
Annals of Pure and Applied Logic 168 (2017) 693–737
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Algebraic proof theory: Hypersequents and hypercompletions ✩

Agata Ciabattoni a, Nikolaos Galatos b, Kazushige Terui c,∗

a Department of Computer Languages, Vienna University of Technology, Favoritenstrasse 9–11,
1040 Wien, Austria
b Department of Mathematics, University of Denver, 2360 S. Gaylord St., Denver, CO 80208, USA
c Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, 
Kyoto 606-8502, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 June 2014
Received in revised form 31 January 
2016
Accepted 14 October 2016
Available online 18 October 2016

MSC:
03B47
03G10
03F05
03F03

Keywords:
Substructural logic
Hypersequent calculus
Residuated lattice
Substructural hierarchy
Residuated frame
Algebraic completion

We continue our program of establishing connections between proof-theoretic and 
order-algebraic properties in the setting of substructural logics and residuated 
lattices. Extending our previous work that connects a strong form of cut-
admissibility in sequent calculi with closure under MacNeille completions of 
corresponding varieties, we now consider hypersequent calculi and more general 
completions; these capture logics/varieties that were not covered by the previous 
approach and that are characterized by Hilbert axioms (algebraic equations) 
residing in the level P3 of the substructural hierarchy. We provide algebraic 
foundations for substructural hypersequent calculi and an algorithm to transform P3
axioms/equations into equivalent structural hypersequent rules. Using residuated 
hyperframes we link strong analyticity in the resulting calculi with a new algebraic 
completion, which we call hyper-MacNeille.

© 2016 Published by Elsevier B.V.

1. Introduction

The combination of syntactic and semantic methods in logic provides a double-edged sword for solving 
problems. Introduced in [14], the term algebraic proof theory refers to a research line aiming at connecting 
proof theory and universal order-algebra in a novel way that goes beyond merely combining results of the 
two fields by rather integrating their techniques. The techniques investigated in [14] are cut-admissibility 
(on the proof theoretic side) and order theoretic completions (on the algebraic side), by means of which 
the existence of strongly analytic sequent calculi (derivations from atomic assumptions contain only subfor-
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mulas of the formulas to be proved) for substructural logics is linked to the closure of the corresponding 
varieties of residuated lattices under MacNeille completions. Existing work in the spirit of algebraic proof 
theory usually refers to sequent calculi; e.g., in the context of modal logics [30] characterizes analyticity via 
non-deterministic matrix semantics (see also [29] and references therein), while [8,9] investigate the bounded 
proof property using one-step algebras.

In this paper we expand the realm of algebraic proof theory to hypersequent calculi – a natural general-
ization of sequent calculi – and explore their connections to more general order theoretic completions in the 
setting of substructural logics. The latter are logics weaker than classical logic that lack some of the axioms 
corresponding to the structural rules implicit in Gentzen’s systems: exchange, weakening and contraction. 
Substructural logics encompass among many others, intuitionistic logic, as well as linear, many-valued and 
relevance logics. They are axiomatic extensions of full Lambek calculus FL and their algebraic semantics 
form varieties of pointed residuated lattices, also called FL-algebras.

Many, but not all, substructural logics possess analytic sequent calculi. Analyticity usually follows from 
the redundancy of the special rule cut (which corresponds to modus ponens in Hilbert systems, and to 
transitivity in algebra) and is a key in establishing many important properties of the formalized logics; 
these include decidability, the Herbrand theorem, interpolation, as well as various algebraic properties, see, 
e.g., the monograph [21].

In our previous studies [12,14] we addressed the question:

• Which Hilbert axioms can be transformed into structural sequent rules that preserve strong analyticity 
when added to FL?

and showed that for a large class of axioms (i.e. those in the class N2 of the substructural hierarchy, a 
syntactic classification of axioms/equations introduced in [12–14]) this question can be reformulated as:

• Which algebraic equations over FL-algebras are preserved by MacNeille completions?

In [14] we introduced an algorithm for extracting structural sequent rules from axioms/equations belonging 
to the class N2 and showed that the calculus obtained by adding these rules to FL is strongly analytic if 
and only if the corresponding variety is preserved by MacNeille completions. These results were obtained 
by using residuated frames [20], a relational semantics resembling Kripke frames but applicable also to 
non-distributive settings. The results in [12,14] also reveal that the expressive power of structural sequent 
rules is limited to N2 axioms/equations and that higher levels of the hierarchy call for calculi based on 
formalisms more expressive than sequents.

Various extensions of sequent calculi have been introduced during the last three decades in order to 
present analytic calculi for logics that seem to resist an analytic sequent calculus formalization. In an ideal 
classification of the various proof theoretic frameworks according to their expressive power, hypersequent 
calculi can be seen as the “next level” after the sequent calculus. A hypersequent consists of a multiset 
of Gentzen sequents separated by a new structural connective “|” intuitively understood in a disjunctive 
way. Many substructural logics that cannot be captured via analytic sequent calculi possess instead analytic 
hypersequent calculi; this is for instance the case of various fuzzy logics [32] due to the presence of prelinearity 
(α → β) ∨ (β → α) which is beyond the class N2 and is naturally captured by a hypersequent structural 
rule (Avron’s communication rule [3]).

While the existing setting of algebraic proof theory deals with the class N2 of the substructural hierarchy, 
in [12,13] we investigated the next level (the class P3) separately in the proof theoretic and in the algebraic 
setting. Indeed, [12] contains an algorithm for extracting structural rules in the hypersequent calculus from 
axioms/equations corresponding to a subclass of P3, all in a commutative setting, while [13] investigates 
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closure under MacNeille completions applied to subdirectly irreducible algebras for varieties defined by 
axioms in a subclass of P3 equations.

This paper provides a comprehensive account of the connections between proof theory and algebra for 
the hypersequent calculus, the P3 level of the substructural hierarchy, and a new type of completion. The 
key tools for our investigation are residuated hyperframes, a new relational semantics which generalizes 
residuated frames. Residuated hyperframes support both a proof of strong analyticity in hypersequent 
calculi and a proof of the preservation of equations under a new type of algebraic completion, which we 
call hyper-MacNeille. Though more involved than the subdirect MacNeille completion used in [13], the 
hyper-MacNeille completion preserves more existing infinitary joins and meets; it is not always regular, 
namely it does not preserve all existing joins and meets, but it is regular for certain well-behaved alge-
bras.

The paper is organized as follows. Section 2 contains the basic notions and a summary of the results in [14]
(including the substructural hierarchy). Section 3 presents the hypersequent calculus for full Lambek calculus 
(and extensions), its algebraic foundations and the notion of equivalence between structural hypersequent 
rules/clauses and axioms/equations. Note that although hypersequent calculi have been successfully used 
to capture specific substructural logics, a precise definition of the meaning of the symbol “|” and of the 
equivalence between structural rules and axioms in the noncommutative case was still lacking. On the way 
of providing algebraic foundations of hypersequents, we describe the semantic interpretation of “|” which is 
not the lattice join unless the algebraic models are subdirectly irreducible or contain a version of prelinearity, 
see e.g. [32]. For general algebras, “|” actually corresponds to ∇, a form of disjunction also considered in the 
setting of abstract algebraic logic [17]; for substructural logics/residuated lattices ∇ consists of a combination 
of the usual disjunction and iterated conjugates [10], which account for the lack of commutativity, as in 
group theory.

Section 4 presents an algorithm for extracting equivalent structural rules/clauses out of P�
3 axioms/equa-

tions. This class, defined by refining the class P3 of the substructural hierarchy, includes many interesting 
axioms/equations such as prelinearity, weak excluded middle and weak nilpotent minimum. Under the ad-
ditional syntactic condition of acyclicity or in presence of integrality (weakening), structural rules/clauses 
can be further transformed into well-behaved ones, called analytic structural rules/clauses.

Residuated hyperframes are introduced in Section 5, and used in Section 6 to show the following results.

1. If R is a set of analytic structural rules, then HFL(R), the hypersequent version of FL extended with 
R, is strongly analytic.

2. If a set E of equations is equivalent to a set of analytic structural clauses, then the variety FL(E) of 
FL-algebras defined by E admits hyper-MacNeille completions.

Section 7 proves the converse direction of 1. and a partial converse direction of 2. (restricted to the 
commutative case), thus establishing a strong connection between acyclicity (a syntactic condition), strong 
analyticity (a proof theoretic property) and closure under hyper-MacNeille completions (an algebraic prop-
erty). The main results are summarized in Theorem 7.3.

Section 8 concludes the paper by discussing the expressive power of structural hypersequent rules and 
the structure of the substructural hierarchy.

2. Preliminaries

We first recall some basic definitions in substructural logics (Section 2.1) and their algebraic semantics 
(Sections 2.2, 2.3). We then introduce the substructural hierarchy, a central concept in our previous works 
[12–14] and summarize the main results of [14] (Section 2.4).
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Σ ⇒ α Γ, α,Δ ⇒ Π
Γ,Σ,Δ ⇒ Π

(cut)
α ⇒ α (id) ⇒ 1 (1r)

Γ, α, β,Δ ⇒ Π
Γ, α · β,Δ ⇒ Π

(·l)
Γ ⇒ α Δ ⇒ β

Γ,Δ ⇒ α · β
(·r)

Γ,Δ ⇒ Π
Γ, 1,Δ ⇒ Π

(1l)

Σ ⇒ α Γ, β,Δ ⇒ Π
Γ,Σ, α\β,Δ ⇒ Π

(\l)
α,Γ ⇒ β

Γ ⇒ α\β
(\r) Γ ⇒

Γ ⇒ 0
(0l)

Σ ⇒ α Γ, β,Δ ⇒ Π
Γ, β/α,Σ,Δ ⇒ Π

(/l)
Γ, α ⇒ β

Γ ⇒ β/α
(/r)

0 ⇒ (0r)

Γ, α,Δ ⇒ Π Γ, β,Δ ⇒ Π
Γ, α ∨ β,Δ ⇒ Π

(∨l) Γ ⇒ α

Γ ⇒ α ∨ β
(∨r1)

Γ ⇒ β

Γ ⇒ α ∨ β
(∨r2)

Γ, α,Δ ⇒ Π
Γ, α ∧ β,Δ ⇒ Π

(∧l1)
Γ, β,Δ ⇒ Π

Γ, α ∧ β,Δ ⇒ Π
(∧l2)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(∧r)

Fig. 1. Inference rules of FL.

2.1. Substructural logics and strong analyticity

Below we introduce full Lambek calculus FL, the base logic that we consider, using a sequent calculus 
formalism.

The formulas of FL are built from propositional variables p, q, r, . . . and constants 1 (unit) and 0 (dual 
unit/negation constant) by using the binary connectives ∧ (conjunction/meet), ∨ (disjunction/join), · (fu-
sion/product/multiplication), \ (left implication/division) and / (right implication/division). We denote by 
Fm the set of all formulas. It is convenient to consider the following algebraic structure

Fm := (Fm,∧,∨, ·, \, /, 1, 0),

called the term algebra of FL. We will use ¬α and α ↔ β as abbreviations for α\0 and (α\β) ∧ (β\α). 
We also write αβ for α · β. Since the constant 1 is the unit of the fusion operation, we naturally adopt the 
convention that α1 · · ·αn denotes 1 when n = 0. Finally αn denotes α · · · · · α (n times).

A sequent of FL is an expression of the form Γ ⇒ Π, where Γ stands for a (possibly empty) sequence of 
formulas and Π for a stoup, i.e., it is either a formula or empty. The inference rules in Fig. 1 define the base 
logic FL (α, β are metavariables for formulas, Γ, Δ, Σ for formula sequences and Π for stoups). For a set of 
formulas F ∪ {α}, we write F 	FL α if the sequent ⇒ α is derivable from the sequents {⇒ β : β ∈ F} by 
using the rules in Fig. 1. We also write F1 	FL F2 if F1 	FL α holds for every α ∈ F2.

A substructural logic L is a set of formulas closed under substitution and deduction with respect to 	FL
(i.e., L 	FL α implies α ∈ L). We write Φ 	L α if Φ ∪ L 	FL α holds.

Given a set E of axioms, we write L(E) for the substructural logic axiomatized by E , see, e.g., [22,21]. 
Typical axioms added to FL are

(e) α · β\β · α, (c) α\α · α, (i) α\1, (o) 0\α.

Axioms (i) and (o) are jointly denoted by (w). We use the standard notation for substructural logics defined 
by these axioms: FLe for FL with (e), FLew for FLe with (w) and Int for FLew with (c) (which is 
intuitionistic logic).

It is often the case that although not equal nor equivalent, α\β and β/α are interchangeable in certain 
contexts. For instance, in every substructural logic L, we have 	L α\β iff 	L β/α; also, if L includes (e)
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(i.e. L is commutative) the two formulas are interchangeable in any context. In such cases, we often write 
α → β rather than α\β or β/α.

Every substructural logic can be obtained by adding suitable axioms to FL. However, the presence of 
additional axioms destroys a fundamental property of the sequent calculus FL, namely cut-admissibility 
(or cut-elimination in its algorithmic version). This property, which establishes the redundancy of the rule 
(cut), usually ensures that proofs only consist of formulas already contained in the statement to be proved 
(subformula property). For this reason it is preferable to add to FL rules that preserve cut-admissibility, 
rather than axioms. When the added rules do not mention any connective or constant (i.e., they are structural 
rules) the resulting system is modular and cut-admissibility can be verified by investigating only the new 
rules. For instance, the axioms (e), (c), (i) and (o) above can be replaced by the following structural rules, 
which preserve cut-admissibility when added to FL (see [14] for a general definition of structural rule):

Γ, β, α,Δ ⇒ Π
Γ, α, β,Δ ⇒ Π (e) Γ,Σ,Σ,Δ ⇒ Π

Γ,Σ,Δ ⇒ Π (c) Γ,Δ ⇒ Π
Γ, α,Δ ⇒ Π (i) Γ ⇒

Γ ⇒ α
(o)

Given a set R of structural rules, we write FL(R) for the sequent calculus obtained by adding the rules 
in R to FL. A fundamental question in proof theory is which axioms can be transformed into structural 
rules that preserve cut-admissibility. Actually, in a general setting, a preservation of a condition stronger 
than plain cut-admissibility is of interest. This is expressed by the following definition.

Definition 2.1. A set S of sequents is said to be elementary if each sequent in S consists of atomic formulas 
and S is closed under cuts: if S contains Σ ⇒ p and Γ, p, Δ ⇒ Π, it also contains Γ, Σ, Δ ⇒ Π.

We say that FL(R) is strongly analytic if for any elementary set S of sequents and sequent Θ, if Θ is 
derivable from S in FL(R) then Θ has a cut-free derivation from S which has the subformula property.

Thus strong analyticity combines a stronger form of cut-admissibility in presence of (atomic) premises 
with the subformula property. The latter is mentioned explicitly, because in a very general setting one could 
define peculiar structural rules which permit cut-admissibility but do not preserve the subformula property. 
This is for instance the case of the following rule:

Γ, α ⇒ α

Γ ⇒

Remark 2.2. We often include the constants � (true) and ⊥ (false) in FL; the resulting logic is denoted by 
FL⊥. The results in our paper hold for both FL and FL⊥.

2.2. Algebraic semantics

The logic FL is algebraizable and its algebraic semantics is the variety of pointed residuated lattices, 
also known as FL-algebras.

A residuated lattice is an algebra A = (A, ∧, ∨, ·, \, /, 1), such that (A, ∧, ∨) is a lattice, (A, ·, 1) is a 
monoid and for all a, b, c ∈ A,

a · b ≤ c ⇐⇒ b ≤ a\c ⇐⇒ a ≤ c/b.

We refer to the last property as residuation. An FL-algebra is a residuated lattice A with a distinguished 
element 0 ∈ A.

An equation (identity) is an expression of the form t = u, where t and u are terms/formulas; note that 
this includes expressions of the form t ≤ u, which is a shorthand for t = t ∧ u. We use symbols and, or, 
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=⇒ to denote the conjunction, disjunction and implication of first-order logic, respectively. By a clause, we 
mean an expression of the form (0 ≤ m < n):

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un, (q)

where all variables are assumed to be universally quantified. The equations t1 ≤ u1, . . . , tm ≤ um are called 
the premises and tm+1 ≤ um+1, . . . , tn ≤ un the conclusions. The clause (q) is disjunctive if there are no 
premises (i.e., m = 0). It is a quasiequation if there is only one conclusion (i.e. n = m + 1).

Let A be an FL-algebra and f a valuation into A, namely a homomorphism f : Fm −→ A. Then we 
say that f satisfies (q) and write A, f |= (q) if f(ti) ≤ f(ui) for all 1 ≤ i ≤ m implies f(tj) ≤ f(uj) for 
some m + 1 ≤ j ≤ n. We say that A satisfies (q) and write A |= (q) if every valuation into A satisfies (q). 
More generally, let K be a class of FL-algebras and C ∪ {(q)} a set of clauses. We write C |=K (q) if the 
following holds: for every algebra A ∈ K and every valuation f into A, if f satisfies all clauses in C, then f
also satisfies (q).

We often identify a formula α with equation 1 ≤ α. We say that an FL-algebra A satisfies a formula α

and write A |= α if A |= 1 ≤ α. More generally, given a class K of FL-algebras and a set F∪{α} of formulas, 
we write F |=K α whenever {1 ≤ β : β ∈ F} |=K 1 ≤ α.

We denote by FL the variety of FL-algebras; given a set E of axioms (equations), we denote by FL(E) the 
variety of FL-algebras that satisfy all axioms (equations) in E . Below is a standard algebraization result, 
see, e.g. [21].

Theorem 2.3. If L is a substructural logic, L := FL(L) and F ∪ {α} is a set of formulas, then

F 	L α ⇐⇒ F |=L α.

Moreover, the map L �→ L gives a dual order-isomorphism between the lattice of all substructural logics and 
that of all varieties of FL-algebras.

We conclude this subsection by introducing algebraic counterparts to structural rules, see [14].

Definition 2.4. An equation t ≤ u is said to be structural if t is a product of variables and u is either 0 or a 
variable. A clause is structural if it is composed of structural equations.

It is clear that every structural rule in the sequent calculus naturally corresponds to a structural 
quasiequation. For instance, the structural rule

Γ ⇒ Π Δ ⇒ Π
Γ,Δ ⇒ Π (min)

corresponds to

x ≤ z and y ≤ z =⇒ xy ≤ z. (min)

The correspondence will be later extended to structural rules in the hypersequent calculus and structural 
clauses.

2.3. Completions

A completion of an FL-algebra A is a pair (B, e) where B is a complete FL-algebra and e : A −→ B is 
an embedding. A completion (B, e) is regular if e preserves all existing joins and meets in A.
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A homomorphism h between two completions (B1, e1) and (B2, e2) of A is a homomorphism h : B1 −→
B2 for which the following diagram commutes:

B1 B2

A

�h

�
��
e1 �

��
e2

Two completions (B1, e1) and (B2, e2) are isomorphic if there is a bijective homomorphism between them. 
It is clear that if (B, e) is a completion of A, there is an isomorphic one (B′, e′) such that B′ is an extension
of A (i.e., A is a subalgebra of B′) and e′ is the inclusion map. Hence we will often think of completions 
just as complete extensions.

Given a class K of FL-algebras, we say that K admits completions if every A ∈ K has a completion 
(actually a complete extension, if K is closed under isomorphisms) B in K.

A completion B of A is said to be

• join-dense, if every element x ∈ B is a join of elements from A:

x =
∨
C, for some C ⊆ A;

• meet-dense, if every element x ∈ B is a meet of elements from A:

x =
∧
C, for some C ⊆ A.

Let A be an FL-algebra. It is well known that its lattice reduct (A, ∧, ∨) admits a join-dense and 
meet-dense completion (A, ∧, ∨) that is unique up to isomorphism, called the MacNeille completion [4,36]. 
We may extend the concept to FL-algebras. While there are several choices when extending the non-lattice 
operations to A, it is the following one that works (see [37] for a rationale).

Theorem 2.5. Let A = (A, ∧, ∨, ·, \, /, 1, 0) be an FL-algebra and (A, ∧, ∨) be the MacNeille completion of 
the lattice reduct (A, ∧, ∨) with A ⊆ A. We extend the multiplication and divisions of A to A by:

x · y :=
∨
{a · b : a ≤ x, b ≤ y, a, b ∈ A},

x\y :=
∧
{a\b : a ≤ x, y ≤ b, a, b ∈ A},

y/x :=
∧
{b/a : a ≤ x, y ≤ b, a, b ∈ A}.

Then A := (A, ∧, ∨, ·, \, /, 1, 0) is an FL-algebra that is a completion of A.

Such A is always regular, and is called the MacNeille completion of A. A concrete construction will be 
described in Section 5.1.

2.4. Substructural hierarchy

In [14] we addressed the question of which (sets of) axioms E are equivalent to structural sequent rules R
(i.e., L(E) = {α ∈ Fm : 	FL(R) α}) such that FL(R) is strongly analytic. To provide a systematic answer 
to this question we introduced the substructural hierarchy [14] (and [12], in the commutative case), which 
suitably classifies axioms in the language of FL⊥ or, equivalently, equations over FL-algebras possibly 
extended with � and ⊥.
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Fig. 2. The substructural hierarchy.

The idea behind the substructural hierarchy (Pn, Nn) is to track polarity alternations of connectives/op-
erations. The classes Pn and Nn stand indeed for axioms/equations with leading positive and negative 
connectives, where (1, ⊥, ∨, ·) are positive and (0, �, /, \, ∧) are negative, see [1].

Definition 2.6. For each n ≥ 0, the sets Pn, Nn of formulas (terms) are defined as follows:

(0) P0 := N0 := the set of variables.
(P1) 1, ⊥ and all formulas in Nn belong to Pn+1.
(P2) If α, β ∈ Pn+1, then α ∨ β, α · β ∈ Pn+1.
(N1) 0, � and all formulas in Pn belong to Nn+1.
(N2) If α, β ∈ Nn+1, then α ∧ β ∈ Nn+1.
(N3) If α ∈ Pn+1 and β ∈ Nn+1, then α\β, β/α ∈ Nn+1.

Namely Pn+1 is the set generated from Nn by means of finite (possibly empty) joins and products, and 
Nn+1 is generated from Pn∪{0} by means of finite (possibly empty) meets and divisions with denominators 
from Pn+1.

By residuation, any equation ε can be written as 1 ≤ t. We say that ε belongs to Pn (Nn, resp.) if t does.

As shown in [14], formulas in each class admit the following normal forms.

Lemma 2.7.

(P) If α ∈ Pn+1, then α is equivalent to ⊥ or β1 ∨ · · · ∨ βm, where each βi is a product of formulas in Nn.
(N) If α ∈ Nn+1, then α is equivalent to � or 

∧
1≤i≤m γi\βi/δi, where each βi is either 0 or a formula in 

Pn, and each γi and δi are products of formulas in Nn.

We have Pn ∪ Nn ⊆ Pn+1 ∩ Nn+1 for every n. Hence the substructural hierarchy can be depicted as in 
Fig. 2 (the arrows stand for inclusions among the classes).

Remark 2.8. A recent paper [24] shows that any formula is FLe-equivalent to a set of formulas in N3. Thus 
the hierarchy collapses to the level N3 in the commutative case.

Some examples of axioms classified into the hierarchy are in Fig. 3.
In [14] we have investigated in depth the first classes of the hierarchy (up to N2). The main results can 

be summarized by 1–3 below:

1. Every axiom (resp. equation) in N2 can be transformed into an equivalent set of structural rules (resp. 
quasiequations).
2. Let E be a set of N2 axioms (equations). The following are equivalent.

• FL(E) admits MacNeille completions.
• FL(E) admits completions.
• E is equivalent to a set R of structural rules such that FL(R) is strongly analytic.
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Class Equation Name
N2 α → 1 left weakening (integrality)

0 → α right weakening
α · β → β · α exchange (commutativity)
α → α · α contraction
α · α → α expansion
αn → αm knotted axioms (n,m ≥ 0)
¬(α ∧ ¬α) no-contradiction

P2 α ∨ ¬α excluded middle
(α → β) ∨ (β → α) prelinearity

P3 ¬α ∨ ¬¬α weak excluded middle
¬(α · β) ∨ (α ∧ β → α · β) weak nilpotent minimum
α · (α\1) ↔ 1 �-group∨k

i=0(αi →
∨

i�=j αj) Kripke models of width ≤ k

α0 ∨ (α0 → α1) ∨ · · · ∨ (α0 ∧ · · · ∧ αk−1 → 0) Kripke models with size ≤ k

N3 α ∧ (β ∨ γ) → (α ∧ β) ∨ (α ∧ γ) distributivity
(α\(α · β))\β cancellativity
(α ∧ β) → α · (α → β) divisibility
((α → β) → β) → ((β → α) → α) Łukasiewicz axiom

Fig. 3. Some known axioms in substructural logics.

Remark 2.9.

• This indicates that MacNeille completions are the strongest completion method for N2 equations; 
whenever such an equation is preserved by some completions, it is necessarily preserved by MacNeille 
completions.

• This shows that strong analyticity of a sequent calculus and closure under completions of a variety of 
FL-algebras are essentially the same thing, as far as N2 axioms and equations are concerned. The com-
mon step for both lies in the transformation of axioms (equations) into structural rules (quasiequations) 
and the residuated frame construction (see Section 5.1).

• Not all N2 equations satisfy the above conditions. For example the N2 equation x\x ≤ x/x is not 
preserved by any completions, and accordingly, the formula (α\α)\(α/α) is not equivalent in FL to any 
set of structural rules enjoying strong analyticity.

3. In presence of the left weakening axiom α → 1 (integrality x ≤ 1), all the statements in 2 hold.

Remark 2.10. This means that MacNeille completions work for all varieties of integral FL-algebras axiom-
atized by N2 equations, and we have strong analyticity for all integral substructural logics axiomatized by 
N2 formulas. The problem is completely settled for these varieties and logics.

The purpose of this paper is to systematically extend the above results to a class of equations and axioms 
wider than N2. We focus on P3 – the next level of the substructural hierarchy. To do that we employ the 
hypersequent calculus and a new completion method inspired by that.

3. Non-commutative hypersequent calculus

Introduced by Avron in [2], the hypersequent calculus arises by extending Gentzen sequent calculus with 
a meta-disjunction “ | ” in order to refer to many (a multiset of) sequents, instead of just one. As shown 
in [12] the hypersequent calculus captures axioms/equations in the class P3, in presence of weakening and 
exchange.

Although hypersequent calculi have been defined for many logics including fuzzy, modal and superintu-
itionistic logics (see, e.g., [3,32,28]), there is no general account for them in substructural logics, in particular 
in absence of exchange (non-commutative calculi). Even though various structural rules have been proposed 
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as “equivalent” to logical axioms, none of the proposed definitions of equivalence between axioms and rules 
(e.g., [32,12]) works in the general substructural logic setting.

In this section we present the hypersequent calculus formalism for general substructural logics and set 
up its algebraic foundations. Most of the results in this section are known (e.g. [19,25,10]) and serve as 
background for developing our correspondence between formulas/equations and structural hypersequent 
rules.

We first introduce the hypersequent calculus HFL for full Lambek calculus (Section 3.1), then address the 
problem of how to understand and interpret the meta-disjunction “ | ” properly. As we will see, this requires 
the notion of iterated conjugates (Section 3.2). After a short account on how to interpret hypersequents 
in FL-algebras (Section 3.3), we turn to the algebraic side, and make sense of the symbol “ | ” in terms 
of subdirect representations of algebras (Section 3.4). A general notion of equivalence between axioms and 
structural rules is finally introduced in Section 3.5.

3.1. The system HFL for full Lambek calculus

In addition to the meta-level implication (⇒) and fusion (,), present in the sequent calculus, the hyper-
sequent calculus contains the meta-level disjunction ( | ). A hypersequent Ξ is indeed a multiset of sequents 
written as Θ1 | . . . | Θn, and each Θi is called a component.

Throughout this paper we will consider single-conclusion hypersequents, i.e., hypersequents whose com-
ponents have at most one formula on the right-hand side of ⇒. We will use the following syntactic 
metavariables:

α, β, γ, . . . formulas
Γ,Δ,Σ, . . . formula sequences
Π,Π1,Π2, . . . stoups
Θ,Θ1,Θ2, . . . sequents
Ξ,Ξ1,Ξ2, . . . hypersequents

The calculus HFL consists of the following inference rules:

• the hypersequent version

Ξ | Θ1 · · · Ξ | Θm

Ξ | Θ
(r)

of each rule of FL (cf. Fig. 1) of the form

Θ1 · · · Θm

Θ (r), with m ≥ 0;

• the external structural rules of weakening and contraction1:

Ξ
Ξ | Θ

(EW )
Ξ | Θ | Θ

Ξ | Θ
(EC)

As examples of the former rules, we have:

1 External exchange (EE) is implicit by considering hypersequents as multisets of sequents.
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Ξ | α ⇒ α
(id)

Ξ | Σ ⇒ α Ξ | Γ, α,Δ ⇒ Π
Ξ | Γ,Σ,Δ ⇒ Π

(cut)
Ξ | α,Γ ⇒ β

Ξ | Γ ⇒ α\β (\r)

Notions of rules, rule instances, derivations, strong analyticity and so on, defined for sequents and sequent 
calculi transfer unscathed to hypersequents and hypersequent calculi.

Let H∪ {Ξ} be a set of hypersequents. If Ξ is derivable from the premises in H, we write H 	HFL Ξ. As 
before, we also write F 	HFL α if {⇒ β : β ∈ F} 	HFL⇒ α.

Taking hypersequent versions of sequent calculi alone is not enough to obtain calculi for new logics; 
indeed we have 	HFL α if and only if 	FL α. The benefit of considering hypersequent calculi is that they 
support the addition of new structural rules that act on various sequents inside the hypersequents. It is this 
type of rules that increases the expressive power of the hypersequent calculus with respect to the sequent 
calculus.

Example 3.1. A typical example of a structural rule in the hypersequent calculus is Avron’s communication 
rule [3] (see Fig. 4 for its non-commutative counterpart):

Ξ | Σ2,Γ ⇒ Π Ξ | Σ1,Γ′ ⇒ Π′

Ξ | Σ1,Γ ⇒ Π | Σ2,Γ′ ⇒ Π′ (com)

by means of which we can prove the prelinearity axiom (α → β) ∨ (β → α):

β ⇒ β
(id)

α ⇒ α (id)

α ⇒ β | β ⇒ α
(com)

⇒ α → β | ⇒ β → α
(→ r)

⇒ (α → β) ∨ (β → α) | ⇒ (α → β) ∨ (β → α)
(∨r)

⇒ (α → β) ∨ (β → α)
(EC)

By extending HFL with (com), (e), (c), and (w) (see Section 2.1), we obtain a hypersequent calculus for 
propositional Gödel logic that enjoys cut-elimination [3].

More examples of structural rules can be found in Fig. 4. The general format of a structural rule in the 
hypersequent calculus is:

Ξ | Υ1 ⇒ Ψ1 · · · Ξ | Υm ⇒ Ψm

Ξ | Υm+1 ⇒ Ψm+1 | · · · | Υn ⇒ Ψn
(r)

where for each 1 ≤ i ≤ n,

• Υi is a (possibly empty) sequence that consists of metavariables for formula sequences and for formulas,
• Ψi is empty, a metavariable for stoups or a metavariable for formulas.

Given a set R of structural rules, we write HFL(R) for the calculus obtained by adding R to HFL. Now 
our central task in this paper can be formulated as follows:

• Given a set E of axioms, we would like to find an “equivalent” set R of structural rules that preserve 
strong analyticity. How and when is it possible?

To address this question, we first need to clarify what it means that E is “equivalent” to R. The rest of 
this section is devoted to this issue.
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Ξ | Γ,Σ1,Σ2,Δ ⇒ Π
Ξ | Σ1 ⇒ | Γ,Σ2,Δ ⇒ Π

(em)
Ξ | Γ,Σ2,Δ ⇒ Π Ξ | Γ′,Σ1,Δ′ ⇒ Π′

Ξ | Γ,Σ1,Δ ⇒ Π | Γ′,Σ2,Δ′ ⇒ Π′ (com)

Ξ | Σ1,Σ2 ⇒
Ξ | Σ1 ⇒ | Σ2 ⇒

(lq)
{Ξ | Γi,Σj ,Δi ⇒ Πi}0≤i,j≤k,i�=j

Ξ | Γ0,Σ0,Δ0 ⇒ Π0 | . . . | Γk,Σk,Δk ⇒ Πk

(Bwk)

{Ξ | Γi,Σj ,Δi ⇒ Πi}0≤i≤k−1; i+1≤j≤k

Ξ | Γ0,Δ0 ⇒ Π0 | . . . | Γk−1,Σk−1,Δk−1 ⇒ Πk−1 | Σk ⇒
(Bck)

Fig. 4. Some structural rules.

3.2. Iterated conjugates

We start by discussing the meaning of the separator |. In hypersequent calculi containing all three basic 
sequent structural rules or the (com) rule in Fig. 4, “ | ” is usually interpreted as the logical connective ∨, 
see, e.g., [32]. This interpretation does not work however for weaker hypersequent calculi extending HFL, 
whose rule soundness requires the ∇ disjunction introduced below.

Recall that we have two distinct notions of entailment: 	FL α ⇒ β implies α 	FL β, but the converse 
does not hold in general, due to the lack of the rules (e), (c), (i). In other words the deduction theorem fails 
in its usual form, but is still valid in the weaker form of the following theorem. A way to compensate for 
this is to use conjugates [10].

A conjugate of a formula α is either λβ(α) := (β\αβ) ∧ 1 or ρβ(α) := (βα/β) ∧ 1 for some formula β, see 
e.g. [25]. Conjugates allow us to simulate (e) and (i), as follows:

Γ, α, β,Δ ⇒ Π
Γ, β, λβ(α),Δ ⇒ Π

Γ, β, α,Δ ⇒ Π
Γ, ρβ(α), β,Δ ⇒ Π

Γ,Δ ⇒ Π
Γ, λβ(α),Δ ⇒ Π

We also have derivations from ⇒ α to ⇒ λβ(α) and ⇒ ρβ(α), namely:

α 	FL λβ(α), α 	FL ρβ(α). (1)

Since a conjugate is needed each time (e) or (i) is simulated, the conjugate operator has to be iterated to 
simulate an arbitrary number of (e) and (i).

Definition 3.2. An iterated conjugate of α is a formula of the form μβ1 · · ·μβn
(α), where n ≥ 0 and each μβi

is either λβi
or ρβi

. The set of all iterated conjugates of α is denoted by 	α. More generally, if α1, . . . , αn are 
formulas of FL, 	α1 ∨ · · · ∨ 	αn (resp. 	α1 · · · · · 	αn) denotes the set of all formulas of the form α′

1 ∨ · · · ∨α′
n

(resp. α′
1 · · · · · α′

n) where α′
i ∈ 	αi for 1 ≤ i ≤ n.

To simulate (c), we take a product of iterated conjugates. As a consequence, we have the so called 
parameterized local deduction theorem [22]:

Theorem 3.3. Let L be a substructural logic and Φ ∪ {α, γ} a set of formulas:

Φ, α 	L γ ⇐⇒ Φ 	L α′
1 · · ·α′

n → γ

for some n ≥ 0 and α′
1, . . . , α

′
n ∈ 	α.

When L is over FLe or FLew, the above theorem can be much simplified. Indeed, we have

Φ, α 	L γ ⇐⇒ Φ 	L (α ∧ 1)n → γ for some n ≥ 0
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if FLe ⊆ L, and

Φ, α 	L γ ⇐⇒ Φ 	L αn → γ for some n ≥ 0

if FLew ⊆ L. Hence we naturally adopt the following convention.

• In substructural logics over FLe, 	α denotes the singleton set {α ∧ 1}.
• In substructural logics over FLew, 	α just denotes {α}.

As a consequence of Theorem 3.3, we obtain a meta-disjunction defined by means of the 	 operation. We 
define

α∇β := 	α ∨ 	β.

As seen below, this (strong) disjunction, which will be used to interpret the symbol “|”, inherits the 
properties of hypersequents, one of which is proof-by-cases.

Corollary 3.4. Let L be a substructural logic and Φ ∪ {α, β, γ} a set of formulas:

Φ, α 	L γ and Φ, β 	L γ ⇐⇒ Φ, α∇β 	L γ.

Proof. By (1), we have α 	L α∇β and β 	L α∇β, which imply the (⇐) direction.
(⇒) Assume that Φ, α 	L γ and Φ, β 	L γ. By Theorem 3.3, we obtain Φ 	L α′

1 · · ·α′
m → γ and 

Φ 	L β′
1 · · ·β′

n → γ where each α′
i (resp. β′

j) belongs to 	α (resp. 	β). Let δ be the product of all α′
i ∨ β′

j

(1 ≤ i ≤ m, 1 ≤ j ≤ n) lexicographically ordered with respect to (i, j). By distributivity of multiplication 
over join, δ is a join of products, each of which is the form 

∏
δij , lexicographically ordered as above, where 

δij ∈ {α′
i, β

′
j}; we will show that each such product is less or equal to (α′

1 · · ·α′
m) ∨ (β′

1 · · ·β′
n), using the 

fact that δij ≤ 1. Indeed, if for each i there exists ji with δiji = α′
i, then 

∏
δij ≤

∏
δiji = α′

1 · · ·α′
m. On 

the other hand, if there exists i0 such that for all j we have δi0j = β′
j , then 

∏
δij ≤

∏
δi0j = β′

1 · · ·β′
n. 

Therefore, δ implies (α′
1 · · ·α′

m) ∨ (β′
1 · · ·β′

n), so Φ 	L δ → γ. Since δ is a product of members of 	α ∨ 	β, 
we conclude Φ, α∇β 	L γ. �

See [17] for a general study of (parameterized) disjunctions and the proof-by-cases property. It is the ∇
disjunction that the symbol “ | ” of the hypersequent calculus is intended to denote. More precisely, we 
consider the following translation of a sequent Θ into a formula Θ�, and a hypersequent Ξ into a set Ξ� of 
formulas:

(α1, . . . , αn ⇒ β)� := α1 · · ·αn\β,
(α1, . . . , αn ⇒ )� := α1 · · ·αn\0,

(Θ1| · · · |Θn)� := Θ�
1∇· · ·∇Θ�

n = 	(Θ�
1) ∨ · · · ∨ 	(Θ�

n).

Finally we define H� :=
⋃
{Ξ� : Ξ ∈ H} for a set H of hypersequents.

Remark 3.5. (Θ1| · · · |Θn)� amounts to {(Θ�
1∧1) ∨· · ·∨(Θ�

n∧1)} in the commutative case, and to {Θ�
1∨· · ·∨Θ�

n}
in the commutative and integral case.

A prominent feature of hypersequent calculi is that one can reason separately in each component, a 
principle that we call the local reasoning principle:
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Lemma 3.6. Let Ξ0, Ξ1, Ξ2 be hypersequents and R a set of structural rules:

Ξ1 	HFL(R) Ξ2 =⇒ Ξ0 | Ξ1 	HFL(R) Ξ0 | Ξ2.

Proof. We simply add the context Ξ0 to all hypersequents in the derivation Ξ1 	HFL(E) Ξ2. �
Lemma 3.7. Ξ 	HFL Ξ� holds for every hypersequent Ξ. Moreover if R is a set of structural rules, H is a 
set of hypersequents and Θ is a sequent, then

H� 	L(R) Θ� =⇒ H 	HFL(R) Θ,

where L(R) := {α ∈ Fm : 	HFL(R) α} (cf. Section 3.5).

Proof. Suppose that Ξ = Θ1 | · · · | Θn. First note that Θ�
i 	FL 	(Θ�

i) holds by (1), so we have Θi 	HFL(R)⇒
	(Θ�

i). Hence by Lemma 3.6 we obtain Θ1 | · · · | Θn 	HFL(R)⇒ 	(Θ�
1) | · · · | ⇒ 	(Θ�

n), from which 
Ξ 	HFL Ξ� follows by using (∨r) and (EC).

The second claim easily follows from the first one, since H 	HFL(R) H�, H� 	HFL(R) Θ� and
Θ� 	HFL(R) Θ. �
Remark 3.8. In the above lemma, the conclusion Θ cannot be replaced by a hypersequent Ξ. Namely, 
Ξ� 	HFL Ξ does not hold in general (e.g. take Ξ to be ⇒ α | ⇒ β), while it does, for instance, in the case 
of fuzzy logics (see [32]) where the hypersequent α∨ β ⇒ α | α ∨ β ⇒ β is derivable and hence ⇒ α | ⇒ β

follows from ⇒ α∨β. This intriguing fact is the main source of complications when developing hypersequent 
calculi for substructural logics.

3.3. From structural rules to clauses

Recall that we have identified a formula α of FL with the equation 1 ≤ α of FL-algebras. This extends 
to an identification of hypersequents with disjunctive clauses as follows:

α1, · · · , αn ⇒ β with α1 · · ·αn ≤ β,

α1, · · · , αn ⇒ with α1 · · ·αn ≤ 0,
Θ1 | . . . | Θn with Θ1 or · · · or Θn.

This allows us to extend the semantic consequence relation |=K, where K is a class of FL-algebras, to a 
relation between hypersequents. Given a set H∪{Ξ} of hypersequents, we write H |=K Ξ if every A ∈ K and 
every valuation f into A which satisfies all hypersequents in H also satisfies Ξ under the above identification.

Example 3.9. |=K α, β ⇒ β | α ⇒ means |=K αβ ≤ β or α ≤ 0.

Accordingly, we identify a structural rule with a structural clause as follows. Let

Ξ | Υ1 ⇒ Ψ1 · · · Ξ | Υm ⇒ Ψm

Ξ | Υ1 ⇒ Ψm+1 | · · · | Υn ⇒ Ψn
(r)

be a structural rule. First, we associate to each metavariable (α, Γ, Π, Δ, etc.) a variable (x, y, z, w, etc.) 
and we call this mapping •. Then each Υi ⇒ Ψi can be transformed into an equation Υ•

i ≤ Ψ•
i .
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Example 3.10.

Γ, α,Γ ⇒ α �→ yxy ≤ x,

Γ,Δ,Γ ⇒ Π �→ ywy ≤ z,

Γ ⇒ �→ y ≤ 0.

Now (r) is identified with the following structural clause:

Υ•
1 ≤ Ψ•

1 and · · · and Υ•
m ≤ Ψ•

m =⇒ Υ•
m+1 ≤ Ψ•

m+1 or · · · or Υ•
n ≤ Ψ•

n. (r•)

Note that the metavariable Ξ is dropped and the distinction between the different types of metavariables 
(i.e., those for formulas, formula sequences and stoups) is ignored. Hence there are various ways to read 
back a structural rule from a structural clause; a canonical way will be described in Section 4.4.

Given a set R of structural rules (clauses), we denote by FL(R) the class of FL-algebras which satisfy all 
rules (clauses) in R.

Soundness with respect to the algebraic interpretation is obvious.

Lemma 3.11. Let H ∪ {Ξ} be a set of hypersequents and R a set of structural rules:

H 	HFL(R) Ξ =⇒ H |=FL(R) Ξ.

3.4. Subdirect representation

The hypersequent calculus allows us to decompose Θ�
1∇ · · ·∇Θ�

n into a hypersequent Θ1 | · · · | Θn and 
to work separately on each component using the local reasoning principle (Lemma 3.6). In algebra, the 
concept of subdirect representation supports a similar decomposition and local reasoning. In what follows 
we recall some elementary facts in universal algebra concerning subdirect representation. See, e.g., [11] for 
more information.

Given algebras A and {Ai}i∈I of the same type, recall that A is called a subdirect product of {Ai}i∈I

if there is an embedding e : A −→
∏

i∈I Ai which is surjective onto each coordinate, namely if pi :∏
i∈I Ai −→ Ai is the projection map onto the ith coordinate, ei := pi ◦ e : A −→ Ai is surjective for every 

i ∈ I. Throughout this paper, we write A ↪→
∏

i∈I Ai to mean that A is a subdirect product of {Ai}i∈I , 
and ei : A −→ Ai for the canonical map pi ◦ e above.

Subdirect products correspond to intersections of congruences.

Lemma 3.12. Let A be an algebra and let {θi}i∈I be congruences on A. Then θ :=
⋂

i∈I θi is also a congruence 
and we have

A/θ ↪→
∏

i∈I

A/θi.

Conversely, if θ is a congruence on A and algebras {Ai}i∈I satisfy

A/θ ↪→
∏

i∈I

Ai,

then there are congruences {θi}i∈I on A such that θ =
⋂

i∈I θi and Ai
∼= A/θi.

If we choose θi (i ∈ I) so that 
⋂

θi = � (the identity congruence), then we obtain A ↪→
∏

A/θi.
i∈I i∈I
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An algebra A is said to be subdirectly irreducible if it cannot be expressed as a subdirect product in a 
nontrivial way. More precisely, A is subdirectly irreducible if A ↪→

∏
i∈I Ai implies ei : A ∼= Ai for some 

i ∈ I.
For instance, let a, b be two distinct elements in A, and consider the class of congruences θ such that 

(a, b) /∈ θ. By Zorn’s lemma, there is a maximal one in the class, which we denote by τa,b. Then A/τa,b is 
a subdirectly irreducible algebra. To see this, suppose that A/τa,b is a subdirect product of {Ai}i∈I . By 
Lemma 3.12, there are congruences {θi}i∈I such that 

⋂
i∈I θi = τa,b and Ai

∼= A/θi. We have τa,b ⊆ θi for 
every i ∈ I. Because of (a, b) /∈ τa,b =

⋂
i∈I θi, there is a θi such that (a, b) /∈ θi. By maximality τa,b = θi. 

This proves that A/τa,b is subdirectly irreducible.
We have thus established a fundamental fact in universal algebra that every algebra A admits a subdirect 

representation.

Theorem 3.13. Every algebra A is a subdirect product of subdirectly irreducible algebras.

Proof. The intersection of all τa,b with (a, b) ∈ A2 and a �= b is �. Hence A = A/� ↪→
∏

(a,b)∈A2,a �=b A/τa,b
by Lemma 3.12. �

Notice that A ↪→
∏

i∈I Ai means that A is (isomorphic to) a subalgebra of the product of {Ai}i∈I and 
each Ai is a homomorphic image of A. Since all these three operations preserve equations, an equation ε is 
satisfied in A iff it is satisfied in every Ai (i ∈ I).

Given a class K of algebras, we denote by KSI the class of its subdirectly irreducible members. By all the 
above, we conclude:

Corollary 3.14. For every variety V and every set E ∪ {ε} of equations,

E |=V ε ⇐⇒ E |=VSI
ε.

Proof. The (⇒) direction is obvious. For the converse direction, observe that any A ∈ V admits a subdirect 
representation A ↪→

∏
i∈I Ai with each Ai ∈ VSI . We have E |=A ε since even infinitary quasiequations, 

namely infinitary clauses with exactly one disjunct in the conclusion, are preserved under subalgebras and 
products. �

The following lemma proved in [19] shows that subdirect representation indeed provides us with a way 
to decompose a disjunction α∇β and to reason about it locally.

Lemma 3.15. Let A be a subdirectly irreducible FL-algebra and a, b ∈ A. Then 1 ≤ a∇b if and only if 1 ≤ a

or 1 ≤ b.

Here 	a denotes the set of elements obtained by applying an iterated conjugate operator to a, and 
a∇b := 	a ∨ 	b = {a′ ∨ b′ : a′ ∈ 	a, b′ ∈ 	b} as before. Expression 1 ≤ a∇b means that 1 ≤ c holds for every 
c ∈ a∇b.

Proof. (⇐) Follows by noticing that 1 ≤ a implies 1 ≤ λc(a) and 1 ≤ ρc(a) for every c ∈ A. (⇒) Assume 
by contradiction that 1 ≤ a∇b holds for 1 � a and 1 � b. We then obtain two congruences θa and θb
respectively generated by (1, 1 ∧ a) and (1, 1 ∧ b) in A2. θa and θb are different from � since 1 �= 1 ∧ a and 
1 �= 1 ∧ b. It is enough to show that θa ∩ θb = �, since by Lemma 3.12 it implies:

A = A/� ↪→ A/θa × A/θb,

contradicting the subdirect irreducibility of A.
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We may think of each element of A as a propositional variable and of formulas as built from the variables 
in A. The identity map f(c) := c then gives rise to a canonical valuation into A. The formula set F(A) :=
{α ∈ Fm : A, f |= 1 ≤ α} completely describes the structure of A in the sense that F(A) 	FL c ↔ d holds 
iff c = d. Now suppose that (c, d) ∈ θa ∩ θb. We then obtain:

F(A), a 	FL c ↔ d and F(A), b 	FL c ↔ d

where a, b, c, d are considered to be formulas, since adding a to F(A) means that we consider the logical 
consequences of 1 ≤ a, namely 1 = 1 ∧ a, in A.

But then F(A), a∇b 	FL c ↔ d follows by Corollary 3.4, and we obtain F(A) 	FL c ↔ d because 
a∇b ⊆ F(A). Hence c = d and we conclude that θa ∩ θb = �. �
3.5. Equivalence between axioms and structural rules

Any set R of structural rules defines a substructural logic by

L(R) := {α ∈ Fm : 	HFL(R) α}

However, a little care is needed since it is not always the case that one can recover the derivability relation 
	HFL(R) from the logic L(R).

For instance, consider the hypersequent version of the rule discussed in [14], i.e.

Ξ | ⇒
Ξ | Γ,Γ ⇒ (abn)

Observe that L(abn) := L({(abn)}) = FL (because the rule (abn) is unusable when proving a formula 
without any assumption), whereas

0 	HFL(abn) pp → 0, 0 �FL pp → 0

for any propositional variable p. Accordingly, it was pointed out in [14] that (the sequent version of) (abn)
is not equivalent to any axiom. Since our central task is to find a set of structural rules equivalent to a given 
axiom, we will not consider such “abnormal” rules.

Definition 3.16. A set R of structural rules is normal if

F 	HFL(R) α ⇐⇒ F 	L(R) α

for every set F ∪ {α} of formulas.

Recall that F 	L(R) α just means F ∪ L(R) 	FL α. The ⇐ direction always holds since 	HFL(R) α for 
every α ∈ L(R). On the other hand, we have seen that 0 	HFL(abn) pp → 0 but not 0 	L(abn) pp → 0.

There is an alternative way to define normality.

Lemma 3.17. A set R of structural rules is normal if and only if FL(R)SI = FL(L(R))SI .

Proof. (⇒) We always have FL(R) ⊆ FL(L(R)). Conversely, let A ∈ FL(L(R))SI and

Ξ | Θ1 · · · Ξ | Θm

Ξ | Θm+1 | · · · | Θn
(r)
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be (an instance of) a structural rule in R. Let F := {Θ�
1, . . . , Θ�

m} and G := Θ�
m+1∇ · · ·∇Θ�

n. We have 
F 	HFL(R) G by Lemma 3.7. Hence by normality F 	L(R) G, so F |=A G by Theorem 2.3. Since A is 
subdirectly irreducible, we have {Θ1, . . . , Θm} |=A Θm+1 | · · · | Θn, that is, A satisfies (r).

(⇐) Assume F 	HFL(R) α for a set F ∪ {α} of formulas. We then have F |=FL(R)SI
α by Lemma 3.11, 

so F |=FL(L(R))SI
α. By Corollary 3.14 and Theorem 2.3, we conclude F 	L(R) α. �

We are now ready to state the fundamental relationship among the main consequence relations 	HFL(R), 
	L(R), |=FL(R), |=FL(R)SI

and |=FL(L(R)).

Theorem 3.18. Let R be a normal set of structural rules, H a set of hypersequents and Θ a sequent. The 
following are equivalent:

1. H 	HFL(R) Θ.
2. H |=FL(R) Θ.
3. H |=FL(R)SI

Θ.
4. H� |=FL(L(R)) Θ�.
5. H� 	L(R) Θ�.

Proof. (1 ⇒ 2) By Lemma 3.11.
(2 ⇒ 3) Trivial.
(3 ⇒ 4) By Lemma 3.17 we have H |=FL(L(R))SI

Θ, so H� |=FL(L(R))SI
Θ� by Lemma 3.15, that implies 

H� |=FL(L(R)) Θ� by Corollary 3.14, noting that FL(L(R)) is a variety and H� ∪ {Θ�} is a set of formulas.
(4 ⇒ 5) By Theorem 2.3.
(5 ⇒ 1) By Lemma 3.7. �

There are various candidates for the definition of equivalence between axioms and structural rules. The 
previous theorem implies that some of them do coincide.

Corollary 3.19. Let R be a set of structural rules and E a set of axioms. The following are equivalent:

1. F 	HFL(R) α ⇐⇒ F 	L(E) α for every set F ∪ {α} of formulas.
2. H 	HFL(R) Θ ⇐⇒ H� 	L(E) Θ� for every set H of hypersequents and every sequent Θ.
3. FL(R)SI = FL(E)SI and R is normal.
4. L(R) = L(E) and R is normal.

Proof. (1 ⇒ 4) Obviously L(R) = L(E). Normality follows since F 	HFL(R) α iff F 	L(E) α iff F 	L(R) α.
(4 ⇒ 3) By Lemma 3.17, noting that FL(L(E)) = FL(E).
(3 ⇒ 2) By Theorem 3.18, H 	HFL(R) Θ iff H |=FL(R)SI

Θ iff H |=FL(E)SI
Θ iff H� |=FL(E) Θ� iff H� 	L(E) Θ�.

(2 ⇒ 1) Immediate. �
On the basis of this corollary, it is reasonable to say that E and R are equivalent if either of the above 

conditions holds. This naturally induces an equivalence between two normal sets R, R′ of structural rules: 
R and R′ are equivalent if FL(R)SI = FL(R′)SI .

4. From P�
3 axioms to structural rules

Having established the right notion of equivalence between axioms and structural hypersequent rules, we 
generalize the argument in [14] and show how to transform a large class of axioms into such rules.
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In Section 4.1 we identify the class P�
3 of equations/axioms in the substructural hierarchy that can be 

dealt with by the techniques developed so far, and then define a procedure that transforms each P�
3 equation 

into a set of structural clauses (Section 4.2). The clauses we obtain are further transformed into what we 
call analytic clauses, under the additional assumption of acyclicity (Section 4.3). We finally turn to the 
proof-theoretic side and define a canonical translation of structural clauses into structural rules in the 
hypersequent calculus (Section 4.4). All together we obtain an algorithm that transforms any given acyclic 
P�

3 axiom into structural hypersequent rules that will be shown in Section 6 to preserve strong analyticity 
when added to HFL.

4.1. The class P�
3

As shown in the previous section, it is not the internal lattice disjunction t ∨ u but the external one t∇u

(i.e., 	t ∨ 	u) that can be dealt with by the hypersequent calculus or by the subdirect representation. For 
this reason we consider a slight modification of the class P3 of the substructural hierarchy (Definition 2.6). 
Informally, the new class, denoted by P�

3, is obtained by replacing the outermost t ∨ u with t∇u. Hereafter 
we treat 	t as if it were a single term (even though it actually denotes a set of terms).

Definition 4.1 ([13]). For each n ≥ 0, we denote by P�
n+1 the set of terms generated from {	t : t ∈ Nn} by 

finite joins and products. More precisely:

• If t ∈ Nn, then 	t ∈ P�
n+1.

• 1, ⊥ ∈ P�
n+1.

• If t, u ∈ P�
n+1, then t ∨ u, t · u ∈ P�

n+1.

We say that an equation 1 ≤ t belongs to P�
n if t does.2

Remark 4.2. P�
n ⊆ Pn for n ≥ 3 in the commutative case (recall that in this case we identify 	t with t ∧ 1

and P�
n coincides with the class P ′

n of [12]), and P�
n = Pn in the commutative and integral case.

4.2. From P�
3 equations to structural clauses

We show how to transform P�
3 equations into structural clauses. The procedure is an extension of the one 

in [14], which applies to N2 equations; see also [13] for P3 equations in the commutative and integral case.3
For the purpose of this section, it is convenient to express a clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un (q)

as a pair P =⇒ C of sets of equations, where P = {t1 ≤ u1, . . . , tm ≤ um} and C = {tm+1 ≤ um+1, . . . ,
tn ≤ un}. Thus P =⇒ C means that, under each particular valuation, if all of the equations in P hold, 
then some of the equations in C hold.

The following easy observation, often referred to as Ackermann’s lemma [18], is indeed the key of the 
transformation in [12–14].

Lemma 4.3. Every clause P =⇒ C ∪ {t ≤ u} is equivalent to each of the following:

2 It follows from the lemmas below that the set of terms generated from {t ∧ 1 : t ∈ Nn} by finite products and ∇’s could have 
served as an alternative definition of P�

n+1, in the sense that we obtain the same equations 1 ≤ t, up to equivalence of sets of 
equations.
3 The page https://www.logic.at/tinc/webaxiomcalc/ contains an implementation of the procedure.

https://www.logic.at/tinc/webaxiomcalc/
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P ∪ {x ≤ t} =⇒ C ∪ {x ≤ u},
P ∪ {u ≤ x} =⇒ C ∪ {t ≤ x},

where x is a fresh variable not occurring in any of the equations in P ∪ C ∪ {t ≤ u}.

Proof. Follows by the transitivity of ≤ and the instantiation of x with a suitable term (t or u). �
The next two lemmas pertain to the treatment of products in P�

3 equations.

Lemma 4.4. Let t(x) be a term in the language {∨, ·, 1, ⊥} which contains at most one occurrence of x. Let 
A be an FL-algebra and f a valuation into A such that f(w) ≤ 1 for every variable w. Then, for every pair 
of variables y, z,

A, f |= t(y) · t(z) ≤ t(y · z) ≤ t(y) ∧ t(z).

Proof. The second inequality is due to the monotonicity of t(x). The first inequality is proved by induction 
on the structure of t(x). The crucial case is when t(x) = t1(x) ∨ t2, where we need to verify

A, f |= (t1(y) ∨ t2) · (t1(z) ∨ t2) ≤ t1(y · z) ∨ t2.

This follows from the induction hypothesis and the fact that t1(y), t1(z) and t2 are all below 1 when 
interpreted by f . �
Lemma 4.5. Let t(x) be a term that is generated from {	u : u ∈ Nn} ∪ {x} by finite joins and products and 
that contains at most one occurrence of x. Let A be an FL-algebra, then

A |= 1 ≤ t(	u · 	v) ⇐⇒ A |= 1 ≤ t(	u) and 1 ≤ t(	v).

Proof. Let f be a valuation. Then f(u′) ≤ 1 for every iterated conjugate u′ ∈ 	u. Hence the claim follows 
from the previous lemma. �

Our transformation procedure consists of four steps.

STEP 1
Let ε be a P�

3 equation. By Lemma 2.7 we can assume that it has the form 1 ≤
∨∏

	sij with sij ∈ N2; 
here 

∨
denotes a finite join and 

∏
a finite product.

By repeatedly applying Lemma 4.5, we may remove all products. As a result, we obtain a set of equations 
of the form 1 ≤ 	t1 ∨ · · · ∨ 	tn with each ti ∈ N2. We replace each such equation with a disjunctive clause

1 ≤ t1 or · · · or 1 ≤ tn.

It is equivalent to 1 ≤ 	t1 ∨ · · · ∨ 	tn over FLSI by Lemma 3.15.

Example 4.6. The noncommutative version of the weak nilpotent minimum axiom

1 ≤ ¬(xy)∇((x ∧ y)\(xy))

is equivalent to the disjunctive clause

1 ≤ ¬(xy) or 1 ≤ (x ∧ y)\(xy). (wnm1)
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STEP 2
By Lemma 2.7, each N2 term t is equivalent to 

∧
1≤i≤m li\ui/ri where ui is either 0 or a P1 term and 

li, ri are products of N1 terms. Hence given a disjunctive clause C ∪ {1 ≤ t} (expressed as a set), we may 
replace it with the following set of disjunctive clauses:

C ∪ {l1r1 ≤ u1}, · · · , C ∪ {lmrm ≤ um}.

By repeating this argument we end up with a set C of disjunctive clauses such that each C ∈ C consists of 
two types of equations:

t1 · · · tn ≤ 0, t1 · · · tn ≤ u,

where t1, . . . , tn are N1 terms and u is a P1 term.

Example 4.7. (wnm1) is equivalent to

xy ≤ 0 or x ∧ y ≤ xy. (wnm2)

STEP 3
Now let us focus on each disjunctive clause ∅ =⇒ C0 and transform it step-by-step as follows. Given a 

clause P =⇒ C ∪ {t1 · · · tn ≤ 0}, we replace it with

P ∪ {x1 ≤ t1, . . . , xn ≤ tn} =⇒ C ∪ {x1 . . . xn ≤ 0}

where x1, . . . , xn are distinct fresh variables. Likewise, given a clause P =⇒ C ∪ {t1 · · · tn ≤ u}, we replace 
it with

P ∪ {x1 ≤ t1, . . . , xn ≤ tn, u ≤ y} =⇒ C ∪ {x1 . . . xn ≤ y}

where x1, . . . , xn, y are distinct fresh variables. The resulting clause is equivalent to the original one by 
Lemma 4.3.

By repetition, we obtain a clause P =⇒ C where P consists of equations of the form x ≤ t (with t ∈ N1) 
or u ≤ y (with u ∈ P1), and C consists of structural equations (of the form x1 · · ·xn ≤ 0 or x1 · · ·xn ≤ y).

Example 4.8. (wnm2) is equivalent to

z1 ≤ x and z2 ≤ y and z3 ≤ x ∧ y and xy ≤ z4 =⇒ z1z2 ≤ 0 or z3 ≤ z4. (wnm3)

STEP 4
We further transform the premise set to obtain a fully structural clause.
By Lemma 2.7, each N1 term t is equivalent to 

∧
1≤i≤m li\ui/ri where ui is either 0 or a variable and 

li, ri are products of variables. Hence we may replace a clause P ∪ {x ≤ t} =⇒ C with

P ∪ {l1xr1 ≤ u1, · · · , lmxrm ≤ um} =⇒ C.

Likewise, any equation of the form u ≤ y (with u ∈ P1) in the premise set can be replaced by a set of 
structural equations.

Example 4.9. (wnm3) is equivalent to

z1 ≤ x and z2 ≤ y and z3 ≤ x and z3 ≤ y and xy ≤ z4 =⇒ z1z2 ≤ 0 or z3 ≤ z4. (wnm4)
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It is clear that the resulting set of structural clauses is normal. To see this, think of equations as formulas 
and clauses as rules. If a step transforms R into R′, then

F 	HFL(R) α ⇐⇒ F 	HFL(R′) α

holds for every set F ∪ {α} of formulas (not hypersequents). We have thus established:

Theorem 4.10. Every equation in P�
3 is equivalent to a finite set of structural clauses.

4.3. From structural clauses to analytic clauses

Our transformation procedure is not yet complete. In particular, the premises of the clauses obtained 
so far may contain variables that do not appear in the conclusion, so their translation into structural 
(hypersequent) rules would lead to rules that do not enjoy the subformula property. As shown in this 
section all structural clauses satisfying the acyclicity condition, defined below, can be transformed into 
analytic clauses, that do enjoy the subformula property.

Definition 4.11. Given a structural clause (q)

P =⇒ C

we build its dependency graph D(q) in the following way:

• The vertices of D(q) are the variables occurring in P (we do not distinguish occurrences).
• There is a directed edge x −→ y in D(q) if and only if there is a premise of the form lxr ≤ y in P .

A clause (q) is said to be acyclic if the graph D(q) is acyclic (no directed cycles or loops). A P�
3 equation ε

is said to be acyclic if applying the above procedure to ε results in a set of acyclic clauses.

Acyclicity is a sufficient condition to transform a given structural clause into an analytic one.

Definition 4.12. Given a structural clause (q) : P =⇒ C with P = {t1 ≤ u1, . . . , tm ≤ um} and C = {tm+1 ≤
um+1, . . . , tn ≤ un}, we call the variables occurring in tm+1, . . . , tn left variables, and those in um+1, . . . , un

right variables. The set of left (resp. right) variables is denoted by L(q) (resp. R(q)). (q) is said to be analytic
if it satisfies the following conditions4:

Linearity Each x ∈ L(q) ∪R(q) occurs exactly once in tm+1, um+1, . . . , tn, un.
Inclusion Each of t1, . . . , tm is a product of variables in L(q) (here repetition is allowed), while each of 

u1, . . . , um is either 0 or a variable in R(q).

Let us describe the remaining steps of the transformation procedure.

STEP 5
Suppose that an acyclic clause (q) is given. It is easy to transform (q) into another one which satisfies 

linearity, while preserving acyclicity. Indeed, we may apply Step 3 to all conclusions, so that all variables 
in the conclusions are replaced with fresh distinct variables. Incidentally, this results in a structural clause, 
which we still call (q), satisfying the additional property:

4 The linearity condition formulated below subsumes what we called the separation condition in [14].
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Exclusion None of variables in L(q) appear in u1, . . . , um, and none of variables in R(q) appear in t1, . . . , tm.

Hence all what we have to do is to eliminate the redundant variables, namely those occurring in the premises 
that do not occur in the conclusions.

Example 4.13. (wnm4) already satisfies linearity and exclusion, hence there is no need to apply Step 5. The 
redundant variables are x and y.

STEP 6
Let x be a redundant variable of (q) : P =⇒ C. There are three cases.

• x occurs only on the right-hand sides of premises. Then there is a set I ⊆ {1, . . . , m} and (q) can be 
written as

{ti ≤ x : i ∈ I} ∪ P ′ =⇒ C,

so that x does not occur in P ′ ∪ C. We claim that (q) is equivalent to (q′) : P ′ =⇒ C. Indeed, (q′)
implies (q) since P ′ ⊆ P . Conversely, (q) implies (q′) since by instantiating x with 

∨
i∈I ti, the premises 

{ti ≤ x : i ∈ I} trivially hold, while it does not affect P ′ and C.
• x occurs only on the left hand sides of premises. Then there is a set J ⊆ {1, . . . , m} and (q) can be 

written as

{ljxrj ≤ uj : j ∈ J} ∪ P ′ =⇒ C,

so that x does not occur in P ′ ∪ C. It may occur in lj and rj , but this causes no problem. As before, 
(q) is equivalent to P ′ =⇒ C. This time the relevant instantiation is σ(x) :=

∧
j∈J (lj\uj/rj) ∧ x. We 

then have

σ(ljxrj) = σ(lj)σ(x)σ(rj) ≤ lj(lj\uj/rj)rj ≤ uj = σ(uj),

so the instantiation makes the premises {ljxrj ≤ uj : j ∈ J} trivial.
• x occurs both on the left and right hand sides. Then there are I, J ⊆ {1, . . . , m} such that (q) is

{ti ≤ x : i ∈ I} ∪ {sj(x, . . . , x) ≤ uj : j ∈ J} ∪ P ′ =⇒ C,

so that x does not occur in P ′ ∪ C and all occurrences of x are indicated. By acyclicity I and J are 
disjoint. Let PIJ be the set

{sj(tk1 , . . . , tkl
) ≤ uj : j ∈ J, k1, . . . , kl ∈ I}.

We claim that (q) is equivalent to PIJ ∪P ′ =⇒ C. Indeed, the latter implies (q) since P implies PIJ ∪P ′

by transitivity. Conversely, by instantiation σ(x) :=
∨

i∈I ti each ti ≤ x (i ∈ I) trivially holds, and each 
sj(x, . . . , x) ≤ uj follows from PIJ . Indeed, we have sj(tk1 , . . . , tkl

) ≤ uj in PIJ for all k1, . . . , kl ∈ I, so 
sj(σ(x), . . . , σ(x)) ≤ uj .

Observe that acyclicity and exclusion are preserved by the above transformations. Hence by repetition, we 
can remove all redundant variables, and the resulting clause satisfies inclusion.
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Example 4.14. (wnm4) is equivalent to

z1z2 ≤ z4 and z1z3 ≤ z4 and z3z2 ≤ z4 and z3z3 ≤ z4 =⇒ z1z2 ≤ 0 or z3 ≤ z4. (wnm6)

Theorem 4.15. Every acyclic structural clause is equivalent to an analytic one. The same holds for an 
arbitrary structural clause in presence of integrality x ≤ 1.

Proof. The first claim has just been verified. For the second claim, let (q) : P =⇒ C be any structural 
clause. Step 5 works as before, so that we may suppose that (q) satisfies linearity and exclusion. For Step 6, 
there may be a redundant variable that occur both on the left and right hand sides of the same equation. 
Namely, P may contain lxr ≤ x. Since such equation trivially holds by integrality, it may be ignored. �
4.4. From structural clauses to structural rules

We now turn to proof theory and show how to transform structural clauses into structural hypersequent 
rules. This, in combination with the algorithm outlined in the previous section, leads to a procedure for 
transforming each acyclic P�

3 axiom into analytic rules. These rules will be shown in Section 6 to preserve 
strong analyticity when added to the hypersequent calculus HFL.

Recall that we identify a formula α with the equation 1 ≤ α. This allows us to define the set of acyclic P�
3

formulas in an obvious way. Acyclic formulas can be transformed into analytic clauses as described above; 
the latter are further transformed into structural hypersequent rules. This is done by carefully associating 
suitable metavariables to each variable in the clause.

Definition 4.16. Let

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un (q)

be an analytic clause. We define a structural rule (q◦) corresponding to (q) as follows. Let L(q) = {x1, . . . , xk}
and R(q) = {y1, . . . , yl}. By the linearity condition L(q) and R(q) are disjoint. Let Σ1, . . . , Σk, Γ1, . . . , Γl, 
Δ1, . . . , Δl be distinct metavariables for formula sequences, and Π1, . . . , Πl distinct metavariables for stoups. 
We associate to each equation tp ≤ up (1 ≤ p ≤ n) a sequent Θp as follows.

xi1 · · ·xiq ≤ yj �→ Γj ,Σi1 , . . . ,Σiq ,Δj ⇒ Πj

xi1 · · ·xiq ≤ 0 �→ Σi1 , . . . ,Σiq ⇒

The rule (q◦) is defined to be

Ξ | Θ1 · · · Ξ | Θm

Ξ | Θm+1 | · · · | Θn
(q◦)

We call a structural rule obtained in this way analytic.

Notice that to each right variable yj we associate a triple (Γj , Δj , Πj) of metavariables. This is important 
for obtaining a structural rule preserving cut-admissibility (see [16]).

Theorem 4.17. Every acyclic structural rule is equivalent to an analytic structural rule. The same holds for 
an arbitrary structural rule in presence of left weakening α → 1.
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Example 4.18. From (wnm6) we obtain the analytic rule

Ξ | Γ,Σ1,Σ2,Δ ⇒ Π Ξ | Γ,Σ3,Σ2,Δ ⇒ Π
Ξ | Γ,Σ1,Σ3,Δ ⇒ Π Ξ | Γ,Σ3,Σ3,Δ ⇒ Π

Ξ | Σ1,Σ2 ⇒ | Γ,Σ3,Δ ⇒ Π
(wnm)

Below are further examples of equivalent axioms and rules (see Fig. 4 for the latter):

α∇¬α ⇔ (em)
¬α∇¬¬α ⇔ (lq)
(α → β)∇(β → α) ⇔ (com)
α0∇(α0 → α1)∇ . . .∇(α0 ∧ · · · ∧ αk−1 → αk) ⇔ (Bck)
(α0 →

∨
0�=j αj)∇ . . .∇(αk →

∨
k �=j αj) ⇔ (Bwk)

Remark 4.19. The above correspondence does not apply, in general, between single formulas and rules. Con-
sider, for example, the formula (α\β) ∨(β\α). This formula might be of interest because in the commutative 
and integral case (α → β) ∨ (β → α) axiomatizes precisely the semilinear residuated lattices, namely the 
variety generated by linear (commutative and integral) residuated lattices. However, the variety generated 
by linear (not-necessarily-commutative) residuated lattices is not axiomatized by (α\β) ∨ (β\α); it is ax-
iomatized by (α\β)∇(β\α). Our analysis captures this in a native way by identifying the hypersequent 
(α ⇒ β)|(β ⇒ α) as the correct axiom for the hypersequent calculus and also presents the step-by-step 
transformation it should undergo in order to give rise to the communication rule (com), the addition of 
which preserves the cut-elimination property.

5. Residuated hyperframes

As shown in [14], proving that a substructural logic defined by N2 axioms admits a strongly analytic 
sequent calculus is essentially the same as proving that the corresponding variety is closed under MacNeille 
completions. The common essence between these two notions (one proof theoretic and the other algebraic) 
is captured by the residuated frames of [20]. These come with a construction of a complete FL-algebra 
and a (quasi)embedding into it, but in our case they also provide a key insight into the fact that analytic 
quasiequations are preserved by this dual (complete) algebra construction.

In this section we introduce the tools needed to extend the above success story to the richer framework 
of hypersequents, P�

3 axioms, and a new algebraic completion which we call hyper-MacNeille completion. To 
do that we begin by extending residuated frames to residuated hyperframes and developing the necessary 
machinery.

In detail, we review the basics of residuated frames in Section 5.1 and define the residuated hyperframes 
in Section 5.2. In Section 5.3 we introduce two ways of defining validity of a structural clause in a residuated 
hyperframe (pointwise validity and setwise validity) and show that they coincide for analytic clauses, thus 
allowing for proving the persistence of the validity of equations through the algebraic completion. Finally 
in Section 5.4 we provide a set of conditions, called Gentzen rules, ensuring the existence of a (quasi)homo-
morphism used for the proof of both strong analyticity and the algebraic completion.

5.1. Preliminaries on residuated frames

Introduced in [20,14], residuated frames consist of two sets W and W ′, a binary operation ◦ on W and a 
binary relation N between W and W ′. We explain the motivations behind these ingredients by mentioning 
connections to proof-theory, relational semantics and algebra.
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The sets W and W ′. Under a proof-theoretic interpretation W is the set of all left-hand sides of sequents 
and W ′ is the set of right-hand sides. Algebraically speaking, W corresponds to the set of join-irreducible 
and W ′ to the set of meet-irreducible elements of a (finite) non-distributive lattice. In relation to the latter, 
note that (finite) distributive lattices are determined simply by the set of their join-irreducible elements, 
which corresponds to the set W of possible worlds in the setting, say, of Kripke frames for intuitionistic 
logic. However, for non-distributive logics, including FL, the description of the algebraic models requires 
also a second set W ′ of meet-irreducible elements, hence the need for extensions of Kripke-type frames to a 
setting with two sets of worlds W and W ′. The two sets collapse5 for Kripke frames for distributive logics 
such as intuitionistic and relevance logics.

The (functional) ternary relation ◦. According to the proof-theoretic interpretation, W consists of all 
possible left-hand sides of sequents, and thus carries a monoid structure under the comma separator and 
the empty sequence. We thus stipulate in the definition of a residuated frame that W comes equipped with 
a monoidal binary operation and unit constant, which we denote by ◦ and ε, respectively. This also models 
the multiplication operation on an FL-algebra. Even in Kripke frames of distributive logics, where W and 
W ′ are identified, such as the ones for relevance logic, in order to capture the multiplication on the dual 
algebra a ternary accessibility relation is needed on W . However, in the simplified case of Kripke frames 
for intuitionistic logic the ternary accessibility relation is hidden as part of the (binary) order accessibility 
relation. One then uses the (unary) modality provided by the latter to modalize classical implication, which is 
coincidentally available in the ambient setting, and thus obtain the desired intuitionistic (binary) implication 
(essentially along the Gödel translation of intuitionistic logic into S4). General residuated frames as defined 
in [20] allow ◦ to be a ternary relation, but for our proof-theoretic applications we can restrict to the case 
where this relation is functional, namely a binary operation on W .

The relation N . Actually, the (binary) accessibility relation in Kripke frames serves a second role in 
combination with the identification of W and W ′ (given by the relation �), namely that of providing a 
binary relation between W and W ′, which we call N in the setting of residuated frames. Proof-theoretically 
the relation N holds when the sequent formed by the two sides is provable, and algebraically N is simply 
the ordering relation of the FL-algebra.

In all the three different (though connected) motivations and interpretations of a residuated frame the 
binary relation N and the functional accessibility relation (aka, monoid operation) ◦ turn out to be connected 
by the nuclearity condition.

The above ingredients, stripped of their proof-theoretic, algebraic and duality-theoretic intuitions, are 
abstracted and presented in the following definition.

Definition 5.1. A residuated frame is a structure W = (W, W ′, N, ◦, ε, ε), where

• W and W ′ are sets and N is a binary relation between W and W ′,
• (W, ◦, ε) is a monoid, ε ∈ W ′, and
• for all x, y ∈ W and z ∈ W ′, there are elements x�z and z�y in W ′ such that

x ◦ y N z ⇐⇒ y N x�z ⇐⇒ x N z�y.

We refer to the last property by saying that the relation N is nuclear.

Note that we have been typically using the symbol ε for a generic equation, but hereafter we will use it 
for the monoid unit.

5 This corresponds to the algebraic fact that the posets of join and of meet-irreducibles are isomorphic.
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Residuated frames support a construction of a complete FL-algebra. Actually, it is well known that the 
(W, W ′, N) part of a residuated frame yields a complete lattice along the following lines. We first define for 
X ⊆ W and Z ⊆ W ′,

X� := {z ∈ W ′ : ∀x ∈ X. x N z},
Z� := {x ∈ W : ∀z ∈ Z. x N z},

and write x� for {x}� and z� for {z}�. The pair (�, �) forms a Galois connection

X ⊆ Z� ⇐⇒ X� ⊇ Z,

which induces a closure operator γ(X) = X�� on the powerset P(W ). We say that X ⊆ W is Galois-closed
if X = γ(X), or equivalently if there is Z ⊆ W ′ such that X = Z�. The set of Galois-closed sets is denoted 
by γ[P(W )]. Then (γ[P(W )], ∩, ∪γ) is a complete lattice, where X ∪γ Y := γ(X ∪ Y ).

In the setting of a residuated frame W = (W, W ′, N, ◦, ε, ε), we extend this construction by first defining 
for X, Y ⊆ W ,

X ◦ Y := {x ◦ y : x ∈ X, y ∈ Y }

and observing that the closure operator γ satisfies γ(X) ◦ γ(Y ) ⊆ γ(X ◦ Y ). This map is called a nucleus
on P(W ), see [20]. We further define the dual algebra of W by

W+ := (γ[P(W )],∩,∪γ , ◦γ , \, /, ε��, ε�),

where

X ◦γ Y := γ(X ◦ Y ),

X ∪γ Y := γ(X ∪ Y ),

X\Y := {y : ∀x ∈ X. xy ∈ Y },
Y/X := {y : ∀x ∈ X. yx ∈ Y }.

Lemma 5.2. If W is a residuated frame, then W+ is a complete FL-algebra.

Thus residuated frames provide a handy way of producing a complete algebra. Below is a characteristic 
feature of W+.

Lemma 5.3. Let W be a residuated frame, X ⊆ W and Z ⊆ W ′:

γ(X) =
⋃

γ{x�� : x ∈ X}, Z� =
⋂
{z� : z ∈ Z}.

Example 5.4. Given an FL-algebra A = (A, ∧, ∨, ·, \, /, 1, 0), we define the residuated frame WA := (A, A,

≤, ·, 1, 0). Note that the nuclearity condition is exactly the residuation condition of the algebra. Its dual 
algebra W+

A together with the embedding e(a) := a� = a�� is nothing but the MacNeille completion of 
A (see Theorem 2.5). Indeed, the join-density and meet-density are direct consequences of Lemma 5.3, and 
the definition of (·, \, /) in W+ conforms to Theorem 2.5.

Example 5.5. The second motivating example comes from proof theory and the sequent calculus for FL. 
Define WFL := (W, W ′, N, ·, ε, ε) as follows:
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• W is the set of formula sequences.
• W ′ is the set of contexts of the form (Γ, _ , Δ ⇒ Π). If C = (Γ, _ , Δ ⇒ Π) ∈ W ′, then C[Σ] denotes 

the sequent Γ, Σ, Δ ⇒ Π.
• Σ N C ⇐⇒ 	FL C[Σ].
• Γ ◦ Δ := Γ, Δ (concatenation of sequences).
• ε := the empty sequence.
• ε := (_ ⇒ ).

Note that the naive definition of W ′ as the collection of all right-hand sides Π would not allow for N to be 
nuclear. By contrast, under the above augmented definition of W ′, N becomes nuclear for purely syntactical 
reasons:

Σ1 ◦ Σ2 N (Γ,_ ,Δ ⇒ Π) ⇐⇒ 	FL Γ,Σ1,Σ2,Δ ⇒ Π
⇐⇒ Σ2 N (Γ,Σ1,_ ,Δ ⇒ Π)
⇐⇒ Σ1 N (Γ,_ ,Σ2,Δ ⇒ Π).

The dual algebra W+
FL together with the valuation e(α) := α�� = α� leads to the completeness theorem:

|=FL α =⇒ W+
FL, e |= 1 ≤ α =⇒ ε ∈ α� =⇒ 	FL α.

Finally, by replacing 	FL above with 	cf
FL (the cut-free derivability relation) we obtain a residuated frame 

Wcf
FL. Although α�� = α� is not ensured a priori, the dual algebra (Wcf

FL)+ is nevertheless useful for an 
algebraic proof of cut-admissibility (cf. [20]):

	FL α =⇒ |=FL α =⇒ ε ∈ α� =⇒ 	cf
FL α.

Remark 5.6. We may write x ⇀z for (x, z) ∈ W × W ′. Then N can be viewed as the collection of “valid 
sequents.” The perspective that N selects some valid objects, rather than linking two elements, will be useful 
in the definition of a residuated hyperframe that follows.

5.2. Residuated hyperframes

As illustrated by Example 5.5, residuated frames are intimately connected with sequents; to capture 
hypersequents we define below residuated hyperframes. Residuated hyperframes also have a double moti-
vation. In the setting of proof-theory they reflect the structure of hypersequents, just as residuated frames 
reflect the structure of sequents. In the algebraic setting they reflect the behavior of ∇.

Given a set X, we write X∗ for the free commutative monoid (X∗, | , ∅) generated by X; notice that 
here we use symbol | for the multiplication.

Definition 5.7. A residuated hyperframe is a structure of the form H = (W, W ′, �, ◦, ε, ε), where

• W and W ′ are sets and � ⊆ H, where H := (W ×W ′)∗. We write x ⇀y for (x, y) ∈ W ×W ′ and � h

when h ∈ � holds.
• (W, ◦, ε) is a monoid and ε ∈ W ′.
• For all x, y ∈ W and z ∈ W ′ there exist elements x�z, z�y ∈ W ′ such that for any h ∈ H,

� h | x ◦ y⇀z ⇐⇒ � h | y⇀x�z ⇐⇒ � h | x⇀z�y.

• � h implies � h | g for any h, g ∈ H.
• � h | g | g implies � h | g for any h, g ∈ H.
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Each element h of H is of the form x1 ⇀ y1 | · · · | xn ⇀ yn. This is obviously an analogue of a 
hypersequent, where each component xi⇀yi ∈ W ×W ′ corresponds to a sequent. Also, the last two rules 
are frame analogues of the external structural rules (EW ), (EC).

Example 5.8. Given an FL-algebra A = (A, ∧, ∨, ·, \, /, 1, 0), we construct a residuated hyperframe HA :=
(A, A, �, ·, 1, 0), where � is defined by:

� x1⇀y1| . . . |xn⇀yn ⇐⇒ 1 ≤ (x1\y1)∇ · · ·∇(xn\yn).

This is a natural construction, since in the case when A is subdirectly irreducible, we have:

� x1⇀y1| . . . |xn⇀yn ⇐⇒ x1 ≤ y1 or · · · or xn ≤ yn. (2)

More generally, let A ↪→
∏

i∈I Ai be a subdirect representation with canonical projections ei : A −→ Ai

(i ∈ I). Then,

� x1⇀y1| . . . |xn⇀yn ⇐⇒ ∀i ∈ I. ei(x1) ≤ ei(y1) or · · · or ei(xn) ≤ ei(yn).

Example 5.9. For another example, we may build HFL := (W, W ′, �, ◦, ε, ε), which is the same as WFL
except that � is defined by:

� Σ1⇀C1 | . . . | Σn⇀Cn ⇐⇒ 	HFL C1[Σ1] | · · · | Cn[Σn].

By replacing 	HFL with 	cf
HFL (the cut-free derivability relation) as before, we obtain a residuated 

hyperframe Hcf
FL.

The above examples reveal that the notion of residuated hyperframe is applicable to both algebra and 
proof theory, as was the notion of residuated frame. However, the success of residuated frames in Algebraic 
Proof Theory comes from the ability to construct an algebraic model, the dual algebra, and we wish to do 
the same starting from a residuated hyperframe.

We first observe that residuated hyperframes can be considered as a special class of residuated 
frames. Given a residuated hyperframe H = (W, W ′, �, ◦, ε, ε), we obtain a residuated frame r(H) :=
(HW, HW ′, N, ◦, (∅; ε), (∅; ε)), where H := (W ×W ′)∗, HW := H ×W , HW ′ := H ×W ′ and

(hx; x) ◦ (hy; y) = (hx|hy; x ◦ y),
(hx; x)�(hz; z) = (hx|hz; x�z),
(hz; z)�(hx; x) = (hz|hx; z�x),

(hx; x) N (hz; z) ⇐⇒ � hx | hz | x⇀z.

The nuclearity of N can be easily verified. Hence each residuated hyperframe H = (W, W ′, �, ◦, ε, ε) leads 
to a complete FL-algebra H+ := r(H)+, called the dual algebra of H, by Lemma 5.2.

For the later purpose, let us give a more concrete description to the dual algebra. Given X, Y ⊆ HW

and Z ⊆ HW ′, we have

X� = {(hz; z) ∈ HW ′ : ∀(hx; x) ∈ X. � hx | hz | x⇀z},
Z� = {(hx; x) ∈ HW : ∀(hz; z) ∈ Z. � hx | hz | x⇀z}.

As before, the pair (�, �) forms a Galois connection, and induces a nucleus γ(X) := X�� on P(HW ). The 
dual algebra H+ has the following structure:
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H+ = (γ[P(HW )],∩,∪γ , ◦γ , \, /, (∅; ε)��, (∅; ε)�),

where

X ◦ Y = {(hx|hy; x ◦ y) : (hx; x) ∈ X, (hy; y) ∈ Y },
X\Y = {(hy; y) : ∀(hx; x) ∈ X. (hx|hy; x ◦ y) ∈ Y },
Y/X = {(hy; y) : ∀(hx; x) ∈ X. (hy|hx; y ◦ x) ∈ Y }.

The need for such complicated definition will be justified below in the proof of preservation of structural 
clauses by the construction of the dual algebra, which in turn can be derived by a link between a pointwise 
and a setwise interpretation of a structural clause in a residuated hyperframe (Theorem 5.15).

The starting point for the latter is an interesting fact on residuated hyperframes that the hypersequent 
structure � x1⇀y1 | · · · | xn⇀yn defined on points of W, W ′ propagates to a higher level structure defined 
on Galois-closed sets. Given X, Y ⊆ HW and G1, G2 ⊆ H, we define:

X⇀Y = {hx|hy|x⇀y : (hx; x) ∈ X, (hy; y) ∈ Y �} ⊆ H,

X⇀∅ = {h|x⇀ε : (h; x) ∈ X} ⊆ H,

G1 | G2 = {h1|h2 : h1 ∈ G1, h2 ∈ G2} ⊆ H,

� G1 ⇐⇒ � h for every h ∈ G1.

The following lemma plays a fundamental role, connecting the higher level hypersequent structure with 
the FL-algebra structure H+.

Lemma 5.10. For every Galois-closed sets X, Y ⊆ HW and G ⊆ H,

� G | X⇀Y ⇐⇒ G× {ε} ⊆ X\Y ⇐⇒ G× {ε} ⊆ Y/X

� G | X⇀∅ ⇐⇒ G× {ε} ⊆ X\(∅; ε)� ⇐⇒ G× {ε} ⊆ (∅; ε)�/X.

Hence � X⇀Y ⇐⇒ � {∅} | X⇀Y ⇐⇒ (∅; ε) ∈ X\Y ⇐⇒ X ⊆ Y . Also, � X⇀∅ ⇐⇒ X ⊆ (∅; ε)�.

Proof. Suppose � G | X ⇀ Y . Then for every g ∈ G, (hx; x) ∈ X and (hy; y) ∈ Y � we have
� g | hx | hy | x ⇀ y. Since it holds for every (hy; y) ∈ Y �, we have (g|hx; x) ∈ Y �� = Y . Since it 
holds for every (hx; x) ∈ X, we obtain (g; ε) ∈ X\Y, Y/X. The converse direction is similar. �

This leads to a soundness theorem for the higher level hypersequent structure, which is completely 
different from Lemma 3.11. Recall that a valuation f into H+ assigns to each propositional variable p a 
Galois-closed set f(p) ⊆ HW . This is homomorphically extended to all formulas, to all sequents and further 
to all hypersequents:

f(α1, . . . , αn ⇒ β) := f(α1) ◦ · · · ◦ f(αn)⇀f(β),
f(α1, . . . , αn ⇒ ) := f(α1) ◦ · · · ◦ f(αn)⇀∅,
f(Θ1 | · · · | Θn) := f(Θ1) | · · · | f(Θn).

Notice that f(Ξ) ⊆ H for every hypersequent Ξ. We refer to the above as the setwise interpretation of a 
hypersequent. A hypersequent Ξ is setwise satisfied in a residuated hyperframe H under a valuation f if 
� f(Ξ). Below we will show soundness with respect to this notion of satisfaction. Note that for a sequent 
Θ = (Γ ⇒ β), Θ is setwise satisfied by (H, f) iff � f(Γ) ⇀f(β) iff (∅, ε) ∈ f(Γ)\f(β) iff f(Γ) ⊆ f(β) iff 
H+, f |= Θ. This establishes the second statement of the following lemma.
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Theorem 5.11 (Soundness). Let H be a residuated hyperframe, f a valuation into H+ and H ∪ {Ξ0} a set 
of hypersequents. If H 	HFL Ξ0, then � f(Ξ) for all Ξ ∈ H implies � f(Ξ0). In particular when Ξ0 is a 
sequent Θ0, we have H+, f |= Θ0.

Proof. By induction on the length of the derivation of H 	HFL Ξ0. For instance, consider the (∧r) rule

Ξ | Γ ⇒ α Ξ | Γ ⇒ β

Ξ | Γ ⇒ α ∧ β
(∧r)

and suppose that � f(Ξ | Γ ⇒ α) and � f(Ξ | Γ ⇒ β). By Lemma 5.10, we have f(Ξ) × {ε} ⊆ f(Γ)\f(α)
and f(Ξ) × {ε} ⊆ f(Γ)\f(β). Hence

f(Ξ) × {ε} ⊆ f(Γ)\(f(α) ∩ f(β)) = f(Γ)\f(α ∧ β).

Therefore � f(Ξ | Γ ⇒ α ∧ β) by Lemma 5.10 again.
The other right rules are treated similarly. For the left rules, an essential observation is that the element 

Z := f(Ξ) × {ε} is central, in the sense that X ◦ Z = Z ◦X holds for every X ⊆ HW .
Now, for the rule

Ξ | Γ, α,Δ ⇒ Π Ξ | Γ, β,Δ ⇒ Π
Ξ | Γ, α ∨ β,Δ ⇒ Π

(∨l)

we assume � f(Ξ | Γ, α, Δ ⇒ Π) and � f(Ξ | Γ, β, Δ ⇒ Π), which yield f(Ξ) × {ε} ⊆ (f(Γ) ◦ f(α) ◦
f(Δ))\f(Π) and f(Ξ) ×{ε} ⊆ (f(Γ) ◦f(β) ◦f(Δ))\f(Π), by Lemma 5.10. By letting X := f(Γ)\f(Π)/f(Δ), 
Z := f(Ξ) × {ε} and taking the centrality of Z into account, we obtain f(α) ⊆ Z\X and f(β) ⊆ Z\X, so 
f(α ∨ β) ⊆ Z\X, hence Z ⊆ (f(Γ) ◦ f(α ∨ β) ◦ f(Δ))\f(Π). Therefore � f(Ξ | Γ, α ∨ β, Δ ⇒ Π).

For

Ξ | Σ ⇒ α Ξ | Γ, β,Δ ⇒ Π
Ξ | Γ,Σ, α\β,Δ ⇒ Π

(\l)

we assume � f(Ξ | Σ ⇒ α) and � f(Ξ | Γ, β, Δ ⇒ Π), namely Z ⊆ f(Σ)\f(α) and Z ⊆ f(β)\X, where 
Z := f(Ξ) × {ε} and X := f(Γ)\f(Π)/f(Δ). As a consequence, we obtain Z ◦ Z ◦ f(Σ) ◦ f(α\β) ⊆
X, so Z ◦ Z ⊆ (f(Γ) ◦ f(Σ) ◦ f(α\β) ◦ f(Δ))\f(Π). By noting that Z ◦ Z = f(Ξ | Ξ) × {ε}, we have
� f(Ξ | Ξ | Γ, Σ, α\β, Δ ⇒ Π), that implies � f(Ξ | Γ, Σ, α\β, Δ ⇒ Π). �
5.3. Preservation of analytic clauses

Note that given a residuated hyperframe H there are two possible ways to interpret hypersequents, 
namely as elements of H and as subsets of H, each with an associated form coming from the operations 
we allow at each level. Thus, corresponding to a typical atomic hypersequent of HFL of the form Γ1 ⇒
Π1 | · · · |Γn ⇒ Πn, where each Γi is a list of variables, and each Π is a variable or empty, the general form 
of a point-hypersequent (or first-order hypersequent) of H is x1 ⇀y1 | · · · | xn ⇀yn, where each xi ∈ W

and each yi ∈ W ′, while the general form of a set-hypersequent (or second-order hypersequent) of H is 
X1⇀Y1 | · · · | Xn⇀Yn, where Xi, Yi are Galois-closed subsets of HW .

Accordingly, there are two ways, namely pointwise and setwise, to interpret a structural clause in H. 
After defining the two interpretations, we show that they coincide for analytic clauses. This will be later 
used for establishing strong analyticity and extend soundness to hypersequent calculi extending HFL with 
additional structural rules.

We begin with an example, illustrating the two interpretations.
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Example 5.12. Let H = (W, W ′, �, ◦, ε, ε) be a residuated hyperframe, and consider the analytic clause

x · y ≤ z =⇒ x ≤ 0 or y ≤ z, (em)

which corresponds to the excluded middle axiom. Its pointwise interpretation in H is:

� g | x ◦ y⇀z

� g | x⇀ε | y⇀z
(em0)

for all x, y ∈ W , z ∈ W ′ and g ∈ H. The interpretation is obtained by replacing · with ◦, 0 with ε, ≤ with 
⇀, and by adding a new variable g. The setwise interpretation is:

� G | X ◦ Y ⇀Z

� G | X⇀∅ | Y ⇀Z
(em+)

for all Galois-closed sets X, Y, Z ⊆ HW and G ⊆ H.

The general definition is as follows.

Definition 5.13. Let (q) be an analytic clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un. (q)

By replacing (·, 1, 0) in each ti ≤ ui with (◦, ε, ε), we obtain t0i ⇀ u0
i . We may then obtain a pointwise 

interpretation of (q):

� g | t01⇀u0
1 · · · � g | t0m⇀u0

m

� g | t0m+1⇀u0
m+1 | · · · | t0n⇀u0

n

(q0)

We say that (q) is pointwise valid in H if (q0) holds for every interpretation of left variables in W , right 
variables in W ′ and g ∈ H.

We may also obtain a setwise interpretation:

� G | t1⇀u1 · · · � G | tm⇀um

� G | tm+1⇀um+1 | · · · | tn⇀un
(q+)

by interpreting each ti, ui in the algebra H+ so that each of ti, ui denotes a Galois-closed set. We say that 
(q) is setwise valid in H if (q+) holds for every valuation f of variables into H+ and for every G ⊆ H.

Example 5.14. Continuing Example 5.12, we prove that the two interpretations coincide.
(Pointwise ⇒ setwise) Assume � G | X ◦ Y ⇀ Z (the premise of (em+)). Our goal is to show that 

� G | X ⇀ ∅ | Y ⇀ Z. So let g ∈ G, (hx; x) ∈ X, (hy; y) ∈ Y and (hz; z) ∈ Z�. Then we have 
h|x ◦ y⇀z ∈ X ◦ Y ⇀Z, where h := hx|hy|hz, so � g | h | x ◦ y⇀z by the assumption. By (em0) we have 
� g | h | x ⇀ε | y⇀z. Therefore � G | X⇀∅ | Y ⇀Z.

(Setwise ⇒ pointwise) Assume � g | x ◦ y⇀z (the premise of (em0)). This means

(g; ε) ∈ {(∅; x)} ◦ {(∅; y)}\{(∅; z)}�,

hence G × {ε} ⊆ X ◦ Y \Z, where
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X := (∅; x)��, Y := (∅; y)��, Z := (∅; z)�, G := {g},

so � G | X ◦ Y ⇀Z by Lemma 5.10. By (em+), we have � G | X⇀∅ | Y ⇀Z, from which we easily derive 
� g | x ⇀ε | y⇀z (the conclusion of (em0)).

By generalizing the above example, we can prove:

Theorem 5.15. Let (q) be an analytic clause and H a residuated hyperframe. Then (q) is pointwise valid in 
H if and only if it is setwise valid.

This theorem allows us to extend the soundness theorem (Theorem 5.11) to hypersequent calculi with 
additional analytic structural rules.

Theorem 5.16. Let R be a set of analytic structural rules, H a residuated hyperframe and f a valuation into 
H+. Suppose that all rules in R are pointwise valid in H. If H 	HFL(R) Ξ0, then � f(Ξ) for all Ξ ∈ H
implies � f(Ξ0).

In particular when Ξ0 is a sequent Θ0, we have H+, f |= Θ0.

5.4. Gentzen hyperframes

We have seen how residuated hyperframes yield a complete algebra. We will now obtain an embedding 
e : A −→ H+

A and a valuation f into (Hcf
FL)+ such that 1 ≤ f(α) implies 	cf

HFL α. To ensure the existence of 
a suitable (quasi)homomorphism (Definition 5.19 below) we need to impose further conditions on residuated 
hyperframes.

Definition 5.17. A Gentzen hyperframe is a tuple (H, A, ι, ι′) where

• H = (W, W ′, �, ◦, ε, ε) is a residuated hyperframe,
• A is an algebra in the language of FL,
• ι : A −→ W and ι′ : A −→ W ′ are functions,
• � satisfies the Gentzen rules in Fig. 5 for all a, b, a1, a2 ∈ A, x, y ∈ W , z ∈ W ′ and h ∈ H = (W ×W ′)∗.

A cut-free Gentzen hyperframe is defined in the same way, but it is not assumed to satisfy the (Cut) rule.

Example 5.18. Consider the frame HFL = (W, W ′, �, ◦, ε, ε) in Example 5.9. Define ι : Fm −→ W and 
ι′ : Fm −→ W ′ by

ι(α) := α, ι′(α) := (_ ⇒ α).

Then (HFL, Fm, ι, ι′) is a Gentzen hyperframe, and (Hcf
FL, Fm, ι, ι′) is a cut-free Gentzen hyperframe. To 

see this, just notice that (\ L) and (\ R) can be alternatively presented as

� h | x⇀ι′(a) � h | ι(b)⇀z

� h | x ◦ ι(a\b)⇀z
(\L)

� h | ι(a) ◦ x⇀ι′(b)
� h | x⇀ι′(a\b) (\R)

which is nothing but the hypersequent rules for \, when x is instantiated with a formula sequence Γ, z with 
a context C, and a, b with formulas α, β. This illustrates that Gentzen rules are just inference rules of the 
hypersequent calculus under disguise.

Gentzen rules ensure the existence of a (quasi)homomorphism.
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� h | x⇀ι′(a) � h | ι(a)⇀z

� h | x⇀z
(Cut) � ι(a)⇀ι′(a)

(Id)

� h | x⇀ι′(a) � h | ι(b)⇀z

� h | ι(a\b)⇀x�z
(\L)

� h | x⇀ι(a)�ι′(b)
� h | x⇀ι′(a\b)

(\R)

� h | x⇀ι′(a) � h | ι(b)⇀z

� h | ι(b/a)⇀z�x
(/L)

� h | x⇀ι′(b)�ι(a)
� h | x⇀ι′(b/a)

(/R)

� h | ι(a) ◦ ι(b)⇀z

� h | ι(a · b)⇀z
(·L)

� h | x⇀ι′(a) � h | y⇀ι′(b)
� h | x ◦ y⇀ι′(a · b)

(·R)

� h | ι(ai)⇀z

� h | ι(a1 ∧ a2)⇀z
(∧L)

� h | x⇀ι′(a) � h | x⇀ι′(b)
� h | x⇀ι′(a ∧ b)

(∧R)

� h | ι(a)⇀z � h | ι(b)⇀z

� h | ι(a ∨ b)⇀z
(∨L)

� h | x⇀ι′(ai)
� h | x⇀ι′(a1 ∨ a2)

(∨R)

� h | ε⇀z

� h | ι(1)⇀z
(1L) � ε⇀ι′(1)

(1R)

� ι(0)⇀ε
(0L)

� h | x⇀ε

� h | x⇀ι′(0)
(0R)

Fig. 5. Gentzen rules.

Definition 5.19. Given two algebras A and B in the language of FL, a quasihomomorphism from A to B is 
a function F : A −→ P(B) such that

cB ∈ F (cA) for c ∈ {0, 1},
F (a) �B F (b) ⊆ F (a �A b) for � ∈ {·, \, /,∧,∨},

where X �B Y = {x �B y | x ∈ X, y ∈ Y } for any X, Y ⊆ B.

It is equivalent to the standard notion of homomorphism when F (a) is a singleton for every a ∈ A.
We have finally reached the main property of Gentzen hyperframes.

Theorem 5.20.

1. If (H, A, ι, ι′) is a Gentzen hyperframe, then

f(a) := (∅; ι(a))�� = (∅; ι′(a))�

defines a homomorphism from A to H+. Moreover, if ι, ι′ are “injective” in the sense that � ι(a) ⇀ι′(b)
implies a ≤ b for every a, b ∈ A, then f is an embedding.

2. If (H, A, ι, ι′) is a cut-free Gentzen hyperframe, then

F (a) = {X ∈ γ[P(HW )] : (∅; ι(a)) ∈ X ⊆ (∅; ι′(a))�}

is a quasihomomorphism from A to H+.

Proof. This is actually a corollary of the main theorem of Gentzen frames proved in [20]. Indeed, 
if (H, A, ι, ι′) is a (cut-free) Gentzen hyperframe, then (r(H), A, rι, rι′), where rι(a) := (∅; ι(a)) and 
rι′(a) := (∅; ι′(a)), is a (cut-free) Gentzen frame in the sense of [13].
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We nevertheless outline part of the proof to convey the reader some flavor of the argument (originally 
due to [33] and later developed by [5]). Let us focus on 2 and prove that F is a quasihomomorphism with 
respect to the connectives \ and ∧.

(Case \) Our goal is to show that F (a)\F (b) ⊆ F (a\b) for every a, b ∈ A. So let us take X ∈ F (a) and 
Y ∈ F (b). We have

(∅; ι(a)) ∈ X ⊆ (∅; ι′(a))�, (∅; ι(b)) ∈ Y ⊆ (∅; ι′(b))�. (3)

To prove X\Y ∈ F (a\b), we need to show two things: (i) (∅; ι(a\b)) ∈ X\Y and (ii) X\Y ⊆ (∅; ι′(a\b))�.
For (i), suppose that (hx; x) ∈ X and (hy; y) ∈ Y �. By (3) we have (hx; x) ∈ (∅; ι′(a))� and (∅; ι(b)) ∈

Y , which imply � hx | x ⇀ι′(a) and � hy | ι(b) ⇀y. Hence we have � hx | hy | x ◦ ι(a\b) ⇀y by external 
weakening and (\ L). Since it holds for every (hy; y) ∈ Y �, we have (hx; x ◦ ι(a\b)) ∈ Y �� = Y . Since it 
holds for every (hx; x) ∈ X, we conclude that (∅; ι(a\b)) ∈ X\Y .

For (ii), suppose that (h; y) ∈ X\Y . By (3), we have (∅; ι(a)) ∈ X and Y ⊆ (∅; ι′(b))�, hence (h; ι(a) ◦
y) ∈ (∅; ι′(b))�, namely � h | ι(a) ◦ y ⇀ ι′(b). By (\ R), we have � h | y ⇀ ι′(a\b). This proves that 
(h; y) ∈ (∅; ι′(a\b))�.

(Case ∧) Our goal is to show that F (a) ∧ F (b) ⊆ F (a ∧ b) for every a, b ∈ A. So let us take X ∈ F (a)
and Y ∈ F (b). We then have (3) again. To prove X ∩ Y ∈ F (a ∧ b), we need to show two things: (i) 
(∅; ι(a ∧ b)) ∈ X ∩ Y and (ii) X ∩ Y ⊆ (∅; ι′(a ∧ b))�.

For (i), suppose that (h; x) ∈ X�. We have � h | ι(a) ⇀x by (3). Hence � h | ι(a ∧ b) ⇀x by rule (∧ L). 
Since it holds for every (h; x) ∈ X�, we have (∅; ι(a ∧ b)) ∈ X�� = X. Likewise (∅; ι(a ∧ b)) ∈ Y . We 
therefore conclude that (∅; ι(a ∧ b)) ∈ X ∩ Y .

For (ii), suppose that (h; z) ∈ X ∩Y . Then by (3) (h; z) ∈ (∅; ι′(a))�∩ (∅; ι′(b))�, namely � h | z⇀ι′(a)
and � h | z⇀ι′(b). Hence � h | z⇀ι′(a ∧ b) by rule (∧ R), from which we conclude (h; z) ∈ (∅; ι′(a ∧ b))�.

A final remark on 1: If the (Cut) rule is further satisfied, then it results in (∅; ι(a))�� = (∅; ι′(a))� so 
that F (a) of (2) becomes a singleton for every a ∈ A. Indeed, the forward inclusion holds by rule (Id). 
For the backward inclusion, suppose that (hx; x) ∈ (∅; ι′(a))� and (hy; y) ∈ (∅; ι(a))�. It means that 
� hx | x ⇀ι′(a) and � hy | ι(a) ⇀y. Hence � hx | hy | x ⇀y by external weakening and (Cut). Since it 
holds for every (hy; y) ∈ (∅; ι(a))�, we conclude that (hx; x) ∈ (∅; ι(a))��. �
6. Strong analyticity and hyper-MacNeille completions

The general theory of residuated hyperframes introduced in the previous section is applied here to prove 
two important results. The first is an algebraic, uniform proof of the strong analyticity of hypersequent calculi 
defined by analytic rules (Section 6.1). The second is the introduction of a new type of completions, called 
hyper-MacNeille completions (Section 6.2). We will show that every variety defined by acyclic P�

3 equations 
admits hyper-MacNeille completions; although the argument here is considerably more complicated than 
the argument in [13], the benefit of the current approach is that the new completion method behaves well 
with respect to regularity, i.e., preservation of existing joins and meets.

6.1. Strong analyticity

Let R be any set of analytic structural rules, we show that the hypersequent calculus HFL(R) is strongly 
analytic (cf. Definition 2.1 referring to hypersequents). Our proof encompasses many ad-hoc proofs of 
cut-admissibility that work for specific (families of) hypersequent calculi, e.g. [3,12,32,31].



728 A. Ciabattoni et al. / Annals of Pure and Applied Logic 168 (2017) 693–737
First of all, recall that an analytic rule (q◦) is obtained from an analytic clause (q) as described in 
Definition 4.16. Henceforth we identify the clause (q) with the rule (q◦), so given a set R of analytic clauses, 
we write HFL(R) to denote the system obtained by adding to HFL the analytic rules {(q◦) : (q) ∈ R}.

To prove strong analyticity, we build a suitable residuated hyperframe. Given an elementary set S of 
sequents (cf. Definition 2.1), we define the residuated hyperframe HR,S = (W, W ′, �, ◦, ε, ε) as follows:

• (W, W ′, ◦, ε, ε) is the same as in HFL (Example 5.9).
• � (Σ1, C1) | . . . | (Σn, Cn) ⇐⇒ S 	cf

HFL(R) C1[Σ1] | · · · | Cn[Σn].

Lemma 6.1. (HR,S , Fm, ι, ι′), where ι(α) := α ∈ W and ι′(α) := (_ ⇒ α) ∈ W ′, is a cut-free Gentzen 
hyperframe in which all rules in R are pointwise valid.

Proof. (HR,S , Fm, ι, ι′) is obviously a cut-free Gentzen hyperframe. The following example illustrates that 
R is pointwise valid in HR,S .

Suppose that R contains the analytic clause

x · y ≤ z =⇒ x ≤ 0 or y ≤ z. (em)

We need to verify that

� g | x ◦ y⇀z

� g | x⇀ε | y⇀z
(em0)

holds for every x, y ∈ W , z ∈ W ′ and g ∈ H = (W ×W ′)∗. Notice that each x ∈ W is a formula sequence Σ, 
each z is a context of the form (Γ, _, Δ ⇒ Π), and each g is a hypersequent Ξ. Hence (em0) just amounts 
to the analytic rule corresponding to (em) (Fig. 4):

Ξ | Γ,Σ1,Σ2,Δ ⇒ Π
Ξ | Σ1 ⇒ | Γ,Σ2,Δ ⇒ Π

(em◦)

Hence it is trivial that (em) is pointwise valid in HR,S . �
We now define a valuation f . For every propositional variable p, let

S(p) := {(∅; Γ) ∈ HW : (Γ ⇒ p) ∈ S} ∪ {(∅; p)}

and define f : Fm −→ H+
R,S by f(p) := S(p)�� and homomorphically extending it to all formulas.

Lemma 6.2. For any formula α, (∅; α) ∈ f(α) ⊆ (∅; _ ⇒ α)�. Moreover, � f(Θ) holds for every sequent 
Θ ∈ S.

Proof. The first claim is proved by induction on the structure of α. For the base case, observe that (∅; p) ∈
f(p) ⊆ (∅; _ ⇒ p)� holds by definition. For the induction step, notice that the claim to be proved just 
amounts to f(α) ∈ F (α) where F is the quasihomomorphism mentioned in Theorem 5.20.2. Now the 
induction hypothesis implies

f(α � β) = f(α) � f(β) ∈ F (α) � F (β) ⊆ F (α � β)

for every � ∈ {∧, ∨, ·, \, /}. The last inclusion is due to Theorem 5.20.2.
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For the second claim, suppose that Θ is of the form p1, . . . , pn ⇒ q (the case when it is of the form 
p1, . . . , pn ⇒ is similar). Since S is closed under cuts, we obviously have S(p1) ◦ · · · ◦ S(pn) ⊆ S(q), so 
f(p1) ◦ · · · ◦ f(pn) ⊆ f(q). Therefore � f(Θ) by Lemma 5.10. �

We are now ready to prove:

Theorem 6.3. If R is a set of analytic clauses, then HFL(R) is strongly analytic.

Proof. Let S be an elementary set and suppose that S 	HFL(R) Ξ holds for some hypersequent Ξ. We build 
a cut-free Gentzen hyperframe (HR,S , Fm, ι, ι′) as above. Since R is pointwise valid in HR,S by Lemma 6.1, 
and also since the valuation f satisfies all sequents in S by Lemma 6.2, Theorem 5.16 implies that � f(Ξ).

If Ξ consists of a single sequent ⇒ α, then � f(Ξ) means H+
R,S , f |= α, so (∅; ε) ∈ f(α) ⊆ (∅; _ ⇒ α)�

by Lemma 6.2. Hence S 	cf
HFL(R) Ξ.

The general case can be best understood by means of an example. Suppose that Ξ is of the form
α, β ⇒ γ | γ ⇒. Then � f(Ξ) means that

� f(α) ◦ f(β)⇀f(γ) | f(γ)⇀∅.

We have (∅; α) ∈ f(α), (∅; β) ∈ f(β), (∅; γ) ∈ f(γ) and (∅; _ ⇒ γ) ∈ f(γ)�. Altogether, they imply 
� α, β⇀γ | γ⇀ε, namely S 	cf

HFL(R) α, β ⇒ γ | γ ⇒. �
6.2. Hyper-MacNeille completions

As another application of residuated hyperframes, we address here the issue of completions. A simple 
argument that the variety of FL-algebras defined by acyclic P�

3 equations is closed under completions is 
already contained in [13]. However, the completions there are not regular (namely they do not necessar-
ily preserve existing joins and meets), as they are obtained by combining subdirect representations and 
MacNeille completions:

A ↪→
∏

i∈I

Ai −→
∏

i∈I

W+
Ai

,

and the former is not regular.
Regular completions are important, for instance, to prove algebraic completeness of a predicate logic 

(i.e., completeness with respect to complete algebras) [34,35]. However, it is not always easy to prove that a 
whole variety is closed under regular completions, especially when the variety is not closed under MacNeille 
completions. For instance, it takes a 22-page paper [23] to prove that the variety of Heyting algebras 
generated by the 3-element algebra admits regular completions.

Our purpose here is to apply the methodology developed so far to the issue of regular completions for 
the variety of FL-algebras defined by acyclic P�

3 equations. However, we will not be as ambitious as [23]
and will not try to prove that all members of a variety admit regular completions. Instead, we show that 
externally distributive members of a given variety admit regular completions.

We begin with a basic observation on the residuated hyperframes HA defined in Section 5.2.

Lemma 6.4. Let A be an FL-algebra and id : A −→ A the identity map. Then, (HA, A, id, id) is a Gentzen 
hyperframe and � a ⇀b implies a ≤ b.
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Proof. Let e : A ↪→
∏

i∈I Ai be a subdirect representation. We have:

� a1⇀b1 | · · · | an⇀bn ⇐⇒ 1 ≤ 	(a1\b1) ∨ · · · ∨ 	(an\bn)
⇐⇒ ∀i ∈ I. ei(a1) ≤ ei(b1) or · · · or ei(an) ≤ ei(bn),

where ei : A −→ Ai is the canonical projection map. This allows us to verify the Gentzen rules component-
wise, in a straightforward way. �

As a consequence of Theorem 5.20, we obtain an embedding f : A −→ H+
A and we call (H+

A, f) the 
hyper-MacNeille completion of A.

We first observe that the hyper-MacNeille completion of A coincides with the MacNeille completion when 
A is subdirectly irreducible.

Lemma 6.5. Let A be a subdirectly irreducible FL-algebra and X ⊆ HW a Galois-closed set in HA. Then 
(h; a) ∈ X if and only if (∅; a) ∈ X or � h.

Proof. (⇐) Let (g; c) ∈ X�. If (∅; a) ∈ X, then we obtain � g | a ⇀ c, so � g | h | a ⇀ c by external 
weakening. On the other hand, � h immediately implies � g | h | a ⇀c. Hence (h; a) ∈ X.

(⇒) Suppose that (h; a) ∈ X and � h. For every (g; c) ∈ X�, we have � h | g | a ⇀c, namely � h or 
� g or a ≤ c by (2) of Example 5.8. Since the first case never holds by assumption, we have � g or a ≤ c, 
namely � g | a ⇀c for every (g; c) ∈ X�. This shows that (∅; a) ∈ X. �
Proposition 6.6. Let A be a subdirectly irreducible FL-algebra. Then the hyper-MacNeille completion (H+

A, f)
is isomorphic to the MacNeille completion of A.

Proof. Given a Galois-closed set X, let X0 := {(∅; a) : (∅; a) ∈ X} and X1 := {(∅; c) : (∅; c) ∈ X�}. We 
claim that

X = X��
0 = X�

1 .

It is straightforward to verify X ⊇ X��
0 and X ⊆ X�

1 .
To show X ⊆ X��

0 , let (h; a) ∈ X. Then either (∅; a) ∈ X or � h by Lemma 6.5. In both cases, (h; a)
belongs to X��

0 by Lemma 6.5 again.
To show X�

1 ⊆ X, let (h; a) ∈ X�
1 and (g; c) ∈ X�. Similarly to Lemma 6.5, we can show that either 

� g or (∅; c) ∈ X� holds. In the former case, we have � g | h | a ⇀c by external weakening. In the latter 
case, we have � h | a ⇀c, hence � g | h | a ⇀c. This proves that (h; a) ∈ X�� = X.

By Lemma 5.3 and by recalling that the embedding f : A −→ H+
A is defined by f(a) := (∅; a)�� =

(∅; a)�, we obtain

X = γ[X0] =
⋃

γ{f(a) : (∅; a) ∈ X0},
= X�

1 =
⋂
{f(c) : (∅; c) ∈ X1}.

Hence the completion (H+
A, f) is join-dense and meet-dense. The definition of (·, \, /) in H+

A also conforms 
to Theorem 2.5. �

This establishes the equivalence of hyper-MacNeille and MacNeille completions for subdirectly irreducible 
FL-algebras. On the other hand, the forthcoming theorem shows that they are in general quite different.

Lemma 6.7. Let A be an FL-algebra and e : A ↪→
∏

i∈I Ai a subdirect representation. Also, let (q) be an 
analytic clause. If Ai |= (q) for every i ∈ I, then (q) is pointwise valid in HA.
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Proof. We again work on an example. Assume that (q) is

x · y ≤ z =⇒ x ≤ 0 or y ≤ z. (em)

We need to verify that

� g | x ◦ y⇀z

� g | x⇀ε | y⇀z
(em0)

holds for every x, y ∈ W , z ∈ W ′ and g ∈ H = (W × W ′)∗. We assume that g is of the form x1 ⇀

y1 | · · · | xn⇀yn and write ei(g) for the disjunctive clause ei(x1) ≤ ei(y1) or · · · or ei(xn) ≤ ei(yn). Then 
� g | x ◦ y ⇀ z means that ei(g) or ei(xy) ≤ ei(z) holds in every Ai (i ∈ I). Since Ai satisfies (em) we 
obtain ei(g) or ei(x) ≤ 0 or ei(y) ≤ ei(z). This shows � g | x ⇀ε | y⇀z (recall that ε = 0 in HA). �
Theorem 6.8. Let E be a set of equations equivalent to a set R of analytic structural clauses. Then the 
variety FL(E) admits hyper-MacNeille completions.

Proof. Let A ∈ FL(E) and A ↪→
∏

i∈I Ai be a subdirect representation. We have Ai ∈ FL(E)SI for every 
i ∈ I. Hence by the definition of equivalence (see Corollary 3.19), every Ai satisfies R. Hence R is pointwise 
valid in HA by Lemma 6.7.

On the other hand, by thinking of E as a set of formulas, we have E ⊆ L(E) = L(R) by Corollary 3.19. 
Therefore by Theorem 5.16, we have H+

A |= α for every α ∈ E . We have thus obtained the hyper-MacNeille 
completion H+

A of A, which belongs to FL(E). �
Remark 6.9. This should be contrasted with a deep result of [7], which shows that there are exactly three 
varieties of Heyting algebras which admit MacNeille completions: the whole variety HA, the variety BA of 
Boolean algebras and the trivial variety. On the other hand, there are infinitely many different P�

3 equations 
(= P3 equations in presence of commutativity and integrality) that define an intermediate variety between 
BA and HA. Our result states that all such varieties admit hyper-MacNeille completions.

The above argument is more complicated than that in [13] for the subdirect MacNeille completion. The 
advantage of hyper-MacNeille completions is a better behavior with respect to regularity.

Definition 6.10. An FL-algebra A is said to be externally distributive if for every a, b ∈ A and every set 
C ⊆ A such that 

∧
C and 

∨
C exist in A,

1 ≤ (a\c)∇b for every c ∈ C =⇒ 1 ≤ (a\ (
∧
C))∇b,

1 ≤ (c\a)∇b for every c ∈ C =⇒ 1 ≤ ((
∨
C) \a)∇b.

External distributivity turns out to be a sufficient condition for regularity.

Theorem 6.11. If A is an externally distributive FL-algebra, then H+
A is a regular completion.

Proof. If external distributivity holds for C ⊆ A, then the Gentzen hyperframe HA satisfies:

� h | ι(c)⇀z, for some c ∈ C

� h | ι (
∧

C)⇀z
(
∧

L)
� h | x⇀ι′(c) for every c ∈ C

� h | x⇀ι′ (
∧
C)

(
∧

R)

� h | ι(c)⇀z for every c ∈ C

� h | ι (
∨

C)⇀z
(
∨

L)
� h | x⇀ι′(c) for some c ∈ C

� h | x⇀ι′ (
∨
C)

(
∨

R)
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These are just infinitary variants of the Gentzen rules for ∧ and ∨. By inspecting the proof of Theorem 5.20, 
we can confirm that the argument goes through even if we replace binary ∧ with infinitary 

∧
and binary ∨

with infinitary 
∨

. Hence we obtain an embedding f which preserves 
∧

and 
∨

. �
For instance, every FL-chain A is externally distributive, so that the hyper-MacNeille completion H+

A is 
regular.

7. Summing up

In the previous section we proved that, when added to HFL, analytic rules yield strongly analytic 
hypersequent calculi. We now prove the converse direction.

Theorem 7.1. Let R be a set of structural rules. If HFL(R) is strongly analytic, then R is equivalent to a 
set R′ of analytic structural rules.

Proof. Let

Ξ | Θ1 · · · Ξ | Θm

Ξ | Θm+1 | · · · | Θn
(r)

be a structural rule in R and consider its atomic instance, in which Ξ = ∅ and each distinct metavariable 
is instantiated by a new propositional variable. We still denote it by (r). We may assume that (r) satisfies 
(the syntactic analogues of) linearity and exclusion (Section 4.3). To transform (r) into an analytic rule, we 
need to remove the redundant variables from the premises (i.e., those which do not occur in the conclusion). 
Let us write Ξ0 for the conclusion Θm+1 | · · · | Θn, and P for the premise set {Θ1, . . . , Θm}. Let P+ be the 
least elementary set of sequents that includes P (cf. Definition 2.1). We then have P+ 	HFL(R) Ξ0. Hence 
the strong analyticity of HFL(R) implies that Ξ0 has a derivation from a finite subset {Θ′

1, . . . , Θ′
k} of P+, 

and furthermore none of Θ′
l contains a variable that does not occur in Ξ0 (recall that the definition of strong 

analyticity includes the subformula property). Thus all the redundant variables, if any, have been removed 
from the premises. Now by substituting back the metavariables Γ, Π, etc. for the propositional variables 
(and associating triples (Γj , Δj , Πj) for each variable on the right hand side), we obtain a structural rule

Ξ | Θ′
1 · · · Ξ | Θ′

k

Ξ | Θm+1 | · · · | Θn
(r′)

which is analytic (see Definition 4.16) and derivable in HFL(R). Moreover, it is easy to see that the obtained 
rule (r′) implies the original one (r). If we do this transformation for all (r) ∈ R, we obtain a set R′ of 
analytic rules equivalent to R. �

In the previous section, we also proved that if a set E of equations is equivalent to a set of analytic 
clauses, then FL(E) admits (hyper-MacNeille) completions. We now prove the converse direction under the 
assumption that E implies commutativity (i.e. xy ≤ yx).

Theorem 7.2. Let E be a set of equations which implies commutativity. If E is equivalent to a set R of 
structural clauses and FL(E) admits completions, then E is equivalent to a set R of analytic structural 
clauses.

In short, admitting completions implies analyticity in the commutative case.
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Proof. Let (q) : P =⇒ C be a structural clause in R, where P is a set of premises and C is a disjunctive 
clause t1 ≤ u1 or · · · or tn ≤ un. We have

P |=FL(E) C
�, (4)

where C� := (t1\u1)∇ · · ·∇(tn\un). Indeed, FL(E)SI = FL(R)SI implies P |=FL(E)SI
C, so P |=FL(E)SI

C�

by Lemma 3.15, and P |=FL(E) C
� by Corollary 3.14.

We transform (q) into an analytic clause (q) such that (q) implies (q) over FL and |=FL(E)SI
(q). This will 

be sufficient to establish that E and R := {(q) : (q) ∈ R} are equivalent.
We basically follow the procedure described in Section 4.3. Step 5 can be fulfilled without any problem. 

So we may assume that (q) satisfies linearity and exclusion. We just have to remove all redundant variables 
(those which do not occur in the conclusions) from the premises.

Suppose that (q) contains a redundant variable x. Let P+ be the least set of equations such that P ⊆ P+

and

t ≤ x, lxr ≤ u ∈ P+ =⇒ ltr ≤ u ∈ P+.

Let P± be the subset of P+ that consists of equations which do not contain x. We claim:

P± |=FL(E) C
�. (5)

Once this claim has been established, the rest will be easy. Indeed, we may regard C� as a single formula 
(t1\u1 ∧ 1) ∨ · · · ∨ (tn\un ∧ 1) due to commutativity. Hence there is a finite subset P±

0 of P± such that 
P±

0 |=FL(E) C
� by the compactness theorem.

We thus obtain a new clause P±
0 =⇒ C which holds in FL(E)SI and implies (q) since all premises in P±

0
are derivable from P . Moreover, P±

0 does not contain the redundant variable x. Hence by repetition we end 
up with an analytic clause (q) with the desired property.

Now let us prove the claim (5). Let A ∈ FL(E) and let f be a valuation into A which satisfies all equations 
in P±:

A, f |= P±. (6)

By assumption, there is a completion A′ of A which belongs to FL(E). We now extend f to a valuation f ′

into A′ so that f ′(y) = f(y) for any variable y different from x. To define f ′(x), let Tx be the set of terms 
defined by

Tx := {t : (t ≤ x) ∈ P+, t does not contain x},

and let f ′(x) :=
∨
{f(t) : t ∈ Tx}. It is well defined since A′ is complete. We claim:

A′, f ′ |= P. (7)

Once this has been proved, we obtain A′, f ′ |= C� by (4). Since x does not occur in C, it implies A, f |= C�, 
thus the claim (5) holds.

So it remains to prove (7).

• Let s(x, . . . , x) ≤ u be an equation in P , where all occurrences of x are indicated. We have:

f ′(s(x, . . . , x)) =
∨

· · ·
∨

f(s(t1, . . . , tk)) ≤ f(u) = f ′(u).

t1∈Tx tk∈Tx
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The inequality holds because s(t1, . . . , tk) ≤ u belongs to P± for every t1, . . . , tk ∈ Tx, hence is satisfied 
by f (recall our assumption (6)).

• Let s(x, . . . , x) ≤ x be an equation in P . We have:

f ′(s(x, . . . , x)) =
∨

t1∈Tx

· · ·
∨

tk∈Tx

f(s(t1, . . . , tk)) ≤
∨

t∈Tx

f(t) = f ′(x).

The inequality holds because s(t1, . . . , tk) ≤ x belongs to P+ for every t1, . . . , tk ∈ Tx, so
s(t1, . . . , tk) ∈ Tx.

The above argument works even if Tx is empty. Hence we have established the remaining claim (7). �
Our main achievements can be summarized as follows:

Theorem 7.3.

1. Every P�
3 equation/axiom can be transformed into an equivalent set of structural clauses/rules.

2. Let E be a set of P�
3 equations/axioms. The following are equivalent:

(a) E is equivalent to a set of acyclic clauses.
(b) E is equivalent to a set of analytic clauses.
(c) E is equivalent to a set R of structural rules such that HFL(R) is strongly analytic.

3. (a)–(c) imply:
(d) FL(E) admits hyper-MacNeille completions.
(e) FL(E) admits completions.

4. Whenever E implies commutativity (exchange), (a)–(e) are all equivalent.
5. Whenever E implies integrality (left weakening), (a)–(e) all hold.

Proof. 1. Theorem 4.10.
2. (a) ⇒ (b): Theorem 4.15.
(b) ⇒ (c): Theorem 6.3.
(c) ⇒ (a): Theorem 7.1. Note that analytic rules are also acyclic.
3. (b) ⇒ (d): Theorem 6.8.
(d) ⇒ (e): Trivial.
4. (e) ⇒ (b): Theorem 7.2.
5. Theorem 4.15. �

The N2 equation x\x ≤ x/x (that also belongs to P�
3) provides a counterexample to (a)–(e) in absence 

of commutativity. Indeed, we have shown in [14] that the variety defined by x\x ≤ x/x does not admit any 
completion.

It is left open whether 4 holds without the assumption of commutativity.

8. Final observations

We conclude with some observations on the expressive power of structural hypersequent rules and on the 
structure of the substructural hierarchy.
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Fig. 6. Limitations for structural rules extending HFLew.

8.1. Limitations of structural hypersequent rules

As seen before each P�
3 axiom can be transformed into equivalent structural (hypersequent) rules. This 

shows what structural rules can express. Here we address the converse problem, namely identifying which 
properties (equations over FL-algebras, or equivalently, Hilbert axioms in the language of FL⊥) cannot
be expressed by structural rules. Notice that finding negative results is often more difficult than obtaining 
positive ones. A negative result in the formalism of display logic [6] is contained in [27] and characterizes 
the class of axioms that can be captured by analytic structural display rules to be added to the calculus for 
the tense logic KT; the characterization in [27] (and its generalization in [15] to all display calculi satisfying 
suitable conditions) is based only on the syntactic shape of the considered axioms. A semantic character-
ization of the expressive power of structural sequent rules is contained in our previous work [14], where 
we show that (single conclusion) structural sequent rules can only formalize properties which hold in intu-
itionistic logic, and, among them, only those corresponding to algebraic equations preserved by MacNeille 
completions in presence of integrality. Similar results can be established for structural hypersequent rules. 
Let HSM be the hypersequent calculus for three-valued Gödel logic SM – the strongest proper intermediate 
logic, semantically characterized by linearly ordered Kripke models containing two worlds. HSM consists 
of HFLewc + (com) + (Bc2) (see Fig. 4).

Proposition 8.1 ([12]). Any structural hypersequent rule is either derivable in HSM or it derives α ∨ ¬αn

in HFLew, for some natural number n.

We denote by En the extension of FLew by α ∨ ¬αn and by E =
⋂

n≥1 En the intersection of all these 
logics. Clearly E1 is classical logic CL and En ⊆ Em for n ≥ m. The above proposition states that the logics 
that could be captured by extending HFLew by structural hypersequent rules are limited to the subregions 
in Fig. 6 between Fm (the inconsistent logic) and E and between SM and FLew.

The expressive power limitations of structural hypersequent rules are however stronger. Indeed, as shown 
below, only some of the logics in these regions can be captured by structural hypersequent rules.

Proposition 8.2. Any equation ε equivalent to a structural hypersequent rule is preserved by hyper-MacNeille 
completions in presence of integrality.

Proof. Let (q) be the equivalent structural clause. Theorem 4.15 ensures that, in presence of integrality 
x ≤ 1, (q) is equivalent to an analytic clause (q′). By Theorem 6.8, ε is preserved by hyper-MacNeille 
completions. �
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As a corollary we have, for instance, that there is no structural hypersequent rule equivalent to 
Łukasiewicz axiom ((α → β) → β) → ((β → α) → α) since the corresponding equation is not preserved 
under any completion [26].

8.2. On the structure of the substructural hierarchy

Let X, Y be sets of equations. We write X � Y if every equation in X is equivalent to a set of equations 
in Y . We write X ≺ Y if X � Y but not Y � X.

Obviously X ⊆ Y implies X � Y . Hence Nn ∪ Pn � Nn+1 ∩ Pn+1 holds for every n ≥ 0.
On the other hand, we know that prelinearity belongs to P2 ⊆ P3 ∩N3 but not to N2 (see [14]). Hence

N2 ≺ P3, N2 ≺ N3.

We also know that the variety of MV algebras does not admit any completions [26]. Since it consists of 
FLew-algebras defined by an N3 ⊆ N4 ∩ P4 equation (Łukasiewicz axiom), we obtain

P3 ≺ N3

Let us also mention the trivial fact that the variety of lattice-ordered groups does not admit any com-
pletions, simply because the nontrivial ones do not have least and greatest elements. The same holds for 
the variety of commutative lattice-ordered groups. Since the latter is axiomatized by FLe-algebras extended 
with 1 ≤ x(x\1) and the equation is in P3, but not in P�

3, it follows that P3 �� P�
3.

As recently shown in [24] the substructural hierarchy collapses down to the level N3 in presence of 
commutativity. Hence a remaining open problem is whether or not the hierarchy collapses to a certain level 
in the general case.
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