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variety of lattice-ordered groups. In particular, a hypersequent calculus with a cut 
rule is used to provide an alternative syntactic proof of the generation of the 
variety by the lattice-ordered group of automorphisms of the real number chain. 
Completeness is also established for an analytic (cut-free) hypersequent calculus 
using cut elimination and it is proved that the equational theory of the variety is 
co-NP complete.
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1. Introduction

A lattice-ordered group (�-group) is an algebraic structure

(L,∧,∨, ·,−1, 1)

such that (L, ∧, ∨) is a lattice, (L, ·, −1, 1) is a group, and · preserves the order in both arguments; i.e., a ≤ b

implies a · c ≤ b · c and c · a ≤ c · b for all a, b, c ∈ L. It follows also from this definition that the lattice 
(L, ∧, ∨) is distributive and that 1 ≤ a ∨ a−1 for all a ∈ L. We refer to [1] for proofs and further standard 
facts about this class of structures.
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Commutative �-groups include the real, rational, and integer numbers with the standard total order and 
addition. For non-commutative examples, consider a chain (totally-ordered set) Ω and denote by Aut(Ω) the 
set of all order-preserving bijections on Ω. Then Aut(Ω) constitutes an �-group Aut(Ω) under coordinate-
wise lattice operations, functional composition, and functional inverse. It was proved by Holland in [10] that 
the variety of �-groups LG is generated by Aut(R), where R is the real number chain, or indeed by any 
Aut(Ω), where Ω is an n-transitive chain for all n (i.e., for any two n-tuples of elements of Ω there is a 
bijection that maps the first tuple to the second). The standard proof relies on Holland’s embedding theo-
rem, which states, analogously to Cayley’s theorem for groups, that every �-group embeds into an �-group 
Aut(Ω) for some chain Ω [9]. Although not every �-group embeds into Aut(R), each identity that fails in 
some �-group fails, by the embedding theorem, in some automorphism �-group, and a simple argument then 
shows that the identity must also fail in Aut(R). This generation result for LG was subsequently exploited 
by Holland and McCleary to provide an algorithm for checking if an identity is valid in all �-groups [11].

The first main contribution of this paper is a new syntactic (and first axiom of choice free) proof that 
Aut(R) generates the variety LG of �-groups. A proof system is defined in a one-sided hypersequent frame-
work such that derivability of a hypersequent (interpreted as a disjunction of group terms) implies the 
validity of a corresponding identity in all �-groups. A rule is then added to the system and it is shown, 
following closely the Holland–McCleary algorithm of [11], that this augmented system derives all identities 
(rewritten in a certain form) that are valid in Aut(R). Finally, it is proved syntactically that applications 
of this rule can be eliminated from derivations. Hence an identity is valid in Aut(R) if and only if it is 
valid in all �-groups, and so, by Birkhoff’s variety theorem, Aut(R) generates LG. This proof illustrates the 
usefulness of proof-theoretic methods for tackling algebraic problems, and is similar to proofs of generation 
of varieties by dense chains via density elimination (see [4,14]) or of properties such as interpolation and 
amalgamation via cut elimination (see, e.g., [7,18]).

The second main contribution is the introduction of a first analytic (cut-free) proof calculus for �-groups. 
In contrast to the well-developed proof theory for well-behaved families of varieties of residuated lattices 
(which provide algebraic semantics for substructural logics, see [2,3,7,14,17,18]), there has been relatively 
little success in obtaining cut-free systems for algebraic structures related to �-groups. Hypersequent calculi 
have been defined for abelian �-groups and related varieties in [13,15–17], but a calculus for the general 
non-commutative case has until now been lacking. The virtue of such a calculus is illustrated by the fact 
that we obtain not only the known decidability result for the equational theory of �-groups, but also, via cut 
elimination, a (first) procedure for obtaining proofs of valid �-group identities in equational logic (i.e., using 
only defining identities of LG). More generally, the analytic hypersequent calculus presented here provides a 
crucial first step towards developing a uniform proof theory for the wide range of algebras and logics related 
in some way to �-groups: in particular, MV-algebras and GMV-algebras (which may be viewed as intervals 
in abelian �-groups [20] and �-groups [6,8], respectively) and commutative cancellative residuated lattices 
(which may be viewed as �-groups with a co-nucleus [19]).

The final contribution of the paper is a first proof that the equational theory of �-groups is co-NP 
complete, matching the complexity of the equational theories of both abelian �-groups [21] and distributive 
lattices [12].

2. Preliminaries

Let us call a variable x and its inverse x−1 literals. Using De Morgan identities valid in all �-groups, we 
consider only normalized �-group terms s, t built from literals and the operation symbols 1, ∧, ∨, and ·, 
with an inductively defined inverse:

1 = 1 (s · t) = t · s
x = x−1 (s ∧ t) = s ∨ t

x−1 = x (s ∨ t) = s ∧ t.
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As usual we write st for s · t, omit brackets in group terms (built using literals, ·, and 1), and define t0 = 1
and tn+1 = t · tn for n ∈ N. We also write s ≤ t as an abbreviation for the identity s ∧ t ≈ s.

Given a class of �-groups K, we let K |= s ≈ t denote that the �-group identity s ≈ t is valid in all 
members of K. Using standard distributivity laws in �-groups, every �-group term t is equivalent either to 1
or to a meet of joins of group terms (see [1] for basic facts about �-groups). That is, for some index sets I
and Ji �= ∅ (i ∈ I) and group terms tij , assuming also 

∧
∅ = 1,

LG |= t ≈
∧

i∈I

∨

j∈Ji

tij .

Moreover, for any �-group terms s, t,

LG |= s ≈ t ⇔ LG |= 1 ≤ (st) ∧ (ts),

and for any finite family of �-group terms (ti)i∈I ,

LG |= 1 ≤
∧

i∈I

ti ⇔ LG |= 1 ≤ ti for each i ∈ I.

Hence checking the validity of �-group identities amounts to checking the validity of inequations of the form 
1 ≤ t where t is a join of group terms. Following proof-theoretic treatments of related classes of algebras 
(see [2,3,13–18]), we present such terms and identities here in the framework of sequents and hypersequents.

An �-sequent, denoted by Γ, Δ, Π, or Σ, is a finite (possibly empty) sequence of �-group terms, written

(t1, . . . , tn),

and interpreted as an �-group term by

I() = 1 and I(t1, . . . , tn) = t1 · . . . · tn.

The inverse of an �-sequent is defined as

(t1, . . . , tn) = (tn, . . . , t1).

For �-sequents Γ and Δ, we denote their concatenation by (Γ, Δ) or simply by Γ, Δ. An �-sequent will be 
called basic if it is a sequence of literals, and a basic �-sequent Γ will be called group valid if 1 ≈ I(Γ) is 
valid in all groups.

An �-hypersequent, denoted by G or H, is a finite (possibly empty) multiset of �-sequents, written

Γ1 | . . . | Γn,

and interpreted, when n ≥ 1, as an �-group term by

I(Γ1 | . . . | Γn) = I(Γ1) ∨ . . . ∨ I(Γn).

An �-hypersequent G will be called basic if it contains only basic �-sequents. It will be called valid in an 
�-group L if L |= 1 ≤ I(G), and �-valid if it is valid in all �-groups.

An �-hypersequent rule is the set of its instances, each instance consisting of a finite set of �-hypersequents 
called the premises and an �-hypersequent called the conclusion of the instance. Typically, such rules are 
written schematically using s, t to denote arbitrary �-terms and Γ, Π, Σ, Δ and G, H to denote arbitrary 
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G | Γ
(gv)

G | Δ | Δ
(em)

Γ group valid

G | Γ,Δ G | Δ,Σ
G | Γ,Σ

(cut)

G
G | H

(ew)

G | H | H
G | H

(ec)

Fig. 1. The basic �-hypersequent calculus G�.

�-sequents and �-hypersequents, respectively. An �-hypersequent calculus GL is a set of �-hypersequent rules. 
A GL-derivation of an �-hypersequent G from a set of �-hypersequents S is a finite tree of �-hypersequents 
with root G such that each node is either in S or the node and its parents form an instance of a rule of GL. 
In this case, we write S �GL G and say that G is GL-derivable from S.

A rule is said to be GL-derivable if for each of its instances, the conclusion is GL-derivable from the 
premises, and GL-admissible if for each of its instances, whenever the premises are GL-derivable, the con-
clusion is GL-derivable. A rule will also be called �-sound if for each of its instances, whenever the premises 
are �-valid, the conclusion is �-valid, and �-invertible if for each of its instances, whenever the conclusion is 
�-valid, the premises are �-valid.

3. A basic calculus

Fig. 1 presents a proof system G� for basic �-hypersequents, where (gv) stands for group valid, (em)

for excluded middle, (ew) for external weakening, and (ec) for external contraction. Occurrences of the 
sequents Γ in (gv), Δ and Δ in (em), (Γ, Δ), (Δ, Σ), and (Γ, Σ) in (cut), and the sequents in H in (ew)

and (ec) will be called active in applications of these rules in G�-derivations.
We remark that (ew) is useful for constructing G�-derivations but is not strictly necessary: that is, (ew)

is admissible in the calculus G� without (ew). This is because instances of (ew) can be permuted upwards 
over instances of any other rule in a derivation, while its effect on the axioms is subsumed by the form of 
the axioms themselves. Note also that we could avoid using (ec) by redefining �-hypersequents as finite sets 
of �-sequents.

To better understand G�, let us consider some useful G�-derivable rules.

Lemma 3.1. The following rules are G�-derivable:

G | Γ G | Σ
G | Γ,Σ

(mix)

G | Γ,Δ
G | Γ | Δ

(split)

G | Γ,Σ
G | Γ,Δ,Δ,Σ

(simp)
G | Γ,Σ G | Π,Δ
G | Γ,Δ | Π,Σ

(com)

Proof. Observe first that (mix) consists of instances of (cut) where Δ = (). For (split) and (simp), we 
make use of G�-derivations:

G | Γ,Δ
G | Γ,Δ | Δ

(ew) G | Δ | Δ
(em)

G | Γ | Δ
(cut)

G | Γ,Σ G | Σ,Δ,Δ,Σ
(gv)

G | Γ,Δ,Δ,Σ
(cut)

The following G�-derivation takes care of (com):

G | Π,Δ
G | Γ,Δ | Π,Δ

(ew)

G | Γ,Σ
G | Γ,Δ,Δ,Σ

(simp)

G | Γ,Δ | Δ,Σ
(split)

G | Γ,Δ | Π,Σ
(cut) �
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Example 3.2. We illustrate G� and some G�-derivable rules in the following derivation of an �-hypersequent 
corresponding to the inequation 1 ≤ xx ∨ yy ∨ xy:

x, x, x, x | y, y (gv)

x, x, x | y, y | x (split)

x, x | y, y | x | x (split)

x, x | y, y | x (ec)

x, x | y, y, y, y (gv)

x, x | y, y, y | y (split)

x, x | y, y | y | y (split)

x, x | y, y | y (ec)

x, x | y, y | x, y (mix)

We show now that G� derives only �-valid basic �-hypersequents.

Lemma 3.3. The following (quasi-)identities are valid in all �-groups:

(i) xy ∧ 1 ≤ x ∨ y

(ii) (1 ≤ xy ∨ z) ⇒ (1 ≤ x ∨ y ∨ z)
(iii) (1 ≤ y ∨ x) ⇒ 1 ≤ y ∨ x2

(iv) (1 ≤ x ∨ y) & (1 ≤ x ∨ z) ⇒ 1 ≤ x ∨ yz.

Proof. We show that each of these (quasi-)identities holds in any �-group L with arbitrary elements 
a, b, c ∈ L:

(i) Note first that 1 ≤ b(ab)−1 ∨ a1 because 1 ≤ a−1 ∨ a. So also 1 ≤ (a ∨ b)(ab)−1 ∨ (a ∨ b)1. By 
distributivity, 1 ≤ (a ∨ b)((ab)−1 ∨ 1). Hence ab ∧ 1 = ((ab)−1 ∨ 1)−1 ≤ a ∨ b.

(ii) From (i), (ab ∧1) ∨c ≤ a ∨b ∨c. If 1 ≤ ab ∨c, then by distributivity also 1 ≤ (ab ∧1) ∨c, so 1 ≤ a ∨b ∨c

as required.
(iii) If 1 ≤ a ∨ b, then also 1 ≤ a ∨ b(a ∨ b). I.e., 1 ≤ a ∨ ba ∨ b2 and hence 1 ≤ a ∨ (ba ∧ 1) ∨ b2, 

by distributivity. Note that (ba ∧ 1)−1(a ∨ b2) = (1 ∨ (a−1b−1))(a ∨ b2) = a ∨ b2 ∨ a−1b−1a ∨ a−1b. Using 
1 ≤ 1 ∨ b2 = (a(a−1b−1a)a−1b) ∨ b2, (ii) yields 1 ≤ (ba ∧ 1)−1(a ∨ b2). I.e., ba ∧ 1 ≤ a ∨ b2. So 1 ≤ a ∨ b2.

(iv) If 1 ≤ a ∨ b and 1 ≤ a ∨ c, then also 1 ≤ a ∨ (b ∧ c). But then by (iii), 1 ≤ a ∨ (b ∧ c)2 and from 
(b ∧ c)2 ≤ bc it follows that 1 ≤ a ∨ bc as required. �
Lemma 3.4. If a basic �-hypersequent G is G�-derivable, then it is �-valid.

Proof. By induction on the height of a G�-derivation of G. The base case follows because in all �-groups, 
1 ≤ 1 ∨b and 1 ≤ a ∨b ∨b−1. For the induction step, if the last application of a rule is (ew) or (ec), then we 
are done because 1 ≤ a implies 1 ≤ a ∨ b and 1 ≤ a ∨ a implies 1 ≤ a in all �-groups. If the last application 
of a rule is (cut), then we use the fact that if 1 ≤ a ∨ bc and 1 ≤ a ∨ c−1d, then by Lemma 3.3 (iv), 
1 ≤ a ∨ bcc−1d = a ∨ bd. �
4. An augmented basic calculus

We now define G�∗ as the extension of G� with the following rule for basic �-hypersequents:

G | Δ G | Δ
G (∗)

where Δ is not group valid.

The condition that Δ is not group valid is clearly necessary; otherwise, Δ and Δ are both group valid and 
the premises are derivable using (gv) for any basic �-hypersequent G. Moreover, it is not at all obvious 
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that the rule is �-sound. In particular, it is not true that in any �-group, if 1 ≤ a ∨ b and 1 ≤ a ∨ b−1

with b �= 1, then 1 ≤ a. Consider, e.g., the direct product of the additive �-group of the integers Z × Z
where (0, 0) ≤ (0, −1) ∨ (1, 0) and (0, 0) ≤ (0, −1) ∨ (−1, 0), but (0, 0) �≤ (0, −1). Observe, however, that for 
soundness, we require something weaker: namely, that for any basic �-hypersequent G and basic �-sequent Δ
that is not valid in all groups, if G | Δ and G | Δ are both valid in all �-groups, then G is valid in all �-groups. 
Equivalently, for any n and for any elements a1, . . . , an, b of the ω-generated free group interpreted in the 
corresponding free �-group, whenever 1 ≤ a1∨ . . .∨an∨ b and 1 ≤ a1∨ . . .∨an∨ b−1, either 1 ≤ a1∨ . . .∨an
or 1 = b.

First, we establish the completeness of the augmented calculus with respect to Aut(R): that is, we show 
that any basic �-hypersequent that is valid in Aut(R) is G�∗-derivable. Let us say that a set S of inequations 
of the form x > y where x, y are variables from some set X is chain-consistent if S is satisfiable as a set 
of first-order formulas in the structure consisting of R with the standard order; otherwise S is said to be 
chain-inconsistent. It follows by an easy induction on the number of distinct variables occurring in S that 
S is chain-inconsistent if and only if there exists a sequence z1, z2, . . . , zn of variables from X such that 
(zi > zi+1) ∈ S for 1 ≤ i ≤ n − 1 and (zn > z1) ∈ S. The base case is trivial. For the induction step, 
eliminate a variable x (adding y > z whenever y > x and x > z are in S, and then remove all inequations 
containing an occurrence of x) to obtain a set of inequations S′ that is chain-consistent if and only if S is 
chain-consistent; the desired result then follows using the induction hypothesis applied to S′.

Observe now that Γ ∼ Δ if and only if (Γ, Δ) is group valid defines an equivalence relation (namely, 
equivalence in groups) on the set of basic �-sequents. Let [Γ] = {Δ : (Γ, Δ) is group valid} denote the 
corresponding equivalence classes. For each such equivalence class [Γ], we define a fresh variable a[Γ]. We 
will say that a basic �-hypersequent G is chain-inconsistent if there exist (Γi, Δi) ∈ G for 1 ≤ i ≤ n

such that {a[Δi] > a[Γi] : 1 ≤ i ≤ n} is a chain-inconsistent set of inequations; otherwise G is said to be 
chain-consistent.

Lemma 4.1. If G is chain-inconsistent, then G is G�∗-derivable.

Proof. Suppose that (Γi, Δi) ∈ G for 1 ≤ i ≤ n where {a[Δi] > a[Γi] : 1 ≤ i ≤ n} is a chain-inconsistent set 
of inequations. We prove the lemma by induction on n.

For the base case n = 1, we have a[Γ1] = a[Δ1], which means also that [Γ1] = [Δ1]. So Γ1, Δ1 is group 
valid and G is G�∗-derivable using (gv).

For the induction step, {a[Δi] > a[Γi] : 1 ≤ i ≤ n} is chain-inconsistent and hence we may assume without 
loss of generality that a[Γ1] = a[Δ2]. So Γ1, Δ2 is group valid. Then the required G�∗-derivation ends with

G | Γ1,Δ2
(gv)

...
G | Γ2,Δ1

G | Γ1,Δ1 | Γ2,Δ2
(com)

G | Γ1,Δ1
(ec)

G (ec)

where the right premise is G�∗-derivable using the fact that {a[Δ1] > a[Γ2]} ∪ {a[Δi] > a[Γi] : 3 ≤ i ≤ n} is a 
chain-inconsistent set of inequations and applying the induction hypothesis. �

Observe now that an �-hypersequent G containing variables x1, . . . , xn is valid in Aut(R) if and only if 
for every n-tuple �f of functions in Aut(R),

id ≤
∨

{I(Γ)Aut(R)(�f ) : Γ ∈ G},
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where id is the identity function on R. Moreover, this inequation holds in Aut(R) if and only if for every 
point p ∈ R, the value of at least one I(Γ)Aut(R)(�f ) at p is greater than or equal to p. Equivalently, there 
is no point p ∈ R such that the value of every I(Γ)Aut(R)(�f ) at p is strictly less than p.

Lemma 4.2. If G is valid in Aut(R), then G is G�∗-derivable.

Proof. Suppose that Aut(R) |= G, and consider the set of equivalence classes of initial subsequences of 
sequents in G:

is(G) = {[Γ] : (Γ,Δ) ∈ G}.

We apply the rule (∗) backwards finitely many times to G using a representative sequent Γ, Δ of [Γ, Δ] for all 
distinct [Γ], [Δ] ∈ is(G). We will show that every leaf G | H resulting from this process is chain-inconsistent 
and therefore G�∗-derivable. It follows that G is also G�∗-derivable.

Let us suppose for a contradiction that G | H is chain-consistent. Then for each [Γ] ∈ is(G) we can assign 
a[Γ] to a real number r[Γ] such that for any distinct [Γ], [Δ] ∈ is(G), either (Γ, Δ) ∈ H and r[Δ] > r[Γ] or 
(Δ, Γ) ∈ H and r[Γ] > r[Δ]. Moreover, we may assume that r[] > r[Γ] for each Γ ∈ G.

Now for each variable x we define a map x̂ that sends r[Γ] to r[Γ,x] when [Γ], [Γ, x] ∈ is(G) and r[Δ,x]
to r[Δ] when [Δ, x], [Δ] ∈ is(G).

Let us check that x̂ does not violate the order-preserving condition. It suffices, by Lemma 4.1, to show 
that if x̂ violates the condition, then G | H is G�∗-derivable. First suppose that x̂ maps r[Γ] to r[Γ,x] and 
r[Δ] to r[Δ,x], but r[Δ] > r[Γ] and r[Γ,x] > r[Δ,x]. Then H contains sequents in [Γ, Δ] and [Δ, x, x, Γ], and is 
G�∗-derivable using (split) and (gv). Alternatively, suppose that x̂ maps r[Γ] to r[Γ,x] and r[Δ,x] to r[Δ], 
but r[Δ,x] > r[Γ] and r[Γ,x] > r[Δ]. Then H contains sequents in [Γ, x, Δ] and [Δ, x, Γ], and is G�∗-derivable 
using (split) and (gv). Other cases are very similar.

Finally, we extend each x̂ to a function in Aut(R) (for example, linearly between the given points). 
Consider now each Γ ∈ G and its evaluation as a function ˆI(Γ) in Aut(R). This function maps r[] ∈ R to 
r[Γ] ∈ R where r[] > r[Γ]. But this contradicts the assumption that G is valid in Aut(R), so we are done. �

The proof of the previous lemma follows quite closely the argument for the adequacy of the Holland–
McCleary algorithm given in [11]. For readers familiar with this algorithm, recall that a basic �-hypersequent 
G corresponds to a disjunction of group terms that, for simplicity, we may assume are already in reduced 
form. We consider, in both cases, the initial subterms of these group terms and all the ways that they can be 
totally ordered. The Holland–McCleary algorithm searches for a failure or inconsistency, and hypersequents 
are interpreted accordingly as conjunctions. Likewise, a sequent Γ in a hypersequent is not interpreted as 
the inequality 1 ≤ Γ, but rather as the strict inequality 1 > Γ. In essence, hypersequents are viewed as 
sets/conjunctions of strict inequalities. The Holland–McCleary algorithm automatically closes each such 
set under transitivity and, in the case where the set is chain-consistent, this provides a total ordering of 
the group terms involved. Such a set is called a diagram if it is further equipped with labeled arrows: for 
example, we have an arrow with label x for each pair of group terms (Γ, Γx) in the diagram. Moreover, 
in each step of the algorithm, new elements of is(G) are inserted in the possible relative positions of the 
diagram, creating new inequalities. A backward application of the rule (∗) has the same effect, but without 
closing under transitivity at each step; however, exhaustive applications of (∗) to is(G), as described in the 
above proof, subsume transitivity closure. Finally, checking whether x̂ violates the order-preserving con-
dition corresponds to the Holland–McCleary algorithm checking whether arrows with label x cross. Here, 
branches involving inconsistency in the order give rise to derivable hypersequents.
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5. A generation theorem

We have shown that the calculus G� derives only �-valid basic �-hypersequents (Lemma 3.4) and that the 
augmented calculus G�∗ derives all basic �-hypersequents valid in Aut(R) (Lemma 4.2). To complete the 
circle and show that derivability in these calculi, �-validity, and validity in Aut(R) all coincide, it suffices 
to show that (∗) is G�-admissible. This will also provide a syntactic proof that the variety of �-groups is 
generated by Aut(R).

We begin with some useful terminology. Given a G�-derivation d of G | H, we inductively label sequents 
occurring in d as G-sequents as follows. To be precise, we label occurrences of sequents, thus allowing for 
some occurrences of a sequent in a hypersequent to be G-sequents and some not to be; we trust the reader to 
interpret correctly which are the corresponding occurrences of a sequent in the premises and the conclusion 
of a rule. Each sequent in G at the root is a G-sequent. For the induction step, we consider an instance of a 
rule in d and the following three cases:

(i) The instance has premises G′ | Γ, Δ and G′ | Δ, Σ and conclusion G′ | Γ, Σ: each G-sequent in G′ in the 
conclusion is a G-sequent in G′ in the premises, and if Γ, Σ is a G-sequent in the conclusion, then Γ, Δ
and Δ, Σ are G-sequents in the premises.

(ii) The instance has premise G′ and conclusion G′ | H′: each G-sequent in G′ in the conclusion is a G-sequent 
in G′ in the premise.

(iii) The instance has premise G′ | H′ | H′ and conclusion G′ | H′: each G-sequent in G′ | H′ in the conclusion 
is a G-sequent in G′ | H′ | H′ (twice if it occurs in H′) in the premise.

It follows that each (occurrence of a) sequent occurring in d is strictly either a G-sequent or an H-sequent.
A G�-derivation of G | H will be called H-cut-free if it contains no application of (cut) with an active 

H-sequent (an H-cut). Consider an H-cut in a G�-derivation of G | H

G′ | H′ | Γ,Δ G′ | H′ | Δ,Σ
G′ | H′ | Γ,Σ

where the G-sequents are in G′ and the H-sequents are in H′ | Γ, Σ in the conclusion and in H′ | Γ, Δ
and H′ | Δ, Σ in the premises. We call this H-cut significant if it is not the case that both H′ | Γ, Δ and 
H′ | Δ, Σ are G�-derivable.

We obtain the following partial cut-elimination lemma.

Lemma 5.1. If �G� G | H, then either �G� H or there is an H-cut-free G�-derivation of G | H.

Proof. We show that an uppermost significant H-cut can be eliminated from a G�-derivation d of G | H. It 
then follows that all significant H-cuts can be eliminated inductively from d to obtain a significant-H-cut-free 
G�-derivation d′ of G | H. If d′ contains no applications of H-cuts, then there is an H-cut-free G�-derivation 
of G | H. Otherwise, consider a lowest (non-significant) H-cut in d′ with conclusion G′ | H′ | Γ, Σ where 
the G-sequents are in G′ and all other sequents are H-sequents. Note that, by assumption, �G� H′ | Γ, Σ. 
Below this application in d′, the only rule applications with active H-sequents are (ew) and (ec). So H is 
derivable from H′ | Γ, Σ using (ew) and (ec). But also H′ | Γ, Σ is G�-derivable, so �G� H.

To show that an uppermost significant H-cut can be eliminated from a G�-derivation of G | H, we prove 
that if both G1 | H1 | Γ1, Σ | . . . | Γ1, Σ and G2 | H2 | Σ, Γ2 | . . . | Σ, Γ2 are significant-H-cut-free G�-derivable 
where the G-sequents are in G1 and G2 and all other sequents are H-sequents, then G1 | G2 | H1 | H2 | Γ1, Γ2

is significant-H-cut-free G�-derivable, proceeding by induction on the combined heights of these derivations.
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We consider the last steps of both derivations. If either step is an application of (ew) or (ec), then the 
claim follows immediately using the induction hypothesis and possibly an additional application of (ew) or 
(ec).

Suppose that both last steps are (non-significant) H-cuts or instances of (gv) or (em) whose active 
sequents are H-sequents. It follows that H1 | Γ1, Σ | . . . | Γ1, Σ and H2 | Σ, Γ2 | . . . | Σ, Γ2 are G�-derivable. 
So, using (cut) and (ew), G1 | G2 | H1 | H2 | Γ1, Γ2 is significant-H-cut-free G�-derivable as required.

If either a group valid sequent or Δ | Δ occurs in G1 | G2 | H1 | H2, then G1 | G2 | H1 | H2 | Γ1, Γ2
is clearly significant-H-cut-free G�-derivable. Also, if both Γ1, Σ and Σ, Γ2 are group valid, then Γ1, Γ2 is 
group valid and G1 | G2 | H1 | H2 | Γ1, Γ2 is derivable by (gv).

If G2 = G′
2 | Γ2, Σ, then we have a significant-H-cut-free G�-derivation

G1 | G′
2 | Γ2,Γ1 | H1 | H2 | Γ1,Γ2

(em)

...
G1 | H1 | Γ1,Σ | . . . | Γ1,Σ

...
(ec)

G1 | H1 | Γ1,Σ
(ec)

G1 | G′
2 | Γ1,Σ | H1 | H2 | Γ1,Γ2

(ew)

G1 | G′
2 | Γ2,Σ | H1 | H2 | Γ1,Γ2

(cut)

The case where G1 = G′
1 | Σ, Γ1 is very similar.

Suppose now that one of the derivations ends with a G-cut; e.g., G2 = G′
2 | Δ1, Δ2 and we have

...
G′

2 | Δ1,Π | H2 | Σ,Γ2 | . . . | Σ,Γ2

...
G′

2 | Π,Δ2 | H2 | Σ,Γ2 | . . . | Σ,Γ2

G′
2 | Δ1,Δ2 | H2 | Σ,Γ2 | . . . | Σ,Γ2

(cut)

We apply the induction hypothesis to the derivations of G1 | H1 | Γ1, Σ | . . . | Γ1, Σ and G′
2 | Δ1, Π | H1 |

Σ, Γ2 | . . . | Σ, Γ2 to obtain an H-significant-cut-free G�-derivation of G1 | G′
2 | Δ1, Π | H1 | H2 | Γ1, Γ2. 

Similarly, we obtain an H-significant-cut-free G�-derivation of G1 | G′
2 | Π, Δ2 | H1 | H2 | Γ1, Γ2. So we 

obtain an H-significant-cut-free G�-derivation of G1 | G2 | H1 | H2 | Γ1, Γ2 using (cut). �
Lemma 5.2. (∗) is G�-admissible.

Proof. It suffices, using the rule (ec), to prove that whenever �G� G | Γ | . . . | Γ and �G� H | Γ where Γ
is not group valid, then �G� G | H. If Γ is not group valid, then ��G� Γ. So by Lemma 5.1, we may prove 
the claim by induction on the height of a Γ | . . . | Γ-cut-free G�-derivation of G | Γ | . . . | Γ. For the base 
case, there are two possibilities. If there is a group valid sequent or occurrence of Δ | Δ in G, then clearly 
�G� G | H. Otherwise, G = (G′ | Γ) and, because �G� H | Γ, also �G� G | H using (ew). For the induction 
step, suppose that G | Γ | . . . | Γ is the conclusion of an instance of (cut) with premises G′ | Γ1, Σ | Γ | . . . | Γ
and G′ | Σ, Γ2 | Γ | . . . | Γ where G = (G′ | Γ1, Γ2). By the induction hypothesis twice, �G� G′ | Γ1, Σ | H
and �G� G′ | Σ, Γ2 | H. Hence, using (cut), �G� G′ | Γ1, Γ2 | H as required. The cases of (ew) and (ec) are 
straightforward. �

Putting together Lemmas 3.4, 4.2, and 5.2, we obtain:

Theorem 5.3. For any basic �-hypersequent G, the following are equivalent:

(1) G is G�-derivable.
(2) G is �-valid.
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G | Γ
(gv)

G
G | H

(ew)

G | H | H
G | H

(ec)

Γ group valid

G | Γ G | Δ
G | Γ,Δ

(mix)

G | Γ,Σ G | Π,Δ
G | Γ,Δ | Π,Σ

(com)

Fig. 2. The basic �-hypersequent calculus GLGb.

(3) G is valid in Aut(R).
(4) G is G�∗-derivable.

It follows that an identity is valid in all �-groups if and only if it is valid in Aut(R). Hence, as the variety 
generated by a class of algebras K is, by Birkhoff’s variety theorem, the smallest class satisfying the same 
identities as K, we obtain:

Theorem 5.4. (See [10].) The variety of �-groups is generated by Aut(R).

Note that Holland’s original proof of this generation theorem in [10] is based on his embedding theorem for 
�-groups [9] and, unlike the proof presented here, makes use of the axiom of choice. Let us remark also that 
although the Holland–McCleary algorithm decides the �-validity of �-group identities, it does not produce 
corresponding derivations in equational logic (i.e., derivations from defining �-group identities). However, by 
applying the constructive (∗)-elimination procedure described here to the derivation of an �-group identity 
in G�∗, we obtain a G�-derivation of the identity. This derivation may then easily be translated into an 
equational logic derivation.

6. An analytic calculus

Although G� and G�∗ provide bases for decision procedures for �-groups, these calculi are not analytic. 
They contain rules, (cut) and (∗), where terms occurring in the premises may not occur as subterms in 
the conclusion. Observe that, following the proofs in Sections 4 and 5, a basic �-hypersequent G is valid in 
Aut(R) if and only if it is derivable in the analytic calculus consisting of (gv), (em), (ew), (ec), and the 
restricted (∗) rule

G | Γ,Π G | Π,Γ
G | Γ,Δ | Π,Σ

where Γ,Π is not group valid.

However, this restricted rule makes use of a side-condition and cannot be interpreted as a quasiequation 
valid in all �-groups. Also the completeness proof for the calculus is heavily dependent on the particular 
class of algebraic structures and cannot be expected to generalize easily to other classes.

In this section we establish soundness and completeness for an analytic basic �-hypersequent calculus 
GLGb, presented in Fig. 2, that replaces (cut) and (em) in G� with the analytic rules (mix) and (com). 
The key step in the proof is to show that (cut) is GLGb-admissible, obtained as the culmination of a series 
of lemmas establishing the GLGb-admissibility of related rules.

Let us write G[Γ] to denote a basic �-hypersequent G with specific occurrences (perhaps none) of a sequence 
of literals Γ; a subsequent reference to G[Δ] then denotes the �-hypersequent obtained by replacing these 
occurrences with Δ.
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Lemma 6.1. The following rule is GLGb-admissible:

Δ G[]
G[Δ]

Proof. We proceed by induction on the height of a GLGb-derivation of G[]. For the base case, it suffices to 
observe that if Γ[] is group valid, then, because Δ is group valid, also Γ[Δ] is group valid. For the induction 
step, suppose that the last step in the derivation of G[] is an application of (com) of the form

H[] | Γ1[],Π2[] H[] | Π1[],Γ2[]
H[] | Γ1[],Γ2[] | Π1[],Π2[]

(com)

Then by the induction hypothesis twice,

�GLGb H[Δ] | Γ1[Δ],Π2[Δ] and �GLGb H[Δ] | Π1[Δ],Γ2[Δ].

So by an application of (com) as required,

�GLGb H[Δ] | Γ1[Δ],Γ2[Δ] | Π1[Δ],Π2[Δ].

The cases where the last step in the derivation of G[] is an application of (ew), (ec), or (mix) are very 
similar. �
Lemma 6.2. The following rule is GLGb-admissible:

G | Γ, t,Δ G | Π, t,Σ
G | Γ,Σ | Π,Δ

Proof. Let us define (Γ1, t,Γ2, t, . . . ,Γn, t,Γn+1)@(Π, t,Σ), where the t and t are distinguished (but perhaps 
not all) occurrences in the sequents, as

(Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γn,Σ | Π,Γn+1),

noting that (Γ)@(Π, t,Σ) is just Γ.
Then it suffices (using (ec)) to prove that the following rule is GLGb-admissible:

Δ1[t] | . . . | Δn[t] G | Π, t,Σ
G | (Δ1[t])@(Π, t,Σ) | . . . | (Δn[t])@(Π, t,Σ)

We proceed by induction on the height of a GLGb-derivation of Δ1[t] | . . . | Δn[t].
For the base case, we may assume without loss of generality that Δ1[t] is group valid. We prove that 

�GLGb G | (Δ1[t])@(Π, t,Σ) by (a new) induction on the number of terms in Δ1[t]. Clearly, if Δ1[t] contains 
no distinguished occurrences of t, then (Δ1[t])@(Π, t,Σ) = Δ1, and G | (Δ1[t])@(Π, t,Σ) is an instance of 
(gv). Otherwise, there are three possibilities. First, Δ1[t] can have the form

Γ1, t,Γ2, t, . . . ,Γk, t, t,Γk+1, t, . . . ,Γn, t,Γn+1.

Applying the induction hypothesis to Γ1, t, Γ2, t, . . . , Γk, Γk+1, t, . . . , Γn, t, Γn+1,

�GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γk,Γk+1,Σ | . . . | Π,Γn,Σ | Π,Γn+1.
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But also �GLGb G | Π, t, Σ, so using (com) and (ew),

�GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γk,Σ | Π, t,Γk+1,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

Now suppose that Δ1[t] has the form

Γ1, t,Γ2, t, . . . ,Γk, t, t,Γk+1, t, . . . ,Γn, t,Γn+1.

Applying the induction hypothesis to Γ1, t, Γ2, t, . . . , Γk, Γk+1, t, . . . , Γn, t, Γn+1,

�GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γk,Γk+1,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

But also �GLGb H | Π, t, Σ, so by (com) and (ew) as required:

�GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γk, t,Σ | Π,Γk+1,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

Finally, Δ1[t] might have the form

Γ1, t,Γ2, t, . . . ,Γ1
k, s, s,Γ2

k, t, . . . ,Γn, t,Γn+1.

Applying the induction hypothesis to Γ1, t, Γ2, t, . . . , Γ1
k, Γ2

k, t, . . . , Γn, t, Γn+1,

�GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γ1
k,Γ2

k,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

But then by Lemma 6.1, we obtain as required

�GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γ1
k, s, s,Γ2

k,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

Now let us return to the inductive step of the main induction proof. Note that the cases of (ew) and (ec)

follow immediately using the induction hypothesis. Suppose that the derivation ends with an application of 
(com) of the form

H | Γ1, t, . . . ,Γ1
k,Θ2

r, t, . . . ,Θm, t,Θm+1 H | Θ1, t, . . . ,Θ1
r,Γ2

k, t, . . . ,Γp, t,Γp+1

H | Γ1, t, . . . ,Γ1
k,Γ2

k, t, . . . ,Γp, t,Γp+1 | Θ1, t, . . . ,Θ1
r,Θ2

r, t, . . . ,Θm, t,Θm+1

where H = Δ3[t] | . . . | Δn[t]. By the induction hypothesis twice,

�GLGb H′ | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γ1
k,Θ2

r,Σ | . . . | Π,Θm,Σ | Π,Θm+1

and �GLGb H′ | Θ1,Σ | Π,Θ2,Σ | . . . | Π,Θ1
r,Γ2

k,Σ | . . . | Π,Γp,Σ | Π,Γp+1

where H′ = G | (Δ3[t])@(Π, t,Σ) | . . . | (Δn[t])@(Π, t,Σ). Hence, using (ew) and (com),

�GLGb H′ | Γ1,Σ | . . . | Π,Γ1
k,Γ2

k,Σ | . . . | Π,Γp,Σ | Π,Γp+1 |
Θ1,Σ | . . . | Π,Θ1

r,Θ2
r,Σ | . . . | Π,Θm,Σ | Π,Θm+1.

Now suppose that the last step in the derivation is an application of (mix),

H | Γ1, t, . . . ,Γ1
k H | Γ2

k, t, . . . ,Γp, t,Γp+1

H | Γ1, t, . . . ,Γ1
k,Γ2

k, t, . . . ,Γp, t,Γp+1
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where H = Δ2[t] | . . . | Δn[t]. By the induction hypothesis twice,

�GLGb H′ | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γ1
k

and �GLGb H′ | Γ2
k,Σ | . . . | Π,Γp,Σ | Π,Γp+1

where H′ = G | (Δ2[t])@(Π, t,Σ) | . . . | (Δn[t])@(Π, t,Σ). Hence, using (ew) and (mix),

�GLGb H′ | Γ1,Σ | . . . | Π,Γ1
k,Γ2

k,Σ | . . . | Π,Γp,Σ | Π,Γp+1. �
Lemma 6.3. The following rule is GLGb-admissible:

G | Γ, t G | t,Δ
G | Γ,Δ

Proof. It suffices, using (ec), to prove the GLGb-admissibility of

G | Γ1, t | . . . | Γn, t H | t,Δ
G | H | Γ1,Δ | . . . | Γn,Δ

proceeding by induction on the height of a GLGb-derivation of G | Γ1, t | . . . | Γn, t.
For the base case, we have two possibilities. If a sequent in G is group valid, then clearly �GLGb G | H |

Γ1, Δ | . . . | Γn, Δ. Otherwise, some Γi, t is group valid and therefore of the form Γ1
i , t, Γ2

i , t where Γ1
i and 

Γ2
i are both group valid. Hence by Lemma 6.1, �GLGb H | Γ1

i , t, Γ2
i , Δ and the result follows using (ew).

For the induction step, the cases of (ew) and (ec) follow immediately using the induction hypothesis. 
Now suppose that the last step in the derivation is an application of (com) of the form

G | Γ1
1,Γ2

2, t | . . . | Γn, t G | Γ1
2,Γ2

1, t | . . . | Γn, t

G | Γ1
1,Γ2

1, t | Γ1
2,Γ2

2, t | . . . | Γn, t

By the induction hypothesis twice,

�GLGb G | H | Γ1
1,Γ2

2,Δ | . . . | Γn,Δ and �GLGb G | H | Γ1
2,Γ2

1,Δ | . . . | Γn,Δ.

Hence, using (com),

�GLGb G | H | Γ1
1,Γ2

1,Δ | Γ1
2,Γ2

2,Δ | . . . | Γn,Δ.

Now suppose that the application of (com) is of the form

G | Γ1
1 | . . . | Γn, t G | Γ2, t,Γ2

1, t | . . . | Γn, t

G | Γ1
1,Γ2

1, t | Γ2, t | . . . | Γn, t

By the induction hypothesis twice,

�GLGb G | H | Γ1
1 | . . . | Γn,Δ and �GLGb G | H | Γ2, t,Γ2

1,Δ | . . . | Γn,Δ.

But H | t, Δ is GLGb-derivable, so by Lemma 6.2,

�GLGb G | H | Γ2,Δ | Γ2
1,Δ | . . . | Γn,Δ.
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Hence, using (mix),

�GLGb G | H | Γ1
1,Γ2

1,Δ | Γ2,Δ | . . . | Γn,Δ.

Now suppose that the last step in the derivation is an application of (mix):

G | Γ1
1 | . . . | Γn, t G | Γ2

1, t | . . . | Γn, t

G | Γ1
1,Γ2

1, t | . . . | Γn, t

By the induction hypothesis twice,

�GLGb G | H | Γ1
1 | . . . | Γn,Δ and �GLGb G | H | Γ2

1,Δ | . . . | Γn,Δ

and the desired result follows by an application of (mix). �
Lemma 6.4. The following rule is GLGb-admissible:

G[t, t]
G[]

Proof. We proceed by induction on the height of a GLGb-derivation of G[t, t]. For the base case, we simply 
observe that if a basic �-sequent Γ[t, t] is group valid, then also Γ[] is group valid.

For the induction step, the cases of (ew) and (ec) follow immediately using the induction hypothesis. 
Suppose now that the last step in the derivation is an application of (com). The only tricky case has the 
form

H[t, t] | Γ1[t, t], t,Π2[t, t] H[t, t] | Π1[t, t], t,Γ2[t, t]
H[t, t] | Γ1[t, t], t, t,Γ2[t, t] | Π1[t, t],Π2[t, t]

(com)

By the induction hypothesis twice,

�GLGb H[] | Γ1[], t,Π2[] and �GLGb H[] | Π1[], t,Γ2[].

But then, by Lemma 6.2, �GLGb H[] | Γ1[], Γ2[] | Π1[], Π2[] as required.
Now suppose that the last step in the derivation is an application of (mix). The only tricky case has the 

form

H[t, t] | Γ1[t, t], t H[t, t] | t,Γ2[t, t]
H[t, t] | Γ1[t, t], t, t,Γ2[t, t]

By the induction hypothesis twice,

�GLGb H[] | Γ1[], t and �GLGb H[] | t,Γ2[].

But then, by Lemma 6.3, �GLGb H[] | Γ1[], Γ2[] as required. �
Lemma 6.5. (cut) is GLGb-admissible.

Proof. Suppose that �GLGb G | Γ, Δ and �GLGb G | Δ, Σ. Then, using (mix), also �GLGb G | Γ, Δ, Δ, Σ. So, 
using Lemma 6.4 repeatedly, �GLGb G | Γ, Σ. �
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Structural Rules

Δ,Δ
(id)

Δ,Γ
Γ,Δ

(cycle)

G
G | H

(ew)

G | H | H
G | H

(ec)

G | Γ G | Δ
G | Γ,Δ

(mix)

G | Γ,Σ G | Π,Δ
G | Γ,Δ | Π,Σ

(com)

Operational Rules

G | Γ, t, s,Δ
G | Γ, t · s,Δ

(·)
G | Γ,Δ

G | Γ, 1,Δ
(1)

G | Γ, t,Δ G | Γ, s,Δ
G | Γ, t ∧ s,Δ

(∧)
G | Γ, t,Δ

G | Γ, t ∨ s,Δ
(∨1)

G | Γ, s,Δ
G | Γ, t ∨ s,Δ

(∨2)

Fig. 3. The �-hypersequent calculus GLG.

All the rules of GLGb are G�-derivable and, conversely, (em) is GLGb-derivable and (cut) is 
GLGb-admissible. Hence, we obtain:

Theorem 6.6. A basic �-hypersequent G is GLGb-derivable if and only G is �-valid.

7. A full calculus

In this section, we establish soundness and completeness for an analytic calculus GLG, presented in Fig. 3, 
that derives all (not just basic) valid �-hypersequents and uses simple initial sequents rather than all group 
valid sequents.

Example 7.1. The inequation (x ·y) ∧1 ≤ x ∨y can be transformed into an inequation 1 ≤ ((y ·x) ∨1) ·(x ∨y), 
which is derived in GLG as follows:

y, y
(id)

x, x
(id)

y, x, x | y (com)

y · x, x | y (·)

y · x, x | 1, y
(1)

y · x, x | (y · x) ∨ 1, y
(∨2)

(y · x) ∨ 1, x | (y · x) ∨ 1, y
(∨1)

(y · x) ∨ 1, x | (y · x) ∨ 1, x ∨ y
(∨2)

(y · x) ∨ 1, x ∨ y | (y · x) ∨ 1, x ∨ y
(∨1)

(y · x) ∨ 1, x ∨ y
(ec)

((y · x) ∨ 1) · (x ∨ y)
(·)

We observe first that the �-sequent rules of GLG together with (mix) provide a simple calculus for groups.

Lemma 7.2. The following are equivalent for any basic �-sequent Γ:

(1) Γ is group valid.
(2) Γ is derivable using (id), (cycle), and (mix).

Proof. (1) ⇒ (2) follows by an induction on the length of a group valid basic �-sequent Γ. For the base 
case, Γ is empty and derivable using (id). For the induction step, Γ must be of the form Γ1, t, t, Γ2. But 
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then Γ1, Γ2 is group valid and, by the induction hypothesis, derivable using (id), (cycle), and (mix). So 
we obtain a derivation using these rules that ends with

t, t
(id)

...
Γ1,Γ2
Γ2,Γ1

(cycle)

t, t,Γ2,Γ1
(mix)

Γ1, t, t,Γ2
(cycle)

(2) ⇒ (1) follows from the �-soundness of (id), (cycle), and (mix). �
Theorem 7.3. An �-hypersequent G is �-valid if and only if G is GLG-derivable.

Proof. The right-to-left direction follows by a straightforward induction on the height of a GLG-derivation 
and the �-soundness of the rules. For the left-to-right direction, we first observe that (·), (1), (∧), and the 
following GLG-derivable (using (∨1), (∨2), and (ec)) rule

G | Γ, t,Δ | Γ, s,Δ
G | Γ, t ∨ s,Δ

(∨)

are all �-invertible. Denote by mc(Γ) the multiset of the lengths of all occurrences of terms in an �-sequent Γ, 
and by mc(H), the multiset containing mc(Γ) for each occurrence of a Γ in H. These multisets of multisets of 
positive integers are well-ordered by the standard multiset well-ordering of [5]. Moreover, for any premise H′

of an instance of (·), (1), (∧), and (∨) with conclusion H, clearly mc(H′) is strictly smaller than mc(H). 
Hence if G is �-valid, then, by a straightforward induction on mc(G), it is GLG-derivable from a finite set 
of �-valid basic �-hypersequents. By Theorem 6.6, each of these basic �-hypersequents is GLGb-derivable. 
But GLG contains the rules (com), (mix), (ew), and (ec), and (gv) is GLG-derivable, so these basic 
�-hypersequents are also GLG-derivable. Hence G is GLG-derivable. �

Note also that by adding to GLG an “exchange” rule

G | Π,Δ,Γ,Σ
G | Π,Γ,Δ,Σ

(ex)

or, alternatively, by reinterpreting �-sequents as multisets of terms, we obtain a one-sided version of the 
calculus for abelian �-groups introduced in [16].

8. Co-NP completeness

In this last section, we provide a first proof of co-NP completeness for the equational theory of �-groups 
or, equivalently, the word problem for free �-groups. Hardness is already guaranteed by the fact that the 
equational theory of distributive lattices is co-NP complete [12]. For inclusion, it suffices (by the reasoning 
in Section 2) to prove that checking the �-validity of �-hypersequents is in co-NP. Roughly, the idea is 
to apply the �-sound and �-invertible operational rules (·), (1), (∧), and (∨) backwards to reach basic 
�-hypersequents, and then use the procedure (based on the Holland–McCleary algorithm [11]) described in 
Section 4 to check �-validity non-deterministically. Note that the derived operational rule (∨) may lead to 
an exponential increase in the size of the �-hypersequents considered, but we can avoid this problem by 
introducing new variables.
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Lemma 8.1. The following rule is �-sound and �-invertible:

G | Γ, x | x,Δ
G | Γ,Δ

where x does not occur in G | Γ,Δ.

Proof. The �-invertibility of the rule follows using the �-soundness of (split) and (simp). To establish 
�-soundness, note first that it suffices to show that the rule is �-sound when Δ is empty. Suppose that this 
is the case and consider the general situation where the �-hypersequent G | Γ, x | x, Δ is �-valid and x does 
not occur in G | Γ, Δ. Replacing x with Δ, y where y does not occur in G | Γ, Δ, it follows easily that 
G | Γ, Δ, y | y is �-valid. But then, by assumption, also G | Γ, Δ is �-valid.

It suffices now to prove that if G[x] | x is �-valid, then G[1] is �-valid, proceeding by induction on the 
number of operation symbols occurring in G[x]. The induction step is straightforward using the �-sound 
and �-invertible rules (∧), (∨), (·), and (1). For the base case, G[x] | x is an �-valid basic �-hypersequent. 
By Lemma 5.1, there is an x-cut-free GLGb-derivation of G[x] | x. We prove that G[1] is �-valid by a new 
induction on the height of such an x-cut-free GLGb-derivation. For the base case, if G[x] is �-valid, then so 
also is G[1]. Otherwise, G[x] | x has the form G′[x] | x | x, and clearly G′[1] | 1 is �-valid. The induction step 
is straightforward. �
Corollary 8.2. The following rule is �-sound and �-invertible:

G | Γ, x | x, t, y | x, s, y | y,Δ
G | Γ, t ∨ s,Δ

(∨′)

where x and y do not occur in G | Γ, t ∨ s,Δ.

Theorem 8.3. The equational theory of LG is co-NP complete.

Proof. As mentioned above, it suffices to prove that checking the �-validity of an �-hypersequent G is in 
co-NP. Note first that because the rules (∧), (∨′), (·), and (1) are both �-sound and �-invertible, G fails to 
be �-valid if and only if any backwards proof search using these rules leads to a set of basic �-hypersequents, 
at least one of which is not �-valid. Moreover, the depth of the proof search tree is bounded by the number 
of occurrences of operational symbols in G and the sizes of the basic �-hypersequents are linear in the size 
of G. We choose non-deterministically one of these basic �-hypersequents G′.

Now consider the process described in Lemma 4.2 applied to G′ using (∗). G′ fails to be �-valid if and 
only if at least one of the resulting basic �-hypersequents obtained in this way is not �-valid. Moreover, both 
the depth of the proof search tree and the sizes of the resulting basic �-hypersequents are polynomial in the 
size of G′ (the rule (∗) is applied using sequents of the form Γ, Δ where Γ and Δ are initial subsequences of 
sequents occurring in G′). We choose non-deterministically one of these basic �-hypersequents H.

Finally, H fails to be �-valid if and only if it is chain-consistent and this can be checked in polynomial 
time in the size of H; we may consider it as the problem of checking the satisfiability of an ordering of 
variables over the real number chain where the number of variables is linear in the size of H. �
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