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PETR VOJTĚCHOVSKÝ

Abstract. Let p > q be odd primes. We classify Bol loops and Bruck loops of order pq up
to isotopism. When q does not divide p2 − 1, the only Bol loop (and hence the only Bruck
loop) of order pq is the cyclic group of order pq. When q divides p2 − 1, there are precisely
b(p−1+4q)(2q)−1c Bol loops of order pq up to isotopism, including a unique nonassociative
Bruck loop of order pq.

1. Introduction

Let p > q be odd primes. In this short note we classify Bol loops of order pq up to
isotopism, building upon the work of Niederreiter and Robinson [18, 19], and Kinyon, Nagy
and Vojtěchovský [12]. The classification turns out to be a nice application of group actions
on finite fields.

A quasigroup is a groupoid (Q, ·) in which all left translations yLx = xy and all right
translations yRx = yx are bijections. A loop is a quasigroup Q with identity element 1. A
(right) Bol loop is a loop satisfying the identity ((zx)y)x = z((xy)x), and a (right) Bruck
loop is a Bol loop satisfying the identity (xy)−1 = x−1y−1.

Two loops Q1, Q2 are said to be isotopic if there are bijections f , g, h : Q1 → Q2 such
that (xf)(yg) = (xy)h for every x, y ∈ Q1. If f = g = h, the loops are said to be isomorphic.
Since an isotopism corresponds to an independent renaming of rows, columns and symbols
in a multiplication table, it is customary to classify loops (quasigroups and latin squares
[5, 14, 15]) not only up to isomorphism but also up to isotopism.

Alongside Moufang loops [3, 16], automorphic loops [4, 11] and conjugacy closed loops
[6, 9, 13], Bol loops and Bruck loops are among the most studied varieties of loops [2, 7, 8,
10, 17, 20]. We refer the reader to [1, 3] for an introduction to loop theory and to [12] for
an introduction to the convoluted history of the classification of Bol loops whose order is a
factor of only a few primes.

The following construction is of key importance for Bol loops of order pq. Let

Θ = {θi | i ∈ Fq} ⊆ Fp

be such that θ0 = 1 and θ−1
i θj ∈ F∗

p \ {−1} for every i, j ∈ Fq. Define Q(Θ) on Fq × Fp by

(1.1) (i, j)(k, `) = (i+ k, `(1 + θk)−1 + (j + `(1 + θk)−1)θ−1
i θi+k).

Then Q(Θ) is always a loop.
This construction was introduced and carefully analyzed by Niederreiter and Robinson in

[18]. We can restate some of their results as follows:
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Theorem 1.1. [18] Let p > q be odd primes. Then Q(Θ) is a Bol loop if and only if there
exists a bi-infinite q-periodic sequence (ui) solving the recurrence relation

(1.2) un+2 = λun+1 − un
for some λ ∈ F∗

p such that u0 = 1 and u−1
i uj ∈ F∗

p \ {−1} for every i, j. (Then θi = u−1
i for

every i ∈ Fq.)
If Q(Θ) is a Bol loop then it is a Bruck loop if and only if ui = u−i for every i ∈ Fq.
Suppose that two Bol loops correspond to the sequences (ui) and (vi), respectively. Then

the loops are isomorphic if and only if there is s ∈ F∗
q such that ui = vsi for every i ∈ Fq,

and the loops are isotopic if and only if there are s ∈ F∗
q and r ∈ Fq such that ui = v−1

r vsi+r

for every i ∈ Fq.

It is not at all obvious that every Bol loop of order pq is of the form Q(Θ). This was
proved in [12], where the isomorphism problem was resolved as follows:

Theorem 1.2. [12] Let p > q be odd primes. A nonassociative Bol loop of order pq exists if
and only if q divides p2 − 1. If q divides p2 − 1 then there is a unique nonassociative Bruck
loop Bp,q of order pq up to isomorphism and there are precisely

p− q + 4

2
Bol loops of order pq up to isomorphism. All these loops are of the form Q({θi | i ∈ Fq})
with multiplication (1.1) and are obtained as follows:

Set θi = 1 for every i ∈ Fq for the cyclic group of order pq. For the non-cyclic loops, fix

a non-square t of Fp, write Fp2 = {u + v
√
t | u, v ∈ Fp}, and let ω ∈ Fp2 be a primitive qth

root of unity. Let

Γp,q =

{
{γ ∈ Fp | γ = 0 or 1− γ−1 6∈ 〈ω〉}, if q divides p− 1,
{γ ∈ 1/2 + Fp

√
t | 1− γ−1 6∈ 〈ω〉}, if q divides p+ 1.

Let f be the bijection on Γp,q defined by

γ 7→ 1− γ.
The non-cyclic Bol loops of order pq up to isomorphism correspond to the orbits of the group
〈f〉 acting on Γp,q. For every orbit representative γ let

θi = θ(γ)i =
1

γωi + (1− γ)ω−i
.

The choice γ = 1/2 results in the nonassociative Bruck loop Bp,q. If q divides p − 1, the
choice γ = 1 results in the nonabelian group of order pq.

Since a loop isotopic to a group is already isomorphic to it, Theorem 1.2 contains the clas-
sification of Bruck loops of order pq up to isotopism. In this paper we finish the classification
of Bol loops of order pq up to isotopism by proving:

Theorem 1.3. Let p > q be odd primes such that q divides p2 − 1. Then there are precisely⌊
p− 1 + 4q

2q

⌋
Bol loops of order pq up to isotopism. With the notation of Theorem 1.2, these loops are
obtained as follows:
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Set θi = 1 for every i ∈ Fq for the cyclic group of order pq. The non-cyclic loops correspond
to orbit representatives of the group 〈f, g〉 acting on Γp,q, where g is given by

γ 7→ γω

γω + (1− γ)ω−1
.

Remark 1.4. Let p > 3 be a prime. By Theorem 1.3, the number N3p of Bol loops of order
3p up to isotopism is equal to b(p + 11)/6c, confirming [12, Conjecture 7.3]. It was shown
already in [18, p. 255] that N3p ≥ d(p+ 5)/6e, a remarkably good estimate. Note that⌊

p+ 11

6

⌋
−
⌈
p+ 5

6

⌉
=

{
0, if p = 6k + 5,
1, if p = 6k + 1.

2. Proof of the main result

For the rest of the paper assume that p > q are odd primes, q divides p2 − 1, ω is a
primitive qth root of unity in Fp2 and write Fp2 = {u+ v

√
t | u, v ∈ Fp} for some non-square

t ∈ Fp.
Let Xp,q be the set of all bi-infinite q-periodic sequences with entries in Fp2 . As explained

in [12], u ∈ Xp,q solves the recurrence relation (1.2) if and only if Au = λu, where A is the
q × q circulant matrix whose first row is equal to (0, 1, 0, . . . , 0, 1) and where we identify u
with the vector (u0, . . . , uq−1)

T . General theory of circulant matrices applies and yields:

Lemma 2.1. [12] Let A be the q×q circulant matrix whose first row is equal to (0, 1, 0, . . . , 0, 1).
For 0 ≤ j < q, let

(2.1) λj = ωj + ω−j and ej = (1, ωj, ω2j, . . . , ω(q−1)j)T .

Then:

(i) For every 0 ≤ j < q, λj is an element of the prime field of Fp2.
(ii) For every 0 ≤ j < q, λj is an eigenvalue of A over Fp2 with eigenvector ej.

(iii) For 0 < j ≤ (q − 1)/2, the eigenvectors ej, e−j are linearly independent.
(iv) For 0 ≤ j < k < q, λj = λk if and only if j + k ≡ 0 (mod q). In particular, λ0 = 2

has multiplicity 1, and every λj with 1 ≤ j ≤ (q − 1)/2 has multiplicity 2.

Let λj and ej be as in (2.1). In order to better understand which elements of Xp,q yield
Bol loops, let us define the following subsets:

X ∗
p,q = {u ∈ Xp,q | u0 = 1},

Aj
p,q = {u ∈ X ∗

p,q | Au = λju}, Ap,q =
⋃

0≤j<q

Aj
p,q,

Bj
p,q = {u ∈ Aj

p,q | u−1
i uk ∈ F∗

p \ {−1} for every i, k}, Bp,q =
⋃

0≤j<q

Bj
p,q.

By Theorem 1.1, the elements of Bp,q are precisely the sequences that yield Bol loops.

Lemma 2.2. For every j ∈ Fq, Aj
p,q = {γej + (1− γ)e−j | γ ∈ Fp2}. In particular, the only

element of A0
p,q = B0

p,q is the all-1 sequence.

Proof. Let u ∈ Aj
p,q. By Lemma 2.1, u = γej + δe−j for some γ, δ ∈ Fp2 . The condition

u0 = 1 forces γ + δ = 1. �
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Let u be the unique element of B0
p,q, the all-1 sequence. Then θi = u−1

i = 1 for every i,
and the multiplication formula (1.1) becomes (i, j)(k, `) = (i + k, j + `), the direct product
Zq × Zp

∼= Zpq.
Consider the following binary relations on X ∗

p,q:

• u ∼ v if there is s ∈ F∗
q such that ui = vsi for every i,

• u ≈ v if there is r ∈ Fq such that ui = v−1
r vi+r for every i, and

• u ≡ v if there are s ∈ F∗
q and r ∈ Fq such that ui = v−1

r vsi+r for every i.

We recognize ∼ as the isomorphism relation and ≡ as the isotopism relation from Theorem
1.1.

Lemma 2.3. If u ∈ Aj
p,q and v ≡ u via vi = u−1

r usi+r then v ∈ Asj
p,q. Conversely, if u ∈ Aj

p,q

for some j ∈ F∗
q then for every k ∈ F∗

q there is v ∈ Ak
p,q such that v ≡ u.

Proof. Suppose that u ∈ Aj
p,q and vi = u−1

r usi+r. Note that v0 = u−1
r ur = 1. By Lemmas

2.1 and 2.2, we have u = γej + (1 − γ)e−j for some γ ∈ Fp2 . Let fi = e−1
j,r ej,si+r. Then

fi = ω−jrωj(si+r) = ωjsi = esj,i. By linearity, v = γesj +(1−γ)e−sj. By Lemma 2.1, v ∈ Asj
p,q.

For the converse, suppose that j ∈ F∗
q and let s ∈ F∗

q be such that sj = k. Set vi = u−1
r usi+r

for some r ∈ Fq. Then certainly v ≡ u and we have v ∈ Ak
p,q by the first part. �

Lemma 2.4. The following statements hold:

(i) ∼, ≈ and ≡ are equivalence relations on X ∗
p,q, and ≡ is the transitive closure of ∼

and ≈.
(ii) Bp,q is the union of some equivalence classes of each of ∼, ≈ and ≡.

(iii) If u ∈ B1
p,q and vi = u−1

r usi+r then v ∈ B1
p,q if and only if s = ±1.

(iv) B1
p,q is the union of some equivalence classes of ≈.

Proof. (i) Note that ∼ is contained in ≡ (set r = 0 and use v0 = 1) and ≈ is contained
in ≡ (set s = 1). We show that ≡ is an equivalence relation, the other two cases being
similar. We have u ≡ u with r = 0, s = 1. If ui = v−1

r vsi+r then u−1
−s−1rus−1i−s−1r =

(v−1
r vs(−s−1r)+r)

−1v−1
r vs(s−1i−s−1r)+r = vi, proving symmetry. If ui = v−1

r vsi+r and vi =

w−1
a wbi+a then ui = (w−1

a wbr+a)
−1w−1

a wb(si+r)+a = w−1
br+aw(bs)i+(br+a), proving transitivity.

For the transitive closure, if ui = w−1
r wsi+r, set vi = w−1

r wi+r and note that ui = vsi.
(ii) Suppose that u ≡ v, ui = v−1

r vsi+r. By Lemma 2.3, if u ∈ Ap,q then v ∈ Ap,q. If
u−1
i uj ∈ F∗

p \{−1} for every i, j, then v−1
si+rvsj+r = (v−1

r vsi+r)
−1v−1

r vsj+r = u−1
i uj ∈ F∗

p \{−1}
for every i, j, and we are done since (i, j) 7→ (si+ r, sj + r) is a bijection of Fq × Fq.

Part (iii) follows from (ii) and Lemma 2.3. Part (iv) is then immediate. �

Let j ∈ F∗
q. By Lemmas 2.3 and 2.4, for any u ∈ Bj

p,q there is v ∈ B1
p,q such that u ≡ v,

and there is no w ∈ B0
p,q such that u ≡ w. For the isotopism problem, it therefore remains

to study the restriction of ≡ onto B1
p,q, taking parts (iii) and (iv) of Lemma 2.4 into account.

Every element of B1
p,q is by definition an element of A1

p,q and hence is of the form

u(γ) = γe1 + (1− γ)e−1

for some γ ∈ Fp2 , by Lemma 2.2. The mapping γ 7→ u(γ) is a bijection. Indeed, if u(γ) = u(δ)
then γω + (1− γ)ω−1 = u(γ)1 = u(δ)1 = δω + (1− δ)ω−1, hence (γ − δ)ω = (γ − δ)ω−1 and
γ = δ follows. It was shown in [12, Section 6] that

B1
p,q = {u(γ) | γ ∈ Γp,q},

4



where Γp,q is as in Theorem 1.2. Moreover, by [12, Lemma 6.8], Γp,q is a set of cardinality
p− q + 1, it is closed under the map γ 7→ 1− γ, and it always contains 1/2.

Let u = u(γ) ∈ B1
p,q and consider vi = u−i. Since u(γ)i = u(1−γ)−i, we have v = u(1−γ) ∈

B1
p,q. The non-cyclic Bol loops of order pq up to isomorphism therefore correspond to the

orbits of the group 〈f〉 acting on Γp,q, where

γf = 1− γ.

At this point we can recover Theorem 1.2. The cyclic group of order pq corresponds to
the unique sequence of B0

p,q. The above action has a unique fixed point on Γp,q, namely
γ = 1/2, and all other orbits have size 2. The fixed point γ = 1/2 yields a Bruck loop by
Theorem 1.1. Since |Γp,q| = p− q + 1, there are additional (p− q)/2 Bol loops, for the total
of 1 + 1 + (p− q)/2 = (p− q + 4)/2 Bol loops of order pq. If q divides p− 1, the nonabelian
group of order pq must be among these pq loops. It is easy to check that it is the loop
corresponding to γ = 1.

To further classify Bol loops of order pq up to isotopism, we must now also consider the
equivalence classes of ≈ on B1

p,q.

Lemma 2.5. Let γ, δ ∈ Γp,q. Then u(γ) ≈ u(δ) if and only if

(2.2) γ =
δωr

δωr + (1− δ)ω−r

for some r ∈ Fq.

Proof. By definition, u(γ) ≈ u(δ) if an only if there is r ∈ Fq such that

(2.3) γωi + (1− γ)ω−i = u(γ)i = u(δ)−1
r u(δ)i+r =

δωi+r + (1− δ)ω−i−r

δωr + (1− δ)ω−r

for every i ∈ Fq.
Suppose that (2.3) holds. If r = 0 then u(γ) = u(δ) and hence γ = δ, which agrees with

(2.2). Suppose that r 6= 0. Substituting i = r into (2.3) yields

γωr + (1− γ)ω−r =
δω2r + (1− δ)ω−2r

δωr + (1− δ)ω−r
,

and therefore

γ =
(δω2r + (1− δ)ω−2r)(δωr + (1− δ)ω−r)−1 − ω−r

ωr − ω−r
.

A straightforward computation now shows that γ is as in (2.2).
Conversely, suppose that γ is as in (2.2). Then another straightforward calculation shows

that (2.3) holds for every i, and thus u(γ) ≈ u(δ). �

For r ∈ Fq, consider the mapping gr : Γp,q → Γp,q defined by

γgr =
γωr

γωr + (1− γ)ω−r
.

We note that gr is well-defined since γωr + (1 − γ)ω−r = u(γ)r 6= 0. By Lemma 2.5, if
γ = δgr then u(γ) ≈ u(δ), so u(δ) ∈ B1

p,q by Lemma 2.4(iv), which in turn implies δ ∈ Γp,q.
Altogether, gr is a bijection on Γp,q.
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Yet another straightforward calculation shows that γgrgs = γgr+s for every r, s ∈ Fq. Let
g = g1, that is,

γg =
γω

γω + (1− γ)ω−1
.

Combining our results obtained so far, we see that u(γ) ≈ u(δ) if and only if γ, δ are in the
same orbit of the group 〈g〉 acting on Γp,q, and u(γ) ≡ u(δ) if and only if γ, δ are in the
same orbit of the group G = 〈f, g〉 acting on Γp,q.

Proposition 2.6. The group G = 〈f, g〉 is isomorphic to the dihedral group D2q of order 2q.
Moreover:

(i) The only fixed point of f is 1/2. If q divides p− 1 then f(0) = 1 and f(1) = 0.
(ii) If 0 < i < q and q divides p− 1 then the only fixed points of gi are 0 and 1.

(iii) If 0 < i < q and q divides p+ 1 then gi has no fixed points.
(iv) If 0 < i < q then the only fixed point of fgi is (1 + ωi)−1.

Proof. Part (i) is obvious. For the rest of the proof, let 0 < i < q. We have γgi = γ if and
only if γωi = γ(γωi + (1− γ)ω−i), which is equivalent to γ(1− γ)ωi = γ(1− γ)ω−i. Clearly,
γ = 0, γ = 1 are fixed points as long as they lie in Γp,q, which happens if and only if q divides
p− 1. If γ 6∈ {0, 1} and γgi = γ then ωi = ω−i, a contradiction.

Suppose now that γfgi = γ. Then (1 − γ)gi = γ, (1 − γ)ωi = γ((1 − γ)ωi + γω−i), and
(1− γ)2ωi = γ2ω−i. We certainly have γ 6= 0 and thus ((1− γ)/γ)2 = ω2i, which we rewrite
as (1− γ−1)2 = ω2i. Then either 1− γ−1 = ωi (which implies 1− γ−1 ∈ 〈ω〉, a contradiction
with γ ∈ Γp,q), or 1 − γ−1 = −ωi, which implies γ = (1 + ωi)−1, the only candidate for a
fixed point of fgi.

Now, |f | = 2 since f 2 = 1 and γf 6= γ if γ 6= 1/2. Also |g| = q since gq = 1 and γg 6= γ
whenever γ 6∈ {0, 1}. Finally,

γgf = 1− γω

γω + (1− γ)ω−1
=

(1− γ)ω−1

γω + (1− γ)ω−1
,

while

γfg−1 = (1− γ)g−1 =
(1− γ)ω−1

(1− γ)ω−1 + γω
.

Thus gf = fg−1 and G ∼= D2q follows.
Since 1/2 is fixed by f but not by g, the orbit-stabilizer theorem implies that the orbit

of 1/2 contains q elements. In turn, each of these q elements has a stabilizer of size 2, so it
must be stabilized by some fgi of G. We conclude that the purported fixed points (1+ωi)−1

of fgi are indeed fixed points. �

We are ready to prove the main result, Theorem 1.3:
Let us count the orbits of G = 〈f, g〉 on the set Γp,q or cardinality p− q + 1. We will use

Proposition 2.6 without reference. For γ ∈ Γp,q, let O(γ) be the orbit of γ.
First suppose that q divides p− 1. Let p− 1 = kq and note that |Γp,q| = (k− 1)q+ 2. We

have 0, 1 ∈ Γp,q and O(0) = {0, 1}, leaving (k − 1)q elements. The orbit O(1/2) accounts
for the remaining q points fixed by some element of G. All the other (k − 2)q elements lie
in orbits of size 2q, so there must be (k − 2)/2 such orbits. Altogether, we have counted
1 + 1 + 1 + (k − 2)/2 = (p − 1 + 4q)/(2q) Bol loops of order pq up to isotopism, including
the cyclic group.
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Now suppose that q divides p + 1. Let p + 1 = `q and note that |Γp,q| = (` − 1)q. Also
note that 0, 1 6∈ Γp,q. The orbit O(1/2) again accounts for q elements, and these are the only
elements with nontrivial stabilizers. The remaining (`− 2)q elements lie in (`− 2)/2 orbits
of size 2q. Altogether, we have counted 1 + 1 + (` − 2)/2 = (p + 1 + 2q)/(2q) Bol loops up
to isotopism. We note that ` must be even and therefore⌊
p− 1 + 4q

2q

⌋
=

⌊
p+ 1 + 4q − 2

2q

⌋
=

⌊
`q + 4q − 2

2q

⌋
=

⌊
`

2
+ 2− 2

2q

⌋
=
`

2
+ 1 =

p+ 1 + 2q

2q
,

finishing the proof of Theorem 1.3.
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