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The FEP for some varieties of fully distributive
knotted residuated lattices

Riquelmi Cardona and Nikolaos Galatos

Abstract. We prove the finite embeddability property for a wide range of varieties
of fully distributive residuated lattices and FL-algebras. Part of the axiomatization
is assumed to be a knotted inequality and some appropriate generalization of com-
mutativity. The construction is based on distributive residuated frames and extends
to subvarieties axiomatized by any division-free equation.

1. Introduction

A class of algebras K is said to have the finite embeddability property (FEP)

if for every algebra A in K and every finite partial subalgebra B of A, there

exists a finite algebra D in K such that B embeds into D. Recall that B is a

finite partial subalgebra of A if B is a finite subset of A together with partial

operations fB for each n-ary operation fA on A, where fB is given by:

fB(b1, . . . , bn) =

{
fA(b1, . . . , bn), if fA(b1, . . . , bn) ∈ B,

undefined, if fA(b1, . . . , bn) /∈ B.

The FEP is a strong property, as it yields decidability of the universal

first order theory of any finitely axiomatizable class, and generation by finite

algebras for (quasi)varieties.

A residuated lattice is an algebra (A,∧,∨, · , \ , /, 1) where (A,∧,∨) is a

lattice, (A, · , 1) is a monoid, and for all a, b, c ∈ A, we have ab ≤ c iff a ≤ c/b

iff b ≤ a\c. As usual, we write x ≤ y for x ∨ y = y. It is not hard to see that

the class of residuated lattices is a variety. For more on residuated lattices,

see [8] for example.

The FEP was studied for various classes of residuated lattices by W. Blok

and C. van Alten in a series of papers [1, 2, 3]. Since residuated lattices form

algebraic semantics for substructural logics (see [8]), the FEP for a variety of

residuated lattices yields the strong finite model property for the corresponding
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substructural logic. In that respect, the FEP is a very desirable, but also fairly

rare, property.

In [6], among other things, the FEP is established for all subvarieties of in-

tegral (satisfying x ≤ 1) residuated lattices axiomatized by equations over the

language of join, multiplication, and 1; the method used is that of residuated

frames. In that respect, integrality is a strong condition, but already in [17] it

is replaced by a weaker condition,

xm ≤ xn, for any m �= n, with m ≥ 1, n ≥ 0,

known as a knotted inequality ; the price to pay for such a generalization is to

assume commutativity (of multiplication). The variety of all residuated lattices

satisfying a knotted rule does not have the FEP [10] (for more negative results,

see [2]); however, in [4] it is shown that the FEP holds for an infinite collection

of noncommutative varieties satisfying a knotted rule. (Further subvarieties of

these axiomatized by equations of over the language {∨, · , 1} have the FEP.)

Each of them is axiomatized by a monoid identity, the simplest of which is

xyx = xxy, and in general, it is given relative to a vector a = (a0, a1, . . . , ar)

of natural numbers whose sum is r + 1 and whose product is 0 (namely an

additive, nontrivial, decomposition of the number r + 1):

xy1xy2 · · · yrx = xa0y1x
a1y2 · · · yrxar . (a)

In [7], it is shown, by developing a theory for a distributive version of resid-

uated frames, that in the presence of integrality, we can obtain the FEP for all

varieties of residuated lattices that are distributive (as lattices) and are axiom-

atized over the language {∧,∨, · , 1}. For example, the FEP is established for

all integral and fully distributive residuated lattices. In all residuated lattices,

multiplication distributes over join, but if we further know that both mul-

tiplication and join distribute over meet, we call the residuated lattice fully

distributive. Algebras such as lattice-ordered groups, Heyting algebras, and

all semilinear residuated lattices (including MV-algebras and BL-algebras),

are fully distributive residuated lattices. Furthermore, fully distributive resid-

uated lattices admit a nice representation theorem [5].

In this paper, we relax the integrality condition with a combination of a

knotted inequality and an equation (a), for some decomposition a of a natural

number, thus obtaining infinitely many varieties of fully distributive residuated

lattices with the FEP, outside the setting of integrality or commutativity.

2. The construction of the algebra D

We consider a variety Dn
m(a) of fully distributive residuated lattices axiom-

atized by a knotted rule xm ≤ xn and an equation of the form (a). (We may

also assume that the axiomatization of the variety contains further equations

over the language {∧,∨, ·, 1} as explained in [7].) We will show that Dn
m(a)

has the FEP.



	 The FEP for some fully distributive residuated lattices	 365Vol. 00, XX The FEP for some fully distributive residuated lattices 3

We consider an algebra A in Dn
m(a) and a finite partial subalgebra B of A;

let B = {b1, b2, . . . , bk}. Define W = (W, ◦,�, ε) as the {· ,∧, 1}-subalgebra of

A generated by B (note that we use different notation for the restriction of the

operations of A on W ). Observe that polynomials over (W, ◦,�, ε) containing

a single variable x must look like u(x) = (y ◦ x ◦ z) � w for y, z ∈ W and

w ∈ W ∪ {�}. Here we write y ◦ x ◦ z � � for y ◦ x ◦ z, in order to have

uniform notation, where � is a new symbol used only for this purpose. Since

multiplication distributes over meet, we can even assume that y and z do not

have � in them. We denote the set of all such polynomials by SW and we

define the set W ′ = SW × B, as well as the relation N from W to W ′, given

by

x N (u, b) iff uA(x) ≤A b.

Going forward, we will suppress the upper index in uA(x) and simply write

u(x). For X ⊆ W and Y ⊆ W ′, we define X� = {z ∈ W ′ : (∀x ∈ X)(x N z)}
and Y � = {w ∈ W : (∀y ∈ Y )(w N y)}, and also define the map γN on P(W )

by γN (X) = X��. We denote by γN [P(W )] the image of this map and call

its members closed sets. The algebra

W+
A,B = (γN [P(W )],∩,∪γN

, ◦γN
, \ , /, γN ({ε}))

is called the Galois algebra of WA,B, where for X,Y ⊆ W we define X •N Y =

γN (X • Y ), for all operations • ∈ {◦,∪,�}.

Lemma 2.1 ([7]). The structure WA,B = (W,W ′, N, ◦,�, ε) supports a dis-

tributive residuated frame structure in the sense of [7]. Therefore,

(1) The algebra W+
A,B is a distributive residuated lattice (and �N is inter-

section).

(2) The map b �→ {(id, b)}� is a (partial algebra) embedding of B into W+
A,B.

(3) W+
A,B is in Dn

m(a).

(4) Every set in W+
A,B is an intersection of sets of the form {(u, b)}� for

u ∈ SW , b ∈ B.

(5) If A satisfies an equation over the language {∧,∨, · , 1}, then so does

W+
A,B.

We will take W+
A,B to play the role of D in the definition of the FEP. The

above lemma provides the embedding and also membership in Dn
m(a), so the

only thing that remains to be shown is the finiteness of W+
A,B.

By Lemma 2.1(4), it suffices to show that there are only finitely many closed

sets of the form {(u, b)}� for u ∈ SW , b ∈ B. In particular, since B is finite,

it suffices to show that for each b ∈ B, the set Cb = {{(u, b)}� : u ∈ SW }
is finite. We will show that in Cb ordered under inclusion, all antichains,

descending chains, and ascending chains are finite, thus yielding finiteness.

Toward this goal, we will construct a relatively free semilattice monoid F

and a surjective homomorphism h : F → W. Recall that a semilattice monoid

is an algebra (L, ◦,∧, 1), where (L, ◦, 1) is a monoid, (L,∧) is a semilattice
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and multiplication distributes over meet. Furthermore, it will be important to

show that the underlying poset of F is well partially ordered (it has no infinite

descending chains or antichains) or dually well partially ordered (it has no

infinite ascending chains or antichains).

To guarantee the existence of such a map h, the auxiliary algebra F will

be chosen to be free over a class of semilattice monoids that includes W and

satisfies the identity (a). F will satisfy xm ≤ xn only for selected elements;

therefore, it will not be the free algebra in any variety of semilattice monoids

containing W, but it will be free enough for our purposes.

We begin by recalling the construction of the free semilattice on a poset and

extending it to the construction of a semilattice monoid from a pomonoid.

3. The semilattice construction M .

The construction of a semilattice monoid from a given pomonoid is fairly

standard; we include the details of the construction for completeness. Given a

poset P, we defineM (P ) as the set of all nonempty finitely generated upsets of

P. Note that if A is a nonempty finitely generated upset of P, then the set mA

of its minimal elements is nonempty and A = ↑mA; in this section only, we will

feel free to use the letters A and B to denote sets other than the ones fixed in

the definition of the FEP. Also, the union of two nonempty finitely generated

upsets A and B is finitely generated by m(A ∪ B) ⊆ mA ∪ mB. Clearly,

M (P ) supports a meet semilattice under the operation A ∧ B = A ∪ B, for

A,B ∈ M (P ). If P is a pomonoid, then for A,B ⊆ P , we can further define

A •B = ↑(AB), where AB = {ab : a ∈ A, b ∈ B}.

Lemma 3.1. If P is a pomonoid and A,B ∈ M (P ), then A • B ∈ M (P ).

Specifically,

A •B = ↑[(mA)(mB)].

Proof. Using order preservation, it is easy to see that for all C,D ⊆ P , we

have (↑C)(↑D) ⊆ ↑[CD]. Then for A,B ∈ M (P ), we have

AB = (↑mA)(↑mB) ⊆ ↑[(mA)(mB)] ⊆ ↑[AB],

so A • B = ↑(AB) ⊆ ↑↑[(mA)(mB)] ⊆ ↑↑AB. In particular, we have that

A •B = ↑[(mA)(mB)]. �

Given a poset P, we define its semilattice extension M (P) = (M (P ),∧).
Also, given a pomonoid P, we define its semilattice monoid extension as

M (P) = (M (P ),∧, •, ↑{1}).

Lemma 3.2. If P is a pomonoid, then M (P) is a semilattice monoid under

the operations defined above.
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Proof. It is clear that ↑{1} is the identity for •. Multiplication is associative

as shown below. Let A,B,C ∈ M (P ).

A • (B • C) = ↑{ad : a ∈ A, d ∈ B • C}
= ↑{ad : a ∈ A, d ∈ ↑{bc : b ∈ B, c ∈ C}}
= ↑{a(bc) : a ∈ A, b ∈ B, c ∈ C} (by order preservation)

= ↑{(ab)c : a ∈ A, b ∈ B, c ∈ C}
= ↑{dc : d ∈ ↑{ab : a ∈ A, b ∈ B}, c ∈ C} = (A •B) • C.

To see that multiplication distributes over meet, let A,B,C ∈ M (P ).

A • (B ∧ C) = A • (B ∪ C) = ↑{ad : a ∈ A, d ∈ B ∪ C}
=

⋃
a∈A

d∈B∪C

↑{ad} = (
⋃

a∈A
b∈B

↑{ab}) ∪ (
⋃

a∈A
c∈C

↑{ac})

= A •B ∧A • C.

The other equality, (B∧C)•A = B•A∧C•A, can be proven using a symmetric

argument. �

The next lemma shows that we can extend pomonoid homomorphisms (i.e.,

order-preserving monoid homomorphisms) to semilattice homomorphisms on

the semilattice extensions created by M , whence M is a functor from the

category of pomonoids to the category of semilattice monoids.

Lemma 3.3. If P and Q are pomonoids and f : P → Q is a (surjective)

pomonoid homomorphism then M f : M (P) → M (Q) is a (surjective) semi-

lattice monoid homomorphism, where we have M f(A) = ↑{f(a) : a ∈ mA}
for A ∈ M (P ).

Proof. We have that M f(A) is in M (Q) because it is an upset and the set

mA is finite. Since f is order-preserving, we obtain that for any A,E ⊆ P

such that mA ⊆ E ⊆ A,

↑{f(a) : a ∈ mA} = ↑{f(a) : a ∈ E} = ↑{f(a) : a ∈ A}.

To show that M f is a homomorphism, note that, based on the above ob-

servation, we have that for all A,B ∈ M (P ),

M f(A •B) = ↑{f(d) : d ∈ m(↑[(mA)(mB)])}
= ↑{f(d) : d ∈ m((mA)(mB))}
= ↑{f(d) : d ∈ (mA)(mB)} = ↑{f(a)f(b) : a ∈ (mA), b ∈ (mB)}

= ↑
(
{f(a) : a ∈ mA} · {f(b) : b ∈ mB}

)

= ↑{f(a) : a ∈ mA} • ↑{f(b) : b ∈ mB} = M f(A) •M f(B),

M f(A ∧B) = ↑{f(d) : d ∈ m(A ∪B)} = ↑{f(d) : d ∈ mA ∪mB)}
= ↑{f(d) : d ∈ mA} ∪ ↑{f(d) : d ∈ mB} = M f(A) ∧M f(B).
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Let C ∈ M (Q) and mC = {c1, . . . , cj}. If f is surjective, then for every ci,

there exists a bi ∈ P such that f(bi) = ci. Let B = ↑{bi : 1 ≤ i ≤ j}. It is

clear that B ∈ M (P ) and M f(B) = C. �

Clearly, the above lemma is an extension of the analogous result for posets

and semilattices.

Finally, we provide a connection between a semilattice monoid and the free

semilattice monoid on its underlying pomonoid. We know that the monoid

reduct of a semilattice monoid is actually a pomonoid because a(b∧c) = ab∧ac
implies b ≤ c ⇒ ab ≤ ac, and similarly for multiplication on the right.

Given a semilattice S = (S,∧), we denote by Sp = (S,≤) its poset reduct.

Also, given a semilattice monoid S = (S,∧, · , 1), we denote by Sp = (S,≤, · , 1)
its corresponding pomonoid reduct.

Lemma 3.4. For a semilattice monoid S = (S,∧, · , 1), ψ : M (Sp) → S,

defined by ψ(A) =
∧

a∈A a, is a surjective homomorphism.

Proof. For A,B ∈ M (S), we have

ψ(A ∧B) = ψ(A ∪B) =
∧

c∈A∪B

c =
∧
c∈A

c ∧
∧

c∈B

c = ψ(A) ∧ ψ(B),

and

ψ(A •B) =
∧
(↑{ab : a ∈ A, b ∈ B}) =

∧
({ab : a ∈ A, b ∈ B})

=
( ∧
a∈A

a
)
·
( ∧
b∈B

b
)
= ψ(A) · ψ(B).

For x ∈ S, we have ↑{x} ∈ M (S) and ψ(↑{x}) = x, so ψ is surjective. �

Clearly, the above lemma works in the absence of a monoid structure in the

signature, where S is a semilattice.

Lemma 3.5. Let P be a pomonoid, S a semilattice monoid and g : P → Sp a

poset homomorphism. Also assume that there is a T ⊆ g[P ] such that for all

s ∈ S, we have s =
∧
Ts for some finite Ts ⊆ T . Then ψ ◦M g is surjective.

Proof. The following diagram describes the situation.

M (P ) M (Sp)

S

P Sp

g

M g

ψψ ◦M g

Given s ∈ S, there exists Ts ⊆ T and a finite subset Ps ⊆ P such that

s =
∧
Ts and g[Ps] = Ts. Then

(ψ ◦M g)(↑Ps) =
∧
↑g[m↑Ps] =

∧
↑g[Ps] (g is order-preserving)
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=
∧
g[Ps] =

∧
Ts = s.

Hence, ψ ◦M g is surjective. �

4. Well partially ordered sets

Recall that a poset is well partially ordered (wpo) if it contains no infinite

descending chains and no infinite antichains. Examples of well partially or-

dered sets are (N,≤) and (Nk,≤). If (P,≤) is a well partially ordered set, then

it is known that for each k ∈ N, P k is a well partially ordered set under the

direct product ordering of P k. Furthermore, disjoint unions, subposets and

homomorphic images of well partially ordered sets are well partially ordered

sets [9]. Well quasi-ordered sets (abbreviated wqo) are defined in an analogous

manner. We will use dwpo (dually well partially ordered) to refer to posets that

are the duals of wpo’s.

The following definitions were introduced in [14]. Consider a poset (or

quasi-ordered set) P. An infinite sequence p1, p2, . . . of elements in P is called

good if there exist positive integers i, j such that i < j and pi ≤ pj . Similarly,

we say that a sequence is bad if i < j implies pi � pj for every i, j. It is easy

to verify that (A,≤) is a wpo (or wqo) iff every infinite sequence of elements

of A is good iff there are no bad sequences in A. The following result is an

easy consequence of this characterization.

Lemma 4.1. If P is a wpo, then (P(P ),⊆) does not contain any infinite

descending chain of downsets. Dually, if P is a dwpo, then (P(P ),⊆) does

not contain any infinite descending chain of upsets.

Proof. Suppose that P is a wpo and there exists an infinite descending chain of

downsets D1 ⊃ D2 ⊃ · · · in P(P ). For each i ∈ Z+, we choose di ∈ Di \Di+1

and show that (di)i∈N is a bad sequence in P , contradicting the fact that P

is a wpo. Indeed, by definition, di �∈ Di+1 for all i, so if i < j, then di �∈ Dj .

This implies that di �P dj because otherwise di ≤P dj ∈ Dj and the fact that

Dj is a downset would imply that di ∈ Dj . The second part of the lemma

follows by duality. �

Given a poset P, we define an order �∀
∃ on P(P ) by

A �∀
∃ B ⇔ (∀y ∈ B)(∃x ∈ A)[x ≤ y] ⇔ ↑A ⊇ B.

To characterize the conditions under which (P(P ),�∀
∃) is a wqo, we will

utilize the concept of a better quasi-ordered set (bqo). The definition of bqo is

presented below and the next lemma provides the majority of the results that

we need to know about it.

By [ω]<ω, we denote the set of finite, strictly increasing sequences with

terms in ω, and we define a relation � on [ω]<ω as follows: s � t iff there is

u such that s is a strict initial segment of u and t = ∗u; here ∗u is obtained

from the sequence u by omitting the first term.
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A block is a subset B of [ω]<ω that contains an initial segment of every

infinite subset of
⋃
B. Given a quasi-order Q, a Q-pattern is a function from

a block B into Q. A Q-pattern f : B → Q is said to be bad if f(s) �Q f(t) for

every pair s, t ∈ B such that s� t. Otherwise, f is good. A quasi-order Q is a

bqo if there is no bad Q-pattern.

Better quasi-ordered sets were introduced as an strengthening of wqo’s by

Nash-Williams [15]. The following properties are known about them.

Lemma 4.2 ([15], [13], [12]). .

(1) Every bqo is a wqo.

(2) Finite partial orders and well ordered chains are bqo.

(3) If P and Q are bqo’s, then their direct product P×Q and disjoint union

P ∪̇Q are also bqo’s.

(4) (Q,≤) is a bqo iff (P(Q),�∀
∃) is a bqo.

(5) Every subposet of a bqo is a bqo.

The following lemmas draw a connection between the construction M ,

wpo’s, dwpo’s and bqo’s.

Lemma 4.3. If a pomonoid P is dually well partially ordered, then so is

M (P).

Proof. The order in M (P) is given by A ≤M B iff A = A ∧ B = A ∪ B,

for A,B ∈ M (P ), so the elements of M (P ) are ordered under reverse inclu-

sion. Since P is dually well partially ordered, all finitely generated upsets are

actually finite, so there are no infinite ascending chains in M (P).

To show that there are no infinite antichains, we will prove that every

antichain in M (P) would produce an antichain in a well known dwqo. We

will define the order ≤P on the set Pfin(P ) of finite subsets of P . For A,B ∈
Pfin(P ), we write A ≤P B iff there exists an injective map f : A → B such

that a ≥P f(a) for all a ∈ A. It follows from (the dual version of) a result

of Higman [9] (proved in the context of wqo’s) that (Pfin(P ),≤P) is also a

dwpo.

We first show that for A,B ∈ M (P ), A ≤P B implies A ⊆ B. (Note that

the converse is trivially true.) Indeed, A ≤P B implies that there exists an

injective function f : A → B such that f(a) ≤P a for all a ∈ mA and, since B

is an upset, we obtain

A =
⋃

a∈mA

↑{a} ⊆
⋃

a∈mA

↑{f(a)} ⊆
⋃
b∈B

↑{b} = B.

The contrapositive of A ≤P B ⇒ A ⊆ B implies that if A � B and

B � A, then A and B are incomparable in (Pfin(P ),≤P), so every antichain

in (M (P ),≤M ) is an antichain in (Pfin(P ),≤P). This implies (M (P ),≤M )

has no infinite antichains and is dually well partially ordered. �

While the previous result holds for arbitrary dwpo’s, it is not true for ar-

bitrary wpo’s. The poset R = ({(i, j) ∈ N2 : i < j},≤r), known as the Rado
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structure, where

(i1, j1) ≤r (i2, j2) ⇔ (i1 = i2 and j1 < j2) or (j1 < i2),

is a wpo for which its finite subsets ordered by �∀
∃ have an infinite antichain

(see [16] and [11]), hence (M (R),≤M ) is not a wpo. However, a similar result

holds under a stronger assumption.

Lemma 4.4. If (Q,≤Q) is a bqo, then (M (Q),≤M ) is a bqo.

Proof. Recall that the construction M orders upsets by reverse inclusion. For

A,B ∈ M (Q), A ⊇ B is equivalent to the condition that for all y ∈ B, there

exists x ∈ A such that x ≤ y. Hence, the order �∀
∃ coincides with the one in

M (Q) when we restrict our attention to finitely generated upsets. Therefore,

(M (Q),≤M ) is a substructure of (P(Q),�∀
∃). Since the latter is a bqo by

Lemma 4.2(4), it follows that so is the former. �

5. The FEP for Dn
m(a).

In [4], it is shown that given a knotted inequality xm ≤ xn, an equation of

the form (a) and a positive integer k, we can construct a k-generated pomonoid

H = H(a,m, n) that is free for the class of pomonoids that satisfy the knotted

inequality and (a). It is further shown in [4] that H is dually well partially

ordered when m > n, and a well partially ordered set when m < n. Let

Xk = {x1, . . . , xk}, where k = |B|; in this section, A and B are as in the

definition of the FEP.

Here we summarize the construction of H given in [4], and we also mention

some of its properties. For each � = (�0, �1, �2), with �1 > 0, �1 + �2 < �0,

we set d� = �0 − �1 − �2. Given s ∈ X∗
k , we denote by |s|xi

the number of

occurrences of xi in s. We define αN (s) to be the element of X∗
k obtained from

s by moving next to the �1th occurrence of xi the (�1 + 1)th, the (�1 + 2)th,

and up to the (|s|xi
− �2)th occurrence of xi, simultaneously for each xi with

at least �0-many occurrences in s. Thus, by collecting all these consecutive

occurrences next to the �1th occurrence of xi, we obtain a power of xi. If we

further truncate the exponent of this power to be at most d�, for each xi, then

we obtain the element αD(s). In [4], it is shown that αN (s) can be calculated

iteratively by moving every xi one at a time, while still being well defined.

We define H = αN [X∗
k ] with multiplication given by αN (xy), for x, y ∈ H.

It turns out that H is bijective with a subset of Nk × αD[X∗
k ], under the map

ϕ(s) = (|s|x1 , . . . , |s|xk
, αD(s)), where |s|x denotes the number of occurrences

of x in s. Notice that αD[X∗
k ] is finite because for every s ∈ X∗

k , the word

αD(s) has length at most k · �0 (every xi ∈ Xk appears at most �0 times).

Given a knotted inequality xm ≤ xn and the above bijection, we can endow

H with an order under which it becomes a pomonoid. In particular, the order

on the component αD[X∗
k ] is discrete while the order ≤m

n (where m < n) on
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each component N of Nk depends on the knotted rule and is given as follows:

u ≤m
n v if and only if u = v, or m ≤ u < v and u ≡ v (mod n−m).

0 1 2
· · · · · · · · ·

m− 1 m m+ 1
· · · · · ·

n− 1

n− 1 + (n−m)

n− 1 + 2(n−m)

n+ 1

2n−m+ 1

n

n+ (n−m)

...
...

...

Notice that this order is the finite disjoint union of well ordered chains.

Therefore, it is a bqo and a wpo by Lemma 4.2. In the case that m > n,

we obtain the following order which is the dual of ≤n
m; note that this gives a

dwpo.

0 1 2 · · · · · · · · ·n− 1 n n+ 1 m− 1

m− 1 + (m− n)

m− 1 + 2(m− n)

m+ 1

2m− n+ 1

m

m+ (m− n)
...

...
...

It is shown in [4] that for each decomposition (a) of the number r+1, there

is an �(a) such that the equation αN (s) = s, for all s ∈ X∗
k , is a consequence

of (a) in the theory of monoids. (Recall that the definition of αN depends on

�(a).) This is the key to the proof of freeness of H, and even though H does

not satisfy the equation (a), it does fulfill the above consequences.

Lemma 5.1 ([4]). Given a pomonoid M = (M,≤M, ·M, 1) that satisfies (a)

and xm ≤ xn, every map g1 : Xk → M extends to an order-preserving monoid

homomorphism g : H → M (where H = H(a,m, n)).

Lemma 5.2. H is a bqo for m < n and a dwpo for m > n.

Proof. For m < n, (H,≤H) is a subposet of the disjoint union of |αD[X∗
k ]|

copies of (N,≤m
n )k. Since (N,≤m

n ) is both a wpo and a bqo, by Lemma 4.2 we

obtain that (H,≤H) is a bqo.

For m > n, (H,≤H) is a subposet of product of (αD[X∗
k ],=) × (N,≥n

m)k.

Since (N,≥n
m) is a dwpo, (H,≤H) is also a dwpo, as a subposet of the finite

product of dwpo’s. �

As a consequence of Lemmas 4.3, 4.4, and 5.2, we obtain the following

corollary for F = M (H).

Corollary 5.3. F = M (H) is a wpo for m < n and a dwpo for m > n.

By the k-freeness of H, we obtain the following.



	 The FEP for some fully distributive residuated lattices	 373Vol. 00, XX The FEP for some fully distributive residuated lattices 11

Lemma 5.4. There is a surjective semilattice monoid homomorphism from F

to W. Hence, W is a wpo for m < n and a dwpo for m > n.

Proof. Let g1(xi) = bi for i ∈ {1, . . . , k}, where B = {b1, . . . , bk}. The fol-

lowing diagram is obtained by combining the results from Lemmas 3.3, 3.4,

and 5.1.

F M (Wp)

W

H Wp

Xk

g

g1

M g

ψh

By distributivity of multiplication over meet, we have that W ⊆
∧
B∗. By

the fact that elements of W are generated as meets of elements in B∗ and by

Lemma 3.5, we obtain that h is surjective. Given that h is order-preserving,

we obtain that W is either a wpo or a dwpo. �

Recall that to prove FEP, we only need to show Cb = {{(u, b)}� : u ∈ SW }
is finite for every b ∈ B.

Lemma 5.5. For each b ∈ B, (Cb,⊆) is a dwpo if m < n and a wpo if m > n.

Proof. Recall that every u ∈ SW is of the form u = (y ◦ ◦ z)�w for y, z ∈ W

and w ∈ W ∪ {�}, where (y ◦ ◦ z)�� stands for y ◦ ◦ z. Based on this, we

define W� = W ∪ {�} and extend the order in ≤W to include � by x ≤W �
for all x ∈ W�.

It is easy to see that the map ϕ : W 2 × W� → Cb, where ϕ(y, w, z) =

{(y ◦ ◦w� z, b)}�, is surjective by considering the cases of z being � or not.

To show ϕ is order-reversing, let (y1, w1, z1), (y2, w2, z2) ∈ W 2 ×W� with

(y1, w1, z1) ≤W (y2, w2, z2), and note that then, for all x ∈ W ,

y1 ◦ x ◦ w1 � z1 ≤A y2 ◦ x ◦ w2 � z2.

So, if x ∈ ϕ(y2, w2, z2), that is, y2◦x◦w2�z2 ≤A b, then y1◦x◦w1�z1 ≤A b,

which means that x ∈ ϕ(y1, w1, z1). So ϕ(y1, w1, z1) ⊇ ϕ(y2, w2, z2).

By Lemma 5.4, (W 2 ×W�,≤W) is a wpo if m < n and a dwpo if m > n,

therefore (Cb,⊆) is a dwpo if m < n and a wpo if m > n, as a surjective image

of (W 2 ×W�,≤W). �

Lemma 5.6. (Cb,⊆) has no infinite descending chains for m < n and no

infinite ascending chains for m > n.
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Proof. For m < n, W is a wpo. The elements of Cb are downsets in P(W ),

so by Lemma 4.1, (Cb,⊆) has no infinite descending chains.

For m > n, W is a dwpo. If there existed an infinite ascending chain

of downsets in (Cb,⊆), the set complements of these elements would form a

descending chain of upsets, contradicting Lemma 4.1. Thus, (Cb,⊆) has no

infinite ascending chains. �

Theorem 5.7. W+
A,B is finite.

Proof. It follows from Lemma 5.5 and Lemma 5.6 that for all b ∈ B, (Cb,⊆)

has no infinite ascending chains, descending chains, or antichains, so it is

finite. �

By Lemma 2.1 and Theorem 5.7, we obtain the following main result of the

paper. Note that, for example, the commutative case is covered by our result.

Theorem 5.8. For any knotted inequality xm ≤ xn and any equation of the

form (a), all subvarieties of Dn
m(a) axiomatized by equations over {∧,∨, · , 1}

have the FEP and their universal theories are decidable.

We conclude by extending the above result to varieties of FL-algebras ax-

iomatized by some further equations. An FL-algebra is an expansion of a

residuated lattice with an extra constant 0, which is used to define negation

operations ∼x = x\0 and −x = 0/x. An FL-algebra is called cyclic if it satis-

fies ∼x = −x; it will be called pseudo-complemented if it satisfies x ∧ ∼x ≤ 0

and x ∧ −x ≤ 0.

Theorem 5.9. Let V be a subvariety of fully distributive FL-algebras axiom-

atized by a knotted inequality xm ≤ xn, some equation of the form (a), and

any combination of the following identities:

(1) cyclicity,

(2) pseudo complementation,

(3) 0 = 1,

(4) 0 ≤ x,

(5) any identity over the language of {∧,∨, · , 1}.
Then V has the FEP and its universal theory is decidable.

Proof. It follows from [7] that D = W+
A,B can be expanded to an FL-algebra

by interpreting 0 as 0D = {(id, 0)}�, and if A is already an FL-algebra, then

the embedding b �→ {(id, b)}� is also an FL-algebra embedding, where 0A is

mapped to 0D, in case 0A ∈ B, which we can actually also assume without

loss of generality since it preserves the finiteness of B.

We first prove that the construction preserves cyclicity. Let X ∈ D and

z ∈ ∼X = X\0D = {y : X ◦ y ⊆ 0D}. We have that X ◦ z ⊆ 0D iff for all

x ∈ X, x ◦ z ≤A 0. Cyclicity implies that for all y ∈ A, y\0 = 0/y, while

residuation implies xy ≤A 0 ⇔ x ≤A 0/y ⇔ x ≤A y\0 ⇔ yx ≤A 0. Hence,

X ◦ z ⊆ 0D ⇔ ∀x ∈ X,x ◦ z ≤A 0 ⇔ ∀x ∈ X, z ◦ x ≤A 0 ⇔ z ◦X ⊆ 0D.
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The conclusion, z ◦X ⊆ 0D, is equivalent to z ∈ −X = 0D/X. Therefore, for

all X ∈ D, ∼X = −X, which means that D is cyclic.

Now we show that pseudo-complementation is preserved. For z ∈ X ∩∼X,

we have z ∈ X and X ◦ {z} ⊆ 0D. In particular, z2 ≤A 0, which implies that

z ≤A ∼z. We have that

z = z ∧ z ≤A z ∧ ∼z ≤A 0.

Thus, X ∩ ∼X ⊆ 0D as desired. The other inequality is proven similarly.

The property of being zero-bounded (0 ≤ x) is preserved as well. The

verification is straightforward. The proofs of the previous lemmas rely on the

same construction of D, therefore they can be combined freely. �

As a final remark, we mention that our results also hold for the correspond-

ing varieties of generalized bunched implication algebras, namely (conserva-

tive) extensions of distributive residuated lattices with the residual of meet

and also with a top element; see [7] for more properties. This is because if A

is a generalized bunched implication algebra, then the algebra D constructed

here, based on the distributive residuated lattice reduct of A, is finite and can

be uniquely extended to a generalized bunched implication algebra; also, the

results in [7] ensure that the resulting map is an embedding also with respect

to the new operations.
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