
CS Bootcamp Binary Representations Autumn 2015

1 Hexadecimal

Often when programming we want to describe a specific bit pattern. Hexadecimal, base 16,
is often used for this. The reason hexadecimal is used over other representations is because
one hexadecimal digit corresponds to four binary digits. Representations in other bases do
not necessarily have that correspondence because the correspondence is only present when
the number of digits is a power of two. Additionally, a fundamental unit used in computers
is a byte. Bytes are almost always eight bits in size and therefore are two hexadecimal
characters. Technically a byte is the smallest addressable unit of memory, so other sizes
could exist and historically have existed, but such systems haven’t existed since the 1970s at
the latest. In situations where it could vary, or extreme precision is needed like a standards
document, the word octet may be used to refer to eight bits.

Hexadecimal consists of the standard base-10 digits of 0-9 followed by the letters A-F,
with A = 10 and F = 15.

2 Word Size

Every computer architecture has a word size. Often one can tell the word size of a processor
by looking at the width of a register. On some architectures specialized registers have width
that differs from the remainder of registers, so it is not a foolproof definition. We will cover
registers later in the course. An alternative definition of word size is the maximum virtual
address space. Unfortunately there are many architectures that violate this definition as
well, many of them for embedded systems. Even the common IA-32 architecture (better
known as 32-bit x86) violated this using Physical Address Extensions (PAE), but operating
system support for it was limited.

Practically the processors you will see today have word size of 8, 16, 32, or 64 bits. The
use of 8 and 16 tends to be limited to embedded systems in the form of microcontrollers
(a special type of processor that integrates memory and input/output subsystems). 32 bit
systems exist fewer places today. They used to be prevalent in desktops and laptops, but
those started to change to 64 bits about ten years ago. Devices like phones still routinely
have 32 bit processors, but those are also transitioning to 64 bits.

A good rule of thumb to determine the word size of a processor is to look at the width
of a pointer. Pointers will be covered in more detail later in the course, but for now think of
them as memory addresses.

If a system has a 32-bit word size, then it can address 232 bytes = 4 gigabytes ≈
4× 109 bytes. A 64-bit word size can address 264 bytes = 16 exabytes ≈ 1.84× 1019 bytes.

1

CS Bootcamp Binary Representations Autumn 2015

3 Sizes of Fundamental Integral Types of C++

Type Specifier Equivalent Type
Width in bits by data model

C++ Standard LP32 ILP32 LLP64 LP64
char

char one character 8 8 8 8signed char
unsigned char
short

short int
≥16 16 16 16 16

short int
signed short
signed short int
unsigned short

unsigned short int
unsigned short int
int

int
≥ 16 16 32 32 32

signed
signed int
unsigned

unsigned int
unsigned int
long

long int
≥ 32 32 32 32 64

long int
signed long
signed long int
unsigned long

unsigned long int
unsigned long int
long long

long long int
≥ 64 64 64 64 64

long long int
signed long long
signed long long int
unsigned long long

unsigned long long int
unsigned long long int

Notes:

• In addition to the sized specified above, the C++ standard requires

1 = sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤ sizeof(long long).

• The types unsigned char and signed char are not the same and could in theory make
a difference. In practice chars are almost always by default unsigned.

• For C++14 and newer, the minimum size of a char is 8 bits.

• The type long long did not exist until C++11.

• The LP32 model is used by the Win16 API.

• The ILP32 model is used by the Win32 API and 32 bit UNIX-like operating systems
(Linux, OS X, etc).

• The LLP64 model is used by the Win64 API.

• The LP64 is used by 64-bit UNIX-like operating systems (Linux, OS X, etc).

2

CS Bootcamp Binary Representations Autumn 2015

4 Unsigned Encoding

For a vector of bits 〈bw−1, bw−2, . . . , b0〉, the corresponding integer is given by

w−1∑
i=0

bi2
i.

This means that for w bits, the numbers 0 through 2w − 1, inclusive, are representable.

5 Twos Complement Encoding

For a vector of bits 〈bw−1, bw−2, . . . , b0〉 in twos complement, the corresponding integer is
given by

−bw−12
w−1 +

w−2∑
i=0

bi2
i.

This means that for w bits, the numbers −2w−1 through 2w−1 − 1, inclusive, are repre-
sentable.

Twos complement is almost universally to encode signed types.

6 Math with integers

When working with unsigned numbers, the overflow behavior is the same as if you were
working modulo 2w. For unsigned types this is the defined operation in C++.

For signed integers, the C++ leaves this behavior as undefined. In general it is advisable
to avoid undefined behavior.

Division truncates the result, which is the same as taking the floor for unsigned integers.
For signed integers, this takes the floor for positive values, and the ceiling for negative values.
This is also known as rounding towards zero.

7 Size of Fundamental Floating Point Types in C++

In C++, as with most programming languages, floating point behavior usually specified by
the IEEE 754 standard (with the latest version being IEEE 754-2008). They are commonly
referred to as “IEEE Floating Point numbers”. The standard can also be referred to as
ISO/IEC/IEEE 60559:2011, which is identical to IEEE 754-2008.

The float data type is most often a 32-bit IEEE 754 floating point number.
The double data type is most often a 64-bit IEEE 754 floating point number.
The long double, the extended double, is a special data type. On IA-32 and IA-64 (x86

and x86-64) this is often a special 80-bit x87 floating point. In practice these are rarely used
since they are not portable between processor architectures.

The general form of an IEEE 754 is

(−1)s ×m× 2e,

where s is the sign bit, m is the mantissa (also known as the significand or coefficient), and e
is the exponent. The sign bit is exactly one bit and indicates whether the number is positive

3

CS Bootcamp Binary Representations Autumn 2015

or negative. The mantissa is in fractional binary representation. The exponent is in a biased
integral representation.

Size in Bits
Sign Bit Mantissa Exponent

float 1 23 8
double 1 52 11

In memory the sign bit is in the most significant place, followed by the exponent, with
the mantissa occupying the least significant portion.

7.1 Fractional Binary Representation

For a vector of bits 〈bm, bm−1, . . . , b1, b0, b−1, . . . , b−n〉 in twos complement, the corresponding
integer is given by

m∑
i=−n

bi2
i.

Note that for the first m bits, this is the same as an integral representation. For the last
n bits, this corresponds to values small than 1 in fractional powers of two, such as 1

2
, 1

4
, etc.

7.2 Biased Integral Representation

A biased integral representation is a means of encoding positive and negative values which
is distinct from twos complement.

For a vector of bits 〈bw−1, bw−2, . . . , b0〉 in biased integral representation, the correspond-
ing integer is given by

e− 2w−1 − 1,

where the term 2w−1 − 1 is the bias.
In practice this means that a float has exponent sizes of −126 through +127, inclusive,

and a double has exponent sizes of −1022 through +1023, inclusive.

7.3 Normalized Values

This is the most common case. It occurs when the exponent is neither all zeros, nor all ones.
In this case the exponent is interpreted in biased integral representation and the mantissa
is interpreted as a fractional value in the range [1, 2), as 1.bn−1 · · · b1b0. This is often known
as an implied leading one representation. It is used because it allows for an additional bit of
representation since the exponent can be adjusted to compensate for the leading one.

7.4 Denormalized Values

When the exponent field is all zeros, the value is in denormalized form. These are also known
as subnormals. In this case the exponent is interpreted in a biased integral representation
and the mantissa is interpreted as a fractional value in the range [0, 1), as 0.bn−1 · · · b1b0.

The purpose of having denormalized values is two fold. First, it allows for represent-
ing exact 0. It cannot be represented as a normalized value because of the leading one
representation. Second, it allows for numbers near 0, which enables gradual underflow.

4

CS Bootcamp Binary Representations Autumn 2015

7.5 Special Values

The final category of values is when the exponent field is all ones. When the mantissa is all
zeros, then the value is either +∞ or −∞, depending on the sign bit. If the mantissa is not
all zeros, the result is called NaN, short for “Not A Number.” These are used to represent
the result of things like

√
−1, 0/0, and other undefined or unrepresentable numbers.

7.5.1 NaN

The IEEE 754 standard specifies two types of NaN, signaling and quiet, sometimes repre-
sented as sNaN and qNaN, respectively. Generally the distinction between these two is not
of practical importance.

C++ in particular treats all NaN as quiet.

7.6 Rounding

The IEEE 754 standard specifies five types of rounding:

1. Round to nearest, ties to even

2. Round to nearest, ties away from zero

3. Round toward zero

4. Round toward +∞

5. Round toward −∞

In practice the rounding type used is generally not important. Prior to C++11, control-
ling the environment was compiler specific. For C++11 and newer, it can be controlled by
the functions in the header cfenv.

7.7 Equality

As will be explored in the second systems homework, equality of floating point numbers is
often a mistake. That is the code

double a , b ;
// compute a and b
i f (a == b) {

// do something
}
will often fail.

7.8 Absolute Error

One way of fixing this is to call two numbers equal if the absolute difference is small enough.
Mathematically this is

|a− b| < ε.

While this can work, it is difficult to do well since the choice of ε is very application specific.

5

CS Bootcamp Binary Representations Autumn 2015

7.9 Relative Error

A better way is to consider the relative difference between the numbers. Mathematically
this is ∣∣∣∣A−BB

∣∣∣∣ < ε.

This suffers from a different problem. Why did we select to divide by B instead of A? This
choice could affect the result.

7.10 Combining Both

While still problematic a better option is to combine both absolute and relative errors.

bool AlmostEqualRelativeOrAbsolute (f loat A, f loat B,
f loat maxRelativeError , f loat maxAbsoluteError) {

i f (f abs (A − B) < maxAbsoluteError)
return true ;

f loat r e l a t i v e E r r o r ;

i f (f abs (B) > f abs (A))
r e l a t i v e E r r o r = fabs ((A − B) / B) ;

else
r e l a t i v e E r r o r = fabs ((A − B) / A) ;

i f (r e l a t i v e E r r o r <= maxRelat iveError)
return true ;

return fa l se ;
}

From http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
This is still not ideal, but is generally good enough. Keep in mind whenever comparing floats,
or working with them, you need to be aware of how to compare equality and use an appro-
priate method for your application.

6

