
CS Bootcamp Boolean Logic Autumn 2015

1 Logical Operations

1.1 And

The “and” operator is a binary operator, denoted as ∧, &, ·, or sometimes by just concate-
nating symbols, is true only if both parameters are true.

A B A ∧B
T T T
T F F
F T F
F F F

The expression “A and B” is often written as “A∧B” or “A&B” or “A ·B” or “AB”. The
and operator is also known as a conjunction. “A ∧ B” and “AB” are the most common
notations.

1.2 Or

The “or” operator is a binary operator, denoted as ∨, |, or +, is true if either parameter is
true.

A B A ∨B
T T T
T F T
F T T
F F F

The expression “A or B” is often written as “A∨B” or “A|B” or “A+B”. The or operator
is also known as a disjunction. All three notations are relatively common.

1.3 Not

The “not” operator is a unary operator, denoted as ¬, !, −, or as a line overtop the parameter,
is true if the parameter is false.

A ¬A
T F
F T

The expression “not A” is often written as “¬A” or “!A” or “−A” or “A”. The not operator
is also known as negation. All four notations are reasonably common, with “!A” mostly used
in programming languages.

1.4 Exclusive-or

The exclusive-or operator is a binary operator, denoted as ⊕ or ˆ, is true if only one of its
parameters is true. It is often abbreviated as xor, and pronounced “x-or”.

1

CS Bootcamp Boolean Logic Autumn 2015

A B A⊕B
T T F
T F T
F T T
F F F

The expression “A xor B” is often written “A⊕B” or “AˆB”. The later notation is normally
only seen in the context of C-derived programming languages such as C++ or Java.

1.5 Nand

The nand operator is a binary operator, denoted as “↑” or “f̄” or as an and combined with
a not, is false only when both parameters are true.

A B A ↑ B
T T F
T F T
F T T
F F T

The expression “A nand B” is often written “A ↑ B” or “¬(A ∧ B)” or “AB”. Nand is
normally written as “¬(A ∧B)” or “AB”.

1.6 Nor

The nor operator is a binary operator, denoted as “↓” or “f” or as an or combined with a
not, is true only when both parameters are false.

A B AfB
T T F
T F F
F T F
F F T

The expression “A nor B” is often written “AfB” or “¬(A∨B) or A ∨B. Nor is normally
written as “¬(A ∨B)” or “A ∨B”.

1.7 Implies

Logical implication is not always thought of as a binary operator, but it is. It is often written
as “A =⇒ B” or “A→ B”. It is an important enough that the parameters to the operator
have specific names as well. For “A =⇒ B”, A is the premise and B is the conclusion,
alternatively known as the antecedent and consequent. An implication is true whenever the
premise is false, or if both the premise and conclusion is true. When the premise is false,
the implication referred to as being vacuously true.

A B A =⇒ B
T T T
T F F
F T T
F F T

2

CS Bootcamp Boolean Logic Autumn 2015

Both forms “A =⇒ B” and “A→ B” are regularly used.

1.8 Biconditional

The biconditional operator, written as “A ⇐⇒ B” or “A ↔ B”, is true only if the truth
value of A and B are the same. It can be thought of as a conditional operator that goes
both directions. It is often read as “if and only if” which is commonly abbreviated to “iff”

A B A ⇐⇒ B
T T T
T F F
F T F
F F T

Both forms “A ⇐⇒ B” and “A↔ B” are regularly used.

2 Functional Completeness

Some of the operators just covered are redundant with respect to one another. In particular
it should be obvious that one can express NAND with a combination of an AND and a NOT.
More precisely, a set of operators is said to be functionally complete if it can express all
possible truth tables. Note how with a binary operator there are four combinations of input
truth values. Each one has a truth value, leading to 24 = 16 possible truth tables.

There are two singleton operators that themselves form functionally complete sets, {NAND}
and {NOR}. Other functionally complete sets include {AND,NOT} and {AND,OR,NOT}.

3 Quantifiers

3.1 Universal

The universal quantifier is denoted as ∀ and read as “for all”. For example the expression

∀A

is read as “for all A” and means that the statements is true if and only if it is true for every
predicate A.

3.2 Existential

The existential quantifier is denoted as ∃ and read as “there exists”. For example the
expression

∃A

is read as “there exists A” and means that the statement is true if and only if there is some
such predicate A that is true.

3

CS Bootcamp Boolean Logic Autumn 2015

3.3 Unique Existential

The unique existential quantifier is denoted as ∃! and read as “there exists a unique”. For
example the expression

∃!A

is read as “there exists a unique A” and means that the statement is true if and only if there
is some such predicate A that is true, and there is no other predicate which is also true.

3.4 Negating Quantifiers

Negating quantifiers can generally be done as a mechanical process so long as the statement
being negated is written formally.

¬∀P (x) ≡ ∃x ¬ P (x)

¬∃P (x) ≡ ∀x ¬ P (x)

3.5 Nesting Quantifiers

Quantifiers can be combined into one expression, and one needs to be careful about the
interpretation.

For example, if presented with the expression

∀x∀yP (x, y),

it means that for the expression to be true, for each and every x, the statement P (x, y) is
true for all possible y and the statement is true for every x.

The expression
∀x∃yP (x, y)

means that for each x, there is a corresponding y, which may be different for each x, for
which P (x, y) is true and the statement is true for all x.

4 Set Theory

A set is a collection of elements. It could be finite in size, or infinite. Often sets are denoted
using capital letters.

4.1 Set Membership

To denote that an element x belongs to a set A, it is written x ∈ A.

4

CS Bootcamp Boolean Logic Autumn 2015

4.2 Subset

A set A is a subset of a set B if all elements in A are also in B. As a boolean expression, it
is

A ⊆ B ⇐⇒ ∀x ∈ A =⇒ x ∈ B.

A set A is a proper subset of a set B if A is a subset of B and the two sets are not the
same.

A ⊂ B ⇐⇒ ∀(x ∈ A =⇒ x ∈ B) ∧ A 6= B.

The notations shown above are common, but some authors use just ⊂ to mean a regular
subset and (to mean proper. It is also common to see subset as ⊆ and (for proper subset.
The exact combination used will vary, so make sure you know what exact combination is
being used for whatever text you are working on.

4.3 Set Operators

Analogous to the various boolean operators, there are operators for sets that operate simi-
larly.

4.3.1 Union

The union of two sets, denoted A
⋃
B, means the set that contains all elements from both

A and B. Written as a boolean expression, it is

x ∈ A
⋃

B ⇐⇒ x ∈ A ∨ x ∈ B.

4.3.2 Intersection

The intersection of two sets, denoted A
⋂
B, means the set that contains all elements that

are common to A and B. Written as a boolean expression, it is

x ∈ A
⋂

B ⇐⇒ x ∈ A ∧ x ∈ B.

4.3.3 Difference

The difference of two sets, denoted A−B, means the set that contains all elements that are
in A but not in B. Written as a boolean expression, it is

x ∈ A−B ⇐⇒ x ∈ A ∧ x /∈ B.

It is also written as A�B.

5 Common Sets

There are many common sets that we will be using during this course

• The integers. Z = {0, 1,−1, 2,−2, . . . }.

• The natural numbers. N = {0, 1, 2, 3, . . . }.
5

CS Bootcamp Boolean Logic Autumn 2015

• The positive integers. Z+ = {1, 2, 3, . . . }.

• The rational numbers. Q =
{

a
b

: a, b ∈ Z ∧ b 6= 0
}

.

• The real numbers, R. It is harder to write down a precise statement of the elements of
the set of real numbers. For this course it is sufficient to think of them as any number
that has a decimal expansion.

6 Usage of these operators in Programming

Several of the boolean operators discussed previously are used to perform bitwise operations
when programming. The operators most often apply bit by bit to each bit within a data
type.

• The AND operator is used to mask off bits. This works by observing that for A∧B, if
B is zero, the result is always zero, which turns off the corresponding bit in the result.
If B is one, it preserves whatever the bit is in A, regardless of what it is.

• The OR operator is used to set bits. This works by observing that for A ∨ B, if B is
zero the result is whatever A had for that bit. If B is one, the result is on, no matter
what A is.

• The XOR operator is used to toggle bits. This works by observing that for A ⊕ B, if
B is zero, the result is whatever A had for that bit. If B is one, the result is toggling
the corresponding bit in A.

• The NOT operator is used to flip all the bits. This is often used if it is easier to
describe the complement to an operation instead of it directly. For example, due to
some peculiarities in the C++ language, one often uses 0 instead of 0xF. . . FF because
the exact number of Fs needed can vary based on the platform used.

6

