BOL LOOPS AND BRUCK LOOPS OF ORDER $p q$ UP TO ISOTOPISM

PETR VOJTĚCHOVSKÝ

Abstract

Let $p>q$ be odd primes. We classify Bol loops and Bruck loops of order $p q$ up to isotopism. When q does not divide $p^{2}-1$, the only Bol loop (and hence the only Bruck loop) of order $p q$ is the cyclic group of order $p q$. When q divides $p^{2}-1$, there are precisely $\left\lfloor(p-1+4 q)(2 q)^{-1}\right\rfloor$ Bol loops of order $p q$ up to isotopism, including a unique nonassociative Bruck loop of order $p q$.

1. Introduction

Let $p>q$ be odd primes. In this short note we classify Bol loops of order $p q$ up to isotopism, building upon the work of Niederreiter and Robinson [18, 19], and Kinyon, Nagy and Vojtěchovský [12]. The classification turns out to be a nice application of group actions on finite fields.

A quasigroup is a groupoid (Q, \cdot) in which all left translations $y L_{x}=x y$ and all right translations $y R_{x}=y x$ are bijections. A loop is a quasigroup Q with identity element 1. A (right) Bol loop is a loop satisfying the identity $((z x) y) x=z((x y) x)$, and a (right) Bruck loop is a Bol loop satisfying the identity $(x y)^{-1}=x^{-1} y^{-1}$.

Two loops Q_{1}, Q_{2} are said to be isotopic if there are bijections $f, g, h: Q_{1} \rightarrow Q_{2}$ such that $(x f)(y g)=(x y) h$ for every $x, y \in Q_{1}$. If $f=g=h$, the loops are said to be isomorphic. Since an isotopism corresponds to an independent renaming of rows, columns and symbols in a multiplication table, it is customary to classify loops (quasigroups and latin squares $[5,14,15])$ not only up to isomorphism but also up to isotopism.

Alongside Moufang loops [3, 16], automorphic loops [4, 11] and conjugacy closed loops [6, 9, 13], Bol loops and Bruck loops are among the most studied varieties of loops [2, 7, 8, $10,17,20]$. We refer the reader to $[1,3]$ for an introduction to loop theory and to [12] for an introduction to the convoluted history of the classification of Bol loops whose order is a factor of only a few primes.

The following construction is of key importance for Bol loops of order pq. Let

$$
\Theta=\left\{\theta_{i} \mid i \in \mathbb{F}_{q}\right\} \subseteq \mathbb{F}_{p}
$$

be such that $\theta_{0}=1$ and $\theta_{i}^{-1} \theta_{j} \in \mathbb{F}_{p}^{*} \backslash\{-1\}$ for every $i, j \in \mathbb{F}_{q}$. Define $\mathcal{Q}(\Theta)$ on $\mathbb{F}_{q} \times \mathbb{F}_{p}$ by

$$
\begin{equation*}
(i, j)(k, \ell)=\left(i+k, \ell\left(1+\theta_{k}\right)^{-1}+\left(j+\ell\left(1+\theta_{k}\right)^{-1}\right) \theta_{i}^{-1} \theta_{i+k}\right) . \tag{1.1}
\end{equation*}
$$

Then $\mathcal{Q}(\Theta)$ is always a loop.
This construction was introduced and carefully analyzed by Niederreiter and Robinson in [18]. We can restate some of their results as follows:

[^0]Theorem 1.1. [18] Let $p>q$ be odd primes. Then $\mathcal{Q}(\Theta)$ is a Bol loop if and only if there exists a bi-infinite q-periodic sequence $\left(u_{i}\right)$ solving the recurrence relation

$$
\begin{equation*}
u_{n+2}=\lambda u_{n+1}-u_{n} \tag{1.2}
\end{equation*}
$$

for some $\lambda \in \mathbb{F}_{p}^{*}$ such that $u_{0}=1$ and $u_{i}^{-1} u_{j} \in \mathbb{F}_{p}^{*} \backslash\{-1\}$ for every i, j. (Then $\theta_{i}=u_{i}^{-1}$ for every $i \in \mathbb{F}_{q}$.)

If $\mathcal{Q}(\Theta)$ is a Bol loop then it is a Bruck loop if and only if $u_{i}=u_{-i}$ for every $i \in \mathbb{F}_{q}$.
Suppose that two Bol loops correspond to the sequences $\left(u_{i}\right)$ and $\left(v_{i}\right)$, respectively. Then the loops are isomorphic if and only if there is $s \in \mathbb{F}_{q}^{*}$ such that $u_{i}=v_{\text {si }}$ for every $i \in \mathbb{F}_{q}$, and the loops are isotopic if and only if there are $s \in \mathbb{F}_{q}^{*}$ and $r \in \mathbb{F}_{q}$ such that $u_{i}=v_{r}^{-1} v_{s i+r}$ for every $i \in \mathbb{F}_{q}$.

It is not at all obvious that every Bol loop of order $p q$ is of the form $\mathcal{Q}(\Theta)$. This was proved in [12], where the isomorphism problem was resolved as follows:

Theorem 1.2. [12] Let $p>q$ be odd primes. A nonassociative Bol loop of order pq exists if and only if q divides $p^{2}-1$. If q divides $p^{2}-1$ then there is a unique nonassociative Bruck loop $B_{p, q}$ of order pq up to isomorphism and there are precisely

$$
\frac{p-q+4}{2}
$$

Bol loops of order pq up to isomorphism. All these loops are of the form $\mathcal{Q}\left(\left\{\theta_{i} \mid i \in \mathbb{F}_{q}\right\}\right)$ with multiplication (1.1) and are obtained as follows:

Set $\theta_{i}=1$ for every $i \in \mathbb{F}_{q}$ for the cyclic group of order pq. For the non-cyclic loops, fix a non-square t of \mathbb{F}_{p}, write $\mathbb{F}_{p^{2}}=\left\{u+v \sqrt{t} \mid u, v \in \mathbb{F}_{p}\right\}$, and let $\omega \in \mathbb{F}_{p^{2}}$ be a primitive qth root of unity. Let

$$
\Gamma_{p, q}= \begin{cases}\left\{\gamma \in \mathbb{F}_{p} \mid \gamma=0 \text { or } 1-\gamma^{-1} \notin\langle\omega\rangle\right\}, & \text { if } q \text { divides } p-1, \\ \left\{\gamma \in 1 / 2+\mathbb{F}_{p} \sqrt{t} \mid 1-\gamma^{-1} \notin\langle\omega\rangle\right\}, & \text { if } q \text { divides } p+1 .\end{cases}
$$

Let f be the bijection on $\Gamma_{p, q}$ defined by

$$
\gamma \mapsto 1-\gamma
$$

The non-cyclic Bol loops of order pq up to isomorphism correspond to the orbits of the group $\langle f\rangle$ acting on $\Gamma_{p, q}$. For every orbit representative γ let

$$
\theta_{i}=\theta(\gamma)_{i}=\frac{1}{\gamma \omega^{i}+(1-\gamma) \omega^{-i}} .
$$

The choice $\gamma=1 / 2$ results in the nonassociative Bruck loop $B_{p, q}$. If q divides $p-1$, the choice $\gamma=1$ results in the nonabelian group of order pq.

Since a loop isotopic to a group is already isomorphic to it, Theorem 1.2 contains the classification of Bruck loops of order $p q$ up to isotopism. In this paper we finish the classification of Bol loops of order $p q$ up to isotopism by proving:
Theorem 1.3. Let $p>q$ be odd primes such that q divides $p^{2}-1$. Then there are precisely

$$
\left\lfloor\frac{p-1+4 q}{2 q}\right\rfloor
$$

Bol loops of order pq up to isotopism. With the notation of Theorem 1.2, these loops are obtained as follows:

Set $\theta_{i}=1$ for every $i \in \mathbb{F}_{q}$ for the cyclic group of order $p q$. The non-cyclic loops correspond to orbit representatives of the group $\langle f, g\rangle$ acting on $\Gamma_{p, q}$, where g is given by

$$
\gamma \mapsto \frac{\gamma \omega}{\gamma \omega+(1-\gamma) \omega^{-1}}
$$

Remark 1.4. Let $p>3$ be a prime. By Theorem 1.3, the number $N_{3 p}$ of Bol loops of order $3 p$ up to isotopism is equal to $\lfloor(p+11) / 6\rfloor$, confirming [12, Conjecture 7.3]. It was shown already in [18, p. 255] that $N_{3 p} \geq\lceil(p+5) / 6\rceil$, a remarkably good estimate. Note that

$$
\left\lfloor\frac{p+11}{6}\right\rfloor-\left\lceil\frac{p+5}{6}\right\rceil= \begin{cases}0, & \text { if } p=6 k+5 \\ 1, & \text { if } p=6 k+1\end{cases}
$$

2. Proof of the main result

For the rest of the paper assume that $p>q$ are odd primes, q divides $p^{2}-1, \omega$ is a primitive q th root of unity in $\mathbb{F}_{p^{2}}$ and write $\mathbb{F}_{p^{2}}=\left\{u+v \sqrt{t} \mid u, v \in \mathbb{F}_{p}\right\}$ for some non-square $t \in \mathbb{F}_{p}$.

Let $\mathcal{X}_{p, q}$ be the set of all bi-infinite q-periodic sequences with entries in $\mathbb{F}_{p^{2}}$. As explained in [12], $u \in \mathcal{X}_{p, q}$ solves the recurrence relation (1.2) if and only if $A u=\lambda u$, where A is the $q \times q$ circulant matrix whose first row is equal to $(0,1,0, \ldots, 0,1)$ and where we identify u with the vector $\left(u_{0}, \ldots, u_{q-1}\right)^{T}$. General theory of circulant matrices applies and yields:

Lemma 2.1. [12] Let A be the $q \times q$ circulant matrix whose first row is equal to ($0,1,0, \ldots, 0,1$). For $0 \leq j<q$, let

$$
\begin{equation*}
\lambda_{j}=\omega^{j}+\omega^{-j} \quad \text { and } \quad e_{j}=\left(1, \omega^{j}, \omega^{2 j}, \ldots, \omega^{(q-1) j}\right)^{T} . \tag{2.1}
\end{equation*}
$$

Then:
(i) For every $0 \leq j<q, \lambda_{j}$ is an element of the prime field of $\mathbb{F}_{p^{2}}$.
(ii) For every $0 \leq j<q, \lambda_{j}$ is an eigenvalue of A over $\mathbb{F}_{p^{2}}$ with eigenvector e_{j}.
(iii) For $0<j \leq(q-1) / 2$, the eigenvectors e_{j}, e_{-j} are linearly independent.
(iv) For $0 \leq j<k<q, \lambda_{j}=\lambda_{k}$ if and only if $j+k \equiv 0(\bmod q)$. In particular, $\lambda_{0}=2$ has multiplicity 1 , and every λ_{j} with $1 \leq j \leq(q-1) / 2$ has multiplicity 2.
Let λ_{j} and e_{j} be as in (2.1). In order to better understand which elements of $\mathcal{X}_{p, q}$ yield Bol loops, let us define the following subsets:

$$
\begin{array}{ll}
\mathcal{X}_{p, q}^{*}=\left\{u \in \mathcal{X}_{p, q} \mid u_{0}=1\right\}, & \mathcal{A}_{p, q}=\bigcup_{0 \leq j<q} \mathcal{A}_{p, q}^{j}, \\
\mathcal{A}_{p, q}^{j}=\left\{u \in \mathcal{X}_{p, q}^{*} \mid A u=\lambda_{j} u\right\}, & \mathcal{B}_{p, q}=\bigcup_{0 \leq j<q} \mathcal{B}_{p, q}^{j} .
\end{array}
$$

By Theorem 1.1, the elements of $\mathcal{B}_{p, q}$ are precisely the sequences that yield Bol loops.
Lemma 2.2. For every $j \in \mathbb{F}_{q}, \mathcal{A}_{p, q}^{j}=\left\{\gamma e_{j}+(1-\gamma) e_{-j} \mid \gamma \in \mathbb{F}_{p^{2}}\right\}$. In particular, the only element of $\mathcal{A}_{p, q}^{0}=\mathcal{B}_{p, q}^{0}$ is the all-1 sequence.
Proof. Let $u \in \mathcal{A}_{p, q}^{j}$. By Lemma 2.1, $u=\gamma e_{j}+\delta e_{-j}$ for some $\gamma, \delta \in \mathbb{F}_{p^{2}}$. The condition $u_{0}=1$ forces $\gamma+\delta=1$.

Let u be the unique element of $\mathcal{B}_{p, q}^{0}$, the all- 1 sequence. Then $\theta_{i}=u_{i}^{-1}=1$ for every i, and the multiplication formula (1.1) becomes $(i, j)(k, \ell)=(i+k, j+\ell)$, the direct product $\mathbb{Z}_{q} \times \mathbb{Z}_{p} \cong \mathbb{Z}_{p q}$.

Consider the following binary relations on $\mathcal{X}_{p, q}^{*}$:

- $u \sim v$ if there is $s \in \mathbb{F}_{q}^{*}$ such that $u_{i}=v_{s i}$ for every i,
- $u \approx v$ if there is $r \in \mathbb{F}_{q}$ such that $u_{i}=v_{r}^{-1} v_{i+r}$ for every i, and
- $u \equiv v$ if there are $s \in \mathbb{F}_{q}^{*}$ and $r \in \mathbb{F}_{q}$ such that $u_{i}=v_{r}^{-1} v_{s i+r}$ for every i.

We recognize \sim as the isomorphism relation and \equiv as the isotopism relation from Theorem 1.1.

Lemma 2.3. If $u \in \mathcal{A}_{p, q}^{j}$ and $v \equiv u$ via $v_{i}=u_{r}^{-1} u_{s i+r}$ then $v \in \mathcal{A}_{p, q}^{s j}$. Conversely, if $u \in \mathcal{A}_{p, q}^{j}$ for some $j \in \mathbb{F}_{q}^{*}$ then for every $k \in \mathbb{F}_{q}^{*}$ there is $v \in \mathcal{A}_{p, q}^{k}$ such that $v \equiv u$.
Proof. Suppose that $u \in \mathcal{A}_{p, q}^{j}$ and $v_{i}=u_{r}^{-1} u_{s i+r}$. Note that $v_{0}=u_{r}^{-1} u_{r}=1$. By Lemmas 2.1 and 2.2, we have $u=\gamma e_{j}+(1-\gamma) e_{-j}$ for some $\gamma \in \mathbb{F}_{p^{2}}$. Let $f_{i}=e_{j, r}^{-1} e_{j, s i+r}$. Then $f_{i}=\omega^{-j r} \omega^{j(s i+r)}=\omega^{j s i}=e_{s j, i}$. By linearity, $v=\gamma e_{s j}+(1-\gamma) e_{-s j}$. By Lemma 2.1, $v \in \mathcal{A}_{p, q}^{s j}$.

For the converse, suppose that $j \in \mathbb{F}_{q}^{*}$ and let $s \in \mathbb{F}_{q}^{*}$ be such that $s j=k$. Set $v_{i}=u_{r}^{-1} u_{s i+r}$ for some $r \in \mathbb{F}_{q}$. Then certainly $v \equiv u$ and we have $v \in \mathcal{A}_{p, q}^{k}$ by the first part.
Lemma 2.4. The following statements hold:
(i) \sim, \approx and \equiv are equivalence relations on $\mathcal{X}_{p, q}^{*}$, and \equiv is the transitive closure of \sim and \approx.
(ii) $\mathcal{B}_{p, q}$ is the union of some equivalence classes of each of \sim, \approx and \equiv.
(iii) If $u \in \mathcal{B}_{p, q}^{1}$ and $v_{i}=u_{r}^{-1} u_{s i+r}$ then $v \in \mathcal{B}_{p, q}^{1}$ if and only if $s= \pm 1$.
(iv) $\mathcal{B}_{p, q}^{1}$ is the union of some equivalence classes of \approx.

Proof. (i) Note that \sim is contained in \equiv (set $r=0$ and use $v_{0}=1$) and \approx is contained in \equiv (set $s=1$). We show that \equiv is an equivalence relation, the other two cases being similar. We have $u \equiv u$ with $r=0, s=1$. If $u_{i}=v_{r}^{-1} v_{s i+r}$ then $u_{-s^{-1} r}^{-1} u_{s^{-1} i-s^{-1} r}=$ $\left(v_{r}^{-1} v_{s\left(-s^{-1} r\right)+r}\right)^{-1} v_{r}^{-1} v_{s\left(s^{-1} i_{-s^{-1}} r\right)+r}=v_{i}$, proving symmetry. If $u_{i}=v_{r}^{-1} v_{s i+r}$ and $v_{i}=$ $w_{a}^{-1} w_{b i+a}$ then $u_{i}=\left(w_{a}^{-1} w_{b r+a}\right)^{-1} w_{a}^{-1} w_{b(s i+r)+a}=w_{b r+a}^{-1} w_{(b s) i+(b r+a)}$, proving transitivity. For the transitive closure, if $u_{i}=w_{r}^{-1} w_{s i+r}$, set $v_{i}=w_{r}^{-1} w_{i+r}$ and note that $u_{i}=v_{s i}$.
(ii) Suppose that $u \equiv v, u_{i}=v_{r}^{-1} v_{s i+r}$. By Lemma 2.3, if $u \in \mathcal{A}_{p, q}$ then $v \in \mathcal{A}_{p, q}$. If $u_{i}^{-1} u_{j} \in \mathbb{F}_{p}^{*} \backslash\{-1\}$ for every i, j, then $v_{s i+r}^{-1} v_{s j+r}=\left(v_{r}^{-1} v_{s i+r}\right)^{-1} v_{r}^{-1} v_{s j+r}=u_{i}^{-1} u_{j} \in \mathbb{F}_{p}^{*} \backslash\{-1\}$ for every i, j, and we are done since $(i, j) \mapsto(s i+r, s j+r)$ is a bijection of $\mathbb{F}_{q} \times \mathbb{F}_{q}$.

Part (iii) follows from (ii) and Lemma 2.3. Part (iv) is then immediate.
Let $j \in \mathbb{F}_{q}^{*}$. By Lemmas 2.3 and 2.4 , for any $u \in \mathcal{B}_{p, q}^{j}$ there is $v \in \mathcal{B}_{p, q}^{1}$ such that $u \equiv v$, and there is no $w \in \mathcal{B}_{p, q}^{0}$ such that $u \equiv w$. For the isotopism problem, it therefore remains to study the restriction of \equiv onto $\mathcal{B}_{p, q}^{1}$, taking parts (iii) and (iv) of Lemma 2.4 into account.

Every element of $\mathcal{B}_{p, q}^{1}$ is by definition an element of $\mathcal{A}_{p, q}^{1}$ and hence is of the form

$$
u(\gamma)=\gamma e_{1}+(1-\gamma) e_{-1}
$$

for some $\gamma \in \mathbb{F}_{p^{2}}$, by Lemma 2.2. The mapping $\gamma \mapsto u(\gamma)$ is a bijection. Indeed, if $u(\gamma)=u(\delta)$ then $\gamma \omega+(1-\gamma) \omega^{-1}=u(\gamma)_{1}=u(\delta)_{1}=\delta \omega+(1-\delta) \omega^{-1}$, hence $(\gamma-\delta) \omega=(\gamma-\delta) \omega^{-1}$ and $\gamma=\delta$ follows. It was shown in [12, Section 6] that

$$
\mathcal{B}_{p, q}^{1}=\left\{u(\gamma) \mid \gamma \in \Gamma_{p, q}\right\}
$$

where $\Gamma_{p, q}$ is as in Theorem 1.2. Moreover, by [12, Lemma 6.8], $\Gamma_{p, q}$ is a set of cardinality $p-q+1$, it is closed under the map $\gamma \mapsto 1-\gamma$, and it always contains $1 / 2$.

Let $u=u(\gamma) \in \mathcal{B}_{p, q}^{1}$ and consider $v_{i}=u_{-i}$. Since $u(\gamma)_{i}=u(1-\gamma)_{-i}$, we have $v=u(1-\gamma) \in$ $\mathcal{B}_{p, q}^{1}$. The non-cyclic Bol loops of order $p q$ up to isomorphism therefore correspond to the orbits of the group $\langle f\rangle$ acting on $\Gamma_{p, q}$, where

$$
\gamma f=1-\gamma
$$

At this point we can recover Theorem 1.2. The cyclic group of order $p q$ corresponds to the unique sequence of $\mathcal{B}_{p, q}^{0}$. The above action has a unique fixed point on $\Gamma_{p, q}$, namely $\gamma=1 / 2$, and all other orbits have size 2. The fixed point $\gamma=1 / 2$ yields a Bruck loop by Theorem 1.1. Since $\left|\Gamma_{p, q}\right|=p-q+1$, there are additional $(p-q) / 2$ Bol loops, for the total of $1+1+(p-q) / 2=(p-q+4) / 2 \mathrm{Bol}$ loops of order $p q$. If q divides $p-1$, the nonabelian group of order $p q$ must be among these $p q$ loops. It is easy to check that it is the loop corresponding to $\gamma=1$.

To further classify Bol loops of order $p q$ up to isotopism, we must now also consider the equivalence classes of \approx on $\mathcal{B}_{p, q}^{1}$.

Lemma 2.5. Let $\gamma, \delta \in \Gamma_{p, q}$. Then $u(\gamma) \approx u(\delta)$ if and only if

$$
\begin{equation*}
\gamma=\frac{\delta \omega^{r}}{\delta \omega^{r}+(1-\delta) \omega^{-r}} \tag{2.2}
\end{equation*}
$$

for some $r \in \mathbb{F}_{q}$.
Proof. By definition, $u(\gamma) \approx u(\delta)$ if an only if there is $r \in \mathbb{F}_{q}$ such that

$$
\begin{equation*}
\gamma \omega^{i}+(1-\gamma) \omega^{-i}=u(\gamma)_{i}=u(\delta)_{r}^{-1} u(\delta)_{i+r}=\frac{\delta \omega^{i+r}+(1-\delta) \omega^{-i-r}}{\delta \omega^{r}+(1-\delta) \omega^{-r}} \tag{2.3}
\end{equation*}
$$

for every $i \in \mathbb{F}_{q}$.
Suppose that (2.3) holds. If $r=0$ then $u(\gamma)=u(\delta)$ and hence $\gamma=\delta$, which agrees with (2.2). Suppose that $r \neq 0$. Substituting $i=r$ into (2.3) yields

$$
\gamma \omega^{r}+(1-\gamma) \omega^{-r}=\frac{\delta \omega^{2 r}+(1-\delta) \omega^{-2 r}}{\delta \omega^{r}+(1-\delta) \omega^{-r}}
$$

and therefore

$$
\gamma=\frac{\left(\delta \omega^{2 r}+(1-\delta) \omega^{-2 r}\right)\left(\delta \omega^{r}+(1-\delta) \omega^{-r}\right)^{-1}-\omega^{-r}}{\omega^{r}-\omega^{-r}}
$$

A straightforward computation now shows that γ is as in (2.2).
Conversely, suppose that γ is as in (2.2). Then another straightforward calculation shows that (2.3) holds for every i, and thus $u(\gamma) \approx u(\delta)$.

For $r \in \mathbb{F}_{q}$, consider the mapping $g_{r}: \Gamma_{p, q} \rightarrow \Gamma_{p, q}$ defined by

$$
\gamma g_{r}=\frac{\gamma \omega^{r}}{\gamma \omega^{r}+(1-\gamma) \omega^{-r}}
$$

We note that g_{r} is well-defined since $\gamma \omega^{r}+(1-\gamma) \omega^{-r}=u(\gamma)_{r} \neq 0$. By Lemma 2.5, if $\gamma=\delta g_{r}$ then $u(\gamma) \approx u(\delta)$, so $u(\delta) \in \mathcal{B}_{p, q}^{1}$ by Lemma 2.4(iv), which in turn implies $\delta \in \Gamma_{p, q}$. Altogether, g_{r} is a bijection on $\Gamma_{p, q}$.

Yet another straightforward calculation shows that $\gamma g_{r} g_{s}=\gamma g_{r+s}$ for every $r, s \in \mathbb{F}_{q}$. Let $g=g_{1}$, that is,

$$
\gamma g=\frac{\gamma \omega}{\gamma \omega+(1-\gamma) \omega^{-1}} .
$$

Combining our results obtained so far, we see that $u(\gamma) \approx u(\delta)$ if and only if γ, δ are in the same orbit of the group $\langle g\rangle$ acting on $\Gamma_{p, q}$, and $u(\gamma) \equiv u(\delta)$ if and only if γ, δ are in the same orbit of the group $G=\langle f, g\rangle$ acting on $\Gamma_{p, q}$.
Proposition 2.6. The group $G=\langle f, g\rangle$ is isomorphic to the dihedral group $D_{2 q}$ of order $2 q$. Moreover:
(i) The only fixed point of f is $1 / 2$. If q divides $p-1$ then $f(0)=1$ and $f(1)=0$.
(ii) If $0<i<q$ and q divides $p-1$ then the only fixed points of g^{i} are 0 and 1 .
(iii) If $0<i<q$ and q divides $p+1$ then g^{i} has no fixed points.
(iv) If $0<i<q$ then the only fixed point of $f g^{i}$ is $\left(1+\omega^{i}\right)^{-1}$.

Proof. Part (i) is obvious. For the rest of the proof, let $0<i<q$. We have $\gamma g^{i}=\gamma$ if and only if $\gamma \omega^{i}=\gamma\left(\gamma \omega^{i}+(1-\gamma) \omega^{-i}\right)$, which is equivalent to $\gamma(1-\gamma) \omega^{i}=\gamma(1-\gamma) \omega^{-i}$. Clearly, $\gamma=0, \gamma=1$ are fixed points as long as they lie in $\Gamma_{p, q}$, which happens if and only if q divides $p-1$. If $\gamma \notin\{0,1\}$ and $\gamma g^{i}=\gamma$ then $\omega^{i}=\omega^{-i}$, a contradiction.

Suppose now that $\gamma f g^{i}=\gamma$. Then $(1-\gamma) g^{i}=\gamma,(1-\gamma) \omega^{i}=\gamma\left((1-\gamma) \omega^{i}+\gamma \omega^{-i}\right)$, and $(1-\gamma)^{2} \omega^{i}=\gamma^{2} \omega^{-i}$. We certainly have $\gamma \neq 0$ and thus $((1-\gamma) / \gamma)^{2}=\omega^{2 i}$, which we rewrite as $\left(1-\gamma^{-1}\right)^{2}=\omega^{2 i}$. Then either $1-\gamma^{-1}=\omega^{i}$ (which implies $1-\gamma^{-1} \in\langle\omega\rangle$, a contradiction with $\gamma \in \Gamma_{p, q}$), or $1-\gamma^{-1}=-\omega^{i}$, which implies $\gamma=\left(1+\omega^{i}\right)^{-1}$, the only candidate for a fixed point of $f g^{i}$.

Now, $|f|=2$ since $f^{2}=1$ and $\gamma f \neq \gamma$ if $\gamma \neq 1 / 2$. Also $|g|=q$ since $g^{q}=1$ and $\gamma g \neq \gamma$ whenever $\gamma \notin\{0,1\}$. Finally,

$$
\gamma g f=1-\frac{\gamma \omega}{\gamma \omega+(1-\gamma) \omega^{-1}}=\frac{(1-\gamma) \omega^{-1}}{\gamma \omega+(1-\gamma) \omega^{-1}},
$$

while

$$
\gamma f g^{-1}=(1-\gamma) g^{-1}=\frac{(1-\gamma) \omega^{-1}}{(1-\gamma) \omega^{-1}+\gamma \omega}
$$

Thus $g f=f g^{-1}$ and $G \cong D_{2 q}$ follows.
Since $1 / 2$ is fixed by f but not by g, the orbit-stabilizer theorem implies that the orbit of $1 / 2$ contains q elements. In turn, each of these q elements has a stabilizer of size 2 , so it must be stabilized by some $f g^{i}$ of G. We conclude that the purported fixed points $\left(1+\omega^{i}\right)^{-1}$ of $f g^{i}$ are indeed fixed points.

We are ready to prove the main result, Theorem 1.3:
Let us count the orbits of $G=\langle f, g\rangle$ on the set $\Gamma_{p, q}$ or cardinality $p-q+1$. We will use Proposition 2.6 without reference. For $\gamma \in \Gamma_{p, q}$, let $O(\gamma)$ be the orbit of γ.

First suppose that q divides $p-1$. Let $p-1=k q$ and note that $\left|\Gamma_{p, q}\right|=(k-1) q+2$. We have $0,1 \in \Gamma_{p, q}$ and $O(0)=\{0,1\}$, leaving $(k-1) q$ elements. The orbit $O(1 / 2)$ accounts for the remaining q points fixed by some element of G. All the other $(k-2) q$ elements lie in orbits of size $2 q$, so there must be $(k-2) / 2$ such orbits. Altogether, we have counted $1+1+1+(k-2) / 2=(p-1+4 q) /(2 q)$ Bol loops of order $p q$ up to isotopism, including the cyclic group.

Now suppose that q divides $p+1$. Let $p+1=\ell q$ and note that $\left|\Gamma_{p, q}\right|=(\ell-1) q$. Also note that $0,1 \notin \Gamma_{p, q}$. The orbit $O(1 / 2)$ again accounts for q elements, and these are the only elements with nontrivial stabilizers. The remaining $(\ell-2) q$ elements lie in $(\ell-2) / 2$ orbits of size $2 q$. Altogether, we have counted $1+1+(\ell-2) / 2=(p+1+2 q) /(2 q)$ Bol loops up to isotopism. We note that ℓ must be even and therefore

$$
\left\lfloor\frac{p-1+4 q}{2 q}\right\rfloor=\left\lfloor\frac{p+1+4 q-2}{2 q}\right\rfloor=\left\lfloor\frac{\ell q+4 q-2}{2 q}\right\rfloor=\left\lfloor\frac{\ell}{2}+2-\frac{2}{2 q}\right\rfloor=\frac{\ell}{2}+1=\frac{p+1+2 q}{2 q},
$$

finishing the proof of Theorem 1.3.

ACKNOWLEDGMENT

We thank Izabella Stuhl for several discussions on the topic of this paper.

References

[1] V.D. Belousov, Основы теории квазигрупп и луп, Izdat. "Nauka", Moscow 1967.
[2] G. Bol, Gewebe und gruppen, Math. Ann. 114 (1937), no. 1, 414-431.
[3] Richard Hubert Bruck, A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Springer Verlag, Berlin-Göttingen-Heidelberg 1958.
[4] R.H. Bruck and Lowell J. Paige, Loops whose inner mappings are automorphisms, Ann. of Math. (2) 63 (1956), 308-323.
[5] J. Dénes and A.D. Keedwell, Latin squares and their applications, Academic Press, New York-London, 1974.
[6] Aleš Drápal, Structural interactions of conjugacy closed loops, Trans. Amer. Math. Soc. $\mathbf{3 6 0}$ (2008), no. 2, 671-689.
[7] George Glauberman, On loops of odd order, J. Algebra 1 (1964), 374-396.
[8] George Glauberman, On loops of odd order II, J. Algebra 8 (1968), 393-414.
[9] Edgar G. Goodaire and D.A. Robinson, A class of loops which are isomorphic to all loop isotopes, Canad. J. Math. 34 (1982), no. 3, 662-672.
[10] Hubert Kiechle, Theory of K-loops, Lecture Notes in Mathematics 1778, Springer-Verlag, Berlin, 2002.
[11] Michael K. Kinyon, Kenneth Kunen, J.D. Phillips and Petr Vojtěchovský, The structure of automorphic loops, Trans. Amer. Math. Soc. 368 (2016), no. 12, 8901-8927.
[12] Michael K. Kinyon, Gábor P. Nagy and Petr Vojtěchovský, Bol loops and Bruck loops of order pq, J. Algebra 473 (2017), 481-512.
[13] Kenneth Kunen, The structure of conjugacy closed loops, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2889-2911.
[14] Charles F. Laywine and Garry L. Mullen, Discrete mathematics using Latin squares, Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1998.
[15] Brendan D. McKay and Ian M. Wanless, On the number of Latin squares, Ann. Comb. 9 (2005), no. 3, 335-344.
[16] Ruth Moufang, Zur Struktur von Alternativkörpern, Math. Ann. 110 (1935), no. 1, 416-430.
[17] Gábor P. Nagy, A class of simple proper Bol loops, Manuscripta Math. 127 (2008), no. 1, 81-88.
[18] Harald Niederreiter and Karl H. Robinson, Bol loops of order pq, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 2, 241-256.
[19] Harald Niederreiter and Karl H. Robinson, On isomorphisms and isotopisms of Bol loops of order 3p, Comm. Algebra 22 (1994), no. 1, 345-347.
[20] D.A. Robinson, Bol loops, Trans. Amer. Math. Soc. 123 (1966), 341-354.
Department of Mathematics, University of Denver, South York Street 2390, Denver, Colorado, 80208, U.S.A.

E-mail address: petr@math.du.edu

[^0]: 2010 Mathematics Subject Classification. Primary: 20N05; Secondary: 12F05, 15B05, 15B33, 20D20.
 Key words and phrases. Bol loop, Bruck loop, quadratic field extension, enumeration, isotopism.
 Research partially supported by the PROF grant of the University of Denver.

