, = veaN'/N
“p D  Voc®MA,Y) if v+ is odd

1
VE gtz T2L7/L

asVy, ® Sk-modules. By Theorem 3.8 (2) aMi(A,v) are simpleSx-modules. On the other hand, by
Theorem 4.3 for everg-moduleM there exists &y-moduleV, ;n such that

Vv+p+N (9 M

lifts to a Vi ® Sk-module if and only ifp € (2N')' /N = %N/N. Finally, we announce that the relation
between the tensor category of a vertex operator algebratamatensions can be made quite explixit
[CKM] and that these results imply that every simflemodule appears in the decomposition of at least
one of thel (A) ® V., and moreover

M(A,v)=M(A',V)  ifandonlyif A'=k—A and v/:v—l—% mod L.
4.3. Rationality. In this section we prove an interesting rationality resudit V be simple, rational, CFT-
type (that is, conformal weights &f are non-negative and the zeroth weight space is spannecchywva
andC,-cofinite. Then, Theorem 4.12 states that every gradingictsd generalized-module is com-
pletely reducible.
We work with the following setup: Lef = Com(H, V). Assume that CoiC,V) =V, where(L, (-,-))
is a positive definite even lattice. With th{&/ ., C) form a commuting pair an@ is simple. We now collect
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well-known results from the literature that guarantee thiatcan invoke vertex tensor category theory for
C, under suitable assumptions ¥n

Lemma 4.6. If V is G-cofinite then so i€. In particular, if V = Lg(g) with ke N thenC is G-cofinite.

Proof. The proof of the most general statement can be found in [Mdfilie case o¥ = Lx(g) withk € N,
see [ALY]. O

Lemma 4.7. If V is simple and CFT-type, then sods

Proof. Firstly, sinceV, andC form a commuting pair, there exists a non-zero rivape C — V. Since
V. andC are both simple, so ¥ ; ® C and hence this map is an injection. Ndw Cn, C Vj, for anyn, in
particular, we conclude th&i, = 0 forn < 0 andCy = Clc. O

Lemma 4.8. If V is simple, CFT-type and self-contragredient, then s0.is

Proof. Note thatC is simple and we have an injectidy, ® C — V. SinceV’ 22V, there exists an invariant
bilinear form onV [FHL]. Any invariant form onV is automatically symmetric, by [Li, Prop. 2.6] (see
also [FHL]). Moreover, the space of symmetric invariantfigronV is naturally isomorphic t¢Vo/L1V1)*
[Li, Thm. 3.1]. SinceVp = C1, we conclude that;V; = 0. Now, L;V; = 0 implies thatlL;(1® Cq) =
1® ((Lc)1C1) = 0. This implies thatLc)1C1 = 0. This implies thatCo/(Lc)1C1 # 0, and hence there
exists a symmetric invariant bilinear form @by [Li, Cor. 3.2]. In other words¢’ = C. O

Lemma 4.9. If V is simple, G-cofinite and CFT-type, then
(1) The category of grading-restricted generalized modules/fand C satisfy the conditions needed to
invoke Huang, Lepowsky and Zhang’s tensor category theory.
(2) Denating the finite abelian group’ /£ by G, there exists a subgroul of § such that
V=P Vyed.
AedH
(3) EachC, appearing above is a simple current fér

Proof. (1) follows from [Hu3] and previous lemmas. (2) and (3) fallerom our results above. O

Lemma 4.10. Let (£, (-,-)) be a postive definite even lattic&, be the dual lattice and l&§ = £/ L. Then,
f:u— Quwhere Q(v) =exp(2mi(u,v)) for u,v € G is an isomorphisng = S.

Proof. It is clear that the image of is in G. LetA be in the kernel off. Then, we see that\,£') C Z,
thereforeA € £ = £, henceA =0in§. O

Lemma 4.11. Let C be G-cofinite and CFT-type. Then the endomorphism space of agirgy-restricted
generalized module fdt is finite dimensional. Moreover, each grading-restrictethgralized module has
finite length and hasd-Jordan blocks of bounded length.

Proof. These are the results [Hu3, Thm. 3.24, Prop. 4.1 and Prop.l4.fact, the conclusions hold under
weaker hypotheses. O

Theorem 4.12. LetV be simple, rational, &cofinite and CFT-type. Then, every grading-restrictedegen
alizedC-module is completely reducible.
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Proof. We shall freely use the lemmas above. Métbe a grading-restricted generalizEemodule. We
know thatW decomposes as a finite direct sum of indecomposable modulesefore, without loss of
generality, leW be indecomposable.

SinceW is indecomposable and, are finite order simple currents for evekye HH, by [CKL, Lem.
3.17], we know thaMc,  is a scalar multiple, sapl, € C*, of identity morphism. Let us assume tivat
is such that for some non-zefemodulesk andS, we have an exact sequence:

0O—-R—W-=S—0.

We know from [CKL, Lem. 3.19(b)] thal¥ic, r = M, idc, xr @andMc, s = M, idc,xs. From Lemma 4.2,
we know thatA — M/\il are homomorphisnt& — St.

We now seek a € £’ such that for th&/ , moduleV,,, ., the monodromy oY/, , ; ®C, with V| 0 ®X
is trivial, for X = R,S,W and for allA € H. In other words, we want to find @ such that for alhk € X,

Ve
MVu+L3VA+L =M,

SinceH < G are finite abelian groups, every charactefrottan be extended to a characterdfPick a
X € G that extends — M/\*l. We will be done if we can find @ such that for each € G = £'/L,

exp(2n1' <l~1’)\ >) = MVH+L,V,\+L = X(/\ )
By Lemma 4.10, we know that there indeed exists@ £’ such thaQ,, = x.
ForX =R,S,W, denoteV,, @ X by X and let

Xe= P (Va1 BV,i)®(CLRX) = P Vaypis ®(CrHX).
AeH AeH

We now invoke [HKL, Thm. 3.4] to get thaX, is indeed a generalized (untwisted) module ¥owhen
X=R,S,W.
Using flatness of simple currents, we deduce the exact sequéi-modules

o—>§e—>v~ve—>§e—>o.

However, every such exact sequence splits by rationality. dote that any morphism &f-modules must
preserve Heisenberg weights. Hence, we get that® — W — S — 0 splits.
O

Now we can combine our results with those of [Hu2, Hu3] to obthe following corollary.

Corollary 4.13. If V is simple, rational, CFT-type and self-contragredientrtivee have the following:

(1) Finite reductivity: EveryC-module is completely reducible, there exist finitely mamguivalent irre-
ducible modules, fusion coefficients amongst irreducitddutes are finite.

(2) Each finitely generated generaliz€dmodule is aC-module.

(3) The categong-modules has a structure of a modular tensor category.

Example 6. The Bershadsky-Polyakov algebra [Ber,Pol] is the quantamitonian reduction olt#% (sl3)
for the non-principal nilpotent embedding €f in sl3. This vertex operator algebra is strongly generated
by four fields of conformal dimension, 2,% and % We denote its simple quotient By,. This vertex
operator algebra is rational providéds a positive integer [Ar2]. In this case it contains theitattvertex

operator algebr¥ of the latticeL = /6(¢ — 1)Z as sub vertex operator algebra [ACL]. Furthermore the
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coset is rational, since it is isomorphic to the principalalgebraW(sly) at levelk = —2¢ 4 23 and cen-

20+1
2
tral chargec = — 3(%;? [ACL], but the latter is rational [Ar3]. Our results give thanother more direct

proof of rationality of this coset.

5. HEISENBERG COSETS INSIDE FREE FIELD ALGEBRAS ANb_1(s[(m[n))

We use the opportunity to prove thiat1(sl(m|n)) arise as certain Heisenberg cosets inside free field
algebras, i.e. tensor productstuf and Sy systems. It had been known for a while that the affine vertex
operator subalgebra is a sub-vertex operator algebra afabet [KW3]. Moreover this gives a different
proof to a recent result on the case= 0 andm > 3 [AP]. As simple affine vertex operator subalge-
bras are poorly understood at present we hope that one cahisigealization to clarify the structure of
L_1(sl(m|n))-modules.

LetS denote thg8y-system, which has even generatBry and OPE relations

B@yWw) ~(z-w)t  y@BW) ~—(z-w) Y, B@BW)~0,  y@y(W)~0.

Let H be the copy of the Heisenberg algebra with generater: By :, and letC = Com(H,S). By a
theorem of Wang [Wa]C is isomorphic to the simple Zamolodchik@ys-algebra withc = —2. The explicit
generators, suitably normalized, are as follows:

L=:BByy:+2:Bdy:—-2:(dB)y:,
W =:BBByyy:+3:BB(dy)y: —6:(B)Byy: —6:(B)dy: +3:(0°B)y: .
Now letS(n) denote the rank By-system, which has generatg@s y! fori = 1,...,n satisfying
B@yw)~aiz-w™'  Y@BW~-8iz-w,

B @B (w)~0, Y@y W) ~0.

Let H be the Heisenberg algebra with generator
h=Y:p'y:
i=1

and letC(n) = Com(H,S(n)). Note thatC(n) containsn commuting copies o¥V3 with generators’, W',
obtained frorL andW above by replacin@ andy with ' andy'. Moreover,C(n) contains the fields

Xjk:_:Bjyk:v j,k:].,...,n, J#ka
H = —:BYy: + 7Yy *L:  1<ri<n,

which generate a homomorphic image of the affine vertex atgéb (siy).
A consequence of Theorem 7.3 of [L1] is

Lemma 5.1. C(n) is generated as a vertex algebra by, W', XX HY for i, j k. ¢ as above.

Proof. Inthe notation of [L1], the latticé C Z" is spanned by, 1,...,1) SoA* is precisely the root lattice
of slp. ]

By a recent theorem of Adamovi¢ and PerSe [AP], fior 3 C(n) is precisely the image of the map
V_1(sln) = C(n), and is therefore isomorphic to tisempleaffine vertex algebra_;(sl,) Using Lemma
5.1, we now provide a much shorter proof of this result. Ifisaé to show thatt' andW' lie in the image
of the mapV_1(sln) — C(n), and by symmetry it is enough to prove this fdrandw?. This is immediate
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from the following calculations:

LY = HIHZ 4 o X322 o x B33 xBx32: _pHL.

W= — HHZH?Z: —  X12X2IH2 X B33IH L —  xI3x3H2
4+ X23X32H2; — x18x32x 2L, +%  x129x2t: —g L (OX1)Xx?L:
7. 13 31. 9. 13yy31. 1. 23 32. 3. 23\y32.
5 XEOXE: =2 (OXB)X: 5 XB0X2 1 45 (0XF)X2:

1oy 1 a2 1o
5 tHIOH? 145 (GH)H? : +50°HY.

Next, we find a minimal strong generating set for the remarnaseC(2). In this case, it is readily
verified that.* andw? do notlie in the affine vertex algebra generatedbl?, X21, H1. However, consider

the following elements of(2):

— 12 12 1. 1y12. 2 12
P=—SLigX" "+ 3 HX": 420X
1 2
=By’ = (OB +5 BBV 5 BBV
— 11 21 2. 1ye21. 1 21
1 2
=Byt = (OBY)Y 5 BB 5 BBV
R=L'-L%
L:'X12X21'+:—L'H1H1'—20H1
: T+ P —50H"

HerelL is the Sugawara Virasoro field of the affine vertex algebrée of(s(,), which has central charge
1, andX*?, X1 H? are primary of weight one with respectlof It is easily verified thaP,Q, R are primary
of weight 2 with respect td, and that{ X', X?1, H, P,Q,R} close under operator product expansion, so
they strongly generate a vertex subalgeBi@) c C(2). Moreover, we have

1 1

1
1_+ oyl2y21. 11, L4
L _2R+.X X .+2.HH ; 20H,
1 1 1
|_2:_§R+:X12X21:+§:HlHl:—iaHl,
le_%:RHl:—:PX21:—%:HlHlHl:—g:XnXZlHl:——l;:(dxlz)X21:+—130:X120X21:

1 yyl. , L2001
= (HDHT: +207H1,

19 25

1 1 4
W2 = =5 DRHT: — i PXE 5 HIHTHT o XX 2o 0 (XX = X29X 2

S oaplygl. 3 7 2
> H(OHYH! 4+ Z0R+ 20°HY,
SinceC(2) is generated byt L2 W1 W? X12 X21 H1 this shows tha€’(2) = C(2). We obtain

Theorem 5.2. C(2) is of typeW(1,1,1,2,2,2). In fact, it is the simple quotient of an algebra of type
W(1,1,1,2,2,2,2) where the Virasoro field in weigl2tcoincides with the Sugawara field.

Remark 5.3. Recall that each embedding €} inside a reductive Lie super algely@ives an associated
affine W-super algebra from the affine vertex super algebrg af levelk [KW2]. Denote byWK(sl4)
the universal affin@V-algebra ofs(4 for the embedding o$l, such thatsl4 decomposes into four copies
of the adjoint representation ef, plus three copies of the trivial one. This implies thef(sl4) is of
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type(1,1,1,2,2,2,2) and in fact the three fields of dimension one generate the subxoperator algebra
Voki2(slz). Letk= —5/2 then the central charge Wk(su) is —3 and it containd._1(sl) as sub vertex
operator algebra. A free field realization\&#(sl,) is given in Example 3.3 of [ArMo]. A computation
then reveals that the simple quoti#Hits,,(sls) is isomorphic toC(2).

Next we consider Heisenberg cosets indisesystems andbcBy-system. First, consider the ramk
bc-systemE(n) with odd generators', ¢’ satisfying
b)) (w) ~ & jz—w) L, @b W) ~a&jz-w
b'(2)bl(w) ~0,  c'(2)c)(w)~0.
Consider the Heisenberg algeltavith generatori = — Y ; : bic' ;, and letD(n) = Com(H,E(n)). Itis
well-known to be trivial fom = 1 and isomorphic td (sl,) forn > 2.

[
Now we consider the Heisenberg algebransideS(n) ® E(m) with generator

m

h:Xn::Biyi:—Z:bici:.
i—1 =1

Let C(n,m) = Com(H,S(n) ® E(m)). It is easy to verify tha€(n,m) contains the following fields:

Xjk:—ZBij:, j,k:].,...,n, J#k’

H = —:BYyr: + gy 1<ri<n,
X'S=:b'cs:, rs=1,....m r#s,
HY=:blct: — : pUicttt:, 1<u<m,

Jr=:ply:—:bc:;, 1<i<n = 1l<r<m,
P*=:b'y:,  gs=:Blcs;,  jk=1,...n, rs=1..m

Moreover, these generate a homomorphic imagé;¢§((njm)). By a similar argument to the proof of
Lemma 5.1, we obtain

Lemma 5.4. For all n > 1 and m> 1, C(n,m) is generated as a vertex algebra byW' fori=1,...,n,
together with the image of the mafa (s{(njm)) — C(n,m).

Theorem 5.5. For all n > 1 and m> 1, C(n,m) is isomorphic to the simple affine vertex superalgebra
L1(sl(njmy)).

Proof. SinceC(n,m) is simple, it suffices to show that,W' lie in the image of the map/y(sl(njm)) —
C(n,m). By symmetry it is enough to show this fat andW?. Consider the following fields in the image
of V1 (sl(njm)):

JH =gyt —plct: ptl=:pict: et =:blyt:.
A straightforward calculation shows that

Lt =gttt —2: gttt o0,

1

W= gbigligll . 3. gligligll. 3. (awl,l)q)l,l : _éazjl,l_
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6. SOME C;-COFINITENESS RESULTS

In this section, we show that the simple parafermion algebs&, as well as the coset of the Heisenberg
algebra inside the Bershadsky-Polyakov algebra, bothtddrge categories df;-cofinite modules.

6.1. The sl, parafermion algebra. We work with the usual generating 9¢€tY,H for the universal affine
vertex algebraVy(sly). Let Iy C Vi(sl) denote the maximal proper ideal graded by conformal weight,
so that the simple affine vertex algelgs(z) is isomorphic toVi(sl2)/Ix. By abuse of notation, we use
the same symbolX,Y,H for the generators dfy(sl,). Let Nx(slp) = Com(H, Lk(sl2)) denote the simple
parafermion algebra afl;. We will prove the following.

Theorem 6.1. For all k # 0, every irreducibleNg(sl,)-module appearing ihg(sl,) has the G-cofiniteness
property according to Miyamoto’s definition.

In the case wherkis a positive integef\(sl») is rational, so th€;-cofiniteness of the above modules
is already known. Therefore we will assume for the rest of thscussion thdt is not a positive integer.
Sincel, is generated by eitherX"1) : or (Y1) : for any positive integen, it follows that if k is not a
positive integerly does not contain(X") : or : (Y") : for anyn.

Recall thatl(sl2)V™ = H ® Ni(slp) where theU (1) action is infinitesimally generated by the zero
mode of the fieldH. Since each irreducible(sl)YY-moduleM appearing inL(slz) is isomorphic to
H® N whereN is an irreducibleNg(sl,)-module, it suffices to prove the;-cofiniteness of the irreducible
modulesM.

Recall that for alk € C, Vi(sl2)V(® has a strong generating set

{H,Ugj =: X3'Y : |i >0}.
For allk = 0 andi > 4, there is a relation of weiglt+ 2 for the form
Uo, = R(H,Uo,0,U0.1,Uo0.2,U03),

whereP is a normally ordered polynomial ifl,Ug0,Uq 1,Up2,Uo3, and their derivatives. Therefore
Vi(sl2)Y @ is strongly generated b§H,Uq 0,Uo1,Uo2,Up3} and hence is of typ&V(1,2,3,4,5) for all
k # 0. Moreover, since the mayy(sl>)Y Y — Li(slo)Y ) is surjective, the same strong generating set
works forLy(slz)V ).
SinceU (1) is compact andl(sl2) is simple, we have a decomposition
Li(sl2) = @D Ln @ M,
nez
whereLy, is the irreducible, one-dimensiorid(1)-module indexed by € Z and theM,’s are inequivalent,
irreducibleLy(sl2)Y(Y-modules. HereM, consists of elements whek(0) acts by 2. Since :(X"): #0
and :(Y") : # 0in Lg(slp), and these elements lie M, andM_p and have minimal conformal weight it
follows thatM, andM_, are generated ds(sl>)YY-modules by {X") : and :(Y") :, respectively. Note
that we have a similar decomposition
Vi(slz) = @ Ln® M,
nez
where theVip's areVi(sl2)YY-modules which are no longer irreducible whég(sl,) is not simple.
Recall that a modul® for a vertex algebrd is calledC;-cofiniteif M/Cy(M) is finite-dimensional,
whereC; (M) is spanned by
{a(kkm me M, k< 0, wt(a) > 0}.
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To prove theC;-cofiniteness property d¥l, as al(sl>)V(Y-module for alln, it suffices to prove th€;-
cofiniteness oM. In fact, we shall prove a stronger statemeht;; are C;-cofinite ast(slz)U(1>-
modules. Since the mald.; — M. is surjective and compatible with the actions\af(sl>)» and
Lk(slz)u(l), this implies theC;-cofiniteness oM..;. We only prove theC;-cofiniteness ofi_1; the proof
for My is the same.

SinceVy(sly) is freelygenerated by, Y,H, it has a good increasing filtration

Vi(sl2) (o) C Vi(sl2)1y €+, Vil(sl2)i0) = | Vi(sl2) (g,
d>0

whereV(slz) q) is spanned by iterated Wick productsXfY,H and their derivatives, of length at makt
ThenM_1 inherits this filtration, anc@l\7l,1)(d) has a basis consisting of

(0H) - (OTH)(911X) - (815X) (MY - - (%) (a%s+1Y) -, (6.1)
where

j — 3

1> >ir >0, j1=2-->js>0 ki >--->ks>Kksp1 >0, d>r+2s+1

In particular,(l\7l,1)(1) has a basis
{oly]j=>0}.

Lemma 6.2. Anyw € M_; of weight m> 0 is equivalent to a scalar multiple @Y, modulo G(M_3).

Proof. It suffices to assume thab is a monomial of the form (6.1) with+ 2s > 0, which has filtration
degreg +2s+1. Let
v=1:(0"H)- (9"H) Uiy j;) -~ Ui i) (0%7Y) 5, Uap=:0%X°Y .

and observe that has weightmand lies inCl(l\7L1), andw — v has filtration degree+ 2s. Therefore by
induction on filtration degreey is equivalent to an element of filtration degree one and wergfhe only
such element up to scalar multiplesig LY. O

Now we are ready to prove Theorem 6.1. By the preceding lerrmesough to prove that
'Y € Cy(M_y),
for i sufficiently large. For this purpose, we compute
(Uoa)(0)(9'Y) = (k+2/5)0"°Y + .-,
where the remaining terms are of the form
D(@"H)(ATY) ;o< r<i,
and hence lie i|®1(l\7l,1). Recall that for alk # 0, we have a relation
Uo.4 = P4(H,Uo,0,U0.1,U02,Uo 3)-

We claim that

P4(H,Ug,0,U0,1,U02,U03) (0)(8'Y) € C1(M_1).
To see this, leto be a term appearing iy (H,Uo 0,Up 1,Uo 2,Up 3) of the form :az ... a : wheret > 1 and
eacha;j is one of the field$—|,Uoﬁo,Uo,l,Uo,z,Uoﬁé or their derivétives. Thew(())((?iY) € C1(|\7L1) because
the zero mode of such an operator cannot consist of only daniim operators (i.e., non-negative modes
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of aj). If t =1, thenw is a total derivative by weight considerations,cs@(aiY) = 0. It follows that for
allk# —2/5,3'Y € Cy(M_4) foralli > 5.
Finally, suppose thdt= —2/5. A similar computation shows that

. 1 .
i _ _ T QJi+6
(Uos)0)(d'Y) = 155 Y+
where the remaining terms are of the form
((@"H)(™5TTY):, 0<r<i,

and hence lie irCl(I\7L1). The same argument using the relatidgs = Ps(H,Ug 0,Uo 1,Ug,2,Uo 3) shows
thatd'y € Cy(M_4) foralli > 6.

6.2. Bershadsky-Polyakov algebras.Let WK denote the universal Bershadsky-Polyakov algebra which
is freely generated by fields T,G* of weights 12, %’, %’ respectively, and whose OPE structure can be
found in [FS]. This algebra appeared originally in [Ber] [Pand it coincides with the Feigin-Semikhatov
algebraWéz) [FS] as well as the minimalV-algebra ofWX(sl3, fmin) [KW2]. Let I, ¢ WX denote the
maximal proper ideal graded by conformal weight, and¥gt= WK1, be the simple quotient.

The fieldJ generates a Heisenberg algebrand we define
CK=ComH,WK),  C=ComH,W,).

In [ACL] it was shown thatCK is of typeW(2,3,4,5,6,7) for all k except for{ —1, —%}, and since there is
a projectionCk — Cy, the generators df* descend to give strong generator fgras well.

Theorem 6.3. For all k # —1,—%, every irreducibleCy-module appearing iW, has the G-cofiniteness
property according to Miyamoto’s definition.

The proof of this result is similar to the case of parafermadgebras above. First, suppose that
p/2-3forp=5,7,9,...,. As shownin [ACL],Cp/,_3 is isomorphic to the simple, ration® (sl _3)-
algebra with central charge= —%(p— 4)2, andW, »_sis asimple current extension 6f,/,_3z®Vi where
VL is the lattice vertex algebra far= /3p — 9Z. From this result, it is immediate that Theorem 6.3 holds in
these cases, so from now on we assumekiighot of this form. Since, > 3 is generated by(G*)P?):
for p=5,7,9,..., it follows that ifk # p/2 — 3, I, does not contain(G*)" : for anyn > 0.

Recall that(Wy)" Y = H @ C, where thel (1) action is infinitesimally generated by the zero mode of
J. Since each irreducibléw,)¥®-moduleM appearing inWj is isomorphic toH ® N whereN is an
irreducibleCy-module, it suffices to prove th@ -cofiniteness of the irreducible moduligls

By Theorem 5.3 of [ACL], for alk # —1,—3, (W)U has a strong generating set

{J,L,Ug; =:G"d'G :|i>0}.
For allk £ —1, —% andi > 5, there is a relation of weight- 3 for the form
Uoi = R(J,L,Uo0,U0,1,U02,U03,U0.4),

whereR is a normally ordered polynomial ihL,Uqg g,Ug 1,Uq 2,Ug 3,Uo 4, and their derivatives. Therefore
(W)@ is strongly generated b§d, L, U 0,Uo 1,Uo2,U03,Uo4} and hence is of typ#/(1,2,3,4,5,6,7)
forallk# —1,—3. Since the magpw )V — (W, )V is surjective, the same strong generating set works
for (W)U,
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We have a decomposition
Wk = @ Ln ® Mna

nez
whereLy, is the irreducible, one-dimensioria(1)-module indexed by € Z and theM,’s are inequivalent,

irreducible(Wy)Y®-modules. Heré, consists of elements whed¢0) acts byn. This contains a unique
up to scalar elemenb, of minimal Weight%. Herewy =1, nh=(: G ) ":forn< 0, andw, = (: G")":
for n > 0. It follows that soM,, is generated as (a/Vk)U<1)-moduIe by, for all n.

As usual, to prove th€;-cofiniteness oM, as a(Wk)U(l)—moduIe for alln, it suffices to prove th€;-
cofiniteness oM..1. For this purpose, it is enough to prove thvt; areC;-cofinite as(W*)Y(Y-modules.
We only prove theC;-cofiniteness oM_1; the proof forM is the same.

Recall from [ACL] thatWX has a weak filtration

(W0 € WKy Coey (WEY = [ (WK ),
d>0
Where(Wk)(d) is spanned by iterated Wick productslf, G* and their derivatives, where at maisof the
fieldsG* and their derivatives appear. Thih 1 inherits this filtration, an(ﬂl\7l,1)(d> has a basis consisting
of
L (0RL)--- (QFL)(0P1]) - (3% ) (09 GT) -+ (3% GT)(dNGT)--- (8% +1G7) :, (6.2)

wherer >0and0<a; <--- <g,0<b; <---<bj,0< <+ <6, and 0< dy < -+ < dpyg.

Lemma 6.4. Any w € M_; of weight m+% > 0 is equivalent to a scalar multiple a@™G~, modulo

Ci(M_1).

Proof. By the same argument as previous,is equivalent modul@l(l\7l,1) to a linear combination of
terms of the form
S (QFL)--- (93L)(8P2J)--- (a1 3)(0°G7) -

All such terms except possiby/"G~ clearly lie inCy(M_;). O

To prove Theorem 6.3, it is enough to show that
9'G™ €Cy(M_y),
for i sufficiently large. For this purpose, we compute
. 2 1 .
i~—\ 2, < el i+7— .
(Uos)(0)(0'G ) = <k + 21k+ 28)0 G +--,
where the remaining terms lie @ (M_1). Recall that for alk # —1, —%, we have a relation

Uos = P5(J,L,Ug0,Uo.1,Up 2,U03,Uo 4).

We claim that

P (3, L,U0,0,Uo,1,Uo,z,Uo,3,Uo,4)(o)(l9in) € Cy(M_q).
To see this, letw be a term appearing iB5(J,L,Ug 0,Uo,1,Uo,2,Uo0.3,Up 4) of the form :a... ot : where
t > 1 and eactw; is one of the fields, L,Uo 0,Uo.1,Uo 2,Uo 3,Uo 4 Or their derivatives. Thew, (diG*) €
Ci1(M_1) because the zero mode of such an operator cannot considyafromihilation operators. if =1,
thenw is a total derivative by weight Considerations,cs@)(aiG*) = 0. It follows that ifk is not a root of
X2+ ZX+ 25, 0'G™ € Cy(M_y) foralli > 7.
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Finally, suppose thatis a root ofx? + 2£1x+ 2—18. A similar computation shows that

i 1 3 ;
I B == 2 e — I+8 - e
(Uos)(0)(0'G ) = (k + 56k+ 112) A8G 4 ...

where the remaining terms lie (h_l(l\7l,1). Sincek is not a root of? + 5—16x+ 1%2 the same argument using
the reIatioon,e = Ps(J, L,UO,O,UO,l,U0,27U0,3,U0,4) shows tha®'G~ e Cl(Mfl) foralli > 8.

APPENDIXA. A PROOF OFTHEOREM 3.1

LetV be a simple vertex operator algebra andGiéte a finitely generated abelian group of semi-simple
automorphisms of. Assume thaV/ = @, . V, for some subgroup of G. Assume that we are working
with a category oVp-modules that satisfies the conditions required to invoiéthang, Lepowsky, Zhang’s
tensor category theory.

We denote the vertex operator mapwby Y. Fix ani € £. We shall prove tha¥_; X V; = V. In other
words, we shall prove that; is a simple current. The proof we provide below is essewtthk proof given
in [M2], [CaM].

We break the proof in several steps.

(1) Let us think ofY as aV-intertwining operator of type{vvv). We have already assumed théais a
simple VOA, i.e.,V is simple as &/-module. Using Proposition 11.9 of [DL], we see that for any
t1,to € V, Y(t1,X)to # 0. This implies that coefficients of(t1, x)t> asty runs overV; andt, runs over
Vi span a non-zerdp-submodule oWV . SinceVy is a simpleVo-module, we get that coefficients
of Y (t1,X)to for ty € Vj andty € Vi spanV .

(2) Given generalize®p-modulesA, B, we denote by;}fB the “universal” intertwining operator of type
(AEBB) furnished by the universal property of tensor product¥lfs a direct summand &, then we
assume thaw%,B is normalized so theuEB(vo,x)b =Yg (vp,X)b for all vp € Vg andb € B, whereY; is
the module map for th&g-moduleB. Moreover, for finite direct sumgy = @ A;, we will assume that
H%,B ‘Ai,B = 9%,3-

(3) Inwhat follows, we will often make the identificatify X V, = V,.

(4) Recall that we have fixed are £. By [HLZ], we have the associativity of intertwining opevat, and
hence, there exists a logarithmic intertwining oper&ay; of type (VrJ\r/:gl\\//iin) such that for complex
numbersc,y with x| > |y| > [x—y| >0,

<V\/79§,+S,vi (Y(Ur,X—y)Us,y)Vi) = <V\/a9r,si(urvx)9§5,vi (Us, Y)Vi), (A.1)
foranyu, € Vy,us € Vsandy; € Vi, W € (VsX V).
(5) Takingu; =1, we get:
(W, Y0, (Us, V)W) = (W, Yosi(1,X) 5y, v, (Us V)W) (A-2)
combining with the observation that coefficientgzi@;vi (ts,y)vi spanVsX V;, we get that:
Yo,si (1, XV =V (A-3)

for all v¢ € VsX V;. Now, using Jacobi identity we get thBg s.i(Uo,X)v®, whereug € Vg andv® €
VsX Vi equals the action afy by theVy-module map.

(6) Takingus=1in (A.1), and identifyingVo X V; with V;, we get that:

(W, Yr 0 (Ur, X)Vi) = (W, Yr 0 (Ur, X) Yoy v (1Y) = (W, (Y (U, X = y) Ly)vi)
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= (W, Y4 v, (XY tug, y)vi) = (W, UGy, (Un,y+X— )W),
where all the equalities hold for complex numbengwith |x| > |y| > |x—y| > 0. We may now choose
y= %x, as this satisfies the required constraints, and deduce that
Y103 (Ur, X)Vi = Y4y, (Ur XV (A.4)
for allt; € V, andv; € V.
(7) For complex numbelig| > |y| > |z > [x—2| > |y— 2 > |[x—y| > 0 we have that:
(W, Yr.sii (Ur,X) Ysti (Us, Y)Y v, (Ut 20W) = (W, Yr st (U, X) By gy, v, (Y (Us Y — 2)U, 2)V)

= (WP (Y (U X = DY (Usy — DU, 2)vi)

= (W g (Y (Y (Ur X = Y)Us Y~ 2k 2))

= <V‘/a1?5r+s,t;i(Y(UraX—Y)USay)Ha,vi (U, 2)Vi)-

Again, since coefficients Qa‘a’vi spanV; X Vj, we get that for alli; € V; andus € Vs andv® € Vi XV,

Yrstii (Ur, X)Ystii (Us, Y)VE = Yrpst;i (Y (Ur, X— Y)Us, 2)V°. (A.5)

(8) Now we consideY_; X V;. Since they map for the vertex operator algebrdurnishes a/p-intertwining
operator of type(vi’iovi), by universal property of tensor products, there exists aphiem from
V_i K V; to Vp. Since the coefficients of (u_;,x)u; for u_j € V_;j andu; € V; spanVp, V_i XV,
in fact surjects ontd/p. Since the latter is simple, proving simplicity ®f ; X V; will give us that
V_i XV = V,.

(9) LetB be a non-zer®&/o submodule of/_; X V; (V_i KV; is non-zero since it surjects onp) and let

E = Spar{ Coefficients ofY; _ii (ui,x)b|u; € V;,b € B}.

Since the type ofi _i; is (\\ff’%\j‘;x:) E can be regarded as\va-submodule of/;.

(10) E is in fact a non-zero submodule ®. Indeed, if it were 0, then, the left-hand side of (A.5) with
r=t=—i,s=iwould be 0 and hence we would get tHat i (Y (u_i,x—y)u;,y)bis O for allu_j € V_j,
Ui € Vj andb € B. However, in this case, coefficients6fu_;,x — y)u; spanVo andYo ;i (Ug, X)b for
Up € Vo is equal toYg (up, X)b whereYs is the module map for th€y-moduleB. Since the coefficients
of the module map span the entire module, we have a contiGaulict

(11) Since OZ E C Vj andV; is simple E = V;.
(12) UsingE = V; and using equation (A.4),
Spar{ Coefficients ofy _j o; (V_i,X)Yi.—i; (Vi,y)b|v_i € V_i,vi € Vj,b € B}
= Spar{ Coefficients ofy _; o (v_i,X)e|v_j € V_j,e € E}
= Spar{ Coefficients ofy_; ;i (V_i,X)Vi | V_i € V_i,V; € Vi}
— Spar{Coefficients ofagfivvi (V_i,X)Vi Vi €V i, v € Vi}
=V_ XV,
However, using the right-hand side of equation (A.5),
Spar{ Coefficients ofJ_; o; (V—i,X)Yi—i:i (Vi,y)b|v_i € V_i,v; € Vj,b € B}
= Spar{ Coefficients ofjo ;i (Y (V_i,X—Y)Vi,y)b|v_i € V_j,v; € Vi,b € B}
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= Spar{ Coefficients ofJg i (Vo,Xx—y)b|vp € Vo,b € B}

= Spar{ Coefficients ofyg(vo,Xx—y)b|vg € Vo,b € B}

=B.

This shows thaV_; X V; = B for any non-zero submodulg of V_; X V;. We conclude that_; X V;
is simple. Hence, it equalg.
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