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Distributive residuated frames and generalized bunched
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Abstract. We show that all extensions of the (non-associative) Gentzen system for
distributive full Lambek calculus by simple structural rules have the cut elimination
property. Also, extensions by such rules that do not increase complexity have the
finite model property, hence many subvarieties of the variety of distributive residuated
lattices have decidable equational theories. For some other extensions, we prove the
finite embeddability property, which implies the decidability of the universal theory,
and we show that our results also apply to generalized bunched implication algebras.
Our analysis is conducted in the general setting of residuated frames.

1. Introduction

Motivation and history. Residuated lattices form algebraic semantics for

substructural logics and have been of growing interest in recent years, both

because of the interconnections between order-algebra and proof-theory, which

their study provides, but also because they are related to areas such as classi-

cal algebra, logic, theoretical computer science, philosophy, and mathematical

linguistics, to mention a few. In particular, examples of residuated lattices

include the ideals of a ring (under the lattice structure, but also including the

usual multiplication and division of ideals), lattice-ordered groups, Boolean

and Heyting algebras, MV-algebras and relation algebras. On the other hand,

substructural logics include, apart from classical logic, intuitionistic, relevance,

linear, many-valued, Hajek’s basic logic and the logic of bunched implications.

An account of residuated lattices and substructural logics can be found in [8].

Among such examples, numerous ones have a distributive lattice base; this

paper is concerned with the distributive case.

Distributive residuated lattices appear naturally and also have a simpler

representation [6] than general ones. However, some useful methods and tech-

niques already developed do not apply to the distributive case. In particular,

relation semantics, known as residuated frames and introduced in [7], have
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turned out to be a very useful tool and provide a very natural setting for the

investigation of both algebraic and logical properties in the area [6, 9]. We

develop such frames in the distributive case and use them to obtain various

results in logic and in algebra.

The study of residuated frames inspired the substructural hierarchy devel-

oped in [3, 4, 5], where the third level involving hyper-sequent calculi is also

developed. We do not pursue this direction here, but anticipate that distribu-

tive frames can serve as a basis of an alternative hierarchy (for distributive

varieties only) and that a similar development of distributive hyper-sequent

calculi is possible. The benefits are that some axiomatizations that are beyond

the third level of the usual hierarchy are now within the first three levels of

the distributive hierarchy, so they become amenable to distributive versions of

the above results, based on the tools of this paper.

Outline. After defining (distributive) residuated lattices and generalized bun-

ched implication logics, which correspond to variants of full Lambek calculus,

we introduce in Section 2 relational semantics for these algebras and logics,

which we call distributive residuated frames and which are the main tool of

the paper. These are in some sense analogous to Kripke frames for intuition-

istic logic, which in turn are based on the result that the underlying lattice is

distributive and in the finite case is captured by the poset of join-irreducibles;

in this capacity the downsets of Kripke frames yield a class of algebras that

generate the variety. However, distributive residuated frames follow the lines

of relational semantics for substructural logic, which need not satisfy distribu-

tivity and thus are necessarily two sorted (finite lattices can be captured by a

polarity relation between the sets of join- and meet-irreducible elements); the

resulting lattice-based Galois algebra is constructed by this polarity in a way

similar to the Dedekind-MacNeille completion of a poset. These frames intro-

duce some redundancy (many different frames can represent the same lattice)

and in the distributive case they can be ‘folded’ into a one-sorted Kripke-like

frame; this relationship is discussed in Section 7.

The benefit of the two sorted approach and of the associated redundancies

is that it allows us to connect frames directly with proof-theoretic sequent-

calculus systems, and via this bridge, import methods of proof theory to the

study of relational semantics (for example, as in the proof of the finite model

property). At the same time, it allows for transferring algebraic ideas to

establish proof-theoretic results via residuated frames (as for example, in the

proof of cut elimination). They also yield algebraic constructions, as they come

equipped with an algebraic embedding (for example, in the proof of the finite

embeddability property). The paper draws much from [7], where the theory of

residuated frames is developed, and considers the distributive case. This raises

the need for more complicated syntactic terms, but once the correct setting

has been established, many of the proofs are analogous to ones in [7] (and are

omitted here).
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We consider simple equations, namely equations in the fragment over

{∧,∨, · , 1,�} (in other words, they do not involve the connectives \ , /,→)

and corresponding conditions on residuated frames, called simple conditions.

The latter end up being universal strict Horn sentences in the two-sorted lan-

guage of frames, and we prove that a frame satisfies a simple condition if and

only if its dual algebra satisfies the corresponding simple equation. This allows

us to identify constructions that produce algebras in a given variety. We show

that almost all of our results persist when we consider extensions with such

simple equations.

Having defined distributive residuated frames in Section 2, in Section 3

we introduce distributive Gentzen frames, which are expansions with a partial

algebra and which satisfy conditions which have a natural algebraic and natural

proof-theoretic meaning. We prove that this partial algebra is (quasi)embedd-

able into the Galois algebra of the frame.

In Section 4 we consider a sequent calculus and define a distributive Gentzen

frame from it, where the associated algebra is the free algebra of terms/proposi-

tional formulas. The associated map from that algebra to the dual algebra of

the frame can be used to show that the cut-rule of the system is redundant,

a result that is usually proved syntactically via complicated triple induction.

Cut elimination is a very desirable property in proof theory and we prove that

it holds also in the presence of simple structural rules as they correspond to

simple conditions on the frame.

Cut elimination is usually the first step toward decidability (of the equa-

tional theory). In Section 5 we show the finite model property (namely the

corresponding variety of algebras is generated by its finite members) by con-

sidering a modification of the above frame, used for cut elimination. In effect,

given an invalid equation/sequent, a counter-model is provided by the Galois

algebra; the definition of the frame makes use of all of the unsuccessful at-

tempts (proof-figures) of that sequent that one can construct using the rules of

the calculus. The main complication in proving finiteness of the Galois algebra

is that there are infinitely many such proof attempts and infinitely many se-

quents involved in them, due to the presence of the external contraction rule in

our system (corresponding to one of the inequalities of idempotency of meet).

We undertake a careful investigation of the possible proof-figures and establish

permutability results, where one proof can be transformed into another such

that some applications of the contraction rule are performed higher up in the

proof. This leads to a contraction-controlled proof and finally to only a finite

number of possible proof-figures that one needs to consider in order to check

the validity of a sequent, implying the finiteness of the counter-model. From

this, one can also extract a decidability algorithm. The results are again valid

for simple extensions with rules that do not increase an appropriate measure

of complexity.

For extensions with the equation/rule of integrality x ≤ 1, we prove a

stronger result, the finite embeddability property, in Section 6, which leads to
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embeddability property). The paper draws much from [7], where the theory of

residuated frames is developed, and considers the distributive case. This raises

the need for more complicated syntactic terms, but once the correct setting

has been established, many of the proofs are analogous to ones in [7] (and are

omitted here).
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the decidability of the universal theory of our varieties. Given an algebra in

our variety and a finite subset of it, we construct a frame whose Galois algebra

is still in the variety, it still contains a copy of the finite subset where all the

operations inside the subset are computed as before, and further, the Galois

algebra is finite. Integrality plays an important role in the proof of finiteness,

but once it is present, the addition of further simple equations does not affect

the validity of the result. The residuated frame bears some similarities to the

one in the proof of the finite model property, but this time it is based on

algebraic (as opposed to proof-theoretic) data.

Finally, as mentioned above, in Section 7, we analyze the relationship be-

tween the two-sorted (residuated) and the one-sorted (Kripke-like) frames that

one may consider, and which form relational semantics for the logics/varieties

under investigation.

2. Residuated structures and distributive residuated frames

We start by recalling the definitions of the structures that we study and by

developing the main tool of the paper, distributive residuated frames.

Residuated structures. A residuated lattice is an algebra of the form A =

(A,∧,∨, · , \ , /, 1) where (A,∧,∨) is a lattice, (A, · , 1) is a monoid and the

following residuation property holds for all x, y, z ∈ A

xy ≤ z iff x ≤ z/y iff y ≤ x\z. (res)

An FL-algebra is of the formA = (A,∧,∨, · , \, /, 1, 0) where (A,∧,∨, · , \, /, 1)
is a residuated lattice and 0 is an arbitrary element of A. We denote the variety

of FL-algebras by FL. The variety of distributive FL-algebras, where the lattice

reduct is distributive, is denoted by DFL.

A Brouwerian algebra is a residuated lattice where multiplication coincides

with meet, while a Heyting algebra is an FL-algebra with the same property

together with the stipulation that 0 is the least element. In such algebras,

it turns out that for all elements a, b, we have a\b = b/a and we denote the

common value by a → b. Furthermore, it turns out that they have a top

element and that this element coincides with 1.

We consider algebras that have two residuated-lattice structures on them,

one of them assumed to be of the Brouwerian/Heyting algebra nature. In

particular, a generalized bunched implication algebra, or GBI-algebra for short,

is an algebra of the form (A,∧,∨, · , \ , /,→, 1,�) such that (A,∧,∨,�) is a

lattice with top element �, (A, · , 1) is a monoid, and for all x, y, z ∈ A, we

have

x ∧ y ≤ z ⇐⇒ y ≤ x → z,

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.
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Such an algebra is said to be bounded, or a bGBI-algebra, if the lattice

reduct is bounded and the signature is expanded with a constant operation ⊥
that denotes the least element of the lattice. It is commutative if the monoid

is commutative. A BI-algebra is defined to be a commutative bGBI-algebra.

Since the meet operation is residuated by the Heyting arrow →, it follows that

meet distributes over all existing joins, hence the lattice is distributive.

BI-algebras, or bunched implication algebras are the algebraic models of

bunched implication logic [13]. This logic is part of separation logic and has re-

ceived considerable attention in the past two decades in computer science since

it is well suited to reasoning about concurrent resources in parallel programs

[14]. Our results apply to the commutative as well as the non-commutative

version, with or without bottom element. Also, our results apply to non-

associative versions of residuated lattices and GBI-algebras.

We will also make use of the following definitions of residuated structures

that either lack associativity, unit, or the lattice operations. A po-groupoid

is a structure G = (G,≤, ·) where ≤ is a partial order on G and the binary

operation · is order preserving. A residuated po-groupoid, or rpo-groupoid, is

an expansion G = (G,≤, · , \ , /) of a po-groupoid, where ≤ is a partial order

on G and the residuation property (res) holds. If ≤ is a lattice order, then

(G,∧,∨, · , \ , /) is said to be a r�-groupoid, and if this algebra is extended

with a constant 1 that is a multiplicative unit, or with an arbitrary constant

0, then it is said to be a r�u-groupoid or a r�z-groupoid, respectively. Note

that a residuated lattice is an associative r�u-groupoid, and an FL-algebra is

an associative r�uz-groupoid.

We will refer to distributive r�u-groupoids as nDRL-algebras and their ex-

pansions with the residual → of ∧ as nGBI-algebras. (Here ‘n’ stands for “not

necessarily associative”.) The variety of all nDRL-algebras (nGBI-algebras)

is denoted by nDRL (respectively, nGBI) and the associative subvarieties are

denoted by DRL and GBI.

Distributive residuated frames. Given a binary relation N ⊆ W × W ′

between two sets, we define

X� = {z ∈ W ′ : x N z for all x ∈ X} and

Z� = {x ∈ W : x N z for all z ∈ Z}.

It is well known and easy to see that the map γN on the powerset P(W ), where

γN (X) = X��, is a closure operator (expansive, monotone, and idempotent),

and that every closure operator on a powerset P(W ) is of the form γN for

some N ⊆ W × W ′. Also, the image of γN forms a complete lattice, under

the operations given by X ∧ Y = X ∩ Y and X ∨γN
Y = γN (X ∪ Y ), and all

complete lattices are of this form (up to isomorphism).

In [7], a similar characterization is given for complete residuated lattices.

For the image of γN to be a residuated lattice, it is enough for the set W to

support an associative ternary relation ◦ and a unary relation E that is the unit

4 N. Galatos and P. Jipsen Algebra univers.

the decidability of the universal theory of our varieties. Given an algebra in

our variety and a finite subset of it, we construct a frame whose Galois algebra

is still in the variety, it still contains a copy of the finite subset where all the

operations inside the subset are computed as before, and further, the Galois

algebra is finite. Integrality plays an important role in the proof of finiteness,

but once it is present, the addition of further simple equations does not affect

the validity of the result. The residuated frame bears some similarities to the

one in the proof of the finite model property, but this time it is based on

algebraic (as opposed to proof-theoretic) data.

Finally, as mentioned above, in Section 7, we analyze the relationship be-

tween the two-sorted (residuated) and the one-sorted (Kripke-like) frames that

one may consider, and which form relational semantics for the logics/varieties

under investigation.

2. Residuated structures and distributive residuated frames

We start by recalling the definitions of the structures that we study and by

developing the main tool of the paper, distributive residuated frames.

Residuated structures. A residuated lattice is an algebra of the form A =

(A,∧,∨, · , \ , /, 1) where (A,∧,∨) is a lattice, (A, · , 1) is a monoid and the

following residuation property holds for all x, y, z ∈ A

xy ≤ z iff x ≤ z/y iff y ≤ x\z. (res)

An FL-algebra is of the formA = (A,∧,∨, · , \, /, 1, 0) where (A,∧,∨, · , \, /, 1)
is a residuated lattice and 0 is an arbitrary element of A. We denote the variety

of FL-algebras by FL. The variety of distributive FL-algebras, where the lattice

reduct is distributive, is denoted by DFL.

A Brouwerian algebra is a residuated lattice where multiplication coincides

with meet, while a Heyting algebra is an FL-algebra with the same property

together with the stipulation that 0 is the least element. In such algebras,

it turns out that for all elements a, b, we have a\b = b/a and we denote the

common value by a → b. Furthermore, it turns out that they have a top

element and that this element coincides with 1.

We consider algebras that have two residuated-lattice structures on them,

one of them assumed to be of the Brouwerian/Heyting algebra nature. In

particular, a generalized bunched implication algebra, or GBI-algebra for short,

is an algebra of the form (A,∧,∨, · , \ , /,→, 1,�) such that (A,∧,∨,�) is a

lattice with top element �, (A, · , 1) is a monoid, and for all x, y, z ∈ A, we

have

x ∧ y ≤ z ⇐⇒ y ≤ x → z,
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of ◦, and for N to be a nuclear relation, namely for every x, y ∈ W, z ∈ W ′,

there exist subsets x�z and z�y of W ′ such that

x ◦ y N z iff y N x�z iff x N z�y. [nuc◦]

The corresponding condition for γN is that it is a nucleus. In general, a map

γ on a po-groupoid G is called a nucleus if it is a closure operator such that

γ(x) · γ(y) ≤ γ(x · y) for all x, y ∈ G.

For a ternary relation ◦, we write X ◦ Y for

{w ∈ W : (x, y, w) ∈ ◦, for some x ∈ X, y ∈ Y }

and x ◦ y for {x} ◦ {y}. The relation is said to be associative if it satisfies

(x ◦ y) ◦ z = x ◦ (y ◦ z), i.e., if it satisfies the following equivalence

∃u[(x, y, u) ∈ ◦ and (u, z, w) ∈ ◦] iff ∃v[(x, v, w) ∈ ◦ and (y, z, v) ∈ ◦],

and to have unit E ⊆ W if x ◦ E = {x} = E ◦ x, i.e., if

∃e ∈ E[(x, e, y) ∈ ◦] iff x = y iff ∃e ∈ E[(e, x, y) ∈ ◦].

The additional operations on the image of γN that provide the residuated-

lattice structure are

X ◦γN
Y = γN (X ◦ Y ), X/Y = {z : {z} ◦ Y ⊆ X}, Y \X = {z : Y ◦ {z} ⊆ X},

and 1 = γN (E). Also, every complete residuated lattice is (isomorphic to one)

of this form; see [7] for details. We proceed to present a similar characterization

for the distributive case.

Given a lattice expansion L = (L,∧,∨,�), a nucleus γ on L (with respect

to �) is called distributive if it satisfies γ(x� y) = γ(x) ∧ γ(y).

Lemma 2.1. Let L = (L,∧,∨,�) be a lattice expansion and γ a distributive

�-nucleus on L. Then �γ = ∧ on the image Lγ of γ. If, furthermore, � is a

residuated operation on L, then Lγ is distributive.

Proof. As γ is a �-nucleus on L, we have γ(γ(x) � γ(y)) = γ(x � y) for all

x, y ∈ L. So, γ(x) �γ γ(y) = γ(x) ∧ γ(y) since � is a distributive nucleus.

Thus, for x, y ∈ Lγ , x �γ y = x ∧ y, namely �γ = ∧. Moreover, since �γ is a

residuated operation on Lγ , the latter is distributive. �

Corollary 2.2. Let � be a ternary relation on a set W and γ a distributive

�-nucleus on P(W ). Then P(W )γ is distributive and it satisfies �γ = ∩.

Proof. Clearly, P(W ) is a complete lattice and � distributes over arbitrary

unions, so � is residuated on P(W ). �

For a ternary relational structure � on a set W , a relation N ⊆ W × W ′

is called distributively nuclear if it is nuclear with respect to �, i.e., for all

x, y ∈ W, z ∈ W ′, there exist subsets denoted x� z, z � y of W ′ such that

x� y N z iff y N x� z iff x N z � y, [nuc�]
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and it satisfies the following conditions of associativity, exchange, integrality,

and contraction (to be read as downward implications, with the first one being

a bi-implication):

x� (y � w) N z

(x� y)� w N z
[�a]

x� y N z

y � x N z
[�e]

x N z
x� y N z

[�i] x� x N z
x N z

[�c]

Note that [�e] can be replaced by

y N z

x� y N z
[�i�]

in view of the following two derivations:

y N z

y � x N z
[�i]

x� y N z
[�e]

x� y N z

(y � x)� (y � x) N z
[�i], [�i�], [nuc�]

y � x N z
[�c]

Lemma 2.3. Given a set W , a ternary relational structure � on W and

N ⊆ W ×W ′, we have that γN is a distributive nucleus on P(W,�) iff N is

a distributively nuclear relation.

Proof. Given the correspondence between nuclei and nuclear relations, it is

enough to show that the distributivity conditions correspond. For brevity, we

write γN simply as γ. The distributivity condition γ(X�Y ) = γ(X)∩γ(Y ) for

γ is equivalent to the inequalities γ(X)∩γ(Y ) ⊆ γ(X�Y ), γ(X�Y ) ⊆ γ(X),

and γ(X � Y ) ⊆ γ(Y ).

By basic properties of � and �, we can see that the inclusion γ(X � Y ) ⊆
γ(X) is equivalent to X� ⊆ (X � Y )�, namely to the condition that for all

z ∈ W ′, X N z implies (X � Y ) N z. Specializing this to singletons yields

(�i). Conversely, for all z ∈ W ′, if X N z, then x N z for all x ∈ X, hence

x� y N z for all x ∈ X and y ∈ Y , by (�i); so (X � Y ) N z.

Note that γ(X) ∩ γ(Y ) ⊆ γ(X � Y ) is equivalent to γ(X) ⊆ γ(X � X).

The forward direction follows by choosing Y = X. For the converse direction,

using twice the fact that γ is a �-nucleus, we have

γ(X) ∩ γ(Y ) ⊆ γ(γ(X) ∩ γ(Y )) ⊆ γ([γ(X) ∩ γ(Y )]� [γ(X) ∩ γ(Y )])

⊆ γ(γ(X)� γ(Y )) = γ(X � Y ).

Now, γ(X) ⊆ γ(X � X) is equivalent to (X � X)� ⊆ X�, namely to the

condition that for all z ∈ W ′, (X �X) N z implies X N z. Specializing this

to singletons yields (�c). Conversely, for all z ∈ W ′, if (X � X) N z, then

x� x N z for all x ∈ X, hence x N z for all x ∈ X; so X N z. �

A (distributive) residuated frame is a structure of the form

W = (W,W ′, N, ◦,�,�,�,�,�),
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to �) is called distributive if it satisfies γ(x� y) = γ(x) ∧ γ(y).

Lemma 2.1. Let L = (L,∧,∨,�) be a lattice expansion and γ a distributive

�-nucleus on L. Then �γ = ∧ on the image Lγ of γ. If, furthermore, � is a

residuated operation on L, then Lγ is distributive.

Proof. As γ is a �-nucleus on L, we have γ(γ(x) � γ(y)) = γ(x � y) for all

x, y ∈ L. So, γ(x) �γ γ(y) = γ(x) ∧ γ(y) since � is a distributive nucleus.

Thus, for x, y ∈ Lγ , x �γ y = x ∧ y, namely �γ = ∧. Moreover, since �γ is a

residuated operation on Lγ , the latter is distributive. �

Corollary 2.2. Let � be a ternary relation on a set W and γ a distributive

�-nucleus on P(W ). Then P(W )γ is distributive and it satisfies �γ = ∩.

Proof. Clearly, P(W ) is a complete lattice and � distributes over arbitrary

unions, so � is residuated on P(W ). �

For a ternary relational structure � on a set W , a relation N ⊆ W × W ′

is called distributively nuclear if it is nuclear with respect to �, i.e., for all

x, y ∈ W, z ∈ W ′, there exist subsets denoted x� z, z � y of W ′ such that

x� y N z iff y N x� z iff x N z � y, [nuc�]
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where ◦ and � are ternary relations on W , N ⊆ W × W ′ is ◦-nuclear with

respect to � and �, and is distributively �-nuclear with respect to � and �.

It follows that the image W+ = (γN [P(W )],∩,∪γN
, ◦γN

, \ , /) of γN is a

distributive r�-groupoid, called the Galois algebra of W, and denoted by W+.

The (bunched) Galois algebra W+→ is the expansion of this (non-associative)

residuated lattice with two operations: X → Y = {z : X�z ⊆ Y } and � = W ,

and it is an nGBI-algebra. Our results will hold for both constructions, so we

will use the first notation for both of them in most of the paper.

An associative frame is such that ◦γ is associative, a unital distributive

residuated frame is an expansion of a distributive residuated frame with a set

E ⊆ W such that 1 := γN (E) is a unit for ◦γ , and a distributive residuated zero

frame is an expansion with a distinguished subset D ⊆ W as interpretation

for the constant 0. The first two conditions are respectively equivalent to

• [(x ◦ y) ◦ z]� = [x ◦ (y ◦ z)]�; (associativity)

• (x ◦ E)� = {x}� = (E ◦ x)�, for all x ∈ W . (unit)

Below, we refer to these various frames simply as (distributive) residuated

frames and often suppress the adjective ‘bunched’ before ‘Galois algebra’.

To provide an example, given a GBI-algebra A = (A,∧,∨, · , \ , /,→, 1,�),

define the residuated frame WA = (A,A,≤, · , \ , /,∧,→,←, {1}, {�}), where
· , \ , /,∧,→ are considered as ternary relations (e.g., ·(x, y, z) ⇐⇒ x · y = z),

and ←(x, y, z) ⇐⇒ y → x = z). It is easy to see that W+→
A is based on

the Dedekind-MacNeille completion of the lattice reduct of A, hence if A is

complete (e.g., finite), then the Galois algebra is isomorphic to A. Moreover,

it follows from the next section that A embeds into W+→
A as a GBI-algebra.

As a second example, if A = (A,∧,∨, · , \ , /, 1) is a distributive residu-

ated lattice, then we define the distributive residuated frame WA by setting

x → y equal to {z : x ∧ z ≤ y} = y ← x. Then the Galois algebra is still a

completion of A, but it may not be the Dedekind-MacNeille completion of A

since the Galois algebra contains all residuals for the meet operation, while the

Dedekind-MacNeille completion adds joins and meets only for subsets that do

not have one in A. So if binary meet does not distribute over some existing

infinite join, then the Galois algebra will contain an extra element, but the

Dedekind-MacNeille completion will not.

Alternatively, given a distributive residuated latticeA, we can defineW′
A =

(A,SA × A,N, · ,�,�,∧,�,�, {1}) where SA is the set of all polynomials of

(A, · ,∧) that have a single variable and which appears only once, usually

denoted by u = u( ). Also, the relation N is defined by x N (u, b) iff u(x) ≤
b, and where x�(u, b) = (u(x · ), b), (u, b)�y = (u( · y), b), x � (u, b) =

(u(x ∧ ), b), and (u, b) � y = (u( ∧ y), b). It will follow that A embeds into

W+
A as a distributive residuated lattice. Such embeddings are the main focus

of Section 3.
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Simple conditions and equations. Let t0, t1, . . . , tn be elements of the free

bi-unital bigroupoid in the signature {◦, ε,�, δ} over a countable set of vari-

ables, with t0 a linear term (every variable appears once), and let W be a

distributive frame. Here, similar to the definition of a term function, tWi de-

notes the function from W to P(W ) induced by ti. Also, in the following if X

is a set, then X N y means that x N y for all x ∈ X.

A simple condition is an implication (the assumptions are read conjunc-

tively) of the form
t1 N q · · · tn N q

t0 N q
[r]

where q is a variable not occurring in t0, t1, . . . , tn. For example, �-exchange

[�e], �-contraction [�c], �-integrality [�i], �-associativity [�a], and ◦-associa-
tivity [◦a] are simple structural conditions, and so is

x ◦ (y1 � y2) N z

(x ◦ y1)� (x ◦ y1) N z
[mdm]

where [mdm] stands for “multiplication distributes over meet”.

We say that W satisfies condition [r] if for all z ∈ W ′, and for all sequences

x̄ of elements of W matching the variables involved in t0, t1, . . . , tn, the con-

junction of the conditions tWi (x̄) N z, for i ∈ {1, . . . , n}, implies tW0 (x̄) N z.

Note that in the multi-sorted first-order language of W, the only predicate

symbol is the relation N , terms in the first sort are elements of the above free

bi-unital bigroupoid, and terms in the second sort are repeated applications

of terms of the first sort as denominators in � and �, as well as in � and

�, on (eventually) variables of the second sort, for example t1�(t2 � (q�t3)).
However, given the nuclear property of N , the most general atomic formulas

are of the form t N q, where t is a biunital bigroupoid term and q is a variable

(or ε or δ, if we assume that 0 or ⊥ are in the type); for example, t4 N

t1�(t2 � (q�t3)) is equivalent to (t2 � (t1 ◦ t4)) ◦ t3 N q. It is then clear

that simple conditions are exactly the strict universal Horn formulas in this

language, with the restriction of linearity of t0. The latter restriction is not

essential and any strict universal Horn formula can be converted into such a

linearized one, as essentially follows from the analysis below.

Note that the condition [r] and the inequality ε = (t0 ≤ t1 ∨ · · · ∨ tn) are

interdefinable. We denote by ε(r) the inequality corresponding to the above

condition and by R(ε) the condition corresponding to the above inequality.

Such inequalities are called simple. For example, the inequality corresponding

to [mdm] is xy1 ∧ xy2 ≤ x(y1 ∧ y2).

In nGBI and nDRL, every equation ε over {∧,∨, · , 1,�} is equivalent to a

conjunction of inequalities of the form above. To show this, we distribute all

products and meets over all joins to reach a form s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn,

where si, tj are unital bi-groupoid terms. Such an equation is in turn equivalent

to the conjunction of the two inequalities s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and

t1∨· · ·∨tn ≤ s1∨· · ·∨sm. Finally, the first one is equivalent to the conjunctions

8 N. Galatos and P. Jipsen Algebra univers.

where ◦ and � are ternary relations on W , N ⊆ W × W ′ is ◦-nuclear with

respect to � and �, and is distributively �-nuclear with respect to � and �.

It follows that the image W+ = (γN [P(W )],∩,∪γN
, ◦γN

, \ , /) of γN is a

distributive r�-groupoid, called the Galois algebra of W, and denoted by W+.

The (bunched) Galois algebra W+→ is the expansion of this (non-associative)

residuated lattice with two operations: X → Y = {z : X�z ⊆ Y } and � = W ,

and it is an nGBI-algebra. Our results will hold for both constructions, so we

will use the first notation for both of them in most of the paper.

An associative frame is such that ◦γ is associative, a unital distributive

residuated frame is an expansion of a distributive residuated frame with a set

E ⊆ W such that 1 := γN (E) is a unit for ◦γ , and a distributive residuated zero

frame is an expansion with a distinguished subset D ⊆ W as interpretation

for the constant 0. The first two conditions are respectively equivalent to

• [(x ◦ y) ◦ z]� = [x ◦ (y ◦ z)]�; (associativity)

• (x ◦ E)� = {x}� = (E ◦ x)�, for all x ∈ W . (unit)

Below, we refer to these various frames simply as (distributive) residuated

frames and often suppress the adjective ‘bunched’ before ‘Galois algebra’.

To provide an example, given a GBI-algebra A = (A,∧,∨, · , \ , /,→, 1,�),

define the residuated frame WA = (A,A,≤, · , \ , /,∧,→,←, {1}, {�}), where
· , \ , /,∧,→ are considered as ternary relations (e.g., ·(x, y, z) ⇐⇒ x · y = z),

and ←(x, y, z) ⇐⇒ y → x = z). It is easy to see that W+→
A is based on

the Dedekind-MacNeille completion of the lattice reduct of A, hence if A is

complete (e.g., finite), then the Galois algebra is isomorphic to A. Moreover,

it follows from the next section that A embeds into W+→
A as a GBI-algebra.

As a second example, if A = (A,∧,∨, · , \ , /, 1) is a distributive residu-

ated lattice, then we define the distributive residuated frame WA by setting

x → y equal to {z : x ∧ z ≤ y} = y ← x. Then the Galois algebra is still a

completion of A, but it may not be the Dedekind-MacNeille completion of A

since the Galois algebra contains all residuals for the meet operation, while the

Dedekind-MacNeille completion adds joins and meets only for subsets that do

not have one in A. So if binary meet does not distribute over some existing

infinite join, then the Galois algebra will contain an extra element, but the

Dedekind-MacNeille completion will not.

Alternatively, given a distributive residuated latticeA, we can defineW′
A =

(A,SA × A,N, · ,�,�,∧,�,�, {1}) where SA is the set of all polynomials of

(A, · ,∧) that have a single variable and which appears only once, usually

denoted by u = u( ). Also, the relation N is defined by x N (u, b) iff u(x) ≤
b, and where x�(u, b) = (u(x · ), b), (u, b)�y = (u( · y), b), x � (u, b) =

(u(x ∧ ), b), and (u, b) � y = (u( ∧ y), b). It will follow that A embeds into

W+
A as a distributive residuated lattice. Such embeddings are the main focus

of Section 3.
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of the inequalities sj ≤ t1 ∨ · · · ∨ tn. Likewise, the second inequality is written

as a conjunction, as well.

We now rewrite each of the conjuncts, say s ≤ t1 ∨ · · · ∨ tn, in a form for

which s is a linear term. For each variable x that appears k > 1 times in s,

we replace each occurrence of x in the equation by x1 ∨ x2 ∨ · · · ∨ xk, where

x1, . . . , xk are variables that do not occur in s ≤ t1∨· · ·∨ tn. As multiplication

and meet distribute over join, the new equation can be written in the form

s′1 ∨ · · · ∨ s′p ≤ t′1 ∨ · · · ∨ t′q, where all the terms are obtained from variables by

taking products and meets. Let s′l be one of the k!-many linear terms among

s′1, . . . , s
′
p. The last equation clearly implies the equation s′l ≤ t′1 ∨ · · · ∨ t′q, but

it is actually equivalent to it, as the latter implies s ≤ t1 ∨ · · · ∨ tn by setting

all duplicate copies of each variable equal to each other. For example, if the

equation to be linearized is x2 ∧ y ≤ (x ∧ y) ∨ yx, then we get, successively:

(x1 ∨ x2)
2 ∧ y ≤ [(x1 ∨ x2) ∧ y] ∨ y(x1 ∨ x2),

(x2
1 ∧ y) ∨ (x1x2 ∧ y) ∨ (x2x1 ∧ y) ∨ (x2

2 ∧ y) ≤ (x1 ∧ y) ∨ (x2 ∧ y) ∨ yx1 ∨ yx2,

x1x2 ∧ y ≤ (x1 ∧ y) ∨ (x2 ∧ y) ∨ yx1 ∨ yx2,

x1 ∧ y ≤ v & x2 ∧ y ≤ v & yx1 ≤ v & yx2 ≤ v =⇒ x1x2 ∧ y ≤ v,

and the simple condition that corresponds to it is:

x1 � y N z x2 � y N z y ◦ x1 N z y ◦ x2 N z

(x1 ◦ x2)� y N z
R(ε)

Given an equation ε, let R(ε) denote the set of conditions associated with each

of these conjuncts (inequalities) obtained from ε in the way described above.

En route to transforming simple conditions to equations over {∧,∨, · , 1}
and vice versa, we established the following theorem, whose proof is an easy

adaptation of the corresponding proof in [7].

Theorem 2.4.

(1) Every equation over {∧,∨, · , 1,�} is equivalent to a conjunction of simple

equations.

(2) Every equation ε over {∧,∨, · , 1,�} is equivalent to R(ε), relative to

nGBI. More precisely, for every G in nGBI, G satisfies ε iff WG sat-

isfies R(ε).

(3) Let W be a distributive residuated frame and let ε be an equation over

{∧,∨, · , 1,�}. Then W satisfies R(ε) iff W+ satisfies ε iff W+ satisfies

R(ε).

We say that a set R of conditions is preserved by ( )+ if for every distributive

residuated frame W, if W satisfies R, then W+ satisfies R. The next corollary

follows directly from Theorem 2.4.

Corollary 2.5. All simple conditions are preserved by ( )+.

For example, the conditions of [�e], [◦a] and [mdm] are preserved by ( )+.
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3. Proof theory as inspiration for Gentzen frames

In this section, we develop a theory parallel to that of [7], where we draw

inspiration from proof theory and consider expansions of a distributive residu-

ated frame with a (partial) algebra and provide conditions under which there

is a natural embedding (or some more general map) from that (partial) algebra

into the Galois algebra of the residuated frame.

The sequent calculi GBI and DRL. We write Fm for the algebra of terms

(over some fixed countable set of variables) in the language of residuated lat-

tices. These terms also serve as propositional formulas in the associated sub-

structural logic. Let (Fm◦, ◦,�, ε) be the free unital bi-groupoid generated

by the set Fm, namely ε is a unit for ◦; often we expand this to a bi-unital

bi-groupoid by adding a constant δ which serves as a unit for �, and in this

case we take Fm to be all formulas over GBI-algebras. We will be lax about

this and use Fm◦ to denote either one of these structures.

SFm◦ denotes the set of unary linear polynomials of Fm◦, namely unary

polynomials obtained from terms where the variable occurs exactly once. We

write u(x) for the value of the polynomial u at x, and we also write u( ) for u

itself; for example, we write ◦ y for the polynomial u defined by u(x) = x ◦ y.
The basic object of the forthcoming logical system is a sequent, namely a pair

(x, b) ∈ Fm◦ × Fm, traditionally written x ⇒ b. A sequent rule is a pair

({s1, . . . , sn}, s0) where s0, . . . , sn are sequents and is presented in the form

s1 s2 · · · sn
s0

or
s0

with rules of the latter form referred to as axioms for n = 0; we call s1, . . . , sn
the assumptions or premises of the rule and s0 its conclusion. Finally, a

Gentzen system is a set of sequent rules.

We will consider the Gentzen system nGBI for non-commutative, non-

associative bunched implication logic, given by the rules (or rule schemes) in

Figure 1 and all their uniform substitution instances (i.e., a, b, c range over

Fm, x, y range over Fm◦ and u ranges over SFm◦). A double horizontal line

indicates that the rule can be applied in both directions. The name of a

particular sequent rule is listed after the rule in parentheses. We also consider

its associative
u(x ◦ (y ◦ z))⇒ c

u((x ◦ y) ◦ z)⇒ c
(◦a)

version GBI, as well as the fragment DRL of GBI that does not contain →
and �. Systems that are lower-bounded contain the additional rules

u(⊥)⇒ a
(⊥L) x⇒ δ

x⇒⊥ (⊥R)

We will let L denote any one of those systems, since our results apply to all of

them, as well as numerous extensions and extensions of fragments.
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of the inequalities sj ≤ t1 ∨ · · · ∨ tn. Likewise, the second inequality is written

as a conjunction, as well.
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we replace each occurrence of x in the equation by x1 ∨ x2 ∨ · · · ∨ xk, where
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it is actually equivalent to it, as the latter implies s ≤ t1 ∨ · · · ∨ tn by setting

all duplicate copies of each variable equal to each other. For example, if the
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Given an equation ε, let R(ε) denote the set of conditions associated with each

of these conjuncts (inequalities) obtained from ε in the way described above.

En route to transforming simple conditions to equations over {∧,∨, · , 1}
and vice versa, we established the following theorem, whose proof is an easy

adaptation of the corresponding proof in [7].

Theorem 2.4.

(1) Every equation over {∧,∨, · , 1,�} is equivalent to a conjunction of simple

equations.

(2) Every equation ε over {∧,∨, · , 1,�} is equivalent to R(ε), relative to

nGBI. More precisely, for every G in nGBI, G satisfies ε iff WG sat-

isfies R(ε).

(3) Let W be a distributive residuated frame and let ε be an equation over

{∧,∨, · , 1,�}. Then W satisfies R(ε) iff W+ satisfies ε iff W+ satisfies

R(ε).

We say that a set R of conditions is preserved by ( )+ if for every distributive

residuated frame W, if W satisfies R, then W+ satisfies R. The next corollary

follows directly from Theorem 2.4.

Corollary 2.5. All simple conditions are preserved by ( )+.

For example, the conditions of [�e], [◦a] and [mdm] are preserved by ( )+.
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x⇒ a u(a)⇒ c

u(x)⇒ c
(CUT)

a⇒ a (Id)
u(x � (y � z))⇒ c

u((x � y) � z)⇒ c
(�a)

u(x � y)⇒ c

u(y � x)⇒ c
(�e)

u(x)⇒ c

u(x � y)⇒ c
(�i)

u(x � x)⇒ c

u(x)⇒ c
(�c)

x⇒ a u(b)⇒ c

u(x ◦ (a\b))⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a u(b)⇒ c

u((b/a) ◦ x)⇒ c
(/L)

x ◦ a⇒ b
x⇒ b/a

(/R)

u(a ◦ b)⇒ c

u(a · b)⇒ c
(·L) x⇒ a y ⇒ b

x ◦ y ⇒ a · b (·R)
u(ε)⇒ a

u(1)⇒ a
(1L)

ε⇒ 1
(1R)

u(a)⇒ c u(b)⇒ c

u(a ∨ b)⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨R�)

x⇒ b
x⇒ a ∨ b

(∨Rr)

u(a � b)⇒ c

u(a ∧ b)⇒ c
(∧L) x⇒ a x⇒ b

x⇒ a ∧ b
(∧R)

x⇒ a u(b)⇒ c

u(x � (a → b))⇒ c
(→L) x � a⇒ b

x⇒ a → b
(→R)

u(δ)⇒ c

u(�)⇒ c
(�L)

x⇒� (�R)

Figure 1. The systems nGBI, GBI, nDRL and DRL.

A proof in L is defined inductively as an (upward growing) tree in the usual

way, where the proved sequent is at the bottom. If there is a proof of a sequent

s in L from assumptions S, then we write S �L s and say that s is provable in

L from S. If S is empty we simply write �L s and say that s is provable in L.

Note that the rules

u(a)⇒ c

u(a ∧ b)⇒ c
(∧L�)

u(b)⇒ c

u(a ∧ b)⇒ c
(∧Lr)

are derivable in L. Indeed,

u(a)⇒ c

u(a� b)⇒ c
(�i)

u(a ∧ b)⇒ c
(∧L)

u(b)⇒ c

u(a� b)⇒ c
(�i�)

u(a ∧ b)⇒ c
(∧L)

We take W = Fm◦ and W ′ = SW × Fm, where SW is the set of all unary

linear polynomials in W , and define the relation N by

x N (u, a) iff �L (u(x) ⇒ a).

Then

x ◦ y N (u, a) iff �L u(x ◦ y) ⇒ a iff x N (u( ◦ y), a) iff y N (u(x ◦ ), a),

x� y N (u, a) iff �L u(x�y) ⇒ a iff x N (u( �y), a) iff y N (u(x� ), a).
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Hence, N is a nuclear relation with respect to both ◦ and �, where the appro-

priate subsets of W ′ are given by

(u, a)�x = {(u( ◦ x), a)} and x�(u, a) = {(u(x ◦ ), a)},
(u, a)� x = {(u( � x), a)} and x� (u, a) = {(u(x� ), a)}.

We denote the resulting distributive residuated frame by WL.

We say that an nGBI-algebra G satisfies the sequent x ⇒ a, or that

the sequent holds or is valid in G, if for every homomorphism f : Fm → G,

f(xFm) ≤ f(a). Here xFm denotes the formula obtained from x by replacing

◦ with ·, ε with 1, and � with ∧. It is easy to see that nGBI is sound with

respect to the variety of nGBI-algebras. The proof proceeds by induction on

the rules (and axioms) of nGBI. For (\L) and (/L) we use the monotonicity of

· and ∧, while for (∨L) we use the distributivity of ∧ over ∨. We will show that

the converse is also true, i.e., nGBI-algebras provide a complete semantics.

Gentzen frames. A distributive Gentzen ru-frame of type L for {·, 1,∧} ⊆ L
is a pair (W,B) where

(i) W = (W,W ′, N, ◦,�,�, {ε},�,�,�) is a distributive ru-frame, where ◦
and � are binary operations,

(ii) B is a partial L-algebra,
(iii) (W, ◦, ε,�) is a bi-groupoid with unit for ◦ generated by B ⊆ W ,

(iv) there is an injection of B into W ′ (under which we will identify B with

a subset of W ′) and

(v) N satisfies the L-conditions of nGBIN (Figure 2) for all a, b ∈ B,

x, y ∈ W , and z ∈ W ′.

Note that the names of Gentzen frame conditions are enclosed in square

brackets to distinguish them from the corresponding sequent rule names (in

parentheses). A condition is understood to hold only in case all the expressions

in it make sense. For example, [∧L] is read as: if a, b, a ∧ b ∈ B, z ∈ W ′, and

a� b N z, then a ∧ b N z.

We note that condition [\L] is, by [nuc�], equivalent to

x N a b N z
x ◦ (a\b) N z

A distributive Gentzen ruz-frame is a distributive Gentzen ru-frame ex-

tended with the set {ε}�, and (iv),(v) are modified as follows:

(iv′) there is an injection of B ∪ {ε} into W ′ (under which we will identify

B ∪ {ε} with a subset of W ′) and

(v′) N satisfies the conditions of nGBIN (Figure 2) for all a, b ∈ B, x, y ∈
W , and z ∈ W ′, as well as the two conditions

x N ε
x N 0

[0R]
0 N ε

[0L]
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x⇒ a u(a)⇒ c

u(x)⇒ c
(CUT)

a⇒ a (Id)
u(x � (y � z))⇒ c

u((x � y) � z)⇒ c
(�a)

u(x � y)⇒ c

u(y � x)⇒ c
(�e)

u(x)⇒ c

u(x � y)⇒ c
(�i)

u(x � x)⇒ c

u(x)⇒ c
(�c)

x⇒ a u(b)⇒ c

u(x ◦ (a\b))⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a u(b)⇒ c

u((b/a) ◦ x)⇒ c
(/L)

x ◦ a⇒ b
x⇒ b/a

(/R)

u(a ◦ b)⇒ c

u(a · b)⇒ c
(·L) x⇒ a y ⇒ b

x ◦ y ⇒ a · b (·R)
u(ε)⇒ a

u(1)⇒ a
(1L)

ε⇒ 1
(1R)

u(a)⇒ c u(b)⇒ c

u(a ∨ b)⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨R�)

x⇒ b
x⇒ a ∨ b

(∨Rr)

u(a � b)⇒ c

u(a ∧ b)⇒ c
(∧L) x⇒ a x⇒ b

x⇒ a ∧ b
(∧R)

x⇒ a u(b)⇒ c

u(x � (a → b))⇒ c
(→L) x � a⇒ b

x⇒ a → b
(→R)

u(δ)⇒ c

u(�)⇒ c
(�L)

x⇒� (�R)

Figure 1. The systems nGBI, GBI, nDRL and DRL.

A proof in L is defined inductively as an (upward growing) tree in the usual

way, where the proved sequent is at the bottom. If there is a proof of a sequent

s in L from assumptions S, then we write S �L s and say that s is provable in

L from S. If S is empty we simply write �L s and say that s is provable in L.

Note that the rules

u(a)⇒ c

u(a ∧ b)⇒ c
(∧L�)

u(b)⇒ c

u(a ∧ b)⇒ c
(∧Lr)

are derivable in L. Indeed,

u(a)⇒ c

u(a� b)⇒ c
(�i)

u(a ∧ b)⇒ c
(∧L)

u(b)⇒ c

u(a� b)⇒ c
(�i�)

u(a ∧ b)⇒ c
(∧L)

We take W = Fm◦ and W ′ = SW × Fm, where SW is the set of all unary

linear polynomials in W , and define the relation N by

x N (u, a) iff �L (u(x) ⇒ a).

Then

x ◦ y N (u, a) iff �L u(x ◦ y) ⇒ a iff x N (u( ◦ y), a) iff y N (u(x ◦ ), a),

x� y N (u, a) iff �L u(x�y) ⇒ a iff x N (u( �y), a) iff y N (u(x� ), a).
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x N a a N z
x N z

[CUT]
a N a

[Id]
x � (y � w) N z

(x � y) � w N z
[�a]

x � y N z

y � x N z
[�e]

x N z
x � y N z

[�i]
x � x N z
x N z

[�c]

x N a b N z
a\b N x�z [\L]

x N a�b
x N a\b

[\R]
x N a b N z
b/a N z�x [/L]

x N b�a
x N b/a

[/R]

a ◦ b N z
a · b N z

[·L]
x N a y N b

x ◦ y N a · b [·R]
ε N z
1 N z

[1L]
ε N 1

[1R]

a N z b N z
a ∨ b N z

[∨L] x N a
x N a ∨ b

[∨R�]
x N b

x N a ∨ b
[∨Rr]

a � b N z
a ∧ b N z

[∧L] x N a x N b
x N a ∧ b

[∧R]

x N a b N z
a → b N x� z

[→L]
x N a� b
x N a → b

[→R]
δ N z
� N z

[�L]
x N � [�R]

Figure 2. The theory nGBIN.

We also consider extensions with the conditions

⊥ N z
[⊥L] x N δ

x N ⊥ [⊥R]

It is possible to relax the condition that B is a common subset of W and W ′

by considering maps from B to W and W ′, but we will not make use of such

a generalization here.

A cut-free distributive Gentzen frame is defined in the same way, but

it is not stipulated to satisfy the [CUT] condition. It is easy to see that

(WnDRL,Fm) is a distributive Gentzen frame. Also, given a GBI-algebra A,

the pair (WA,A) is a distributive Gentzen frame. We will see more examples

of distributive Gentzen frames in the following sections.

For readers familiar with display logic, we mention that the system nGBI

does not enjoy the display property, however it satisfies the conditions

nGBIN, which do enjoy the nuclear property (an analogue of the display

property). In this sense, (distributive) residuated frames could be seen as a

framework that is more general than display logic, or as a non-syntactic ver-

sion of display logic, in that the display-logic rendering of nGBI, our version

of nGBI, as well as other ‘algebraic’ situations, give rise to residuated frames,

all of which satisfy the nuclear/display property.

Residuated frames and Gentzen frames are defined in [7] in the same way

as their distributive versions, but with no mention of (and no requirements

associated with) the operation �; the conditions (∧L�) and (∧Lr) are used

instead of the condition (∧L). As these conditions are derivable from (∧L),
every distributive Gentzen frame is also a Gentzen frame, so the results of [7]
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apply. In particular we state the following results of [7, Thm 2.6, Cor 2.7] for

distributive Gentzen frames; the cases for the (possibly) additional connectives

�,�,�,�,⊥ are similar to the cases of the other connectives handled in [7].

Theorem 3.1. Let (W,B) be a cut-free distributive Gentzen frame of type L.
For all a, b ∈ B, for all X,Y ∈ W+, and for every connective • ∈ L, if a •B b

is defined, then

(i) 1B ∈ γN (ε) ⊆ {1B}�, 0B ∈ {ε}� ⊆ {0B}�.
(ii) �B ∈ γN (δ) ⊆ {�B}�, ⊥B ∈ {δ}� ⊆ {⊥B}�.
(iii) If a ∈ X ⊆ {a}� and b ∈ Y ⊆ {b}�, then a•B b ∈ X •W+

Y ⊆ {a•B b}�.
(iv) In particular, a •B b ∈ {a}� •W+ {b}� ⊆ {a •B b}�.
(v) If, additionally, N satisfies [CUT], then {a}� •W+ {b}� = {a •B b}�.

Corollary 3.2. If (W,B) is a distributive Gentzen frame of type L, the map

x �→ {x}� from B to W+ is an L-homomorphism from the partial algebra B

into W+; it is injective if the restriction of N to B ×B is antisymmetric.

4. Cut elimination

Let (W,B) be a cut-free Gentzen frame. For the rest of the section, we

assume that B is a total L-algebra. For every homomorphism f : Fm → B,

we let f̄ : Fm → W+ be the L-homomorphism that extends the assignment

p �→ {f(p)}�, for all variables p of Fm. (More generally, we may define the

assignment by p �→ Qp, where Qp is any set with {f(p)}�� ⊆ Qp ⊆ {f(p)}�.)

Lemma 4.1. [7] If (W,B) is a cut-free distributive Gentzen frame and B

is a total algebra, then for every homomorphism f : Fm → B, we have that

f(a) ∈ f̄(a) ⊆ {f(a)}�, for all a ∈ Fm. If (W,B) is a distributive Gentzen

frame, then f̄(a) = {f(a)}�, for all a ∈ Fm.

Let (W,B) be a cut-free distributive Gentzen frame. Note that every map

f : Fm → B extends inductively to a map f◦ : Fm◦ →W by f◦(x ◦Fm◦
y) =

f◦(x) ◦W f◦(y) and f◦(x �Fm◦
y) = f◦(x) �W f◦(y). Likewise, every ho-

momorphism f : Fm → G into an L-algebra G extends to a homomorphism

f◦ : Fm◦ →G. A sequent x ⇒ a is said to be valid in (W,B) if for every ho-

momorphism f : Fm→B, we have f◦(x) N f(a). Note that a sequent x ⇒ a

is valid in an nGBI-algebra G iff it is valid in the Gentzen frame (WG,G),

namely if for all homomorphisms f : Fm→G, we have f◦(x) ≤ f(a).

Theorem 4.2. If (W,B) is a cut free distributive Gentzen frame of type L
and B is a total algebra, then every sequent that is valid in W+ is also valid

in (W,B).

The adaptation of the result in [7] to the distributive case uses the fact that

� is defined element-wise in P(W ) and that γN is a �-nucleus. The following

corollaries have proofs analogous to results in [7]. Also, they hold for both

nGBI and nDRL.
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x N z

[CUT]
a N a

[Id]
x � (y � w) N z

(x � y) � w N z
[�a]

x � y N z

y � x N z
[�e]

x N z
x � y N z

[�i]
x � x N z
x N z

[�c]

x N a b N z
a\b N x�z [\L]

x N a�b
x N a\b

[\R]
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a ◦ b N z
a · b N z

[·L]
x N a y N b

x ◦ y N a · b [·R]
ε N z
1 N z

[1L]
ε N 1
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a ∨ b N z

[∨L] x N a
x N a ∨ b

[∨R�]
x N b

x N a ∨ b
[∨Rr]
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a ∧ b N z

[∧L] x N a x N b
x N a ∧ b

[∧R]

x N a b N z
a → b N x� z

[→L]
x N a� b
x N a → b

[→R]
δ N z
� N z

[�L]
x N � [�R]

Figure 2. The theory nGBIN.

We also consider extensions with the conditions

⊥ N z
[⊥L] x N δ

x N ⊥ [⊥R]

It is possible to relax the condition that B is a common subset of W and W ′

by considering maps from B to W and W ′, but we will not make use of such

a generalization here.

A cut-free distributive Gentzen frame is defined in the same way, but

it is not stipulated to satisfy the [CUT] condition. It is easy to see that

(WnDRL,Fm) is a distributive Gentzen frame. Also, given a GBI-algebra A,

the pair (WA,A) is a distributive Gentzen frame. We will see more examples

of distributive Gentzen frames in the following sections.

For readers familiar with display logic, we mention that the system nGBI

does not enjoy the display property, however it satisfies the conditions

nGBIN, which do enjoy the nuclear property (an analogue of the display

property). In this sense, (distributive) residuated frames could be seen as a

framework that is more general than display logic, or as a non-syntactic ver-

sion of display logic, in that the display-logic rendering of nGBI, our version

of nGBI, as well as other ‘algebraic’ situations, give rise to residuated frames,

all of which satisfy the nuclear/display property.

Residuated frames and Gentzen frames are defined in [7] in the same way

as their distributive versions, but with no mention of (and no requirements

associated with) the operation �; the conditions (∧L�) and (∧Lr) are used

instead of the condition (∧L). As these conditions are derivable from (∧L),
every distributive Gentzen frame is also a Gentzen frame, so the results of [7]
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Corollary 4.3. (1) If a sequent is valid in nGBI, then it is valid in all cut-

free distributive Gentzen frames (W,B) where B is a total algebra.

(2) A sequent is provable in nGBI iff it is valid in nGBI.

(3) The free algebra in nGBI is embeddable in W+
nGBI.

(4) The system nGBI enjoys the cut elimination property.

For a given set R of conditions, a distributive residuated R-frame is simply

a distributive residuated frame that satisfies R. We denote by nGBIR the sub-

variety of nGBI axiomatized by ε(R) = {ε(r) : r ∈ R}. By Theorem 4.2, we

have the following.

Corollary 4.4. If a sequent is valid in nGBIR, then it is valid in all distributive

residuated R-frames.

We can also prove cut elimination for extensions of the systems we have

considered by simple structural rules.

Corollary 4.5. (1) The system nGBIR enjoys the cut elimination property,

for every set R of rules that are preserved by ( )+, and in particular for

the set R = R(ε) with simple rules for an equation ε over {∧,∨, · , 1,�}.
(2) The basic systems nGBIR, where R is a subset of {[◦a], [◦e], [◦c], [◦i]},

have the cut elimination property.

(3) Moreover, every variety of distributive residuated lattices axiomatized by

equations over {∧,∨, · , 1,�} has a corresponding cut-free Gentzen sys-

tem.

5. Finite model property

The finite model property for DRL was established in [12] and for BI it was

proved in [10]. We extend these results by proving the finite model property

(FMP) for many simple extensions of DRL and of GBI, actually for many

simple extensions nGBI, namely axiomatized by certain equations/sequents

that do not involve divisions and implication, but otherwise can have any

combination of the other connectives. Given a sequent/equation, the decision

procedure that follows from any FMP result about finitely axiomatized theories

is to run a model-checker for finite models of the theory to find a possible

counterexample to the sequent/equation and also a theorem prover to identify

a possible proof of it.

Although not stated explicitly in [12], it can be inferred from the proof

that it is possible to use only the model-checker, since an upper-bound for a

countermodel (if it exists) can be estimated. The proof of the FMP of DRL

given there is based on a proof search for the given sequent, but because of

the rule (�c), the naive exhaustive proof search is not finite; the FMP is

established in [12] without showing or claiming that a finite proof search is

possible. Our first result in this section is to show that a finite proof search

is possible, and from there we easily deduce the FMP, for all the extensions
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mentioned above, including extensions of GBI. Also, we give a canonical form

to which any proof can be rewritten, and which has very limited applications

of (�c); this reduces even further the number of potential proofs in our first

result that need to be examined during the proof search.

Free algebras. Recall that Fm◦ = (Fm◦, ◦,�, ε, δ) denotes the bi-unital bi-

groupoid over the set Fm of GBI formulas. We call the elements of Fm◦

structures and we will be considering their structure trees; this is in direct

analogy to the formula tree, and following usual practice, we assume that the

root is at the top and the leaves at the bottom of the tree. Proofs, however,

will still be thought of as trees where the root is at the bottom. We will also

consider the free algebras Fm◦/a, Fm◦/ae, and Fm◦/aec, which are obtained

by taking the quotient by the equivalence relation that renders � associative,

or associative and commutative, or associative commutative and idempotent.

As usual, each element of these sets is an equivalence class of structures from

Fm◦. However, we can also represent each element of Fm◦/a by a variation

of a structure tree, where � denotes an n-ary operation for every n and where

in the tree, a �-node has a finite number of children; we call such terms flat.

Given such a representation, we can obtain an element of Fm◦ by fixing a

specific way to insert parentheses; we chose to always associate to the left.

Under this convention, Fm◦/a can be identified with a subset of Fm◦.

In the flat representation, if the order of the list of subtrees of a �-node

does not matter, namely the child nodes form a multiset, this represents an

element of Fm◦/ae. Given a fixed total ordering on Fm◦ under which chil-

dren will be listed from left to right, we can identify each element of Fm◦/ae

with an element of Fm◦/a (and thus an element of Fm◦). We will use the

term commutative flat representation of an element in Fm◦ for that particular

element of Fm◦ (left associated and all subtrees of �-nodes ordered by the

above convention), as well as for the flattened version of this where parenthe-

ses are removed at these �-nodes and the structure tree is represented with

�-nodes that have arbitrary arity. Finally, Fm◦/aec can be viewed as a subset

of Fm◦/a, where in that (commutative) flat representation, all child nodes are

distinct. So, for example, an element of Fm◦/ae can be viewed as an equiva-

lence class [b ◦ (c� (a� c))]ae of an element of Fm◦, where a, b, c are formulas,

or the object b◦ (a� c� c), assuming the ordering a < b < c, or as the element

b ◦ ((a � c) � c) of Fm◦. Likewise, the element [b ◦ (c � (a � c))]a of Fm◦/a

can be represented as

b ◦ (c� a� c) or b ◦ ((c� a)� c);

we could even allow the representation b ◦ (�(c, a, c)).

The composition of the canonical homomorphism Fm◦ → Fm◦/aec with

the insertion of Fm◦/aec into Fm◦ resulting from the commutative flat repre-

sentation is denoted by r . For a structure x, we call r(x) its full reduction and

we move freely between the representations of r(x) as an equivalence class or
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Corollary 4.3. (1) If a sequent is valid in nGBI, then it is valid in all cut-

free distributive Gentzen frames (W,B) where B is a total algebra.

(2) A sequent is provable in nGBI iff it is valid in nGBI.

(3) The free algebra in nGBI is embeddable in W+
nGBI.

(4) The system nGBI enjoys the cut elimination property.

For a given set R of conditions, a distributive residuated R-frame is simply

a distributive residuated frame that satisfies R. We denote by nGBIR the sub-

variety of nGBI axiomatized by ε(R) = {ε(r) : r ∈ R}. By Theorem 4.2, we

have the following.

Corollary 4.4. If a sequent is valid in nGBIR, then it is valid in all distributive

residuated R-frames.

We can also prove cut elimination for extensions of the systems we have

considered by simple structural rules.

Corollary 4.5. (1) The system nGBIR enjoys the cut elimination property,

for every set R of rules that are preserved by ( )+, and in particular for

the set R = R(ε) with simple rules for an equation ε over {∧,∨, · , 1,�}.
(2) The basic systems nGBIR, where R is a subset of {[◦a], [◦e], [◦c], [◦i]},

have the cut elimination property.

(3) Moreover, every variety of distributive residuated lattices axiomatized by

equations over {∧,∨, · , 1,�} has a corresponding cut-free Gentzen sys-

tem.

5. Finite model property

The finite model property for DRL was established in [12] and for BI it was

proved in [10]. We extend these results by proving the finite model property

(FMP) for many simple extensions of DRL and of GBI, actually for many

simple extensions nGBI, namely axiomatized by certain equations/sequents

that do not involve divisions and implication, but otherwise can have any

combination of the other connectives. Given a sequent/equation, the decision

procedure that follows from any FMP result about finitely axiomatized theories

is to run a model-checker for finite models of the theory to find a possible

counterexample to the sequent/equation and also a theorem prover to identify

a possible proof of it.

Although not stated explicitly in [12], it can be inferred from the proof

that it is possible to use only the model-checker, since an upper-bound for a

countermodel (if it exists) can be estimated. The proof of the FMP of DRL

given there is based on a proof search for the given sequent, but because of

the rule (�c), the naive exhaustive proof search is not finite; the FMP is

established in [12] without showing or claiming that a finite proof search is

possible. Our first result in this section is to show that a finite proof search

is possible, and from there we easily deduce the FMP, for all the extensions
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an element of Fm◦ in its commutative flat version. It is clear that r(x) = r(y)

iff the sequents x⇒ p and y ⇒ p, where p is a propositional variable, are in-

terderivable using (�a), (�e), and bidirectional (�c). For a sequent x⇒ a, we

call r(x)⇒ a its full reduction.

Reduction and multiplicity. We call a sequent n-reduced at a �-node if in

the flat representation, there are at most n duplicate copies of any immediate

subtree. We call it n-reduced if it is n-reduced at all �-nodes. A reduction of

a sequent is a sequent obtained by applications of the rules (�a), (�e), and

(�c). We mention that the order in which (�c)-rules are applied to obtain

a reduction, namely to which �-nodes we apply contraction first, does not

matter (see also the discussion in the subsection on contraction-controlled

proofs), and the resulting reductions are always inter-derivable using the rules

(�a) and (�e); this also explains the ability to select representatives from

equivalence classes in the free algebras above.

An n-reduction of a sequent is a reduction which happens to be an n-reduced

sequent. Note that the full reduction r(x)⇒ a is a 1-reduction of x⇒ a. One

can see this by applying contraction at the lowest � in the tree, then again

taking the commutative flat representation and again contraction at the leaves,

etc.

Given a rule, we define its multiplicity as the least number n such that if

all premises are 1-reduced sequents, then the conclusion is n-reduced. Note

that the multiplicity of (→L) is 3 since a→ b could be part of x and also part

of u. To be more specific, x has to have � at its root and, in its flat version,

have a→ b as one of its children, and also u( ) has to be of the form v(y � )

and y has to have the same property as x above. So, if the assumptions of the

rule are 1-reduced, then the conclusion of the rule is always 1-reduced at all

other � nodes except for the one where it may be 3-reduced. Likewise, (\L)
has multiplicity 1 for instances where x is non-empty, while it has multiplicity

2 for instances where x = ε, u( ) has the form v(y� ), and y has � at its root

and, in its flat version, has a\b as one of its children. The same holds for the

rule (/L). The remaining rules have multiplicity 1 since they do not allow for

the combination of substructures using �.

A proof is called n-reduced if every sequent in it is n-reduced.

Lemma 5.1 (n-reduced proofs for 1-reductions). If a sequent is provable in

a simple extension of nGBI where every rule has multiplicity at most n, then

every 1-reduction of it has an n-reduced proof.

Proof. We prove this by induction on the depth of the proof of the given

sequent y ⇒ d. The base case of an initial sequent is obvious. Assume that

the last step of the proof is

y1 ⇒ d1 y2 ⇒ d2
y ⇒ d

(r)
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an element of Fm◦ in its commutative flat version. It is clear that r(x) = r(y)

iff the sequents x⇒ p and y ⇒ p, where p is a propositional variable, are in-

terderivable using (�a), (�e), and bidirectional (�c). For a sequent x⇒ a, we

call r(x)⇒ a its full reduction.

Reduction and multiplicity. We call a sequent n-reduced at a �-node if in

the flat representation, there are at most n duplicate copies of any immediate

subtree. We call it n-reduced if it is n-reduced at all �-nodes. A reduction of

a sequent is a sequent obtained by applications of the rules (�a), (�e), and

(�c). We mention that the order in which (�c)-rules are applied to obtain

a reduction, namely to which �-nodes we apply contraction first, does not

matter (see also the discussion in the subsection on contraction-controlled

proofs), and the resulting reductions are always inter-derivable using the rules

(�a) and (�e); this also explains the ability to select representatives from

equivalence classes in the free algebras above.

An n-reduction of a sequent is a reduction which happens to be an n-reduced

sequent. Note that the full reduction r(x)⇒ a is a 1-reduction of x⇒ a. One

can see this by applying contraction at the lowest � in the tree, then again

taking the commutative flat representation and again contraction at the leaves,

etc.

Given a rule, we define its multiplicity as the least number n such that if

all premises are 1-reduced sequents, then the conclusion is n-reduced. Note

that the multiplicity of (→L) is 3 since a→ b could be part of x and also part

of u. To be more specific, x has to have � at its root and, in its flat version,

have a→ b as one of its children, and also u( ) has to be of the form v(y � )

and y has to have the same property as x above. So, if the assumptions of the

rule are 1-reduced, then the conclusion of the rule is always 1-reduced at all

other � nodes except for the one where it may be 3-reduced. Likewise, (\L)
has multiplicity 1 for instances where x is non-empty, while it has multiplicity

2 for instances where x = ε, u( ) has the form v(y� ), and y has � at its root

and, in its flat version, has a\b as one of its children. The same holds for the

rule (/L). The remaining rules have multiplicity 1 since they do not allow for

the combination of substructures using �.

A proof is called n-reduced if every sequent in it is n-reduced.

Lemma 5.1 (n-reduced proofs for 1-reductions). If a sequent is provable in

a simple extension of nGBI where every rule has multiplicity at most n, then

every 1-reduction of it has an n-reduced proof.

Proof. We prove this by induction on the depth of the proof of the given

sequent y ⇒ d. The base case of an initial sequent is obvious. Assume that

the last step of the proof is

y1 ⇒ d1 y2 ⇒ d2
y ⇒ d

(r)
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We now apply the rules (�a), (�e), and (�c) to obtain 1-reductions y′1 ⇒ d1
and y′2 ⇒ d2 of y1 ⇒ d1 and y2 ⇒ d2. Note that the rule (r) is still applicable,

and we call y′ ⇒ d′ its conclusion:

y′1 ⇒ d1 y′2 ⇒ d2

y′ ⇒ d′
(r)

For example, for (∧R) we have y1 = y2, so we apply the exact same reductions

to both and then y′1 = y′2, so the rule (∧R) is still applicable. For the rule (\L),
for example, the reductions are done independently on x⇒ a and on u(b)⇒ c.

Applying to y ⇒ d the combination/union of the reductions involved in y1 ⇒ d1
and y2 ⇒ d2 results in a sequent ȳ ⇒ d̄. If there were contractions/reductions

applied to parts of y1 ⇒ d1 or y2 ⇒ d2 that involve the principal sequents,

we can reinstate these parts by applications of (�i) to obtain a reduction

y′ ⇒ d′ of y ⇒ d, staying within the realm of n-reduced sequents. By repeated

applications of (�a), (�e), and (�c), we can prove (using only n-reduced

sequents) a 1-reduction yr ⇒ dr of ȳ ⇒ d̄ and hence also of y ⇒ d.

y1 ⇒ d1
y′1 ⇒ d1

(�a, e, c)
y2 ⇒ d2
y′2 ⇒ d2

(�a, e, c)

y′ ⇒ d′
(r)

ȳ ⇒ d̄
(�i)

yr ⇒ dr
(�a, e, c)

By the induction hypothesis, y′1 ⇒ d1 and y′2 ⇒ d2 have n-reduced proofs

where all sequents are n-reduced, so we can replace the top lines of the above

proof-figure by these n-reduced proofs. Also, because y′1 ⇒ d1 and y′2 ⇒ d2 are

themselves 1-reduced, and the rule (r) has multiplicity at most n, we get that

y′ ⇒ d′ is n-reduced. The resulting proof involves only n-reduced sequents. �

The argument above is along the lines of [8, Lemma 4.10]. The applicability

of the rule (r) alludes to some permutation of the rule (�c) up in the proof

and we make this precise in the subsection on contraction-controlled proofs.

Complexity measure for extensions of DRL. Following [12], we define

the complexity m(x) for x ∈ Fm◦ inductively as follows:

• m(1) = m(�) = m(0) = m(⊥) = m(p) = 1, for every variable p

• m(a • b) = m(a) +m(b) + 1, where • is any logical connective

• m(ε) = 0

• m(x ◦ y) = m(x) +m(y)

• m(x� y) = max{m(x),m(y)}.
We define m(x ⇒ a) = m(x)+m(a). This complexity measure can be used

to show that DRL is decidable even when expanded by certain structural

rules.

We say that a rule in a sequent system does not increase complexity upward

if for each instance of the rule, the complexity of each sequent in the premises
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is at most as big as the complexity of the conclusion. We can easily see that

the rules in the system DRL do not increase complexity.

We now show by induction on m that the set of n-reduced sequents of

complexity at most m, and constructed from a finite set S of formulas, is

finite. Indeed, if the statement is true for all k < m, then consider first a

structure of complexity m that does not have � at the root of its structure

tree. Then all of its subtrees (if any) must have complexity less than m,

and so these subtrees can be chosen from a finite set of structures by the

induction hypothesis, and thus there are finitely many structures of this form

of complexity m. If, now, the structure tree has � at its root, then consider

the set of all of its immediate substructures in the flat representation. These

subtrees have complexity at most m, so by the above argument can be taken

from a finite set; moreover, they have at most n repetitions since the structure

is n-reduced. As there are only finitely many such choices, there are only

finitely many structures of this form of complexity m.

The set S will be taken below to be the (finite) set Sub(x⇒ a) of subfor-

mulas of all the formulas that appear in a given sequent x⇒ a. Since all rules

of nDRL (except the cut rule) have the subformula property, namely every

formula in the premises is a subformula of a formula in the conclusion, all cut-

free proofs of x⇒ a involve only sequents over Sub(x⇒ a). A proof scheme is

defined in the same way as a proof without the assumption that the leaves are

axioms.

Corollary 5.2 (Finite proof search). Given a sequent s, there are only finitely

many proof-schemes that need to be investigated in order to check if the sequent

is provable in an extension of nDRL with finitely many simple rules none of

which increases complexity.

Proof. Using the invertibility of (�c), as an instance of (�i), we see that a

sequent is provable iff its full reduction is provable. Also, by Lemma 5.1,

the full reduction is provable iff it has an n-reduced proof, where n is the

maximal multiplicity of each rule. All sequents in the proof are constructed

from the finite set of formulas in Sub(s). Also, since each rule does not increase

complexity upward, all sequents involved in a proof of a given sequent s have

complexity at most m(s). Therefore, the sequents in the proof are selected

from a finite set of sequents, and by the argument above, since they are made

from a finite set of formulas, they are n-reduced and have bounded complexity.

This does not imply that there are only finitely many proofs, as sequents could

be repeated. However, we can assume that the proof has no repetitions on any

of its branches since we can simply omit the part of the proof between repeated

sequents. Therefore, there is a bound on the length of each branch, namely on

the height of a proof. Together with the bound on the maximum degree of a

rule (the number of its premises), this imposes a bound on the total number

of sequents (distinct or not) in the proof. Hence, there are only finitely many

proof-schemes to be checked. �
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Complexity measure for extensions of nGBI. We are indebted to Re-

vantha Ramanayake for pointing out to us that the complexity measure used

for the decidability of nDFL does not work for the additional rules of nGBI,

hence necessitating the more sophisticated argument given here.

Given a sequent x ⇒ a, we define its tree (growing downward) in the usual

way. The symbol ⇒ at the top/root has as its right-child node the formula

tree of a and as its left-child node the tree of x (where the latter is naturally

stratified, with structural connectives appearing above the logical ones). As a

result, each node of the tree is either ⇒, ◦,�,∨,∧, ·, →, \, /, or a propositional

variable (at a leaf). We call formula-nodes those nodes that have as label a

logical connective or a propositional variable. Each node of the tree also carries

a sign in the standard way, guided by order-preservation considerations; we

call this the position sign of the node. (In detail, we first assign a polarity

sign to each edge. Both edges below the connectives ◦,�,∨,∧, · are given the

polarity sign +; the same is true for the right edge below ⇒, → and \, as
well as the left edge below /; the other edges of these connectives receive a

− polarity sign. Then, as usual, we define the position sign of a node in the

tree to be + if there is an even number of − polarity signs in the edges of the

branch above it to the root, and a − sign otherwise.)

Now we give a new definition that is not considered in the literature. Given

a sequent s, we define a direction on the edges of the sequent graph of s.

We understand upward edges as positively directed and downward edges as

negatively directed, so the direction sign for an edge can be interpreted as its

direction. To determine the value of the direction sign of an edge, we take the

product of two other signs: the position sign of the node above the edge and

the polarity sign of the edge.

For example, a ◦ can appear only in a negative position in a sequent and

each of the edges below it are positive (as ◦ is positive in both coordinates);

since negative times positive yields negative, both edges below a ◦ point down-

ward. The same holds for �. Also, the edges below the connectives · ,∧,∨ are

pointing downward if the connective is in negative position, and upward if the

connective is in positive position. The same holds for the right-hand-side edge

of \, →, and ⇒, and similarly for the left-hand-side edge of \; the remaining

edges have the opposite orientation.

To this general rule we add some special rules which result in some edges

having two directions. We add an upward edge from a negative→ to a negative

� or ∧ which is directly above it. Likewise, but in a more delicate way, we

add such edges from a negative \ to a negative ◦ or · that is directly above it,

as long as this is the left edge below the ◦ or ·, and the same for /, as long

as this is the right edge. We also add an edge upward from a negative \ to

a positive \ above it provided this is the left edge. Further, we add an edge

from a negative / upward to a / provided this is the right edge. Note that

the right edge of ⇒ points toward it and the left edge points away from it.

For the purposes of the resulting directed graph, we find it helpful to consider
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these as one edge, since they have a consistent orientation. If the left-hand

side of a sequent is empty and the main connective on the right-hand side is

one of →, \, or /, then we follow the same convention of considering the two

edges that stem from it as a single directed edge. We also have an edge from

a negative /, going through ⇒ to a positive \. Finally, we add an edge from

a negative \, going through ⇒ to a positive /. The multiplicative length of

a sequent is defined by considering all oriented paths in it and counting the

maximum number of polarized multiplicative connectives ; these are defined to

be ◦ and · in negative position and \, / in positive position. Note that not

all paths pass through the root ⇒. We clarify that paths are allowed to go

through the same edge in different directions, provided it has two directions,

but the connective that the special edge points to is not allowed to be repeated

in the path. In considering what paths can be realized in a tree, we allow for

a sequent tree to be read in a way that � is considered in its flat version with

multiple child-nodes, or in any of the forms obtained by inserting parentheses.

It is easy to see by inspection that the multiplicative length of each premise

of each rule of nGBI is no bigger than the multiplicative length of the conclu-

sion of that rule. The use of the bidirectional edges is explained by the rules

(→L), (\L), and (/L); the directed paths of the premise x ⇒ a are included

in the directed paths of the conclusion, because we can move in the additional

direction of the edge. We note that, unfortunately, the rule (◦a) can change

the multiplicative length of a sequent. To handle GBI, we consider a flat

version of ◦, thus internalizing associativity and also having a smaller number

of polarized multiplicative connectives. This does not affect the argument sig-

nificantly as each rule, including (◦a), is non-increasing under this new form of

a sequent tree. As for the associativity of �, the tree is allowed to be viewed

under its non-flattened version for ◦ in order for directed paths to be realized.

The ◦-tree of a sequent t is the subtree of the sequent tree of t consisting of

just the ◦ nodes and edges for the paths between them. It then follows that

in every sequent t in a proof of s, the ◦-tree of t has height no more than the

multiplicative length of s.

We now argue that there are only finitely many sequents that could appear

in a 3-reduced proof of s and that this number is computable. In particular,

we argue that there are only finitely many 3-reduced sequents that are formed

by subformulas of s and which have ◦-tree of height less than or equal to the

multiplicative length of s; we do this by induction on the height h of the ◦-tree
of a sequent. We make crucial use of the fact that we need to consider only

3-reduced proofs, namely these proofs consist of 3-multisets (multisets where

every element appears at most 3 times) of substructures at every �-level of the

sequent trees. Clearly, the number of 3-multisets over a finite set S, namely

of functions from S to {0, 1, 2, 3}, is 4|S|. We focus on the structure on the

left-hand side of sequents, and prove there are finitely many choices; combined

with a choice of a subformula of s for the right-hand side, this yield finitely

many choices for such sequents.
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If h = 0, then the structure has no ◦, hence it consists of formulas separated

by �. In other words, it is a 3-multiset of subformulas of s and there are only a

finite number of these. We assume that the result holds for h < k and prove it

for h = k. First we prove this result for ◦-structures, namely structures where

◦ is the main structural connective. Each of the two child nodes of ◦ will be

a �-structure with ◦-height less than or equal to k, so there are only finitely

many such choices, by the induction hypothesis. The result for �-structures

then follows by the fact that they will be 3-multisets of ◦-structures of ◦-height
up to k.

For the associative case, the above argument needs to be modified slightly.

Now, ◦ may have multiple child nodes. However, we can bound this number,

say by the total number of polarized multiplicative connectives of the original

sequent s, therefore the finiteness argument still works. Also, further structural

rules can be added as long as they also respect the non-increasing nature of

the multiplication length. The rule of exchange (◦e) is one such example, but

one can consider other examples where the multiplicity of the rule is higher

than 3.

Finite models. For a sequent s of some extension L of nGBI by simple

rules, we define s← to be the least set of sequents such that s ∈ s← and if

({t1, . . . , tn}, t) is an instance of a rule of L and t ∈ s←, then t1, . . . , tn ∈ s←.

Clearly s← is the set of all sequents involved in an exhaustive proof search

for s. By the subformula property, all sequents in s← are over the set Sub(s).

Theorem 5.3. Any extension of any fragment of nGBI containing ◦,�, ε, δ

by finitely many simple rules that do not increase complexity has the FMP.

Proof. Let N denote the relation in the frame WnGBI and let s be a sequent

that is not provable in nGBI. Let Ns be the relation defined by

x Ns (u, a) iff x N (u, a) or (u(x) ⇒ a) �∈ s←.

Following the arguments in [7], it is easy to see that Ns is nuclear and satisfies

the conditions nGBIN. So, (Ws,Fm) is a distributive Gentzen frame, where

Ws uses Ns as the nuclear relation.

To show that W+
s is finite, we show that there only finitely many basic

closed sets, namely sets of the form {z}� for z ∈ W ′, since every other element

of W+
s is an intersection of such sets. First note that every equivalence class

[x]aec modulo associativity, commutativity, and idempotency of � contains

the 1-reduced structure r(x). Since there are only finitely many 1-reduced

sequents over Sub(s) of bounded complexity, this means that there are only

finitely many such equivalence classes. Also, note that every basic closed

set {(u, b)}� is a union of such equivalence classes. Indeed, let x and y be

equivalent structures. We have that x ∈ {(u, b)}� iff x Ns (u, b) iff the sequent

u(x)⇒ b is either provable or not in s←. Since x and y are equivalent the

sequents u(x)⇒ b and u(y)⇒ b are interderivable using the rules (�a), (�e),
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and bidirectional (�c), so one is provable iff the other is, and also one is in s←

iff the other is. Thus, x ∈ {(u, b)}� iff y ∈ {(u, b)}�.
Furthermore, s fails in W+

s . Indeed, let s be the sequent x ⇒ a and let

b = xFm (i.e., b is the term x with every ◦ replaced by ·, every � replaced by

∧, every ε replaced by 1, and every δ replaced by �). Note that x �Ns a since

x �N a and (x ⇒ a) = s ∈ s←. Hence, x �∈ {a}�s . However, x ⇒ b is provable

in nGBI, so x ∈ {b}�s , and therefore {b}�s �⊆ {a}�s . Since (Ws,Fm) is a

Gentzen frame, the map �s : Fm→W+
s is a homomorphism by Corollary 3.2.

Consequently, the inequality b ≤ a is not valid in W+
s , so neither is the sequent

x ⇒ a. �

Contraction-controlled proofs. We have shown that the proof search is

finite, namely we can focus only on finitely many proof-schemes in order to

check the validity of a given sequent; these are all the proof-schemes that

involve n-reduced sequents of bounded complexity and have no repetitions on

each branch. In this subsection, we undertake a detailed analysis that shows

that even fewer proof-schemes are needed and that every proof can be in what

we call contraction-controlled form. This reveals the structure of these, in some

sense canonical, proofs and also can be useful for a practical implementation of

the algorithm. Additionally, it illuminates aspects of the proof of Lemma 5.1.

It is easy to see, for example, that the �-contraction rule (�c) can be

permuted up above all the right logical rules. If we consider the consequence

x⇒ a\b of the rule (\R), we see that we could have applied (�c) below it only

if x was of the form u(y � y), in which case we can rewrite that part of the

proof so that (�c) is performed above the rule (\R).
a ◦ u(y � y)⇒ b

u(y � y)⇒ a\b
(\R)

u(y)⇒ a\b
(�c) �

a ◦ u(y � y)⇒ b

a ◦ u(y)⇒ b
(�c)

u(y)⇒ a\b
(\R)

The same applies to all right logical rules: (�c) can be postponed as we explore

the proof upward in favor of a right-logical rule. Even in the rule (◦R), where
the left-hand side x ◦ y of the conclusion is separated into two pieces x and y

in the assumptions, still any instantiation of (�c) in x ◦ y has to occur fully

in x or fully in y, so it can be performed later above, after the rule has been

applied below. In the right rules for the lattice connectives, the situation is

even simpler as the left-hand side remains the same, while for the rule (1R),

contraction cannot be performed at all immediately below it.

The left-logical rules are not as easy to argue about, but we are actually

able to identify �-contractions that can be permuted up above these rules.

For this, we will need to consider the structure tree of a given structure.

Given a certain node/subtree x in the structure tree of u(x), we consider the

set or path of nodes ↑ux that appear above it in the tree; we often identify

a node with the subtree it specifies. Given a left logical rule (•L), where

• is any logical connective, we can focus on the structure on the left-hand
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side y of the conclusion y ⇒ c of the rule, identify the position of the active

connective/formula a • b on the structure tree and consider ↑y(a • b), which

we call the path of the rule (•L); we call a • b the principal level of the path

and the positions of other nodes on the path the non-principal levels of the

path. If there is an instance of contraction applied to y ⇒ c at a node not on

the path, then that contraction permutes up above (•L) since the contracted

part is completely disjoint from the principal formula inside the structure tree.

This should be obvious; as a concrete example, we consider (\L) and the only

two distinct positions off the path in which we could apply contraction to

u(x ◦ (a\b))⇒ c: inside x, we have

v(y � y)⇒ a u(b)⇒ c

u(v(y � y) ◦ (a\b))⇒ c
(\L)

u(v(y) ◦ (a\b))⇒ c
(�c) �

v(y � y)⇒ a

v(y)⇒ a
(�c)

u(b)⇒ c

u(v(y) ◦ (a\b))⇒ c
(\L)

and on a part of u outside x; here u(y, x) denotes as usual a term and two

(non-overlapping) occurrences of subterms,

x⇒ a u(y � y, b)⇒ c

u(y � y, x ◦ (a\b))⇒ c
(\L)

u(y, x ◦ (a\b))⇒ c
(�c) � x⇒ a

u(y � y, b)⇒ c

u(y, b)⇒ c
(�c)

u(y, x ◦ (a\b))⇒ c
(\L)

Contractions that are performed at various levels of the path do not permute

in general. For example, there is no obvious way to rewrite the following proof

scheme so that contraction will be performed above (·L):

u(v(a ◦ b)� v(a · b))⇒ c

u(v(a · b)� v(a · b))⇒ c
(·L)

u(v(a · b))⇒ c
(�c) � u(v(a ◦ b)� v(a · b))⇒ c

u(v(a · b))⇒ c
(?)

For simple structural rules, the criterion is very similar: contractions per-

mute up as long as they apply to nodes not on the upward path starting at

the lowest structural connective, namely � or ◦, that appears explicitly in the

conclusion of the rule; the notion of path and of principal level are defined,

extending the definition for logical rules. For downward (�a),

u(x� (y � z))⇒ c

u((x� y)� z)⇒ c
(�a)

this external connective is the one between the x and the y in the conclusion

of the rule. Contraction off the path can be performed inside/at x or inside/at

y or inside/at z or inside u, but outside x, y, and z, still off the path. For the

first and last case we have, for example,

u(v(x� x)� (y � z))⇒ c

u((v(x� x)� y)� z)⇒ c
(�a)

u((v(x)� y)� z)⇒ c
(�c) �

u(v(x� x)� (y � z))⇒ c

u(v(x)� (y � z))⇒ c
(�c)

u((v(x)� y)� z)⇒ c
(�a)
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and

u(w � w, x� (y � z))⇒ c

u(w � w, (x� y)� z)⇒ c
(�a)

u(w, (x� y)� z)⇒ c
(�c) �

u(w � w, x� (y � z))⇒ c

u(w, (x� y)� z)⇒ c
(�c)

u(w, (x� y)� z)⇒ c
(�a)

Also, if a (�c) is immediately below a (�i), in case the �c occurs inside/at x,

or at a part of u not above x � y, then �c can be easily permuted up. If �c

happens inside/at y then �c is redundant. Finally if �c happens at x � y,

namely for y = x, then (�i) is an application of the inverse of (�c) and clearly

(�c) is redundant.

We say that a �-contraction is p-permutable above another rule (r) in case

the above path condition is satisfied, namely it is not applied at any point

on the path of (r). We have shown that p-permutability above a rule implies

actual permutability above it, for all rules in the system plus all simple rules.

Putting the above together, we see that every rule in the rewritten proof

comes with a cluster of (�c) rules below it. To be precise, a (�c) rule is in the

cluster of a rule (r) if it is performed at some place below (r) in the proof with

no other non-(�c) rule between them and further it cannot be p-permuted up

above (r).

We now look into these clusters and investigate whether contractions can

move within each cluster and/or to higher clusters. In particular, for permuting

contractions above other contractions, we note again that if they contract

portions that are disjoint in the term tree, for example in u(x, y) one contracts

part of x and the other part of y, then these two contractions can be performed

in any order. Also, we can see that by parsing the proof from above, it is more

general to perform contractions lower in the tree and then further down in the

proof perform contractions at higher nodes in the tree, since if done in the

other order, we can permute them:

u(v(x� x)� v(x� x))⇒ c

u(v(x� x))⇒ c
(�c)

u(v(x))⇒ c
(�c) �

u(v(x� x)� v(x� x))⇒ c

u(v(x)� v(x))⇒ c
(�c)

u(v(x))⇒ c
(�c)

Note that if two contractions (�c)h and (�c)� are in the cluster of a rule

(r), then (�c)h is performed higher in the proof than (�c)�, and also, if the

lower contraction (�c)� cannot be p-permuted up above the higher contraction

(�c)h, then the lower contraction (�c)� cannot be p-permuted up above the

rule (r) either. This is simply because (�c)h applies to the upward path of

(r) and (�c)� applies at a node higher than (�c)h. This provides a better

understanding of the structure of the clusters, and extends the notion of p-

permutability to (�c) rules.

We can now formally define a contraction-controlled proof as a proof where

each cluster of contractions appears below a non-contraction rule, all these

contractions are applied on the upward path of the structure tree of the (LHS

of the) conclusion of the rule; for the two contractions (�c)� and (�c)h, we
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have that (�c)h is performed above (�c)� in the proof iff (�c)h operates at a

node on the path of the rule that is lower than the node of (�c)�. We have

thus proved the following result.

Theorem 5.4. Every n-reduced sequent that is provable in a finite simple

extension of any reduct of nGBI has a contraction-controlled proof.

Since by using (�i) we can show that a sequent is provable iff its full reduc-

tion (which is 1-reduced) is provable (by a contraction-controlled proof), this

provides a more explicit finite proof search decision procedure than Lemma 5.1.

Note that all the above results apply also to arbitrary fragments of our calcu-

lus, which contain the structural rules for �.

Fragments containing the structural rules for �. Making use of the

structural rules (�a) and (�e), we can do even better with respect to contrac-

tion-controlled proofs. For this, we will make use of the commutative-flat

version of structures, as they incorporate seamlessly the two rules. So we will

feel free to work with this data type and take the explicit rules (�a) and (�e)

out of the system.

We say that an application of (�c) below a rule pae-permutes up above the

rule if (�c) is applied on the path in the (commutative-flat) structure tree of

the conclusion of the rule. We have essentially shown that pae-permutability

implies actual permutability, but we can do better.

Recall that if the premises of a rule are 1-reduced, then the conclusion in all

�-nodes except one is 1-reduced (at that principal node it is n-reduced, where

n is the multiplicity of that rule). We say that a contraction-controlled proof is

ae-reduced if for each rule (r), with multiplicity n, the cluster of contractions

below it is such that at every level strictly above the principal level on the

path there is at most one contraction applied, at the principal level there are

at most (n − 1) contractions applied, and none of the substructures created

are repeated in the premises of the rule (r). Therefore, if the lower sequent of

a cluster of contractions below a rule (r) is m-reduced, then all the premises of

the rule (r) are also m-reduced. Consequently, if an m-reduced sequent has an

ae-reduced contraction-controlled proof, then all the sequents in the proof are

(n+m)-reduced, where n is the maximal multiplicity of rules in the system.

Lemma 5.5. Every sequent that is provable in a simple extension of a frag-

ment of GBI that contains the structural rules for � has an ae-reduced contrac-

tion-controlled proof.

Proof. We need to show that if the contraction is one of at least 2 contractions

that are applied to the same �-level in the structure tree of the conclusion of

the rule (r) and that level is not the level of the principal formula, or if it is

one of at least n contractions that are applied to the �-level of the principal

formula, then the contraction rule permutes above the rule (r).
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This is clear from the fact that if we have an additional copy of the subterm,

then its contraction can happen before or after the rule (r) with no difference

on the outcome. We give one example using the rule (\L) for the level not

at the principal formula (we abbreviate v′(x ◦ a\b) as just v′, the result of

contractions above the path of a\b and up to the node v). The notation (�c)n

is used for n applications of contraction and (�c)∗ denotes some finite number

of contractions.

x⇒ a u(v′ � v′ � v(b))⇒ c

u(v′ � v′ � v(x ◦ a\b))⇒ c
(\L)

u(v′ � v′ � v′(x ◦ a\b))⇒ c
(�c)∗

u(v′(x ◦ a\b))⇒ c
(�c)2

�

x⇒ a

u(v′ � v′ � v(b))⇒ c

u(v′ � v(b))⇒ c
(�c)

u(v′ � v(x ◦ a\b))⇒ c
(\L)

u(v′ � v′(x ◦ a\b))⇒ c
(�c)∗

u(v′(x ◦ a\b))⇒ c
(�c)

As another example, the rule (→L) has multiplicity 3, so if we assume that we
have 3 contractions at the level of the principal formula, then we show that
one of them may be permuted up (here (a→ b)�2 stands for (a→ b)� (a→ b)).

a→ b⇒ a u((a→ b)�2 � b)⇒ c

u((a→b)�2�(a→b)�(a→b))⇒ c
(→L)

u(a→ b)⇒ c
(�c)3 �

a→ b⇒ a

u((a→ b)�2 � b)⇒ c

u((a→ b) � b)⇒ c
(�c)

u((a→b)�(a→b)�(a→b))⇒ c
(→L)

u(a→ b)⇒ c
(�c)2

�

We have thus obtained a transparent finite proof search decidability process

for all simple extensions of fragments of nGBI that contain the �-structural

rules. In detail, given an m-reduced sequent, we investigate the ways in which

it can serve as the conclusion of a rule; for logical rules, this includes identi-

fying a connective that matches the connective of the rule. This can be done

only in finitely many ways, and if we were to apply upward rules other than

(�c) and investigate all possibilities, the process would terminate as we stay

in the setting of (n+m)-reduced sequents and no sequent is allowed to appear

twice on a branch; here n is the maximum multiplicity of a rule in the system.

However, applications of (�c) also need to be investigated, but only in a con-

trolled manner. In particular, we first identify the (for simplicity, say logical)

rule that will be applied further up after a possible cluster of contractions, by

identifying the logical connective to be investigated; assume that it has multi-

plicity m. We look at the path of the (LHS of the) sequent upward from that

connective and we explore (constructing upward the proof) the application of

a cluster of contractions performed in successively decreasing positions of the

path; we only consider such cases with at most one for each level between ◦
nodes and one final application of a sequence of at most (m− 1) contractions

(just below the application of the logical rule) at the principal level of the

path; then the logical rule is applied and we verify that all of its premises are

m-reduced.
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6. Finite embeddability property

The finite model property for finitely axiomatizable theories implies the de-

cidability of the equational theory. The stronger result of the decidability of

the universal theory follows from the stronger condition of the finite embed-

dability property. A class of algebras K is said to have the finite embeddability

property (FEP) if for every algebra A in K and every finite partial subalgebra

B of A, there exists a finite algebra D in K such that B embeds into D.

For a type L, with { · , 1,∧} ⊆ L ⊆ { · , 1,∧,∨, \ , /, →,�, 0,⊥}, let A be

an L-algebra that is a meet-semilattice and unital groupoid such that multi-

plication is compatible with the order; also if ∨ ∈ L, let the lattice reduct be

distributive; if one/both divisions are in L, let A be residuated from the appro-

priate side; if→ ∈ L, let it be the residual of ∧, and if ⊥ ∈ L, let it be evaluated
as the least element (and A needs to be bounded). We will abbreviate the

above by saying that A is at least a distributive semilattice unital groupoid, or

just at least a ds�u-groupoid. Assume also that B is a partial subalgebra of

A, i.e., B is any subset of A, and each operation fA on A induces a partial

operation fB on B defined by fB(b1, . . . , bn) := fA(b1, . . . , bn), if this latter

value is in B, and undefined otherwise. Define (W, · , 1,∧) to be the { · , 1,∧}-
subreduct ofA generated by B. We denote by SW the set of all sections (unary

linear polynomials) of (W, · , 1,∧), namely terms in one variable which appears

only once in the term. Let W ′ = SW ×B, and define x N (u, b) by u(x) ≤A b.

We denote by id the identity polynomial (id(x) = x), and write u( ) for every

section u. Thus, u′ = u( ◦ y) denotes the section defined by u′(x) = u(x ◦ y).
Moreover, we define x�(u, b) = {(u(x ◦ ), b)}, (u, b)�y = {(u( ◦ y), b)},
x� (u, b) = {(u(x� ), b)} and (u, b)� y = {(u( � y), b)}.

It is easy to see that WA,B = (W,W ′, N, · , 1,�,�,∧,�,�) is a distributive

residuated frame. Moreover, (WA,B,B) is a distributive Gentzen frame of the

same type as A. To see this, observe that if ∨ is present in the type, then

distributivity of the lattice is needed for the verification of condition (L∨); also
residuation guarantees the conditions for the divisions or implication, if the

latter are in the type.

By Corollary 3.2 we obtain the following result.

Corollary 6.1. The map { }� : B→W+
A,B is an L-embedding of the partial

subalgebra B of the at least distributive semilattice unital groupoid A into the

nGBI-algebra W+
A,B.

Theorem 6.2. If an equation over {∧,∨, · , 1,�} is valid in an at least dis-

tributive semilattice unital groupoid A, then it is also valid in W+
A,B, for every

partial subalgebra B of A.

Proof. By Theorem 2.4(1), it is enough to consider simple equations ε, i.e.,

of the form t0 ≤ t1 ∨ · · · ∨ tn, where t0 is a linear term. Assume that ε is

valid in A. By Theorem 2.4, to show that ε is valid in W+
A,B, it is enough
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to show that the rule t1N(u,b) ··· tnN(u,b)
t0N(u,b) R(ε) is valid in the Gentzen frame

(W,B), namely that if u(ti) ≤A b for all i ∈ {1, . . . , n}, then u(t0) ≤A b; here

we abused notation slightly by using, for example, b initially as a metavariable

and then as an element of B. The latter implication follows directly from the

fact that A satisfies ε. �

Note that the result can be slightly strengthened, in the case where ∨ is not

in the type, for quasiequations of the form suggested by R(ε).

Let (F, ◦, ε,�) be the free unital bigroupoid over |B| generators, where ε

is a unit for both ◦ and �. For x, y ∈ F , we write x ≤F y iff y is obtained

from x by deleting some (possibly none) of the generators; also we stipulate

x ≤F ε. For example, (x� (y ◦ z))� ((y ◦ x) ◦ z) ≤F x� (y ◦ x). When a term

is deleted, such as (y ◦ z) or the last occurrence of z, then also the operation

symbol next to it is deleted. Note that this relation is a partial order on F , as

for distinct non-unit x, y, if x ≤F y, then x is a longer string of symbols than

y. We denote by F the resulting ordered algebra.

Moreover, by Kruskal’s tree theorem, F has no infinite antichains and no

infinite ascending chains (it is dually well-ordered).

The following lemma shows that F is residuated in a strong sense. For

x ∈ F and u ∈ SF ,
x
u is defined by induction on the structure of u as follows:

x

id
= x,

x

u ◦ y
=

x�y
u

,
x

y ◦ u
=

y�x
u

,
x

u� y
=

x� y

u
and

x

y � u
=

y � x

u
,

where id = is the identity section and where �,� are the residuals of ◦ and

�,� are the residuals of � in F (see following lemma).

Lemma 6.3. (1) Assume that x, y, z, w ∈ F , • ∈ {◦,�}, and x • y ≤ z • w.
Then one of three things must happen: x ≤ z • w, y ≤ z • w, or (x ≤ z

and y ≤ w).

(2) Both ◦ and � are residuated in F.

(3) For all x ∈ F , u ∈ SF , and b ∈ B, we have u(x) ≤F b iff x ≤F b
u .

Proof. We follow the ideas in [1]. For (1), if the displayed • in x • y is not

deleted, then it is the same as the displayed • in z • w, and clearly x ≤ z and

y ≤ w. If it is deleted, then the displayed • in z • w (and therefore also both

z and w) appear completely inside x or completely inside y.

For (2), as • is order-preserving on both sides, we only need to show that

there is a y (denoted by x\•z) that is a maximum with respect to x • y ≤ z.

Clearly, if z = ε, then x\•z = ε. If z is a variable, then x\•z is ε if z occurs

in x, and is z otherwise. Next, assume that z = z1 • z2 (and z1, z2 in z1 • z2
do not contain redundant occurrences of ε). If x ≤ z, then x\•z = ε. If not,

and x ≤ z1, then x\•z = z2. Indeed, if x • y ≤ z1 • z2, then we obtain y ≤ z2
using (1), x �≤ z1 • z2, and the fact that y ≤ z1 • z2 implies y ≤ z2. Finally,

if x �≤ z1 • z2 and x �≤ z1, then x\•z = z. Indeed, if x • y ≤ z1 • z2, then we

obtain y ≤ z, using (1).

Finally, (3) follows by applying (2) repeatedly. �
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Theorem 6.4. If A is at least an integral (x ≤ 1) distributive semilattice

unital groupoid and B a finite partial subalgebra of A, then the distributive

r�u-groupoid W+
A,B is finite.

Proof. We roughly follow the ideas in [1]. Let h : F →W be the (surjective)

homomorphism that extends a fixed bijection xi �→ bi from its generators to B

(and replaces ◦,�, ε by · ,∧, 1, respectively). Note that h is order-preserving,

where W inherits the order of A. Moreover, h extends naturally to a surjective

map from SF to SW , which we denote by h, as well.

Consider the new frame WF
A,B = (F,W ′, h ◦ N, ·F,�h,�h,�,�,�, {1}),

where x (h ◦N) z iff h(x) N z, and x�hz = h(x)�z and z�hy = z�h(y).
Using the fact that h is a homomorphism, it is easy to see that h◦N is nuclear

for ◦ and distributively nuclear for �; thus, WF
A,B is a distributive residuated

frame.

To prove that W+
A,B is finite, it suffices to prove that it possesses a finite

basis of sets {z}� = {x ∈ W : x N z} for z ∈ W ′. For this we show that

there are only finitely many sets of the form {z}�h = {x ∈ F : x (h ◦N) z}
for z ∈ W ′, as h[{z}�h ] = {z}�. Indeed, for all x ∈ W , there is x′ ∈ F with

h(x′) = x since h is surjective; so, x = h(x′) ∈ {(u, b)}� iff x′ ∈ {(u, b)}�h ,

hence x ∈ h[{(u, b)}�h ]. Conversely, if x ∈ h[{(u, b)}�h ], then x = h(x′) for

some x′ ∈ {(u, b)}�h , hence x = h(x′) ∈ {(u, b)}�.
For x ∈ F and (u, b) ∈ W ′, we have x ∈ {(u, b)}�h iff u(h(x)) ≤ b iff

h(v(x)) ≤ b, for some v ∈ SF such that h(v) = u, since h is a surjective

homomorphism. Equivalently, v(x) ∈ h−1(↓Ab) for some v ∈ h−1(u). Now,

since h is order-preserving, h−1(↓Ab) is a downset in F, and because F is dually

well-ordered, this downset is equal to ↓Mb for some finite Mb ⊆ F . So, the

above statement is equivalent to v(x) ≤ m, or to x ≤ m
v , for some v ∈ h−1(u)

and some m ∈ Mb. Consequently, {(u, b)}�h = ↓{m
v : m ∈ Mb, h(v) = u}.

Note that the set {m
v : m ∈ Mb, b ∈ B, h(v) = u, u ∈ SW } is finite, being

a subset of the finite set ↑
⋃

b∈B Mb, as m ≤ m
v (or v(m) ≤ m) by integrality.

Thus, there are only finitely many choices for {(u, b)}�. �

Corollary 6.5. Every variety of integral nDRL/nGBI-algebras axiomatized

by equations over the signature {∧,∨, · , 1,�} has the FEP.

This result is improved in [2] for many subvarieties of DRL/GBI where mul-

tiplication distributes over meet (recall condition [mdm]), and in this case, the

assumption of integrality is considerably weakened.

7. Relating distributive residuated frames and Birkhoff frames

We saw in Section 2 that given a GBI-algebra or a distributive residuated

lattice, we can construct a distributive residuated frame. However, in either

case, there are often much smaller frames that represent the same algebra. A

subset J of A is join-generating if every element of A is the join of some subset
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of J , and the notion ofmeet-generating is defined analogously. A lattice is join-

perfect if every element is the join of completely join-irreducible elements, and

meet-perfect if every element is the meet of completely meet-irreducibles. A

perfect lattice is one that has both these properties. In general, it suffices

to choose W,W ′ to be any join-generating and meet-generating subset of A,

respectively, and for perfect lattices one can, in particular, choose W,W ′ to be

the set of all completely join-irreducible and all completely meet-irreducible

elements, respectively.

For a perfect distributive residuated lattice A, the Galois algebra (WA)+

is a doubly-algebraic distributive lattice, and such an algebra is completely

determined by the poset J(A) of completely join-irreducible elements with the

order inherited from A. In particular, the Galois algebra is isomorphic to the

set D(J(A)) of downsets of J(A), ordered by inclusion. For finite distributive

lattices, this observation is due to Birkhoff, hence we call (J(A),≤, ◦, E) the

Birkhoff frame ofA, where the ternary relation ◦ is given by x◦y = {z ∈ J(A) :

z ≤ x · y} and E = {x ∈ J(A) : x ≤ 1}. Note that since · is order-preserving,
◦ is up-up-down-closed, i.e., for all x, x′, y, y′, z, z′ ∈ J(A)

◦(x, y, z) and x ≤ x′ and y ≤ y′ and z ≥ z′ =⇒ ◦(x′, y′, z′)

and E is a downset of J(A).

In general, the definition of a Birkhoff frame (P,≤, ◦, E) is that (P,≤) is

a poset, ◦ is an up-up-down-closed ternary relation on P , and E ∈ D(P ).

It is associative if ↓((x ◦ y) ◦ z) = ↓(x ◦ (y ◦ z)), and unital if ↓(x ◦ E) =

↓x = ↓(E ◦ x) for all x, y, z ∈ P . While Birkhoff frames are considerably

simpler than distributive residuated frames, they are not directly related to

sequent systems, and they only capture complete perfect DRLs and complete

perfect GBI-algebras. Given a Birkhoff frame P = (P,≤, ◦, E), one can define

a corresponding distributive frame by F (P) = (P, P,�, ◦,�,�,�,�,�, E),

where

• x�z = P − {y : x ◦ y � z}, z�y = P − {x : x ◦ y � z)},
• x� y = {z : z ≤ x and z ≤ y} = ↓x ∩ ↓y,
• x� z = P − {y : x� y � z}, z � y = P − {x : x� y � z)}.

Theorem 7.1. If P is a Birkhoff frame, then F (P) is a distributive residuated

frame and F (P)+ = D(P ).

Proof. Let P = (P,≤, ◦, E) be a Birkhoff frame. We need to check that F (P)

satisfies the nuclear conditions for ◦ and �, and the distributive conditions

[�a], [�e], [�i], and [�c].

For [nuc◦], we show that x ◦ y N z ⇐⇒ y N x�z, where N is the relation

�. Let D = {y : x ◦ y � z} and note that this set is down-closed since ◦ is

up-closed in the second argument. Hence, x�z = P − D is up-closed, from

which it follows that y � x�z is equivalent to y /∈ x�z, and this in turn is

equivalent to y ∈ D, i.e., x ◦ y � z.
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The second equivalence for [nuc◦] is similar, and the same reasoning applies

to [nuc�] after observing that � is also up-closed in the first and second

argument.

The conditions [�a] and [�e] follow from the associativity and commuta-

tivity of intersection. For [�i], note that x � z implies x′ � z for all x′ ≤ x,

and for [�c], if x� x � z, then (↓x) � z, so in particular, x � z.

Finally, note that if N = �, then x� = {y : x � y} = P − ↓x, so γN{x} =

x�� = (P −↓x)� = ↓x. Hence, F (P)+ has all downsets of P as elements. �

Furthermore, distributive residuated frames of the form F (P) satisfy the

following two conditions from [11]. A Galois relation N ⊆ W×W ′ is separating

if the maps x �→ γN{x} and y �→ γ′
N{y} are one-to-one (where γ′

N{y} = {y}��

for y ∈ W ′), and N is reduced if both

∀x ∈ W ∃y ∈ W ′ s.t. ¬(x N y) and (γN{x} − {x}) N y and

∀y ∈ W ′ ∃x ∈ W s.t. ¬(x N y) and (γ′
N{y} − {y}) N z

hold. The notion of reduced is easily seen to be equivalent to γN{x} − {x}
being γN -closed and γ′

N{y}−{y} being γ′
N -closed for all x ∈ W and y ∈ W ′. In

the Galois algebra, this means that all γN{x} are completely join-irreducible.

Conversely, every completely join-irreducible is of the form γN{x} since any

γ-closed set is the join of singleton closures. Reduced also implies separating

since if N is not separating, then there exist x1 �= x2 ∈ W such that γN{x1} =

γN{x2}, whence γN{x1}−{x1} contains x2, and its closure will add x1 again.

Now let W be a reduced distributive residuated frame, and define G(W) =

({γN{x} : x ∈ W},⊆, ◦̂, Ê) where ◦̂ = {(γN{x}, γN{y}, γN{z}) : ◦(x, y, z)}
and Ê = {γN{x} : x ∈ E}.

Theorem 7.2. If W is a reduced distributive residuated frame, then G(W)

is a Birkhoff frame.

Proof. In a reduced frame, Galois-closed subsets of the form γN{x} are exactly

the completely join-irreducible elements of the Galois algebra. Hence, G(W) =

J(W+), and since W+ with the subset-inclusion order is a distributive lattice,

it follows that G(W) is a Birkhoff frame. �
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