
Annals of Pure and Applied Logic 170 (2019) 1188–1242
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Categories of models of R-mingle

Wesley Fussner, Nick Galatos ˚

Department of Mathematics, University of Denver, 2390 S. York St., Denver, CO 80208, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 October 2017
Received in revised form 24 
February 2019
Accepted 13 May 2019
Available online 20 May 2019

MSC:
03G10
03F52
03B42
03B50
03B52

Keywords:
Sugihara monoids
Twist products
Relevant logic
Gödel algebras
Relational semantics

We give a new Esakia-style duality for the category of Sugihara monoids based on 
the Davey-Werner natural duality for lattices with involution, and use this duality 
to greatly simplify a construction due to Galatos-Raftery of Sugihara monoids 
from certain enrichments of their negative cones. Our method of obtaining this 
simplification is to transport the functors of the Galatos-Raftery construction across 
our duality, obtaining a vastly more transparent presentation on duals. Because our 
duality extends Dunn’s relational semantics for the logic R-mingle to a categorical 
equivalence, this also explains the Dunn semantics and its relationship with the 
more usual Routley-Meyer semantics for relevant logics.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

This study concerns a constellation of categories closely tied to semantics for the relevance logic R-mingle. 
At the center of this constellation, the Sugihara monoids form the equivalent algebraic semantics for RMt

(i.e., R-mingle equipped with Ackermann constants [1]). Sugihara monoids have received extensive attention 
in the literature (see, e.g., [1,3,18,22,25]), and are known to be equivalent to several neighboring categories 
(see [12,13,30]). These categories are hence all pairwise equivalent, and the interplay between these equiva-
lences is the object of this inquiry. Consequently, we are less concerned with the existence of the equivalences 
than the form which they take. Our attention is therefore focused on the nature of the functors witness-
ing the equivalences. Scrutiny of these functors reveals how relationships among the categories considered 
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may be transported to different regions of the constellation. This yields, inter alia, a categorically-adequate 
relational semantics for RMt and an analogue of the twist product construction on dual spaces.

This work stems in part from the authors’ efforts to explicate Dunn’s Kripke-style semantics for R-mingle 
[8]. Dunn’s semantics stands out from the more widely-known Routley-Meyer semantics for relevance logics 
(see [26–28]) because it employs a binary, rather than ternary, accessibility relation. We explain this state of 
affairs by introducing a topological duality for the Sugihara monoids that underwrites Dunn’s semantics in 
the same way that the Esakia duality [9] underwrites the Kripke semantics for intuitionistic and modal logics.

After summarizing some necessary background information, Section 2 lays the groundwork for construct-
ing this duality. We refine the equivalence depicted in [12,13] between the Sugihara monoids and their 
enriched negative cones. The latter algebras form a class of relative Stone algebras augmented by a nucleus 
and a designated constant, and we show that enriching relative Stone algebras by only a designated constant 
is adequate to achieve categorical equivalence. We show also that this is tantamount to considering relative 
Stone algebras with a designated filter forming a Boolean algebra. In light of the latter fact, we call such 
algebras relative Stone algebras with Boolean constant. As in [12,13], the functors witnessing the equiva-
lence of this section are variants of the negative cone and twist product constructions. However, unlike the 
functors used in [12,13], the functors introduced in this section tie Sugihara monoids much more closely to 
their involutive lattice reducts, which proves indispensable in the sequel.

Section 3 introduces necessary background on the Priestley and Esakia dualities, and develops a duality for 
relative Stone algebras with Boolean constant and their bounded analogues. It also explains the connection 
between the duality introduced here and the Bezhanishvili-Ghilardi duality for Heyting algebras equipped 
with nuclei [2].

In Section 4, we recall some facts about natural duality theory and the Davey-Werner natural duality 
[7] between Kleene algebras and certain structured topological spaces that we call Kleene spaces. We then 
extend the Davey-Werner duality to algebras without lattice bounds, and introduce a class of special Kleene 
spaces that we call Sugihara spaces.

Section 5 uses the results of the previous two sections to develop a topological duality for Sugihara 
monoids. This duality is anchored in the modified version of the Davey-Werner duality introduced in the 
previous section, and stands to the Davey-Werner duality in much the same way that the Esakia duality 
stands to Priestley’s duality for bounded distributive lattices. In particular, we show that the category of 
Sugihara monoids is dually equivalent to the category of Sugihara spaces.

Section 6 introduces a covariant equivalence between certain categories of structured topological spaces. 
In particular, it gives an explicit connection between the duality of the previous section and Urquhart’s 
well-known duality for relevant algebras [30] that we call the reflection construction. Because the Urquhart 
duality extends the Routley-Meyer semantics to a categorical equivalence in the same way that our duality 
extends Dunn’s semantics to a categorical equivalence, the reflection construction explains the connection 
between the Dunn and Routley-Meyer semantics for R-mingle. The reflection construction also amounts to 
a translation of the functors of Section 2 to dual spaces, giving a version of the twist product construction 
on the duals of algebras. This presentation of the twist product turns out to be vastly simpler than its 
manifestation on the algebraic side of the duality, opening the door to the possibility of generalizing the 
construction to wider contexts.

Appendix A provides a summary of the most important categories involved in this study, as well as the 
most important functors between them. See also Fig. 1.

2. Twist product representations for Sugihara monoids

We first recall some facts about commutative residuated lattices that are necessary to our investigation. 
For general reference on commutative residuated lattices and the proofs of the propositions alluded to here, 
we refer the reader to [11] and [14].
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Fig. 1. The diagram above depicts several of the equivalences considered in this study. The left-hand side gives the equivalence 
between the category of bounded Sugihara monoids SMK and the category bGA of Gödel algebras enriched with a Boolean constant 
given in Section 2. The bottom of the diagram refers to the Esakia duality for Gödel algebras with Boolean constant articulated 
in Section 3, whereas the top of the diagram refers to Urquhart’s duality for relevant algebras, as specialized to bounded Sugihara 
monoids. The diagonal equivalence is an Esakia-style duality for bounded Sugihara monoids developed in Section 5. The right-hand 
side of the diagram alludes to the dual version of the equivalence on the algebraic side of the square, given in the work on topological 
twist products in Section 6. All the equivalences except those involving the category of Sugihara relevant spaces SRS have analogues 
for algebras without universal lattice bounds as well. A brief guide to the numerous categories and functors appearing in this study 
may be found in two tables appearing in the Appendix.

2.1. Commutative residuated lattices

A commutative residuated lattice (CRL) is an algebra pA, ̂ , _, ̈ , Ñ, tq such that pA, ̂ , _q is a lattice, 
pA, ̈ , tq is a commutative monoid, and for all a, b, c P A,

a ¨ b ď c ðñ a ď bÑ c.

The last of these conditions is often called the law of residuation. Note that in a CRL, we sometimes 
abbreviate a ¨ b by ab, especially when the symbol ¨ is used for the product of filters in the sequel (see 
Section 6). Note also that the neutral element t is sometimes denoted in the literature by 1 or e.

A CRL need not enjoy bounds with respect to its underlying lattice order, but in the event that a CRL A
possesses a lower bound K, it is bounded above as well. In fact, the upper bound of such a CRL is definable 
via the term K Ñ K. We thus refer to the expansion of a CRL A by a constant symbol K designating a 
lower bound as a bounded CRL. This expansion is term-equivalent to an expansion of A by constant symbols 
designating both the least and greatest elements of A.

When A is an algebra with a (bounded) CRL reduct, we will denote its carrier by A and its (bounded) 
lattice reduct by A.

A CRL is called:

• integral if the monoid identity is the greatest element with respect to its lattice order,
• distributive if its lattice reduct is a distributive lattice,
• idempotent if it satisfies the identity x ̈ x “ x,
• semilinear if it is a subdirect product of totally-ordered CRLs.

The class of CRLs axiomatized by any (possibly empty) subset of the above conditions forms a variety. The 
following summarizes some significant quasiidentities that hold in these varieties.

Proposition 2.1. Let A “ pA, ̂ , _, ̈ , Ñ, tq be a CRL. Then A satisfies:

1. a ̈ pa Ñ bq ď b

2. a ̈ pb _ cq “ pa ̈ bq _ pa ̈ cq

3. a Ñ pb ̂ cq “ pa Ñ bq ̂ pa Ñ cq
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4. pa _ bq Ñ c “ pa Ñ cq ̂ pb Ñ cq

5. pa ̈ bq Ñ c “ a Ñ pb Ñ cq “ b Ñ pa Ñ cq

6. a ď b ùñ a ̈ c ď b ̈ c

7. a ď b ùñ c Ñ a ď c Ñ b

8. a ď b ùñ b Ñ c ď a Ñ c

Proposition 2.2. Let A “ pA, ̂ , _, ̈ , Ñ, tq be a semilinear CRL. Then A satisfies:

1. t ď pa Ñ bq _ pb Ñ aq

2. a ̈ pb ̂ cq “ pa ̈ bq ̂ pa ̈ cq

3. a Ñ pb _ cq “ pa Ñ bq _ pa Ñ cq

4. pa ̂ bq Ñ c “ pa Ñ cq _ pb Ñ cq

Note that a CRL is semilinear if and only if it is distributive and satisfies the identity (1) of Proposition 2.2.
A CRL for which ¨ coincides with ^ is called a Brouwerian algebra, and an expansion of a Brouwerian 

algebra by a least element K is called a Heyting algebra. Brouwerian and Heyting algebras are among 
the most thoroughly-studied of all CRLs, and are integral, distributive, and idempotent. The semilinear 
Brouwerian algebras are called relative Stone algebras, and the semilinear Heyting algebras are called Gödel 
algebras. We denote respectively by Br, HA, RSA, and GA the categories of Brouwerian algebras, Heyting 
algebras, relative Stone algebras, and Gödel algebras. Given a category C and objects A and B of C, we 
denote by CpA, Bq the collection of all C-morphisms from A to B. Whenever we consider a category whose 
objects are algebras, we assume that the morphisms are the algebraic homomorphisms without additional 
comment. The following summarizes some useful algebraic properties of objects of previously-mentioned 
categories.

Proposition 2.3. Let A be an object of Br, HA, RSA, or GA. Then A satisfies the identities:

1. a Ñ a “ t

2. a ̂ pa Ñ bq “ a ̂ b

3. b ď a Ñ b

Proposition 2.4 ([13, Lemma 4.1]). Let A be an object of RSA and let a, b P A. Then the following are 
equivalent.

1. a Ñ b “ b and b Ñ a “ a.
2. a _ b “ t.

A nucleus on a CRL A is a closure operator N : A Ñ A satisfying the identity

Na ¨Nb ď Npa ¨ bq.

One canonical way of defining a nucleus is given by the following.

Example 2.5. Let A “ pA, ̂ , _, Ñ, tq be a Brouwerian algebra and let d P A. Then the map N : A Ñ A
defined by Na “ d Ñ a is a standard example of a nucleus on A.

Every CRL may be associated with an integral CRL via the negative cone construction. Whenever S is 
a subset of a partially-ordered set P “ pP, ďq, we define:
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ÒPS “ ta P P : s ď a for some s P Su, and
ÓPS “ ta P P : a ď s for some s P Su.

When there is no danger of confusion regarding the ambient poset, we simply write ÒS and ÓS for ÒPS and 
ÓPS, respectively. When S “ tsu is a singleton, we write ÒS and ÓS as Òs and Ós, respectively. Given a 
CRL A “ pA, ̂ , _, ̈ , Ñ, tq, let A´ :“ Ót be its collection of negative elements and define the negative cone 
of A to be the algebra A´ “ pA´, ̂ , _, ̈ , Ñ´, tq, where a Ñ´ b “ pa Ñ bq ̂ t. Then A´ is a CRL, and it 
is obviously integral.

2.2. Sugihara monoids and their negative cones

A unary operation � on a CRL that satisfies the identities ��x “ x and x Ñ �y “ y Ñ �x is called an 
involution, and an expansion of a CRL by an involution is called an involutive CRL. In any involutive CRL 
A, it holds that

a ¨ b ď c ðñ a ¨ �c ď �b

for all a, b, c P A. A Sugihara monoid is a distributive, idempotent, involutive CRL. We denote the category 
of Sugihara monoids by SM, and the category of bounded Sugihara monoids by SMK. The Sugihara monoids 
form a variety, and as Dunn proved in [1], they are semilinear.

The Sugihara monoids (see, e.g., [25]) form the equivalent algebraic semantics (in the sense of [4]) for the 
relevance logic RMt, i.e., R-mingle formulated with Ackermann constants. The Sugihara monoids satisfying 
the identity �t “ t are called odd, and the odd Sugihara monoids (with bounds) form the equivalent algebraic 
semantics of the logic IUML˚ (IUML, respectively) of [18].

We consider some examples of significant Sugihara monoids that will be useful in the sequel.

Example 2.6. Define an algebra S “ pZ, ̂ , _, ̈ , Ñ, 0, ́ q, where ^ and _ give the lattice operations of the 
usual order on the integers Z, ´ is the usual additive inversion on the integers, ¨ is given by

x ¨ y “

$

’

’

&

’

’

%

x |x| ą |y|

y |x| ă |y|

x^ y |x| “ |y|

and Ñ is given by

xÑ y “

#

p´xq _ y x ď y

p´xq ^ y x ę y.

Then S is a Sugihara monoid. S is obviously odd.

Example 2.7. Define a Sugihara monoid Szt0u “ pZzt0u, ̂ , _, ̈ , Ñ, 1, ́ q, where each of the non-nullary 
operations are defined as in Example 2.6. Then Szt0u is a Sugihara monoid with monoid identity 1. The 
Sugihara monoid Szt0u is not odd.

Example 2.8. For a positive integer m, the set t´m, . . . , ́ 1, 0, 1, . . . , mu is the universe of a subalgebra of 
S with exactly 2m ` 1 elements. Likewise, t´m, . . . , ́ 1, 1 . . . , mu is the universe of a subalgebra of Szt0u
with exactly 2m elements. Thus, for each positive integer n there is an n-element, totally-ordered Sugihara 
monoid arising as a subalgebra of S (if n is odd) or Szt0u (if n is even). The n-element Sugihara monoid so 
defined will be denoted by Sn. Note that Sn is an odd Sugihara monoid if and only if n is odd.
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Fig. 2. Hasse diagram for E.

Example 2.9. We may define a nonlinear example on the subuniverse of S5 ˆ S4 given by

E “ tx´2,´2y, x´1,´1y, x´1, 1y, x0,´1y, x0, 1y, x1,´1y, x1, 1y, x2, 2yu.

Note that E forms the carrier of a subalgebra E of S5 ˆ S4, whose Hasse diagram is given in Fig. 2.

With these examples in mind, we recall the following well-known fact (see, e.g., [22]).

Proposition 2.10. The Sugihara monoids are generated as a quasivariety by tS, Szt0uu.

The central result of [13] establishes that SM is equivalent to the category EnSM´ of enriched negative 
cones of Sugihara monoids, which we define presently. The objects of EnSM´ are algebras A “ pA, ̂ , _, Ñ
, t, N, fq, where the reduct pA,^,_,Ñ, tq is a relative Stone algebra, N is a nucleus on A, and f P A, all 
satisfying the universal conditions

a_ paÑ fq “ t,

NpNaÑ aq “ t, and

Na “ t ðñ f ď a.

Similarly define EnSM´
K

to be the category whose objects are expansions of objects of EnSM´ by a least 
element K and whose morphisms are those of EnSM´ preserving the constant K. Note that all of these 
algebras are integral.

The covariant functors C and S, defined as follows, witness the equivalence of EnSM´ and SM. First, 
define the functor C : SM Ñ EnSM´ for a Sugihara monoid A “ pA, ̂ , _, ̈ , Ñ, t, �q of SM by CpAq “
pA´, N, �tq, where N is the nucleus on A´ defined by Na “ pa Ñ tq Ñ t. For a morphism h : A Ñ B of
SM, define Cphq : CpAq Ñ CpBq by Cphq “ hæA´ , the restriction of h to the collection of negative elements 
of A.

To obtain the reverse functor, for an object A “ pA, ̂ , _, Ñ, t, N, fq of EnSM´ define

ΣpAq “ txa, by P AˆA : a_ b “ t and Nb “ bu.

Define the functor S : EnSM´ Ñ SM on objects A “ pA, ̂ , _, Ñ, t, N, fq of EnSM´ by SpAq “
pΣpAq, [, \, ̋ , Ù, xt, ty, �q, where:

xa, by [ xc, dy “ xa^ c, b_ dy,

xa, by \ xc, dy “ xa_ c, b^ dy,

xa, by ˝ xc, dy “ xppaÑ dq ^ pcÑ bqq Ñ pa^ cq, NppaÑ dq ^ pcÑ bqqy,

xa, by Ù xc, dy “ xpaÑ cq ^ pdÑ bq, NpppaÑ cq ^ pdÑ bqq Ñ pa^ dqqy,

�xa, by “ xa, by Ù xf, ty
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“ xpaÑ fq ^ b,NpppaÑ fq ^ bq Ñ aqy.

For a morphism h : A Ñ B of EnSM´, define a morphism Sphq : SpAq Ñ SpBq of SM by Sphqxa, by “
xhpaq, hpbqy. Under these definitions, the functors C and S yield a (covariant) equivalence between the 
categories EnSM´ and SM. Moreover, this equivalence may be extended to the bounded algebras arising 
from objects of EnSM´ and SM, giving an equivalence between the corresponding categories of bounded 
algebras EnSM´

K
and SMK. The functors C and S are extended as follows in order to obtain the latter 

equivalence. If pA, Kq is an object of SMK, extend the definition of C by associating to pA, Kq the object 
pCpAq, Kq of EnSM´

K
. Likewise, if pA, Kq is an object of EnSM´

K
, extend S by associating with pA, Kq the 

Sugihara monoid SpAq with designated lower-bound xK, ty.
In [13], the functor C was called the nuclear negative cone functor. On the other hand, the functor S

is a variant of the twist product construction, originally introduced by Kalman in [16] (but see also, e.g., 
[10,17,19–21,29] for a sample of the rapidly-growing literature on twist products). It is noteworthy that the 
involution arising from S does not coincide with the usual twist product involution xa, by ÞÑ xb, ay, although 
it does when the equivalence depicted above is restricted to odd Sugihara monoids, as chronicled in [12]. This 
mismatch between the usual twist product involution and the involution arising from S proves undesirable 
for the applications that follow, so we first recast the construction from [13] in order to restore the simple 
involution xa, by ÞÑ xb, ay. This requires further scrutiny of the algebraic structure of the variety EnSM´.

2.3. Algebras with Boolean constant

Let A be a Brouwerian algebra. We call a lattice filter F of A a Boolean filter if F , considered as a lattice 
with the operations inherited from A, is a Boolean lattice (i.e., a complemented, bounded, distributive 
lattice). Note that we admit the one-element Boolean lattice as a potential Boolean filter, and under this 
convention every Brouwerian algebra has at least one Boolean filter (i.e., ttu, where t is the greatest element 
of the Brouwerian algebra).

Lemma 2.11. Let A “ pA, ̂ , _, Ñ, tq be a Brouwerian algebra, F be a Boolean filter of A with least ele-
ment f , and a P F . Then the complement of a in F is precisely a Ñ f .

Proof. Note that a Ñ f ě f gives that a Ñ f P F . Since a P F as well, this shows that a ^ pa Ñ fq P F . 
But a ^ pa Ñ fq ď f , and as f is the least element of F , it follows that a ^ pa Ñ fq “ f . On the other 
hand, since F is a Boolean filter and a P F , a has a complement c in F . This gives that a ^ c ď f , so by 
residuation we get c ď a Ñ f . Then t “ a _ c ď a _ pa Ñ fq, so a _ pa Ñ fq “ t. It follows that a Ñ f is 
the complement of a in F . l

Proposition 2.12. Let A “ pA, ̂ , _, Ñ, tq be a Brouwerian algebra and let f P A. Then the following are 
equivalent.

1. a _ pa Ñ fq “ t for all a P Òf .
2. a _ pa Ñ fq “ t for all a P A.
3. Òf is a Boolean lattice.

Proof. First, we show that (1) implies (3), so suppose that a _ pa Ñ fq “ t for all a P Òf . Let a P Òf . Then 
a ^ pa Ñ fq ď f , so as a Ñ f ě f yields a, a Ñ f P Òf this gives a ^ pa Ñ fq “ f . On the other hand, 
a _ pa Ñ fq “ t by hypothesis. This shows that each a P Òf has a complement (namely, a Ñ f), and hence 
that Òf is a Boolean filter.



W. Fussner, N. Galatos / Annals of Pure and Applied Logic 170 (2019) 1188–1242 1195
Second, we show that (3) implies (2). Suppose that Òf is a Boolean filter, and let a P A. Then since 
a Ñ f ě f , we have that a _ pa Ñ fq P Òf and hence has a complement in Òf , and this complement is 
pa _ pa Ñ fqq Ñ f by Lemma 2.11. Observe that

t “ pa_ paÑ fqq _ ppa_ paÑ fqq Ñ fq

“ pa_ paÑ fqq _ ppaÑ fq ^ ppaÑ fq Ñ fqq

“ pa_ paÑ fqq _ f

“ a_ paÑ fq.

This gives that a _ pa Ñ fq “ t as desired.
Since (2) implies (1) trivially holds, this gives the result. l

In light of Proposition 2.12, we call an expansion of a Brouwerian algebra (Heyting algebra) A by a 
designated constant f satisfying a _ pa Ñ fq “ t a Brouwerian algebra with Boolean constant (respectively, 
Heyting algebra with Boolean constant). For the present purposes, our interest is focused on the semilinear 
members of these classes. We thus denote the category of relative Stone algebras with Boolean constant by
bRSA. Likewise, we denote the category of Gödel algebras with Boolean constant by bGA. For brevity, we 
respectively call the objects of these categories bRS-algebras and bG-algebras.

In spite of the defining condition Na “ t ðñ f ď a, the objects of EnSM´ turn out to form a variety. 
The subdirect irreducibles in this variety are characterized by the comments on pp. 3207 and 3192 of [13]
as follows.

Proposition 2.13. An object pA, ̂ , _, Ñ, t, N, fq of EnSM´ is subdirectly irreducible iff it is totally ordered, 
ta P A : a ă tu has a greatest element, and one of the following holds:

1. The constants f and t coincide and N is the identity function on A, or
2. the constant f is the greatest element of ta P A : a ă tu, Nf “ t, and Na “ a whenever a ‰ f .

By arguing on generating algebras for the variety, we obtain the following.

Lemma 2.14. EnSM´ satisfies the identity Na “ f Ñ a.

Proof. It suffices to check the identity Na “ f Ñ a on subdirectly irreducible algebras, so let A “
pA, ̂ , _, Ñ, t, N, fq be a subdirectly irreducible algebra in EnSM´. If f “ t and N is the identity function 
on A, then the result trivially follows since f Ñ a “ t Ñ a “ a for any a P A and Na “ a for any a P A.

In the remaining case, A is a chain and N satisfies:

Na “

#

t x “ f, t

a a ‰ f, t

Note also that in any totally-ordered Brouwerian algebra:

xÑ y “

#

t x ď y

y x ę y

We may therefore compute:
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f Ñ a “

#

t f ď a

a f ę a

Since t covers f in the present case, we have that f ď a iff a “ f or t, which gives the result. l

Proposition 2.15. EnSM´ is term-equivalent to bRSA, and EnSM´
K

is term-equivalent to bGA.

Proof. Lemma 2.14 shows that in any object A “ pA, ̂ , _, Ñ, t, N, fq of EnSM´, N is definable in the 
p^, _, Ñ, t, fq-reduct of A. Since the p^, _, Ñ, t, fq-reduct of such an object A of EnSM´ satisfies a _pa Ñ
fq “ t by definition, such an A is a bRS-algebra.

On the other hand, suppose that A “ pA, ̂ , _, Ñ, t, fq is a bRS-algebra, and define N : A Ñ A by 
Na “ f Ñ a. Then N is a nucleus by Example 2.5. Moreover, observe that for any a P A,

NpNaÑ aq “ f Ñ ppf Ñ aq Ñ aq

“ pf Ñ aq Ñ pf Ñ aq

“ t,

so the identity NpNa Ñ aq “ t holds.
To see that the condition Na “ t iff f ď a holds, observe that

Na “ t ðñ f Ñ a “ t

ðñ f ď a.

It follows that every bRS-algebra is the p^, _, Ñ, t, fq-reduct of an object of EnSM´, so that EnSM´ is 
term-equivalent to bRSA. The term-equivalence of EnSM´

K
and bGA follows by the same argument. l

The previous proposition shows that the addition of the nucleus to the signature is extraneous in the 
definition of EnSM´. In order to obtain an equivalence between SM and the (enriched) negative cones of its 
members, we therefore need only consider expansions of the negative cones by a single designated constant 
rather than a designated constant and a nucleus. In particular, SM is categorically equivalent to bRSA and
SMK is categorically equivalent to bGA. We modify the functors C and S described above to obtain this 
equivalence as follows. Define S : bRSA Ñ SM in the same way as before, but replacing instances of N in 
the definitions of ˝ and Ù with Na “ f Ñ a. Define a functor p´q’ : SMÑ bRSA by A’ “ pA´, �tq. Then 
replacing S and C with the new S and p´q’ produces an equivalence of categories between SM and bRSA. 
Similar remarks apply to SMK and bGA.

For the treatment to follow, it is desirable that we replace S by a different functor that situates the 
equivalence more naturally among existing work on twist products. For a bRS-algebra A “ pA, ̂ , _, Ñ, t, fq, 
define1

A’
“ txa, by P AˆA : a_ b “ t and a^ b ď fu.

Moreover, for xa, by, xc, dy P A ̂ A, define xa, by [ xc, dy “ xa ̂ c, b _ dy and xa, by \ xc, dy “ xa _ c, b ̂ dy as 
in the definition of S. Then pA ̂ A, [, \q is a lattice.

Lemma 2.16. Let A “ pA, ̂ , _, Ñ, t, fq be a bRS-algebra. Then ΣpAq and A’ are universes of sublattices 
of pA ̂ A, [, \q.

1 Here we borrow notation from the twist product construction. This should not, however, be confused with what is sometimes 
referred to in the literature as the full twist product.
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Proof. Suppose that xa, by, xc, dy P A ̂ A satisfy a _ b “ c _ d “ t. Then by distributing,

pa^ cq _ pb_ dq “ ppa_ bq ^ pc_ bqq _ d

“ pt^ pc_ bqq _ d

“ t,

and a symmetric argument shows that pa _ cq _ pb ̂ dq “ t as well.
Next suppose xa, by, xc, dy P A ̂ A with Nb “ b and Nd “ d, where the nucleus Nx “ f Ñ x is defined 

as above. Then Npb ̂ dq “ b ̂ d by Proposition 2.1(3), and Npb _ dq “ b _ d by Proposition 2.2(3).
Finally, suppose that xa, by, xc, dy P A ̂ A with a ̂ b ď f and c ̂ d ď f . Then

pa^ cq ^ pb_ dq “ pa^ c^ bq _ pa^ c^ dq

ď pf ^ cq _ pf ^ aq

ď f,

and symmetrically pa _ cq ̂ pb ̂ dq ď f as well.
The first and second paragraphs show that ΣpAq is closed under [ and \, whereas the first and third 

paragraphs show that A’ is closed under [ and \. This gives the result. l

Define a function δA : pAˆA,[,\q Ñ pAˆA,[,\q for each bRS-algebra A “ pA,^,_,Ñ, t, fq by

δAxa, by “ xa, f Ñ by “ xa,Nby.

Lemma 2.17. The map δA is a lattice endomorphism.

Proof. Let xa, by, xc, dy P A ˆ A. Then a calculation with Proposition 2.2(3) gives δApxa, by [ xc, dyq “
δAxa, by [ δAxc, dy, and an analogous computation with Proposition 2.1(3) gives δApxa, by \ xc, dyq “
δAxa, by \ δAxc, dy. l

Suppose that xa, by P A ̂ A satisfies a _ b “ t. Then since f Ñ b ě b, we have also that a _ pf Ñ bq “ t. 
Moreover, the second coordinate of the pair δAxa, by “ xa, f Ñ by “ xa, Nby is an N -closed element of A
since N is idempotent. These considerations show that δArA’s Ď ΣpAq, and we may thus define a lattice 
homomorphism δA : pA’, [, \q Ñ pΣpAq, [, \q by δA “ δAæA’ .

Lemma 2.18. The map δA : pA’, [, \q Ñ pΣpAq, [, \q is a lattice isomorphism with inverse given by

δ´1
A xa, by “ xa, b^ paÑ fqy.

Proof. To see that δA is a lattice isomorphism, it suffices to show that δA is a bijection. For proving that 
δA is one-to-one, suppose that xa, by, xc, dy P A’ with δAxa, by “ δAxc, dy. Then xa, f Ñ by “ xc, f Ñ dy, so 
a “ c and f Ñ b “ f Ñ d. Then f Ñ b ď f Ñ d, so by residuation f ^ b “ f ^ pf Ñ bq ď d. Observe that 
since xa, by P A’ we have a ̂ b ď f and a _ b “ t, and by distributivity pa _ fq ̂ pb _ fq “ pa ̂ bq _ f “ f . 
Moreover, pa _ fq _ pb _ fq “ t _ f “ t. This shows that a _ f and b _ f are complements in the Boolean 
lattice Òf . Since xa, dy P A’ as well, an identical argument shows that a _f and d _f are also complements 
in Òf . Because complements are unique in a Boolean lattice, this gives b _ f “ d _ f . Because b ̂ f ď d,



1198 W. Fussner, N. Galatos / Annals of Pure and Applied Logic 170 (2019) 1188–1242
b “ b^ pb_ fq

“ b^ pd_ fq

“ pb^ dq _ pb^ fq

ď pb^ dq _ d

“ d,

so that b ď d. A symmetrical argument shows that d ď b, so b “ d. This proves δA is one-to-one.
To see that δA is onto, let xa, by P ΣpAq. Then a _ b “ t and b “ f Ñ b. Observe that a ̂ b ̂ pa Ñ fq “

a ̂ f ^ b ď f , and also by distributivity

a_ pb^ paÑ fqq “ pa_ bq ^ pa_ paÑ fqq

“ t^ t “ t.

This gives that xa, b ̂ pa Ñ fqy P A’. Note also that

f Ñ pb^ paÑ fqq “ pf Ñ bq ^ pf Ñ paÑ fqq

“ pf Ñ bq ^ ppf ^ aq Ñ fqq

“ pf Ñ bq ^ t

“ f Ñ b

“ b.

It follows that δAxa, b ̂ pa Ñ fqy “ xa, by, so δA is onto. The computation above also shows that the inverse 
of δA is given by xa, by ÞÑ xa, b ̂ pa Ñ fqy as claimed. l

Owing to the fact that pΣpAq, [, \q is the reduct of a commutative residuated lattice determined by the 
action of S on A, the isomorphism δA allows us to endow A’ with a residuated multiplication by transport 
of structure. In more detail, define binary operations ‚ and ñ on A’ by

xa, by ‚ xc, dy “ δ´1
A pδAxa, by ˝ δAxc, dyq and

xa, by ñ xc, dy “ δ´1
A pδAxa, by Ù δAxc, dyq.

Written explicitly, the operation ‚ is given by xa, by ‚ xc, dy “ xs, ty, where

s “ ppa^ fq Ñ dq ^ rppc^ fq Ñ dq Ñ pa^ cqs

and

t “ ppa^ fq Ñ dq ^ ppc^ fq Ñ dq ^ psÑ fq.

On the other hand, the operation ñ is given by xa, by ñ xc, dy “ xw, vy, where

w “ paÑ cq ^ ppf ^ dq Ñ bq

and

v “ rpf ^ paÑ cq ^ pdÑ bqq Ñ pa^ pf Ñ dqqs ^ pw Ñ fq.

With these operations, we immediately obtain the following.
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Proposition 2.19. If A “ pA, ̂ , _, Ñ, t, fq is a bRS-algebra, then pA’, [, \, ‚, ñ, xt, fyq is a CRL.

In fact, the CRL pA’, [, \, ‚, ñ, xt, fyq may be enriched with a natural involution „ given by „xa, by “
xb, ay. Since xa, by P A’ obviously implies xb, ay P A’, „ is a well-defined binary operation on A’. We 
will show that the addition of „ makes pA’, [, \, ‚, ñ, xt, fyq a Sugihara monoid. For this, we require the 
following lemma.

Lemma 2.20. If xa, by P A’, then pa Ñ fq ̂ pf Ñ bq “ b.

Proof. Let xa, by P A’. Then a ̂ b ď f and a _b “ t. The inequality a^ b ď f gives b ď a Ñ f by residuation, 
and combining this with b ď f Ñ b (see Proposition 2.3(3)) we get b ď pa Ñ fq ̂ pf Ñ bq. On the other hand, 
Proposition 2.4 together with a _b “ t yields a Ñ b “ b. Notice that a ̂ pa Ñ fq ̂ pf Ñ bq ď f^pf Ñ bq ď b, 
and residuation then gives pa Ñ fq ̂ pf Ñ bq ď a Ñ b “ b. This proves the claim. l

Proposition 2.21. Let A be an object of bRSA. Then for all xa, by P A’, �δAxa, by “ δAp„xa, byq, and hence 
δA is an isomorphism of SM.

Proof. Let xa, by P A’. Then a _ b “ t gives a Ñ b “ b and b Ñ a “ a by Proposition 2.4, and pa Ñ
fq ̂ pf Ñ bq “ b by Lemma 2.20. Using these facts, observe that

�δAxa, by “ �xa, f Ñ by

“ xa, f Ñ by Ù xf, ty

“ xpaÑ fq ^ ptÑ pf Ñ bqq, f Ñ rppaÑ fq ^ ptÑ pf Ñ bqq Ñ pa^ tqsy

“ xpaÑ fq ^ pf Ñ bq, f Ñ rppaÑ fq ^ pf Ñ bqq Ñ ay

“ xb, f Ñ pbÑ aqy

“ xb, f Ñ ay

“ δAp„xa, byq.

The above shows that δA preserves „ as well as the CRL operations. The map δA is hence an isomorphism 
in SM for each object A in bRSA. l

Given a bRS-algebra A, the above shows that the Sugihara monoid SpAq is isomorphic to pA’, [, \, ‚, ñ
, xt, fy, „q. The involution „ is much simpler than the involution given in the definition of SpAq, but this 
simplicity comes at the price of complicating the monoid operation and its residual.

Informed by these remarks, we define a functor p´q’ : bRSA Ñ SM as follows. For an object A “
pA, ̂ , _, Ñ, t, fq of bRSA, define A’ to be the Sugihara monoid pA’, [, \, ‚, ñ, xt, fy, „q. If h : A Ñ B is 
a morphism in bRSA, define h’ : A’ Ñ B’ by h’xa, by “ xhpaq, hpbqy.

Lemma 2.22. Let h : A Ñ B is a morphism in bRSA. Then h’ is a morphism in SM.

Proof. From the results of [13] it follows that the map Sphq : SpAq Ñ SpBq defined by Sphqxa, by “
xhpaq, hpbqy is a morphism in SM. Observe that for any xa, by P A’,

SphqpδAxa, byq “ Sphqxa, fA
Ñ by

“ xhpaq, hpfA
Ñ bqy

“ xhpaq, hpfA
q Ñ hpbqy
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“ xhpaq, fB
Ñ hpbqy

“ δBxhpaq, hpbqy

“ δBph
’
xa, byq.

It follows that h’ “ δ´1
B ˝ Sphq ̋ δA, hence is the composition of morphisms in SM. l

Lemma 2.23. The map p´q’ is functorial.

Proof. Let g : A Ñ B and h : B Ñ C be morphisms in bRSA. Notice that the functoriality of S yields

ph ˝ gq’ “ δ´1
C ˝ Sph ˝ gq ˝ δA

“ δ´1
C ˝ Sphq ˝ Spgq ˝ δA

“ δ´1
C ˝ Sphq ˝ δB ˝ δ

´1
B ˝ Spgq ˝ δA

“ h’
˝ g’,

and it is obvious that p´q’ preserves the identity map. l

Having established the functoriality of p´q’, it remains to show that it provides a reverse functor for 
p´q’ : SMÑ bRSA.

Lemma 2.24. Let A be an object of bRSA. Then A – pA’q’.

Proof. Observe that A’ – SpAq via δA, and by the results of [13], SpAq’ – A. It follows that 
pA’q’ – A. l

Lemma 2.25. Let A be an object of SM. Then A – pA’q
’.

Proof. Using [13] and δA’
, A – SpA’q – pA’q

’. l

Lemma 2.26. There is a bijection from bRSApA, Bq to SMpA’, B’q.

Proof. Note that the bRSA-morphisms from A to B are in bijective correspondence with the SM-morphisms 
from SpAq to SpBq. Moreover, given a morphism h : SpAq Ñ SpBq, the map h ÞÑ δ´1

B ˝h ̋ δA gives a bijection 
between the SM-morphisms from SpAq to SpBq and those from A’ to B’, which proves the result. l

Combining the lemmas above, we obtain

Theorem 2.27. The functors p´q’ and p´q’ witness the equivalence of bRSA and SM.

A consequence of the above is that p´q’ and S are both adjoints of the functor p´q’, hence that p´q’
and S are isomorphic functors. In light of this result, we may dispense with the functor S entirely, opting 
instead to express the equivalence in terms of the functor p´q’ and its more familiar involution.

Example 2.28. Consider the Sugihara monoid E “ pE, ̂ , _, ̈ , Ñ, x0, 1y, �q of Example 2.9. The enriched 
negative cone of E is given by the bRS-algebra E’, where f “ �x0, 1y “ x´0, ́ 1y “ x0, ́ 1y, and has Hasse 
diagram
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‚ t “ x0, 1y

‚ f “ x0,´1y‚c “ x´1, 1y

‚ b “ x´1,´1y

‚ a “ x´2,´2y

The nucleus N : E’ Ñ E’ defined by Nx “ f Ñ x is given by Nt “ Nf “ t, Nb “ Nc “ c, and Na “ a. 
Therefore,

ΣpE’q “ txx, yy P E
´
ˆ E´ : x_ y “ t and Ny “ yu

“ txa, ty, xb, ty, xc, ty, xf, ty, xt, ty, xt, ay, xt, cy, xf, cyu.

On the other hand, representing E with the functor p´q’ gives

pE’q
’
“ txx, yy P E´ ˆ E´ : x_ y “ t and x^ y ď fu

“ txa, ty, xt, ay, xb, ty, xt, by, xt, fy, xf, ty, xf, cy, xc, fyu.

The Hasse diagrams for SpE’q and pE’q
’ are respectively

‚ xt, ay

‚xt, cy

‚xt, ty ‚ xf, cy

‚ xf, ty‚xc, ty

‚ xb, ty

‚ xa, ty

‚ xt, ay

‚xt, by

‚xt, fy ‚ xf, cy

‚ xf, ty‚xc, fy

‚ xb, ty

‚ xa, ty

Observe that the representations SpE’q and pE’q
’ differ by only three pairs, including the monoid identity.

3. Duality for algebras with a Boolean constant

As an initial step to producing dualities for the Sugihara monoids and their bounded expansions, we 
construct dualities for the equivalent categories bRSA and bGA. Because of their close relationship to the 
category of Heyting algebras, dualities for bRSA and bGA may be obtained as elaborations of the well-known 
Esakia duality. These elaborations have much in common with Bezhanishvili and Ghilardi’s duality for 
Heyting algebras equipped with nuclei [2], and we also explore points of contact with this duality theory. As 
a preliminary to obtaining dualities for bRSA and bGA, we recall some facts about the Priestley and Esakia 
dualities.

3.1. Priestley and Esakia duality

A structure pX, ď, τq is called a Priestley space if pX, ďq is a poset, pX, τq is a compact topological space, 
and for each x, y P X satisfying x ę y there exists a clopen up-set U with x P U and y R U . Observe that 
the latter requirement implies that Priestley spaces are Hausdorff.

A Priestley space X “ pX, ď, τq is called an Esakia space if for each clopen set U the down-set ÓXU is 
clopen as well. Given binary relational structures pX, R1q and pY, R2q, a function ϕ : pX, R1q Ñ pY, R2q is 
called a p-morphism if it satisfies

1. for all x, y P X, xR1y implies ϕpxqR2ϕpyq, and
2. for all x P X and z P Y , ϕpxqR2z implies there exists y P X such that xR1y and ϕpyq “ z.
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If pX, ď1, τ1q and pY, ď2, τ2q are Esakia spaces, then a continuous p-morphism ϕ : pX, ď1q Ñ pY, ď2q is called 
an Esakia map or Esakia function. We denote the category of Priestley spaces with continuous isotone maps 
by PS, and the category of Esakia spaces with Esakia maps by ES. For convenience, we denote also the 
category of bounded distributive lattices with bounded lattice homomorphisms by DL.

Given a bounded distributive lattice A “ pA, ̂ , _, K, Jq, we denote by A˚ its collection of prime filters. 
A˚ may be endowed with a topology τA that is generated by the subbase tσpaq : a P Au Y tσpaqc : a P Au, 
where for each a P A we have σpaq “ tx P A˚ : a P xu. Ordered by subset inclusion and equipped with 
this topology, A˚ becomes a Priestley space. We denote this Priestley space by A˚ “ pA˚, Ď, τAq. On the 
other hand, given a Priestley space X “ pX, ď, τq, we denote by X˚ the collection of clopen up-sets of X. 
This collection is closed under unions and intersections, and hence X˚ “ pX˚, X, Y, H, Xq is a bounded 
distributive lattice. The maps p´q˚ and p´q˚ may be extended to functors between DL and PS by defining 
their action on morphisms as follows. First, if h : A Ñ B is a morphism of DL, we define h˚ : B˚ Ñ A˚
by h˚pxq “ h´1rxs. Then h˚ is a PS-morphism. Likewise, if ϕ : X Ñ Y is a morphism of PS, we define 
ϕ˚ : Y˚ Ñ X˚ by ϕ˚pUq “ ϕ´1rU s. Then ϕ˚ is a DL-morphism. Priestley showed in [23,24] that the 
functors p´q˚ and p´q˚ witness a dual equivalence of categories between DL and PS.

A Heyting algebra H “ pH, ̂ , _, Ñ, t, Kq is, inter alia, a bounded distributive lattice. Its distributive 
lattice reduct H therefore has a Priestley dual H˚, and it turns out that H˚ is an Esakia space. On the 
other hand, given an Esakia space X “ pX, ď, τq, we may define a binary operation Ñ on X˚ by

U Ñ V “ tx P X : ÒxX U Ď V u.

The expansion pX˚, Ñq turns out to be a Heyting algebra. Moreover, when h is an HA-morphism, the dual 
h˚ is an Esakia map. Likewise, when ϕ is an ES-morphism, the dual h˚ is a Heyting algebra homomorphism 
when Ñ is defined as before. This entails that the restrictions of the functors p´q˚ and p´q˚ to HA and ES
yield a dual equivalence of categories. Esakia discovered this duality independently of Priestley, and first 
articulated it in [9].

Priestley and Esakia dualities may also be formulated for algebras with a distinguished top element, 
but lacking a distinguished bottom element, as follows. We say that a structure pX, ď, J, τq is a pointed 
Priestley space if pX, ď, τq is a Priestley space and J is the greatest element of pX, ďq, and that pX, ď, J, τq
is a pointed Esakia space if it is a pointed Priestley space and pX, ď, τq is an Esakia space. Given pointed 
Priestley spaces pX, ď1, J1, τ1q and pY, ď2, J2, τ2q, we say that a continuous monotone map ϕ : pX, ď1

, J1, τ1q Ñ pY, ď2, J2, τ2q is a pointed Priestley map if ϕpJ1q “ J2. We define the notion of pointed Esakia 
map similarly. Note that the p-morphism condition guarantees that every Esakia map between pointed 
Esakia spaces is a pointed Esakia map. The category of pointed Priestley spaces with pointed Priestley 
maps will be denoted pPS, and the category of pointed Esakia spaces with pointed Esakia maps by pES.

Given a top-bounded distributive lattice A without distinguished bottom, we say that x Ď A is a 
generalized prime filter if x is a prime filter or x “ A. In this situation, we denote by A˚ the pointed 
Priestley space of generalized prime filters of A. If X is a pointed Priestley space, we denote by X˚ the 
top-bounded distributive lattice of nonempty clopen up-sets of A. With these modifications, p´q˚ and p´q˚

give a dual equivalence of categories between the category of top-bounded distributive lattices and pPS. The 
same modifications witness a dual equivalence of categories between Br and pES. For a detailed treatment 
of the extension of the Esakia duality to Brouwerian algebras, we refer the reader to [15].

For simplicity of notation, we will use p´q˚ and p´q˚ to denote both the functors witnessing the Priestley 
duality (with or without bottom elements) and their restrictions witnessing the Esakia duality (for either 
Heyting algebras or Brouwerian algebras). In the sequel, we will use the same notation for Urquhart’s 
duality for relevant algebras, which is constructed based on Priestley duality. In all of these cases, we rely 
on context to distinguish between these meanings.
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A poset pP, ďq is called a forest if Òx is a chain for each x P P . It is well-known (see, e.g., [5]) that a 
Heyting algebra A is a Gödel algebra if and only if pA˚, Ďq is a forest. For a relative Stone algebra A, the 
addition of a new bottom element K to A yields a Gödel algebra with carrier A YtKu, and pA˚, Ďq is precisely 
ppA Y tKuq˚, Ďq. Thus a Brouwerian algebra A is a relative Stone algebra if and only if the corresponding 
pointed Esakia space is a forest with greatest element (i.e., a tree). The dualities discussed above may thus 
be restricted to obtain dualities for the Gödel algebras (respectively, relative Stone algebras) by considering 
only those Esakia spaces whose underlying order is a forest (respectively, pointed Esakia spaces whose 
underlying order is a tree).

3.2. Esakia duality for bRSA and bGA

We next extend the Esakia duality for Brouwerian algebras to obtain a dual equivalence of bRSA with 
the category of structured topological spaces that we define presently.

Definition 3.1. A structure pX, ď, D, J, τq is called a bRS-space if

1. pX, ď, J, τq is a pointed Esakia space,
2. pX, ďq is a forest, and
3. D is a clopen subset of X consisting of ď-minimal elements.

Given bRS-spaces pX, ďX , DX , JX , τXq and pY, ďY , DY , JY , τY q, a map ϕ from pX, ďX , DX , JX , τXq to 
pY, ďY , DY , JY , τY q is called a bRSS-morphism if

1. ϕ is a pointed Esakia map from pX, ďX , JX , τXq to pY, ďY , JY , τY q,
2. ϕrDX s Ď DY , and
3. ϕrDc

X s Ď Dc
Y .

We denote the category of bRS-spaces with bRSS-morphisms by bRSS.

The equivalence of bRSA and bRSS is witnessed by augmented versions of the functors p´q˚ and p´q˚. For 
an object A “ pA, ̂ , _, Ñ, t, fq of bRSA, define A˚ “ ppA, ̂ , _, Ñ, tq˚, σpfqcq. For an object pX, ď, D, J, τq
of bRSS, define pX, ď, D, J, τq˚ “ ppX, ď, J, τq˚, Dcq. The maps p´q˚ and p´q˚ are defined on morphisms 
exactly as in the duality for Brouwerian algebras.

Lemma 3.2. Let A “ pA, ̂ , _, Ñ, t, fq be an object of bRSA. Then A˚ is an object of bRSS.

Proof. The duality for Brouwerian algebras as applied to relative Stone algebras implies that A˚ is a pointed 
Esakia space whose underlying order is a forest. It thus suffices to show that σpfqc is a clopen subset of A˚
consisting of Ď-minimal elements. That σpfqc is clopen follows as it is a subbasic clopen set. To see that 
σpfqc consists of minimal elements, let y P σpfqc and suppose that x P A˚ with x Ď y. Let a P y. Then 
pa Ñ fq _ a “ t P x, so by the primality of x either a P x or a Ñ f P x. If a Ñ f P x, then a Ñ f P y. This 
gives a ^ pa Ñ fq P y. But a ^ pa Ñ fq ď f and y upward-closed gives f P y, which is a contradiction to 
the choice of y. It follows that a P x, so that y Ď x. Since x Ď y as well, this shows that x “ y and thus y
is Ď-minimal. l

Lemma 3.3. Let X “ pX, ď, D, J, τq be an object of bRSS. Then X˚ is an object of bRSA.

Proof. The duality for Brouwerian algebras gives that X˚ is a relative Stone algebra, so we need only show 
that Dc is a clopen up-set of X and that for any clopen up-set U Ď X, U YpU Ñ Dcq “ X. The set D being 
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clopen immediately yields that Dc is clopen. To see that Dc is an up-set, let x P Dc and y P X with x ď y. 
If y P D held, then the minimality of the elements of D would give x “ y and hence x P D, a contradiction. 
Therefore y P Dc, so Dc is an up-set.

Now let U Ď X be a clopen up-set and let x P X. If x R U , then we claim that x P U Ñ Dc “ tz P

X : Òz X U Ď Dcu, so suppose that y P Òx X U . It suffices to show that y is not minimal. Observe that 
x ď y and y P U , so x R U gives x ‰ y. Thus y is not ď-minimal, which gives x P U Ñ Dc. It follows that 
x P U Y pU Ñ Dcq, so that U Y pU Ñ Dcq “ X, proving the claim. l

Lemma 3.4. Let h : A Ñ B be a morphism of bRSA. Then h˚ : B˚ Ñ A˚ is a morphism of bRSS.

Proof. The duality for Brouwerian algebras gives that h˚ is a morphism of pES. We must show that 
h˚rσpf

Bqs Ď σpfAq and h˚rσpfBqcs Ď σpfAqc.
Firstly, let x P h˚rσpf

Bqs. Then there exists y P σpfBq such that x “ h˚pyq. Since hpfAq “ fB P y, it 
follows that fA P h´1rys “ h˚pyq “ x, so x P σpfAq. This gives h˚rσpfBqs Ď σpfAq.

Secondly, let x P h˚rσpfBqcs. Then there exists y P σpfBqc such that we have x “ h˚pyq “ h´1rys. Were 
it the case that fA P x, then fB “ hpfAq would give that fB P y, contradicting y R σpfBq. Thus fA R x, 
and it follows that h˚rσpfBqcs Ď σpfAqc. l

Lemma 3.5. Let ϕ : X Ñ Y be a morphism of bRSS. Then ϕ˚ : Y˚ Ñ X˚ is a morphism of bRSA.

Proof. The map ϕ˚ is a morphism of Br by the duality for Brouwerian algebras. We must show ϕ˚pDc
Y q “

Dc
X .
Since ϕ is a bRSS-morphism, it follows that ϕrDXs Ď DY and ϕrDc

Xs Ď Dc
Y . From the latter, it follows 

that Dc
X Ď ϕ´1rϕrDc

X ss Ď ϕ´1rDc
Y s, so we have Dc

X Ď ϕ˚pDc
Y q.

On the other hand, DX Ď ϕ´1pϕrDX sq Ď ϕ´1rDY s follows from the other condition, so by taking 
complements

Dc
X Ě Xzϕ´1

rDY s “ ϕ´1
rY szϕ´1

rDY s “ ϕ´1
rDc

Y s “ ϕ˚pDc
Y q.

The result follows. l

Lemma 3.6. Let A be an object of bRSA. Then pA˚q
˚ – A.

Proof. By the Esakia duality for relative Stone algebras, σ : A Ñ pA˚q
˚ is an isomorphism between the 

p^, _, Ñ, tq-reducts of A and pA˚q
˚. It thus suffices to show that this map preserves the constant f . Thus 

the result follows from observing that f pA˚q
˚
“ A˚zpσpf

Aqcq “ σpfAq. l

Lemma 3.7. Let X and Y be objects of bRSS, and let ϕ : X Ñ Y be a pES-isomorphism. Then ϕ is an 
isomorphism of bRSS if and only if ϕrDX s “ DY .

Proof. Suppose first that ϕ is an isomorphism of bRSS. Then ϕ has an inverse morphism in bRSS. Among 
other things, that ϕ is an isomorphism in pES entails that ϕ is an isomorphism of posets and hence a 
bijection. Moreover, ϕrDX s Ď DY and ϕrDc

X s Ď Dc
Y hold by definition. Since ϕ is a bijection, taking 

complements in the latter inclusion gives DY Ď ϕrDc
X s

c “ ϕrDX s, and thus ϕrDXs “ DY .
For the converse, suppose that ϕrDXs “ DY . Since ϕ is an isomorphism of pES, ϕ is a bijection and its 

set-theoretic inverse ϕ´1 corresponds with its inverse in pES. The fact that ϕ is a bijection gives ϕrDc
X s “

ϕrDX s
c “ Dc

Y , and this implies that ϕ is a morphism in bRSS. On the other hand, ϕrDXs “ rDY s implies 
ϕ´1rDY s “ DX and ϕrDc

Xs “ Dc
Y implies ϕ´1rDc

Y s “ Dc
X , so ϕ´1 is a morphism in bRSS as well. This 

gives that ϕ is an isomorphism in bRSS and the claim is proven. l
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Fig. 3. Hasse diagram for pE’q˚.

Lemma 3.8. Let X be an object of bRSS. Then pX˚q˚ – X.

Proof. Let ϕ : X Ñ pX˚q˚ be defined by ϕpxq “ tU P X˚ : x P Uu. The Esakia duality for relative Stone 
algebras gives that ϕ is an isomorphism of pES. We will show that ϕ is also an isomorphism of bRSS, and 
it suffices to show that ϕrDs “ σpDcqc “ tp P X˚ : Dc R pu by Lemma 3.7.

Suppose first that p P ϕrDs. Then there exists x P D such that p “ ϕpxq, i.e., p “ tU P X˚ : x P Uu. 
Since x R Dc, we have Dc R p. Thus p P σpDcqc and ϕrDs Ď σpDcqc.

The reverse inclusion follows because all implications in the above are invertible, whence it follows that 
ϕrDs “ σpDcqc, proving the claim. l

Theorem 3.9. bRSA is dually equivalent to bRSS.

Proof. This follows immediately from Lemmas 3.2, 3.3, 3.4, 3.5, 3.6, and 3.8, noting that the isomorphisms 
of Lemmas 3.6 and 3.8 give natural isomorphisms by the proof that the functors p´q˚ and p´q˚ give an 
equivalence between pES and the Br. l

The duality exhibited above may be easily extended to provide a duality for bG-algebras as well. This 
extension amounts to dropping the top element from the language of bRSS.

Definition 3.10. A structure pX, ď, D, τq is called a bG-space if

1. pX, ď, τq is an Esakia space,
2. pX, ďq is a forest, and
3. D is a clopen subset of X consisting of ď-minimal elements.

Given bG-spaces pX, ďX , DX , τXq and pY, ďY , DY , τY q, a map ϕ from the structure pX,ďX , D, τXq to the 
structure pY, ďY , DY , τY q is called a bGS-morphism if

1. ϕ is an Esakia map from pX, ďX , τXq to pY, ďY , τY q,
2. ϕrDX s Ď DY , and
3. ϕrDc

X s Ď Dc
Y .

We denote the category of bG-spaces with bGS-morphisms by bGS.

Theorem 3.11. bGA is dually equivalent to bGS.

Proof. This follows as in the proof of Theorem 3.9, replacing any mention of the Esakia duality for relative 
Stone algebras in the proofs of the relevant lemmas by the Esakia duality for Gödel algebras. l

Example 3.12. The bRS-algebra E’ of Example 2.28 has dual space pE’q˚, whose Hasse diagram is given 
in Fig. 3. The elements of the designated subset are circled.
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3.3. bG-algebras as Heyting algebras with nuclei

In [13], bG-algebras were originally formulated in the guise of Gödel algebras equipped with nuclei, and 
the duality articulated here was originally discovered in the setting of Bezhanishvili and Ghilardi’s duality 
for Heyting algebras equipped with nuclei [2]. The nucleus of a bG-algebra is definable from the designated 
constant f via the term Na “ f Ñ a, but it is natural to ask how the duality presented here compares 
with that of Bezhanishvili and Ghilardi. We will see that the nucleus of a bG-algebra presents itself in a 
particularly simple and pleasant fashion on the dual space, and provides a useful perspective for thinking 
about bG-spaces.

Definition 3.13. An algebra A “ pA, ̂ , _, Ñ, t, K, Nq is called a nuclear Heyting algebra if pA, ̂ , _, Ñ, t, Kq
is a Heyting algebra and N is a nucleus on pA, ̂ , _, Ñ, t, Kq. The category of nuclear Heyting algebras with 
Heyting algebra homomorphisms that preserve the nucleus is denoted nHA.

In the following, we use the convention that if R is a binary relation on a set S and A Ď S, then 
RrAs “ tb P S : xa, by P R for some a P Au and R´1rAs “ ta P S : xa, by P R for some b P Su. If S “ tsu is a 
singleton, then we write Rrss and R´1rss for RrSs and R´1rSs, respectively.

Definition 3.14. A structure pX, ď, R, τq is called a nuclear Esakia space if pX, ď, τq is an Esakia space, and 
R is a binary relation on X satisfying

1. xRz if and only if pDy P XqpyRy and x ď y ď zq,
2. Rrxs is closed for each x P X, and
3. whenever A Ď X is clopen, so is R´1rAs.

We call R the accessibility relation of the nuclear Esakia space. The category of nuclear Esakia spaces with 
morphisms the continuous p-morphisms with respect to both ď and R is denoted nES.

If A “ pA, ̂ , _, Ñ, K, Nq is a nuclear Heyting algebra, then define the dual A˚ “ ppA, ̂ , _, Ñ
, t, Kq˚, RAq, where RA is the binary relation on A˚ defined by xRAy if and only if N´1rxs Ď y. On the other 
hand, for a nuclear Esakia space X “ pX, ď, R, τq, define X˚ “ ppX, ď, τq˚, NXq, where NX : X˚ Ñ X˚ is 
defined by NXpUq “ XzR´1rXzU s. For morphisms of nHA and nES, define p´q˚ and p´q˚ as usual. With 
these definitions, we have:

Theorem 3.15 ([2, Theorem 14]). The maps p´q˚ and p´q˚ witness a dual equivalence of categories between 
nHA and nES.

For A “ pA, ̂ , _, Ñ, t, K, fq a bG-algebra, define NA : A Ñ A to be the nucleus given by NApaq “ f Ñ a. 
Then pA, ̂ , _, Ñ, t, K, NAq is nuclear Heyting algebra, and we aim to characterize the relation RA on A˚
associated with this algebra. Toward this end, for x P A˚ define x´1 “ N´1

A rxs. In this terminology, for 
x, y P A˚, xRAy if and only if x´1 Ď y. We prove several technical lemmas about the operator p´q´1.

Lemma 3.16. Let A “ pA, ̂ , _, Ñ, t, K, fq be a bG-algebra, and let x P A˚. Then x´1 P A˚ Y tAu.

Proof. Note that by Propositions 2.1 and 2.2, we have for all a, b P A that NApa^ bq “ NApaq ^NApbq

and NApa _ bq “ NApaq _ NApbq. Let x P A˚. If a, b P x´1, then NApaq, NApbq P x and so NApa ^ bq “
NApaq ̂ NApbq P x since x is a filter. This gives a ̂ b P x´1. Moreover, if a P x´1 and a ď b P A, then we 
have that NApaq P x and NApaq ď NApbq by the isotonicity of NA. Since x is upward-closed, NApbq P x

and b P x´1. It follows that x´1 is a filter. To see that x´1 is either prime or improper, let a _ b P x´1. 
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Then NApaq _NApbq “ NApa _ bq P x, so since x is prime we have NApaq P x or NApbq P x. It follows that 
a P x´1 or b P x´1. l

Remark 3.17. Lemma 11 of [2] shows that p´q´1 is a closure operator on the lattice of filters of A, and 
combined with the previous lemma this shows that p´q´1 is a closure operator on the poset A˚ Y tAu.

Lemma 3.18. Let A “ pA, ̂ , _, Ñ, t, K, fq be a bG-algebra. Then for each x, y P A˚, the following hold.

1. If x´1 P A˚, then x´1 is the least RA-successor of x.
2. xRAx iff f P x.
3. If x is an RA-successor, then xRAx.
4. If x Ă y, then xRAy.

Proof. For (1), suppose x´1 P A˚. Since x´1 Ď x´1, xRAx
´1 trivially holds. Now suppose that s P A˚ is 

an RA-successor of x. Then x´1 Ď s by definition, so x´1 is the least RA-successor of x.
For (2), note that the identity NApNApaq Ñ aq “ t together with NApaq “ t if and only if f ď a implies 

f ď NApaq Ñ a for all a P A, whence by residuation f ^NApaq ď a for all a P A. If x is a filter and f P x, 
then a P x´1 implies NApaq P x, and since x is a filter we have that f ^ NApaq P x also. Because x is 
upward-closed, f ^NApaq ď a yields a P x. Thus x´1 Ď x, which gives xRAx. Conversely, if xRAx then x
is an RA-successor of x. Since x´1 is the least RA-successor of x, this gives x´1 Ď x. But NApfq “ t P x, 
so f P x´1 and hence f P x.

For (3), suppose there exists p with pRAx. Then p´1 Ď x. Since p´1RAp
´1, (2) gives f P p´1 and hence 

f P x. Therefore xRAx by (2).
For (4), let y P A˚ with x Ă y. Because this containment is proper, there exists a P yzx. By definition 

a _ pa Ñ fq “ t, so since a _ pa Ñ fq P x and since x is prime with a R x we have a Ñ f P x. This implies 
that a, a Ñ f P y, whence a ̂ pa Ñ fq P y since y is a filter. But a ̂ pa Ñ fq ď f so since y is upward-closed 
we have f P y. It follows from (2) that yRAy. Thus y´1 Ď y. Since y Ď y´1 always, we have y´1 “ y. Since 
x Ď y, the isotonicity of p´q´1 gives x´1 Ď y´1 “ y, so xRAy as desired. l

Given an object A of bGA, Lemma 3.18(3) entails that the only points of A˚ that are not RA-reflexive 
are minimal. Definition 3.14(1) makes it clear that the accessibility relation of a nuclear Esakia space is 
determined by the order together with the non-reflexive points, which motivates the following. For a bG-space 
X “ pX, ď, D, τq, define a binary relation ď7X on X by

ď
7

X“ď ztxx, xy P X ˆX : x P Du.

Proposition 3.19. Let A “ pA, ̂ , _, Ñ, t, K, fq be a bG-algebra. Then RA coincides with ď7A˚
.

Proof. Suppose first that xRAy. Then by Lemma 3.18(3) it follows that yRAy, and by Lemma 3.18(2) it 
follows that f P y. Thus y P σpfq, and hence we have that xx, yy R txz, zy P A˚ ˆ A˚ : z P σpfqcu. Because 
x Ď y as a consequence of xRAy, this yields x ď7A˚

y.
On the other hand, suppose that x ď7A˚

y. Then x Ď y, and xx, yy is not in txz, zy : z P σpfqcu. There 
are two possibilities. First, if x ‰ y, then by Lemma 3.18(4) we have xRAy. Second, if x “ y R σpfqc, then 
y P σpfq. This gives f P y, and Lemma 3.18(2) gives yRAy. But since x “ y, this gives xRAy. It follows 
that x ď7A˚

y if and only if xRAy as desired. l

Proposition 3.19 completely characterizes the accessibility relation arising from the nucleus NA for a
bG-algebra A. The fact that RA is definable in terms of the order relation Ď and the designated subset σpfqc



1208 W. Fussner, N. Galatos / Annals of Pure and Applied Logic 170 (2019) 1188–1242
reflects the fact that NA is term-definable in the underlying bG-algebra. The following further underscores 
this fact.

Proposition 3.20. Let pX, ď, D, τq be a bG-space. Then the image of X under ď7X coincides with Dc.

Proof. Let y Pď7X rXs. Then there exists x P X with x ď7X y. Then x ď y, and either x ‰ y or x “ y R D. 
In the first case, y is not ď-minimal and hence y R D. In the second case, y R D by hypothesis. Hence y R D
and ď7X rXs Ď Dc.

For the reverse inclusion, let y P Dc. Then we have that y ď y, and additionally xy, yy R txx, xy : x P Du, 
so y ď7X y. Therefore y Pď7 rXs and Dc Ďď7 rXs. Equality follows. l

Propositions 3.19 and 3.20 allow us to understand the duality articulated here for bGA in the context of the 
Bezhanishvili-Ghilardi duality for nuclear Heyting algebras, at least on the level of objects. The condition 
that bGA-morphisms preserve the constant f turns out to be more demanding than merely asking that 
morphisms commute with the nucleus Na “ f Ñ a, so not all nES-morphisms between objects of bGS are
bGS-morphisms. However, we obtain the appropriate morphisms if we only consider those nES-morphisms 
that preserve the designated set D.

Proposition 3.21. Let pX, ďX , DX , τXq and pY, ďY , DY , τY q be bG-spaces and let ϕ : X Ñ Y be a bGS-
morphism. Then ϕ is a p-morphism with respect to ď7.

Proof. Suppose first that ϕ is a bGS-morphism. Then ϕ is an Esakia map by definition. We first show that 
ϕ preserves ď7. Let x, y P X with x ď7X y. Then x ďX y, so as ϕ preserves ď it follows that ϕpxq ďY ϕpyq. 
Since we have xx, yy R txz, zy : z P Du, either x ‰ y or x “ y R D. In the former case, y R DX since y is not 
minimal, so as ϕrDc

X s Ď Dc
Y it follows that ϕpyq R DY . On the other hand, if x “ y R DX , then ϕpyq R DY

as well. In either case, this yields that xϕpxq, ϕpyqy R txz, zy : z P DY u, so ϕpxq ď7Y ϕpyq.
Next, suppose that x P X, z P Y with ϕpxq ď7Y z. Then we have that xϕpxq, zy R tpw, wq : w P DY u, so 

either ϕpxq ‰ z or ϕpxq “ z R DY . In the former case, note that ϕpxq ď7Y z gives ϕpxq ďY z, so since ϕ
is an Esakia map we have that there exists y P X with x ď y and ϕpyq “ z. Since ϕpxq ‰ z “ ϕpyq, we 
have x ‰ y. Together with x ď y, this gives that y is not minimal, and hence y R DX . Thus x ď7X y and 
ϕpyq “ z, which gives that ϕ is a p-morphism with respect to ď7. l

Proposition 3.22. Let pX, ďX , DX , τXq and pY, ďY , DY , τY q be bG-spaces and let ϕ : X Ñ Y be an Esakia 
map that is a p-morphism with respect to ď7. Then if ϕrDX s Ď DY , ϕ is a bG-morphism.

Proof. It suffices to show that ϕrDc
Xs Ď Dc

Y , so let y P ϕrDc
X s. Then there exists x P Dc

X such that ϕpxq “ y. 
Since x P Dc

X we have that x ď7X x, so ϕpxq ď7Y ϕpxq. Thus ϕpxq ď7Y y, which entails that y Pď7Y rY s “ Dc
Y

as desired. l

4. Natural dualities and the Davey-Werner duality

Because SM is equivalent to bRSA, the duality presented in Section 3 also provides a dual equivalence 
between SM and bRSS. As presented so far, this dual equivalence involves passing between a Sugihara monoid 
and its dual through the enriched negative cone. We will recast the duality of Section 3 in terms more native 
to the Sugihara monoids by identifying appropriate duals for their p^, _, �q-reducts. This presentation of 
the duality rests on the Davey-Werner natural duality for Kleene algebras [7] in much the same way that 
Esakia duality rests on Priestley duality. Because the functor S of [13] presents the involution of a Sugihara 
monoid in a way inextricably linked to the residual operation, it is inadequate for connecting the duality of 
Section 3 to the Davey-Werner duality. However, the simplified presentation of the involution obtained in 
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the algebraic work of Section 2 reveals the relationship between the duality of the previous section and the 
Davey-Werner duality. The preliminary work of Section 2 thus provides an essential ingredient in obtaining 
the duality for Sugihara monoids. To explicate the duality in full generality, we first develop an analogue of 
the Davey-Werner duality for algebras without lattice bounds. This treatment requires the review of some 
basic natural duality theory. Due to the vastness of the subject, our review of natural duality theory is 
necessarily perfunctory. We draw all background material on natural dualities from [6], and refer the reader 
there for a more thorough exposition.

4.1. Natural dualities in general

Let M be a finite algebra and ISPpMq be the prevariety it generates. We denote by A the category whose 
objects are algebras in ISP pMq and whose morphisms are algebraic homomorphisms between members of 
ISP pMq. Consider a structure M

Ă

“ pM, G, H, R, τq defined on the same underlying set M as M, where G
is a set of total operations on M , H is a set of partial operations on M , R is a set of relations on M , and τ
is the discrete topology on M . We say that M

Ă

is algebraic over M if the graph of each total operation in G, 
the graph of each partial operation in H, and each relation in R is a subalgebra of the appropriate power 
of M. In this situation, there is always an adjunction between A and the category X defined presently. 
The objects of X are the enriched topological spaces in IScP`pM

Ă

q, i.e., isomorphic copies of topologically 
closed substructures of powers of M

Ă

(excluding M
Ă

H). The morphisms of X are continuous homomorphisms 
between such structures. The adjunction between A and X is given by hom-functors E : X Ñ A and 
D : A Ñ X whose action on objects is defined by

EpXq “ X pX,M
Ă

q, and

DpAq “ ApA,Mq,

where X pX, M
Ă

q is viewed as an object of A by inheriting structure pointwise from M, and likewise ApA, Mq

is viewed as an object of X by inheriting structure pointwise from M
Ă

. The action of E and D on morphisms 
is defined by precomposition, i.e., for h : A Ñ B a morphism of A and ϕ : X Ñ Y a morphism of X , we 
define Dphq : DpBq Ñ DpAq and Epϕq : EpYq Ñ EpXq by

Dphqpxq “ x ˝ h, and

Epϕqpαq “ α ˝ ϕ,

respectively. The unit of this adjunction is the natural transformation e given by evaluation, i.e., for objects 
A of A, eA : A Ñ EDpAq is defined for a P A by eApaqpxq “ xpaq. The counit is likewise defined for 
objects X of X by εX : X Ñ DEpXq given by εXpxqpαq “ αpxq. With the above set-up, whenever each 
homomorphism eA is an isomorphism, we say that the dual adjunction pD, E, e, εq is a natural duality. We 
also say that the structure M

Ă

dualizes M, and that M
Ă

is the alter ego of M. When each εX is also an 
isomorphism, we say that the natural duality pD, E, e, εq is full. A duality is full precisely when it is an 
equivalence between the categories A and X op. When a natural duality pD, E, e, εq associates embeddings 
in X with surjections in A (equivalently, embeddings in A with surjections in X ) we say that the duality is 
strong. Strong dualities are full, but the converse is not in general true.

Priestley duality is an example of a natural duality: The 2-element bounded distributive lattice 2 plays the 
role of M, and the 2-element Priestley space whose underlying order is a chain plays role of M

Ă

. Formulated 
in these terms, the dual of a bounded distributive lattice A does not consist of its collection of prime filters, 
but instead morphisms from A into the 2-element bounded distributive lattice. This mismatch is explained 
by the fact that every prime filter x of A may be understood as a homomorphism hx : A Ñ 2 given by 
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hxpaq “ 1 if and only if a P x, and conversely that each prime filter of A may be understood as the preimage 
of 1 under some homomorphism A Ñ 2. Similar remarks apply to the reverse functor.

Although Esakia duality is a restriction of Priestley duality to Heyting algebras, Esakia duality is not a 
natural duality because there is no finite algebra M generating HA as a prevariety. This remains true even 
when we restrict our attention to Gödel algebras.

Mutatis mutandis, all the preceding remarks apply to versions of the Priestley and Esakia duality for 
algebras without designated bottom elements.

4.2. Lattices with involution and Kleene algebras

A lattice with involution (or i-lattice) is an algebra pA, ̂ , _, �q, where pA, ̂ , _q is a lattice and � is a 
unary operation satisfying the identities

��a “ a,

�pa_ bq “ �a^�b, and

�pa^ bq “ �a_�b.

An i-lattice is normal if its lattice reduct is distributive and it satisfies the identity a ̂ �a ď b _�b. Kalman 
in [16] showed that the variety of normal i-lattices is exactly ISPpLq, where L “ pt´1, 0, 1u, ̂ , _, �q is the 
i-lattice defined by ´1 ă 0 ă 1, and

�x “

$

’

’

&

’

’

%

1, if x “ ´1
0, if x “ 0
´1, if x “ 1.

We denote by IL the category of normal i-lattices.
The expansion of a normal i-lattice by bounds K and J for the lattice order is called a Kleene algebra. 

In the presence of these bounds, for any a we have that �K “ �pK ̂ �aq “ �K _ a, whence �K “ J and 
�J “ K. Kleene algebras are generated as a prevariety by the Kleene algebra K “ pt´1, 0, 1u, ̂ , _, �, ́ 1, 1q
obtained by expanding the signature for the normal i-lattice L by constant symbols for its least and greatest 
elements.

The relevance of normal i-lattices to the present study is explained by the following proposition.

Proposition 4.1. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Then A satisfies a ^ �a ď �t ď t ď
b _�b, and hence pA, ̂ , _, �q is a normal i-lattice.

Proof. It suffices to check that the identity a ̂ �a ď �t ď t ď b _�b holds in every Sugihara monoid. For 
this, by Proposition 2.10 it is enough to check that this identity holds on the generating algebras S and 
Szt0u. Let n, m P Z. Then n ^ �n “ n ^ ´n “ ´|n| ď 0 and m _ �m “ m _ ´m “ |m| ě 0, whence 
n ^ �n ď 0 ď m _ �m in S. If n, m ‰ 0, then n ^ ´n ď ´1 ď 1 ď m _ �m gives the identity for Szt0u. 
The result follows. l

We may likewise obtain an analogue for bounded Sugihara monoids.

Corollary 4.2. Let pA, ̂ , _, ̈ , Ñ, t, �, K, Jq be a bounded Sugihara monoid. Then pA, ̂ , _, �, K, Jq is a 
Kleene algebra.
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Fig. 4. Hasse diagrams for the different personalities of the object K.

4.3. The Davey-Werner duality

In [7], Davey and Werner established a natural duality for the variety of Kleene algebras. Under this 
duality, the alter ego for K consists of the topological relational structure K

r

“ pt´1, 0, 1u, ď, Q, K0, τq, 
where ď is the partial order given by ´1 ă 0 and 1 ă 0, Q is the relation of comparability with respect to 
ď given by x Q y iff xx, yy R tx´1, 1y, x1, ́ 1yu, K0 “ t´1, 1u is a set of designated minimal elements, and τ
is the discrete topology on t´1, 0, 1u. The concrete category of isomorphic copies of closed substructures of 
nonempty powers of K

r

form a dual category to the variety Kleene algebras, and may be given the following 
external characterization (see [6, p. 107] and [7]). See also Fig. 4.

Proposition 4.3. pX, ď, Q, D, τq is an isomorphic copy of a closed substructure of a nonempty power of K
rif and only if:

1. pX, ď, τq is a Priestley space,
2. Q is a closed binary relation,
3. D is a closed subspace,
4. for all x P X, x Q x,
5. for all x, y P X, x Q y and x P D ùñ x ď y, and
6. for all x, y, z P X, x Q y and y ď z ùñ z Q x.

We call the structured topological spaces described above Kleene spaces. We denote the category of 
Kleene algebras by KA, and the category of Kleene spaces with continuous structure-preserving morphisms 
by KS.

The methods used to obtain a natural duality for KA may be used with little modification to produce a 
natural duality for normal i-lattices.

Theorem 4.4. The variety of normal i-lattices is dualized by the structure L
r

“ pt´1, 0, 1u, ď, Q, L0, 0, τq, 
where ď is the partial order given by ´1 ă 0 and 1 ă 0, L0 is the unary relation t´1, 1u, Q is the binary 
relation given by xQy iff xx, yy R tx´1, 1y, x1, ́ 1yu, and 0 is a designated nullary constant symbol for the 
greatest element with respect to ď. Moreover, this duality is strong.

Proof. We apply the NU Strong Duality Theorem [6, Theorem 3.8] as applied to algebras with a majority 
term. The universes of subalgebras of L2 are exactly t0u, ΔL0 , ď XpL0 ˆLq, ě XpL ̂ L0q, L0 ˆL, L ̂ L0, 
L2, ΔL, ď, ě, Q, L0 ˆ t0u, t0u ̂ L0, L ̂ t0u, t0u ̂ L, and L2

0. These are readily seen to be entailed by ď, 
L0, Q, and J in the sense of [6, pp. 55–59].

Next, we note that the partial and total homomorphisms of arity at most 1 are given by:

ϕ0 : t0u Ñ L defined by ϕ0p0q “ 0,

ϕ1 : t´1, 1u Ñ L defined by ϕ1p´1q “ ϕ1p1q “ 0,

ϕ2 : t´1, 1u Ñ L defined by ϕ2p´1q “ ´1 and ϕ2p1q “ 1,

ϕ3 : LÑ L defined by ϕ3p´1q “ ϕ3p0q “ ϕ3p1q “ 0, and

ϕ4 : LÑ L defined by ϕ4pxq “ x for all x P t´1, 0, 1u.
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The graphs of these functions are, respectively,

grphpϕ0q “ tp0, 0qu “ t0u ˆ t0u,

grphpϕ1q “ tp´1, 0q, p1, 0qu “ L0 ˆ t0u,

grphpϕ2q “ tp´1, 1q, p1, 1qu “ ΔL0 ,

grphpϕ3q “ tp´1, 0q, p0, 0q, p1, 0qu “ Lˆ t0u, and

grphpϕ4q “ tp´1,´1q, p0, 0q, p1, 1qu “ Lˆ t0u.

It follows from this that ď, 0, L0, Q entails all of the relations and partial operations listed above (again, 
see [6, pp. 55–59] for the definitions and basic theory of entailment).

For hom-entailment (see, e.g., [6, p. 281] for the definition and basic information regarding hom-
entailment), note by the M

Ă

-Shift Strong Duality Lemma [6, Lemma 2.8], we may delete ϕ0, ϕ1, and ϕ2 since 
they have extensions ϕ3 and ϕ4. Observe that ϕ4 is the identity endomorphism and is therefore hom-entailed 
by any set of partial operations. The map ϕ3 is the constant endomorphism associated with 0, and is thus 
entailed by 0. The result therefore follows. l

Theorem 4.5. pX, ď, Q, D, J, τq is an isomorphic copy of a closed substructure of a nonempty power of L
r

if 
and only if:

1. pX, ď, J, τq is a pointed Priestley space,
2. Q is a closed binary relation,
3. D is a closed subspace,
4. for all x P X, x Q x,
5. for all x, y P X, x Q y and x P D ùñ x ď y, and
6. for all x, y, z P X, x Q y and y ď z ùñ z Q x

Proof. Similar to the proof of Proposition 4.3. l

We call the spaces defined in the previous theorem pointed Kleene spaces, and denote the category of 
pointed Kleene spaces with continuous structure-preserving maps by pKS. The above theorems show that IL
is dually equivalent to pKS, and we denote the functors witnessing this equivalence by p´q` : IL Ñ pKS and 
p´q` : pKS Ñ IL. The category pKS plays the same role in the duality for Sugihara monoids that PS plays 
in Esakia duality. Following this analogy, for simplicity we will also use the notation p´q` and p´q` for 
the functors witnessing the equivalence of KA and KS, and later for the functors of the duality for Sugihara 
monoids and their bounded analogues. This agrees with our convention of using p´q˚ and p´q˚ for the 
functors associated with the dualities for DL, Br, HA, bRSA, and bGA in Section 3.

Remark 4.6. Suppose that pX, ď, Q, D, τq is a Kleene space (or, if one wishes, a pointed Kleene space) and 
let x P D. It then follows from the axioms for Kleene spaces that x is ď-minimal in X.

5. Esakia duality for Sugihara monoids

Proposition 4.1 shows that each Sugihara monoid A may be associated with its normal i-lattice reduct 
via a forgetful functor U : SM Ñ IL. On the other hand, the Davey-Werner duality for normal i-lattices 
associates with each such reduct a pointed Kleene space UpAq`. By composing U and p´q`, we obtain 
a functor that associates with each Sugihara monoid the pointed Kleene space that is dual to its i-lattice 
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reduct. For simplicity, we omit explicit mention of the forgetful functor U , and simply write the pointed 
Kleene space obtained in this fashion by A`.

We will identify a class of pointed Kleene spaces, which we call Sugihara spaces, that contain the spaces 
arising in the aforementioned way. On the other hand, to each Sugihara space X we will associate the normal 
i-lattice X`. It turns out that each i-lattice arising in this fashion is the reduct of Sugihara monoid, and, 
moreover, determines a unique such Sugihara monoid. In this way, the functor p´q` from the Davey-Werner 
duality may be amended to give a functor to SM. The main result of this section is that the pair p´q` and 
p´q`, appropriately modified, witness a dual equivalence of categories between SM and a subcategory of
pKS.

5.1. Sugihara spaces and bRS-spaces

Before describing the duality for Sugihara monoids in detail, we introduce the pointed Kleene spaces of 
interest and clarify their connection to the bRS-spaces of Section 3. The following isolates the appropriate 
class of pointed Kleene spaces for our study.

Definition 5.1. A pointed Kleene space pX, ď, Q, D, J, τq is called a Sugihara space if

1. pX, ď, J, τq is a pointed Esakia space,
2. Q is the relation of comparability with respect to ď, i.e., Q“ď Y ě, and
3. D is open.

Because the relation Q is understood to be comparability with respect to ď, we sometime omit it and simply 
say that pX, ď, D, J, τq is a Sugihara space. Observe that since D is closed in any pointed Kleene space, 
the above definition entails that D is clopen in a Sugihara space.

These spaces bear a striking similarity to the bRS-spaces of Section 3, and indeed we have the following.

Lemma 5.2. Let pX, ď, D, J, τq be a bRS-space. Then pX, ď, ď Y ě, D, J, τq is a Sugihara space.

Proof. From the definition of bRS-spaces, pX, ď, J, τq is a pointed Esakia space and D is clopen. We need 
only verify the conditions listed in Theorem 4.5 to show that pX, ď, ď Y ě, D, J, τq is a pointed Kleene 
space. Note that (1) and (3) follow immediately from the preceding comments, and the order relation ď is 
closed in X ˆX for any Priestley space, and this gives (2). It remains only to show that conditions (4), (5), 
and (6) are satisfied. Let Q“ď Y ě be the relation of comparability with respect to ď.

For (4), since each x P X is comparable to itself, we have x Q x.
For (5), let x, y P X with x Q y and x P D. Since x Q y we have either x ď y or y ď x. In the former 

case, x ď y holds by hypothesis. In the latter case, observe that since D consists of ď-minimal elements by 
Remark 4.6, we have that y ď x and x P D implies x “ y. Hence x ď y in either case.

For (6), let x, y, z P X with x Q y and y ď z. Since x Q y we have either x ď y or y ď x. In the first case, 
x ď y and y ď z gives x ď z by transitivity. In the second case, y ď x and y ď z gives x, z P Òy. But pX, ďq
is a forest since it is the underlying poset of a bRS-space, so Òy is a chain. Hence x ď z or z ď x, so z Q x

as desired. The result follows. l

A converse to the above lemma also holds.

Lemma 5.3. Let pX, ď, Q, D, J, τq be a Sugihara space. Then pX, ď, D, J, τq is a bRS-space.
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Proof. From the definition of Sugihara spaces, pX, ď, J, τq is a pointed Esakia space and D is clopen. From 
Definition 3.1, it remains only to show that D consists of ď-minimal elements and that pX, ďq is a forest.

To see that D consists of minimal elements, let y P D and let x ď y. From x ď y we have y Q x since 
Q is the relation of ď-comparability. Then y Q x and y P D gives y ď x by Theorem 4.5(5). Since x ď y, 
antisymmetry yields x “ y. Hence D consists of minimal elements.

To see that pX, ďq is a forest, let x P X and let y, z P Òx. Note that x ď y gives y Q x, and x ď z together 
with Theorem 4.5(6) gives z Q y. Then z ď y or y ď z. It follows that Òx is a chain, and hence that pX, ďq
is a forest. l

In light of Lemmas 5.2 and 5.3, bRS-spaces and Sugihara spaces are tantamount to the same objects. 
However, conceptually they arise from quite different origins: Whereas Sugihara spaces are Davey-Werner 
duals of some (as yet unidentified) normal i-lattices, bRS-spaces are enriched Esakia duals of bRS-algebras. 
Our proximal goal is to develop this connection more thoroughly.

To fix some notation, let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Define A` to be the collection 
of p^, _, �q-morphisms from A to L. We denote by ď the partial order on A` inherited pointwise from L

r

, 
denote the designated subset by A0 “ th P A` : p@a P Aqphpaq P t´1, 1uqu, define J : A Ñ A by Jpaq “ 0
for all a P A, and define QA to be the binary relation on A` given by h QA k if and only if hpaq Q kpaq for 
all a P A. Moreover, we let τA be the topology on A` generated by the subbasis tUa,l : a P A, l P t´1, 0, 1uu, 
where Ua,l “ th P A` : hpaq “ lu. The latter definition is motivated by the following.

Lemma 5.4 ([6, Lemma B.6, p. 340]). Let A be an index set and consider LA as a topological space endowed 
with the product topology. For each a P A and each l P t´1, 0, 1u, let Ua,l “ tx P LA : xpaq “ lu. Then

tUa,l : a P A and l P t´1, 0, 1uu

is a clopen subbasis for the topology on LA.

Given an i-lattice A, the Davey-Werner dual of A has topology induced as a subspace of LA. Hence from 
the previous lemma we obtain:

Lemma 5.5. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Then the sets Ua,l “ th P A` : hpaq “ lu, 
where l P t´1, 0, 1u and a P A, give a clopen subbasis for the topology on A`.

It follows that A` “ pA`, ď, QA, A0, J, τAq is the Davey-Werner dual of the normal i-lattice pA, ̂ , _, �q
as discussed above.

Lemma 5.6. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid and let h P A`. Then h´1rt0, 1us XA´ is a 
prime filter of the enriched negative cone A’.

Proof. This follows immediately since t0, 1u is a prime filter of L and h is a lattice homomorphism. l

For a Sugihara monoid A, define a map ξA : pA`, ďq Ñ pA’˚, Ďq by

ξAphq “ h´1
rt0, 1us XA´.

Lemma 5.6 shows that ξA is well-defined.

Lemma 5.7. Let A be a Sugihara monoid. Then ξA is isotone.
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Proof. Let h1, h2 P A` with h1 ď h2. If a P ξAph1q, then a ď t. Also, we have h1paq P t0, 1u. Since h1 ď h2, 
this gives 1 ď h1paq ď h2paq. Thus a P h´1

2 rt0, 1us, giving a P ξAph2q. It follows that ξAph1q Ď ξAph2q. l

Lemma 5.8. Let pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid and let h P A`. Then hptq P t0, 1u.

Proof. By Proposition 4.1, the identity �t ď t holds in every Sugihara monoid. Were it the case that 
hptq “ ´1, we would have hp�tq “ �hptq “ 1. But �t ď t gives hp�tq ď hptq, a contradiction. Thus 
hptq P t0, 1u. l

Lemma 5.9. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Then ξA is order-reflecting.

Proof. Let h1, h2 P A` with ξAph1q Ď ξAph2q. Let a P A. Were it the case that h1paq ę h2paq, then either 
h2paq “ ´1 and h1paq ‰ ´1, or h2paq “ 1 and h1paq ‰ 1.

In the first case, h1paq P t0, 1u and by Lemma 5.8 it follows that we have h1pa ̂ tq “ h1paq ̂ h1ptq P t0, 1u
as well. Since a ^ t P A´, it follows that a ^ t P ξAph1q. This gives a ^ t P ξAph2q. But h2paq “ ´1 and 
h2ptq P t0, 1u gives h2pa ̂ tq “ ´1, a contradiction.

In the second case, h1paq P t´1, 0u and h2paq “ 1. Then h1p�aq P t0, 1u and h2p�aq “ ´1. Thus the 
second case reduces to the first case, and we arrive at a contradiction again. It follows that h1paq ď h2paq, 
and hence that ξA is order-reflecting. l

Lemma 5.10. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Then ξA is an order isomorphism.

Proof. It suffices to show that ξA is surjective. Note that the map h given by hpaq “ 0 for all a P A is a 
p^, _, �q-morphism such that ξAphq “ A´. Now let x be a prime filter of A’. Then I “ ta P A´ : a R xu

is a prime ideal of A’, being the complement of a prime filter. Also, I is an ideal of A. A trivial argument 
shows that F “ ÒAx “ tb P A : a ď b for some a P xu is a filter of A, and F X I “ H. The prime ideal 
theorem then guarantees that there exists a prime ideal J of A with I Ď J and F X J “ H. One may 
readily show that the set �J “ t�a : a P Ju is a prime filter of A. Define a map h : A Ñ L by

hpaq “

$

’

’

&

’

’

%

1 if a P �J
0 if a R J Y�J
´1 if a P J.

Notice that if a, �a P J , then J being an ideal gives that a _�a P J . Proposition 4.1 gives that t ď a _�a, 
so J being downward-closed then gives that t P J . But this is impossible since J X x “ H and t P x (as x is 
a prime filter of A’). Hence for each a P A, either a R J or �a R J , whence J X�J “ H. This implies that 
at most one of a P �J , a P J , or a R J Y �J holds. As at least one of a P J , a P �J , or a R J Y �J must 
hold, this yields that h is a well-defined function.

By checking cases, one may verify that h is an i-lattice homomorphism, and hence h P A`. It is easy to 
show that ξAphq “ x. Because Lemmas 5.7 and 5.9 show that ξA is an order embedding, this proves that 
ξA is an order isomorphism. l

Example 5.11. Recall that the algebra E introduced in Example 2.9 has Hasse diagram
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‚ �a

‚�b

‚t ‚ �c

‚ f‚c

‚ b

‚ a

If we consider the filter x “ tb, c, f, tu of the negative cone, then in the proof of Lemma 5.10 we have 
that I “ tau, F “ Aztau, J “ tau, and �J “ t�au. If instead x “ tc, tu, then I “ ta, b, fu, F “

tc, t, �b, �au, J “ ta, b, f,�cu, and �J “ tc, t, �b, �au. In the final case, if x “ tt, fu, then I “ ta, b, cu, 
F “ tt, f,�b,�c,�au, J “ ta, b, cu, and �J “ t�c, �b, �au.

The isomorphism described in the foregoing lemmas turns out to provide more than an order-theoretic 
correspondence, as shown in the following.

Lemma 5.12. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Then ξA is continuous.

Proof. It suffices to show that the inverse image of each subbasis element is open, so let a P A´. Then

ξ´1
A rσpaqs “ ξ´1

A rtx P A’˚ : a P xus

“ th P A` : a P ξAphqu

“ th P A` : a P h´1
rt0, 1us XA´u

“ th P A` : hpaq P t0, 1uu

“ th P A` : hpaq “ 0u Y th P A` : hpaq “ 1u

“ Ua,0 Y Ua,1.

Thus ξA is continuous. l

Lemma 5.13. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Then A` and A’˚ are isomorphic as 
Priestley spaces.

Proof. Lemma 5.10 shows that ξA is an order isomorphism. In particular, this shows that ξA is a bijec-
tion. Lemma 5.12 shows that ξA is continuous. Continuous bijections of compact Hausdorff spaces are 
homeomorphisms, so it follows that ξA is a homeomorphism. Thus ξA is an isomorphism in PS. l

As a consequence of the above, we obtain:

Lemma 5.14. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid and let A` “ pA`,ď, QA, A0,J, τAq be its 
Davey-Werner dual. Then pA`, ď, τAq is an Esakia space.

Proof. Every Priestley space that is PS-isomorphic to an Esakia space is itself an Esakia space, so the result 
follows from Lemma 5.13. l

Lemma 5.15. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid and let A` “ pA`,ď, QA, A0,J, τAq be its 
Davey-Werner dual. Then pA`, ď, A0, J, τAq is a bRS-space.

Proof. The structure pA`, ď, τAq is an Esakia space by Lemma 5.14, and the fact that pA`, ďq is a forest 
follows since ξA is an order isomorphism and pA˚, Ďq is a forest. It remains only to show that A0 is a clopen 
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collection of ď-minimal elements. That A0 consists of minimal elements holds because A` is a pointed 
Kleene space. To see that A0 is clopen, let x “ ξAphq “ h´1rt0, 1us X A´. Then for all a P x, we have 
hpaq P t0, 1u. Observe that

x P σp�tq ðñ �t P x

ðñ hp�tq P t0, 1u

ðñ hptq P t0,´1u.

From Lemma 5.8, the above shows that x P σp�tq if and only if hptq “ 0. Now if h P A0, then hpaq P t´1, 1u
for all a P A and thus ξAphq R σp�tq by the above, so ξArA0s Ď σp�tqc. On the other hand, suppose that 
x P σp�tqc. Then the above shows that hptq R t0, ́ 1u, whence hptq “ 1. Were it the case that hpaq “ 0 for 
some a P A, we would have hp�aq “ 0 and hence hpa _ �aq “ 0. But this is impossible since t ď a _ �a
and h is isotone, so it follows that the image of h is contained in t´1, 1u. This implies that σp�tq Ď ξArA0s, 
so σp�tq “ ξArA0s. Because ξA is a homeomorphism and σp�tq is clopen, it follows that A0 is clopen. This 
proves the lemma. l

Lemma 5.16. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Then ξA is an isomorphism of bRS-spaces.

Proof. Lemma 5.13 shows that ξA is an isomorphism of Priestley spaces, and hence an Esakia function. 
It thus suffices to show that ξA preserves the top element, the designated subset, and its complement. 
The greatest element of A` is the morphism J : A Ñ L defined by Jpaq “ 0. Observe that we have 
ξApJq “ J

´1rt0, 1us XA´ “ A´, which is the Ď-greatest element of A’˚.
Next, we show that

ξArth P A` : p@a P Aqphpaq P t´1, 1uuqs “ σp�tqc.

For the forward inclusion, let h P A` with image contained in t´1, 1u. Since hptq P t0, 1u always holds, 
this gives hptq “ 1 and hence hp�tq “ ´1. If ξAphq P σp�tq, this gives �t P h´1rt0, 1us, which contradicts 
hp�tq “ ´1. Thus ξAphq P σp�tqc.

For the reverse inclusion, let x P σp�tqc. Then �t R x. By the surjectivity of ξA, there exists h P A`
such that ξAphq “ x. Suppose that there exists a P A such that hpaq “ 0. By Proposition 4.1, the identity 
x ^ �x ď �t ď t ď y _ �y holds in A. In particular, this gives a ^ �a ď �t ď t ď a _ �a. Since 
hp�aq “ �hpaq “ 0, the isotonicity of h gives

0 “ hpa^�aq ď �t ď t ď hpa_�aq “ 0,

so hp�tq “ hptq “ 0. It follows that �t P h´1rt0, 1us X A´ “ x, contradicting �t R x. Thus hpaq P t´1, 1u
for all a P A, and we obtain the reverse containment.

It remains only to show that

ξArth P A` : pDa P Aqphpaq “ 0qus “ σp�tq.

But this follows immediately by taking complements since ξA is a bijection. l

5.2. Esakia duality for Sugihara monoids

For a Sugihara monoid A, the previous section provides an extremely close connection between A`

and the bRS-algebra A’˚. At the same time, there is a close connection between bRS-spaces and Sugihara 
spaces. We exploit these connections to show that the Davey-Werner dual A` is actually a Sugihara space.
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Given a set X and subsets U, V Ď X with U Y V “ X, define a function CU,V : X Ñ t´1, 0, 1u by

CU,V pxq “

$

’

’

&

’

’

%

1, if x R V
0, if x P U X V

´1, if x R U.

Observe that the well-definedness of CU,V hinges on U Y V “ X.

Lemma 5.17. Let X “ pX, ď, Q, D, J, τq be a pointed Kleene space and subsets U, V Ď X with U Y V “ X. 
Then CU,V is a pointed Kleene space morphism from X to L

r

if and only if U, V are clopen up-sets with 
pXzU ˆXzV q XQ “ H and U X V Ď Dc.

Proof. Suppose first that CU,V : X Ñ L
r

is a pointed Kleene space morphism. Since C´1
U,V pt0, 1uq “ U and 

C´1
U,V pt´1, 0uq “ V , both U and V are clopen up-sets. Suppose that x, y P X with x R U and y R V . Then 

CU,V pxq “ ´1 and CU,V pyq “ 1, so x Q y cannot hold and pXzU ˆXzV q XQ “ H. Finally, suppose that 
x P U X V . Then CU,V pxq “ 0 R K0, so x R D. It follows that x P Dc and U X V Ď Dc.

For the converse, suppose that U, V Ď X are clopen up-sets that satisfy pXzU ˆXzV q XQ “ H and 
U X V Ď Dc. We claim that CU,V is a pointed Kleene space morphism. To see that CU,V preserves ď, 
suppose that x, y P X with x ď y. If CU,V pyq “ 0 then CU,V pxq ď CU,V pyq obviously holds. If CU,V pyq “ 1, 
then y R V and, since V is an up-set, x R V as well. This shows CU,V pxq “ 1. Similarly, if CU,V pyq “ ´1
then CU,V pxq “ ´1. The monotonicity of CU,V follows.

To see that CU,V preserves Q, let x, y P X be such that CU,V pyq “ 1 and CU,V pxq “ ´1. Then y R V and 
x R U , whence px, yq P XzU ˆXzV . This yields px, yq R Q. It follows that x Q y implies CU,V pxq Q CU,V pyq.

To see that D is preserved, let x P D. Then x R U X V Ď Dc, so CU,V pxq “ ´1 or CU,V pxq “ 1.
Finally, to see that J is preserved, observe that since U, V are up-sets we have J P U X V . Then 

CU,V pJq “ 0, which is the greatest element of L
r

. This proves the result. l

Lemma 5.18. Let ϕ : pX, ď, Q, D, J, τq Ñ L
r

be a morphism of pKS. Then there exist clopen up-sets U, V Ď X

such that ϕ “ CU,V .

Proof. Put U “ ϕ´1pt0, 1uq and V “ ϕ´1pt´1, 0uq. Then U, V are clopen up-sets since they are the inverse 
images of clopen up-sets, and CU,V pxq “ ϕpxq for all x P X. l

Lemma 5.19. Let ϕ1, ϕ2 : X Ñ L
r

be pointed Kleene space morphisms with ϕ1 “ CU1,V1 and ϕ2 “ CU2,V2 . 
Then:

1. �ϕ1 “ CV1,U1 .
2. ϕ1 ^ ϕ2 “ CU1XU2,V1YV2 , and
3. ϕ2 _ ϕ2 “ CU1YU2,V1XV2 .

Proof. For (1), for x P X note that

ϕ1pxq “ 1 ðñ CU1,V1pxq “ 1

ðñ x R V1

ðñ CV1,U1pxq “ ´1.

Likewise, ϕ1pxq “ ´1 if and only if CV1,U1pxq “ 1. It follows from this that ϕ1pxq “ 0 if and only if 
CV1,U1pxq “ 0, and hence that �ϕ1 “ CV1,U1 .
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For (2), observe that in L
r

we have a ̂ b “ 1 if and only if a “ 1 and b “ 1, and also a ̂ b “ ´1 if and 
only if a “ ´1 or b “ ´1. Now if x P X then we have

ϕ1pxq ^ ϕ2pxq “ 1 ðñ ϕ1pxq “ 1 and ϕ2pxq “ 1

ðñ CU1,V1pxq “ 1 and CU2,V2pxq “ 1

ðñ x R V1 and x R V2

ðñ x R V1 Y V2

ðñ CU1XU2,V1YV2pxq “ 1.

Likewise,

ϕ1pxq ^ ϕ2pxq “ ´1 ðñ ϕ1pxq “ ´1 or ϕ2pxq “ ´1

ðñ CU1,V1pxq “ ´1 or CU2,V2pxq “ ´1

ðñ x R U1 or x R U2

ðñ x R U1 X U2

ðñ CU1XU2,V1YV2pxq “ ´1.

It follows also that ϕ1pxq ̂ ϕ2pxq “ 0 if and only if CU1XU2,V1YV2pxq “ 0, which gives ϕ1^ϕ2 “ CU1XU2,V1YV2 .
(3) follows by an analogous argument. l

For a bRS-space X, we define a function μX : X˚’ Ñ pX, ď Y ěq` by μXpU, V q “ CU,V . Provided that 
xU, V y P X˚’, it follows that U Y V “ X and U X V Ď Dc. Moreover, if px, yq P XzU ˆXzV , then x R U

and y R V . Since U Y V “ X, this gives that y P U and x P V . Were it the case that x ď y, then V being 
upward-closed would give y P V , a contradiction. Likewise, if y ď x, then U being upward-closed would give 
x P U , another contradiction. It follows that pXzU ˆ XzV q X pď Y ěq “ H, and Lemma 5.17 thus gives 
that μX is well-defined.

Lemma 5.20. Let A be a bRS-algebra. Then pA˚, Ď Y Ěq` is isomorphic as an i-lattice to A’.

Proof. Lemma 5.2 asserts that pA˚, Ď Y Ěq is a pointed Kleene space, and therefore pA˚, Ď Y Ěq` is a 
normal i-lattice. By Lemma 3.6, pA˚q

˚ – A. It thus suffices to show that pA˚, Ď Y Ěq` is isomorphic as 
an i-lattice to pA˚q

˚’. Let μ “ μA˚ .
Lemma 5.19 shows that μ is an i-lattice homomorphism from pA˚q

˚’ to pA˚, Ď Y Ěq`, and Lemma 5.18
gives that μ is surjective. It remains only to show that μ is one-to-one, so suppose that xU1, V1y, xU2, V2y P
pA˚q

˚’ with μpU1, V1q “ μpU2, V2q. Then CU1,V1 “ CU2,V2 , so for all x P X we have

x P U1 ðñ CU1,V1pxq ‰ ´1

ðñ CU2,V2pxq ‰ ´1

ðñ x P U2.

Thus U1 “ U2. A similar argument shows that V1 “ V2, so xU1, V1y “ xU2, V2y. This gives that μ is an 
i-lattice isomorphism. l

The stage is finally set to describe the duality for Sugihara monoids.
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Definition 5.21. Let the structures X “ pX, ďX , ďX Y ěX , DX , JX , τXq and Y “ pY, ďY , ďY Y

ěY , DY , JY , τY q be Sugihara spaces. A bRSS-morphism ϕ : pX, ďX , D, JX , τXq Ñ pY, ďY , DY , JY , τY q is 
called a Sugihara space morphism. We denote the category of Sugihara spaces with Sugihara space mor-
phisms by pSS, keeping with our earlier convention of naming categories of top-bounded spaces to make it 
clear that they are pointed.

Remark 5.22. Observe that a morphism of pSS is automatically a morphism of pKS even though the preser-
vation of the relation ď Y ě is not stipulated. A morphism always preserves the latter relation when it 
preserves ď.

Consider variants p´q` : SMÑ pSS and p´q` : pSSÑ SM of the functors from the Davey-Werner duality 
defined as follows. For an object A of SM, let A` be the Davey-Werner dual of the i-lattice reduct of A as 
previously discussed. For a morphism h : A Ñ B of SM, as usual define h` : B` Ñ A` by h`pxq “ x ̋ h.

On the other hand, for a Sugihara space X “ pX, ď, D, J, τq, let X` be the collection of pointed Kleene 
space morphisms from X to L

r

. Letting ^, _, and � be the operations on X` inherited pointwise from the 
operations on L, the i-lattice pX`, ̂ , _, �q is the Davey-Werner dual of X. Define binary operations ¨ and 
Ñ for ϕ1 “ CU1,V1 and ϕ2 “ CU2,V2 maps in X` by

ϕ1 ¨ ϕ2 “ CxU1,V1y‚xU2,V2y, and

ϕ1 Ñ ϕ2 “ CxU1,V1yñxU2,V2y,

where ‚ and ñ are the operations on the Sugihara monoid X˚’ defined in Section 2. Then define X` “

pX`, ̂ , _, ̈ , Ñ, CX,Dc , �q. For a morphism ϕ : X Ñ Y of pSS, define ϕ` : Y` Ñ X` by ϕpαq “ α ˝ ϕ as 
before.

Remark 5.23. With the above definitions, the map μX is actually a Sugihara monoid isomorphism. It is an 
i-lattice isomorphism by the proof of Lemma 5.20, and μX is a homomorphism with respect to ¨, Ñ, and 
the monoid identity by the definition above.

Lemma 5.24. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be a Sugihara monoid. Then A` is a Sugihara space.

Proof. Since pA`, ď, A0, J, τAq is a bRS-space by Lemma 5.15, by Lemma 5.2 is suffices to show that QA
coincides with ď-comparability.

By the Davey-Werner duality, pA`q
` is isomorphic to A as an i-lattice. Moreover, by the categorical 

equivalence developed in Section 2, pA’q
’ is isomorphic to A as a Sugihara monoid, hence in particular as 

an i-lattice. By Lemma 5.20, pA’q
’ is isomorphic as an i-lattice to pA’˚, Ď Y Ěq`. Thus A is isomorphic 

as an i-lattice to both pA˚, Ď Y Ěq` and pA`q
`. It follows that

pA’˚,Ď Y Ěq – ppA˚,Ď Y Ěq
`
q` – ppA`q

`
q` – A`

as pointed Kleene spaces. Let ϕ : A` Ñ pA’˚, Ď Y Ěq be a pKS-isomorphism. Then for h, k P A`,

hQAk ðñ ϕphq and ϕpkq are Ď-comparable

ðñ ϕphq Ď ϕpkq or ϕpkq Ď ϕphq

ðñ h ď k or k ď h

ðñ h and k are ď-comparable.

This proves that QA is the relation of ď-comparability, and the result follows. l
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Lemma 5.25. Let X “ pX, ď, D, ď Y ě, J, τq be a Sugihara space. Then X` is a Sugihara monoid.

Proof. pX, ď, D, J, τq is bRS-space by Lemma 5.3, and hence pX, ď, D, J, τq˚ is a bRS-algebra by the 
duality of Section 3. It follows from Lemma 5.20 that pppX, ď, D, J, τq˚q˚, Ď Y Ěq` is isomorphic as an 
i-lattice to pX, ď, D, J, τq˚’. But ppX, ď, D, J, τq˚q˚ – pX, ď, D, J, τq as a bRS-space, so it follows that 
ppX, ď, D, J, τq, ď Y ěq` is isomorphic to pX, ď, D, J, τq˚’ as an i-lattice. Since the former structure is 
identical to the i-lattice reduct of X`, it follows that X` is isomorphic as an i-lattice to the Sugihara 
monoid pX, ď, D, J, τq˚’. The definition of the operations Ñ and ¨ therefore makes the i-lattice reduct of 
X` into a Sugihara monoid by transport of structure. l

Lemma 5.26. Let A and B be Sugihara monoids and let h : A Ñ B be a morphism in SM. Then h` “
ξ´1
A ˝ h’˚ ˝ ξB.

Proof. Let x P B` and a P A. If a P A´, then h’paq “ hæA´paq “ hpaq holds. Moreover, hæ´1
A´rB

´s “ A´. 
These facts give:

a P pξA ˝ h`qpxq ðñ a P ξApx ˝ hq

ðñ a P px ˝ hq´1
rt0, 1us XA´

ðñ px ˝ hqpaq P t0, 1u and a P A´

ðñ px ˝ h’qpaq P t0, 1u and a P A´

ðñ xphæA´paqq P t0, 1u and a P A´

ðñ a P hæ´1
A´rx

´1
rt0, 1uss XA´

ðñ a P hæ´1
A´rx

´1
rt0, 1us XB´s

ðñ a P h’˚px
´1
rt0, 1us XB´q

ðñ a P h’˚pξBpxqq

ðñ a P ph’˚ ˝ ξBqpxq.

This shows that ξA ˝ h` “ h’˚ ˝ ξB. Since ξA is an isomorphism of bRS-spaces by Lemma 5.16, it has an 
inverse ξ´1

A , and this yields h` “ ξ´1
A ˝ h’˚ ˝ ξB. l

Corollary 5.27. Let A and B be Sugihara monoids and let h : A Ñ B be a morphism in SM. Then h` is a 
morphism of pSS.

Proof. Lemma 5.26 shows that h` is the composition of bRSS-morphisms, which immediately gives the 
result. l

Lemma 5.28. Let X and Y be Sugihara spaces and let ϕ : X Ñ Y be a morphism in pSS. Then ϕ` “

μX ˝ ϕ
˚’ ˝ μY.

Proof. Let xU, V y P Y ˚’ and let x P X. Then

ppμX ˝ ϕ
˚’
qpU, V qqpxq “ μXpϕ

˚’
pU, V qqpxq

“ μXpϕ
˚
pUq, ϕ˚pV qqpxq

“ μXpϕ
´1
rU s, ϕ´1

rV sqpxq

“ Cϕ´1rUs,ϕ´1rV spxq.
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On the other hand,

ppϕ` ˝ μYqpU, V qqpxq “ ϕ`pμYpU, V qqpxq

“ pCU,V ˝ ϕqpxq

“ CU,V pϕpxqq.

Now note that ϕpxq P U if and only if x P ϕ´1rU s, ϕpxq P V if and only if x P ϕ´1rV s, and ϕpxq P U X V

if and only if x P ϕ´1rU X V s “ ϕ´1rU s X ϕ´1rV s. This together with the definition of CU,V immediately 
give that

CU,V pϕpxqq “ Cϕ´1rUs,ϕ´1rV spxq.

It follows that μX ˝ ϕ
˚’ “ ϕ` ˝ μY. Since μY is a Sugihara monoid isomorphism and hence invertible, it 

follows that ϕ` “ μX ˝ ϕ
˚’ ˝ μ´1

Y . l

Corollary 5.29. Let X and Y be Sugihara spaces and let ϕ : A Ñ B be a morphism in pSS. Then ϕ` is a 
morphism of SM.

Proof. Lemma 5.28 gives that ϕ` is the composition of morphisms in SM, so ϕ` is a morphism of SM. l

Lemma 5.30. Let A be a Sugihara monoid. Then pA`q
` – A.

Proof. Note that A` is isomorphic as a bRS-space to A’˚ via ξA. On the other hand, pA’˚q
˚ – A’ as

bRS-algebras, and thus pA’˚q
˚’ – pA’q

’ – A as Sugihara monoids by the equivalence of Section 2. The 
map μA’˚ is a Sugihara monoid isomorphism from pA’˚q

˚’ to pA’˚, Ď Y Ěq` by Remark 5.23. It follows 
that pA`q

` – A as Sugihara monoids as desired. l

Lemma 5.31. Let X “ pX, ď, ď Y ě, D, J, τq be a Sugihara space. Then pX`q` – X.

Proof. Note that X` is isomorphic as a Sugihara monoid to pX,ď, D,J, τq
˚’ via μX. Moreover, pX`q`

is isomorphic to pX`q’˚ as a bRS-space via ξX` . It follows that as bRS-spaces, pX`q` is isomorphic to 
ppX, ď, D, J, τq˚’q’˚. Since the latter space is isomorphic to pX, ď, D, J, τq by the duality of Section 3 and 
the equivalence of Section 2, it follows that pX`q` and pX, ď, D, J, τq are isomorphic as bRS-spaces. The
bRSS-isomorphism witnessing this is likewise a pSS-isomorphism between pX`q` and pX, ď, ď Y ě, D, J, τq, 
but the latter object is exactly X. This gives the result. l

Theorem 5.32. SM is dually equivalent to pSS.

Proof. As the functoriality of p´q` and p´q` comes directly from the Davey-Werner duality, this follows 
immediately from Lemmas 5.24, 5.25, 5.26, 5.28, 5.30, 5.31, and Corollaries 5.27 and 5.29. l

Having obtained the duality between Sugihara monoids and Sugihara spaces, it remains to modify this 
duality for the bounded analogues of the Sugihara monoids.

Definition 5.33. A Kleene space pX, ď, Q, D, τq is called an unpointed Sugihara space if

1. pX, ď, τq is an Esakia space,
2. Q is the relation of comparability with respect to ď, i.e., Q “ď Y ě, and
3. D is open.
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Fig. 5. Hasse diagrams for E` and pEKq`.

As in the case of Sugihara spaces, we sometimes simply say that pX, ď, D, τq is an unpointed Sugihara 
space, leaving Q to be inferred.

A bGS-morphism between unpointed Sugihara spaces is called an unpointed Sugihara space morphism, 
and we denote the category of unpointed Sugihara spaces with unpointed Sugihara space morphisms by SS.

Repeating the argument above with necessary modifications for the addition of bounds, we obtain:

Corollary 5.34. SMK is dually equivalent to SS.

Example 5.35. Recall the Sugihara monoid E of Example 2.9. The dual E` of this algebra has Hasse 
diagram given in Fig. 5, where the maps J, h0, h1, h2 P A` are uniquely determined by Jpaq “ 0 for all 
a P E, h0paq “ 0 for all a ‰ x2, 2y, x´2, ́ 2y, h1paq “ 0 for all a “ x0, 1y, x0, ́ 1, y and h2paq “ 1 for 
a P Òx´1, 1y and h2paq “ ´1 for a P Óx1, ́ 1y. Of these, only h2 lies in the designated subset because its 
image does not contain 0. If EK is the expansion of E be universal lattice bounds, then its dual is given by 
the same Hasse diagram, but with the exclusion of the map J (this map is not a morphism in the bounded 
signature).

5.3. Alternative formulations of the duality

One of the greatest strengths of the Esakia duality, often lacked by natural dualities, is the pictorial 
character of the dual equivalence. The duality for Sugihara monoids rests on the representation of each 
Sugihara monoid as an algebra consisting of Kleene space morphisms, which is a less geometrically-intuitive 
construction. Here we recast this construction in more geometric terms in two distinct ways.

For an odd Sugihara monoid A, we may realize its dual in terms of certain algebraic substructures that 
are ordered by containment. This representation in terms of convex prime subalgebras has much of the 
pictorial flavor of the Esakia duality and its representation in terms of prime filters.

Unfortunately, when a Sugihara monoid is not odd, the prime convex subalgebra representation proves 
inadequate. However, we may nevertheless obtain a more pictorial representation in terms of certain filters. 
In the next section, we will see that it also has points of contact with previous work on dualities for Sugihara 
monoids and other relevant algebras.

Definition 5.36. Let A “ pA, ̂ , _, ̈ , Ñ, t, �q be an odd Sugihara monoid. A p^, _, t, �q-subalgebra C of A
is said to be a convex prime subalgebra if for all a, b, c P A,

1. If a, c P C and a ď b ď c, then b P C, and
2. If a ̂ b P C, then a P C or b P C.

The collection of convex prime subalgebras of A is denoted CpAq.

Note that if C is a convex prime subalgebra and a _ b P C, then we also have �a ̂ �b “ �pa _ bq P C

as well. It follows that �a P C or �b P C, so a P C or b P C by �-closure. Thus a convex prime subalgebra 
is prime with respect to _ as well as ^.

Proposition 5.37. Let A be an odd Sugihara monoid. Then A` is order isomorphic to pCpAq, Ďq.
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Proof. Note that A` is order isomorphic to A’˚ by Lemma 5.10, so it suffices to show that pCpAq, Ďq is 
order isomorphic to pA’˚, Ďq. Define a function ψ : CpAq Ñ A’˚ for C P CpAq by ψpCq “ C X A´. To see 
that ψpCq is a filter, suppose that a P ψpCq and b P A´ with a ď b. Then b P A´ and a ď b ď t, and by 
convexity b P C. This gives that b P ψpCq, so ψpCq is upward closed.

For closure under meets, let a, b P ψpCq. Then C being ^-closed gives a ^ b P C, and a, b ď t gives 
a ̂ b ď t. Thus a ̂ b P ψpCq. The primality of C gives a P C or b P C.

To see that ψpCq is prime, let a, b P A´ with a _ b P ψpCq. Then a _ b P C and a _ b ď t. The latter 
gives a ď t and b ď t, so one of a P ψpCq or b P ψpCq must hold. This shows that ψpCq is a prime filter of 
A’, and hence that ψ is well-defined.

It is obvious that ψ is order-preserving because C1 Ď C2 implies that C1 XA´ Ď C2 XA´ for any sets 
C1, C2. To see that ψ is order-reflecting, suppose that C1, C2 P CpAq with ψpC1q Ď ψpC2q. Let a P C1. Then 
�a P C1, and a ̂ t, �a ̂ t P ψpC1q. This gives a ̂ t, �a ̂ t P ψpC2q. Since we have that a ̂ t, �a ̂ t P ψpC2q, 
it follows that a ^ t, �a ^ t P C2. From �a ^ t P C2, it follows that �p�a ^ tq “ a _ �t P C2. Because 
a ̂ t ď a ď a _�t, convexity gives a P C2. This yields C1 Ď C2 as desired.

It remains only to show that ψ is onto, so let x P A´˚ . Let

ÒAx “ ta P A : pDp P xqpp ď aqu,

�x “ t�a : a P xu,

ÓA�x “ ta P A : pDp P �xqpa ď pqqu, and

C “ ÒAxX ÓA�x.

We claim that C is the universe of a convex prime subalgebra C, and that ψpCq “ x.
First, note that since x P A´˚ we have that t P x, so t P C. If a P C, then there exist p, q P x such that 

p ď a ď �q. Then q ď �a ď �p, so �a P C.
Second, suppose that a, b P C. Then there exist p1, p2, q1, q2 P x such that p1 ď a ď �q1 and p2 ď b ď �q2. 

This gives

p1 ^ p2 ď a^ b ď �q1 ^�q2 “ �pq1 _ q2q.

Since x is a filter, p1^p2, q1_q2 P x. This gives a ̂ b P C. On the other hand, p1_p2 ď a _b ď �q1_�q2 “
�pq1 ^ q2q gives that a _ b P C. Since t P x, t ď t ď �t “ t gives t P C, and this shows that C is a 
p^, _, �, tq-subalgebra.

To see that C is convex, suppose that a, c P C and b P A with a ď b ď c. Since a, c P C, there exist 
p1, p2, q1, q2 P x with p1 ď a ď �q1 and p2 ď c ď �q2. This gives p1 ď a ď b ď c ď �q2, so b P C as well. 
Thus C is a convex prime subalgebra.

To see that ψpCq “ x, suppose first that a P ψpCq “ C XA´. Then there exist p, q P x with p ď a ď �q, 
and a P A´. Since x is upward-closed, p ď a and p P x yields a P x. Hence ψpCq Ď x. On the other hand, if 
a P x, then a ď a ď t “ �t gives that a P ψpCq as desired. This proves the result. l

Given a Sugihara monoid (or bounded Sugihara monoid) A with monoid identity t, define

IpAq “ tx P A˚ : t P xu,

where A˚ is the collection of generalized prime filters (i.e., the collection of prime filters along with A itself) 
if A is a Sugihara monoid and A˚ is the collection of prime filters (excluding A itself) if A has lattice 
bounds in its signature. By considering IpAq, we may obtain a more pictorial representation of the dual of 
an arbitrary Sugihara monoid.
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Proposition 5.38. Let A be a Sugihara monoid (with or without distinguished bounds). Then A` is order 
isomorphic to pIpAq, Ďq.

Proof. Define ψA : A` Ñ IpAq by ψphq “ h´1rt0, 1us. Since t0, 1u is a prime filter of L and h
is a p^, _, �q-morphism (or p^, _, �, K, Jq-morphism, as applicable) we have ψAphq P A˚. Moreover, 
since hptq P t0, 1u always holds, t P h´1rt0, 1us for each h P A`. This shows that ψA is well-
defined.

ψA is order-preserving by the same argument offered in the proof of Lemma 5.7. To see that ψA is 
order-reflecting, let h1, h2 P A` with ψAph1q Ď ψAph2q. Were it the case that h1 ę h2, then there would 
exist a P A such that either h2paq “ ´1 and h1paq ‰ ´1, or h2paq “ 1 and h1paq ‰ 1.

In the first case, we have that h1paq P t0, 1u. Then a P ψAph1q Ď ψAph2q, so h2paq P t0, 1u, a contradiction. 
In the second case, h1paq P t´1, 0u, so h1p�aq P t0, 1u. Then h2p�aq P t0, 1u, but this contradicts h2paq “ 1. 
It follows that h1 ď h2, giving that ψA is order-reflecting.

Finally, to see that ψA is onto, let x P IpAq and set �x “ t�a : a P xu. Observe that t P x and the 
identity t ď a _ �a yields that a _ �a P x for all a P A, whence by primality a P x or �a P x. This gives 
that a P x or a P �x, and therefore each a P A is contained in exactly one of the disjoint sets xz�x, x X�x, 
or �xzx. We may therefore define a map h : A Ñ t´1, 0, 1u by

hpaq “

$

’

’

&

’

’

%

1 a P xz�x

0 a P xX�x

´1 a P �xzx.

By checking cases, one may show that h is a morphism with respect to ^,_,�, and the lattice bounds (when 
applicable). This shows that h P A`. Moreover, ψAphq “ h´1rt0, 1us “ h´1p0q Y h´1p1q “ pxz�xq Y px X
�xq “ x. Thus ψA is onto, and hence an order isomorphism. l

6. The reflection construction

The covariant equivalence of Section 2 provides an entirely algebraic treatment of the relationship between 
bRS-algebras and Sugihara monoids as well as their bounded analogues. However, the complexity of the 
construction of a Sugihara monoid from a bRS-algebra is a significant obstacle to understanding the role of 
twist products in such contexts. Here we exploit the duality of Section 5 to obtain a dramatically simpler 
presentation of this construction. This amounts to transporting the construction of Section 2 across the 
duality to obtain its analogue on dual spaces, which we will call the reflection construction. We also obtain 
a dual presentation of the enriched negative cone construction, giving a complete picture of how the algebraic 
work of Section 2 presents on dual spaces. As an added benefit, this illuminates the connection between the 
duality developed in Section 5 and previous work on duality for Sugihara monoids due to Urquhart [30]. 
Because Urquhart presented his duality only for bounded algebras, throughout this section we work with 
bounded Sugihara monoids.

After introducing some background on Urquhart duality in Section 6.1, we construct the dual of the 
enriched negative cone construction in Section 6.2, culminating in the definition of the functor in Defini-
tion 6.10. Then in Section 6.3, we construct the dual of the twist product variant from Section 2, giving 
its definition in Definition 6.30. Finally, in Section 6.4 we show that these two constructions give an equiv-
alence of categories between (unpointed) Sugihara spaces and the dual spaces described in the Urquhart 
duality.
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6.1. The Urquhart duality

In order to articulate the aforementioned constructions, we first recall Urquhart’s duality for relevant 
algebras [30]. Consider a Priestley space pX, ď, τq and a ternary relation R on X. For x, y P X, define 
x d y “ tz P X : Rxyzu. For subsets U, V Ď X, define

U ‚ V “ tz P X : pDx, y P XqpRxyz and x P U and y P V qu, and

U ñ V “ tx P X : p@y, z P XqppRxyz and y P Uq implies z P V qu.

Note that here we have repurposed the symbols ‚ and ñ of Section 2 for ease of notation; context allows 
us to distinguish between these meanings without difficulty.

Urquhart’s duality concerns itself with the category of structured topological spaces and morphisms 
defined as follows.

Definition 6.1. Let X “ pX, ď, R, 1, I, τq be a structure such that pX, ď, τq is a Priestley space, R is a 
ternary relation on X, 1 : X Ñ X is a function, and I Ď X. We say that X is a relevant space if it satisfies 
the following conditions.

1. Whenever U and V are clopen up-sets of X, so are the sets U ‚ V and U ñ V ,
2. If Rx1y1z1, x2 ď x1, y2 ď y1, and z1 ď z2, then Rx2y2z2,
3. For all x, y, z P X, if it is not that case that Rxyz, then there are clopen up-sets U, V of X such that 

x P U , y P V , and z R U ‚ V ,
4. The map 1 is continuous and antitone, and
5. I is a clopen up-set and for all y, z P X, y ď z if and only if there exists x P I with Rxyz.

Given relevant spaces X “ pX, ďX, RX, 1, IX, τXq and Y “ pY, ďY, RY, 1, IY, τYq, a function ϕ : X Ñ Y is 
called an relevant map if

1. ϕ is continuous and isotone,
2. If RXxyx, then RYϕpxqϕpyqϕpzq,
3. If RYxyϕpzq, then there exists u, v P X such that RXuvz, x ď ϕpuq, and y ď ϕpvq,
4. If RYϕpxqyz, then there exists u, v P X such that RXxuv, y ď ϕpuq, and ϕpvq ď z,
5. ϕpx1q “ ϕpxq1, and
6. ϕ´1rIYs “ IX.

The relevant algebras for which Urquhart articulated his duality include the bounded Sugihara monoids 
as a subvariety. Indeed, bounded Sugihara monoids are precisely the idempotent De Morgan monoids. 
Following Urquhart’s correspondence theory for relevant spaces (see [30, Theorem 4.1] and the comments 
thereafter), the relevant spaces X corresponding to bounded Sugihara monoids are axiomatized by the 
conditions that for all x, y, z P X,

1. x d y “ y d x,
2. x d py d zq “ px d yq d z,
3. x “ x d x,
4. x2 “ x, and
5. z P x d y implies y1 P x d z1.
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We call the relevant spaces satisfying the above conditions Sugihara relevant spaces, and denote the category 
of Sugihara relevant spaces with relevant maps by SRS. Specialized to the present inquiry, the main result 
of [30] is the following.

Theorem 6.2. SMK is dually equivalent to SRS.

Given a bounded Sugihara monoid A “ pA, ̂ , _, ̈ , Ñ, t, �, K, Jq, define for x, y P A˚ Y tAu the complex 
product

x ¨ y “ tc P A : pDa P x, Db P yqpa ¨ b ď cqu.

Let R be the ternary relation on A˚ given by Rxyz if and only if x ¨ y Ď z, let x1 “ ta P A : �a R xu, 
and let IpAq “ tx P A˚ : t P xu as in Section 5. Then we denote by A˚ the Sugihara relevant space 
ppA, ̂ , _, K, Jq˚, R, 1, IpAqq.

On the other hand, for a Sugihara relevant space X “ pX, ď, R, 1, I, τq, let X˚ be the bounded Sugihara 
monoid ppX, ď, τq˚, ‚, ñ, I, �q, where � is given by �U “ tx P X : x1 R Uu. When extended to morphisms 
in the familiar way, the functors p´q˚ and p´q˚ witness the equivalence between SMK and SRS of the 
Urquhart duality.

In the next three sections, we introduce functors p´q’ : SRSÑ SS and p´q’ : SS Ñ SRS, named in anal-
ogy to their duals in Section 2, that give an equivalence of categories between SRS and SS. The construction 
of each of these functors requires some technical results, which we turn to presently. We start with the 
functor p´q’.

6.2. Dual enriched negative cones

For a bounded Sugihara monoid A, recall that IpAq “ tx P A˚ : t P xu. Recall also that ψA : A` Ñ IpAq
defined by ψAphq “ h´1rt0, 1us is an order isomorphism between A` and pIpAq, Ďq from the proof of 
Proposition 5.38. We show that ψA preserves much more structure.

Lemma 6.3. When IpAq is endowed with the topology inherited as a subspace of A˚, ψA is continuous.

Proof. It suffices to check that the inverse image of a subbasis element is open. Let a P A. Recall that the 
subbasis elements of the space IpAq are of the form σpaq “ tx P IpAq : a P xu and σpaqc “ tx P IpAq : a R xu. 
Observe that:

ψ´1
A rσpaqs “ th P A` : ψAphq P σpaqu

“ th P A` : a P h´1
rt0, 1usu

“ th P A` : hpaq P t0, 1uu

“ th P A` : hpaq “ 0u Y th P A` : hpaq “ 1u.

The above are subbasis elements of A`. Moreover,

ψ´1
A rσpaqcs “ th P A` : ψAphq P σpaq

c
u

“ th P A` : a R h´1
rt0, 1usu

“ th P A` : hpaq R t0, 1uu

“ th P A` : hpaq “ ´1u.

The above is also a subbasis element, so this gives the result. l
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Lemma 6.4. The map ψA is a homeomorphism.

Proof. The space IpAq is a subspace of a Hausdorff space, hence is Hausdorff. A` is compact since it is a 
Priestley space. This gives that ψA is a continuous bijection from a compact space to a Hausdorff space, 
hence a homeomorphism. l

The fact that ψA is an order isomorphism and a homeomorphism allows us to obtain the following results.

Lemma 6.5. The space IpAq is a Priestley space.

Proof. Note that IpAq is compact since ψA is a homeomorphism. Let x, y P IpAq with x Ę y. Then since 
ψA is an order isomorphism we have ψ´1

A pxq ę ψ´1
A pyq, and since A` is a Priestley space there exists a 

clopen up-set U Ď A` with ψ´1
A pxq P U and ψ´1

A pyq R U . Then ψArU s is a clopen up-set of IpAq and 
x P ψArU s and y R ψArU s, showing that IpAq is a Priestley space. l

Lemma 6.6. IpAq is an Esakia space.

Proof. ψA is an order isomorphism and a homeomorphism, hence an isomorphism of Priestley spaces. Since 
IpAq is a Priestley space that is isomorphic to the Esakia space A`, it follows that IpAq is an Esakia space 
too. l

The following collects some information about the operation 1 of the Urquhart dual of a bounded Sugihara 
monoid, and is fundamental to the constructions that follow.

Lemma 6.7. Let A be a bounded Sugihara monoid. Then for all x P A˚,

1. x P IpAq or x1 P IpAq.
2. x Ď x1 or x1 Ď x.
3. The larger of x and x1 lies in IpAq.
4. The following are equivalent.

(a) x “ x1,
(b) t P x and �t R x,
(c) x, x1 P IpAq.

Proof. For (1), suppose t R x. Then as �t ď t, it follows that �t R x as well. Thus t P x1.
For (2), by (1) we may suppose without loss of generality that t P x1. Let a P x. If a R x1, then �p�aq R x1

and hence �a P x. Then a, �a P x, so a ̂ �a ď t gives t P x, a contradiction. It follows that x Ď x1.
Note that (3) follows immediately from (1) and (2).
For (4), suppose first that x “ x1. If t R x, then t “ ��t R x, so �t P x1. Then �t P x. But �t ď t gives 

t P x, so this is impossible. It follows that t P x. Then t P x1 as well. If �t P x, then �t P x1 as well and this 
would give ��t R x. But this contradicts t P x. Hence t P x and �t R x.

Next, suppose that t P x and �t R x. The latter gives that t P x1, so it follows immediately that 
x, x1 P IpAq.

Finally, suppose that x, x1 P IpAq. Then t P x, x1, so t P x and �t R x. Let a P x. If �a P x, then a, �a P x
implies a ̂ �a ď �t P x, a contradiction. Hence �a R x, so a P x1 and x Ď x1. On the other hand, let a P x1. 
Then �a R x. But a _ �a ě t and t P x give a _ �a P x, so a P x by primality. Thus x1 Ď x. This shows 
that x “ x1, which completes the proof of the equivalence. l
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Let A be an unbounded Sugihara monoid, and A˚ “ pA˚, Ď, R, 1, IpAq, τq its Urquhart dual. Set 
D “ tx P A˚ : x “ x1u, and τ’ the topology on IpAq induced as a subspace of A˚. We then obtain the 
following.

Lemma 6.8. pIpAq, Ď, D, τ’q is an unpointed Sugihara space.

Proof. Lemma 6.6 shows that pIpAq, Ď, τ’q is an Esakia space. It thus suffices to show that pIpAq, Ďq is a 
forest and D is a clopen subset of Ď-minimal elements. The former condition is clear since ψA is an order 
isomorphism and A` is a forest. That D Ď IpAq follows from Lemma 6.7.

To show that each x P D is minimal, let y P IpAq with y Ď x “ x1. Then t P y, and 1 being antitone gives 
x “ x1 Ď y1, so t P y1 as well. It follows that t P y, y1, so y “ y1 by Lemma 6.7. But this gives x Ď y Ď x, so 
x “ y. It follows that D is a collection of minimal elements in IpAq.

To see that D is clopen, note that x P D iff x “ x1 iff t P x and �t R x iff x P σptq X σp�tqc, so 
D “ σptq X σp�tqc is a clopen subset of A˚, and so too of the subspace IpAq. l

Remark 6.9. An easy argument shows that if h P A` has its image contained in t´1, 1u, then setting 
x “ ψAphq gives x “ x1. On the other hand, if x “ x1 P A˚, then by ψA being onto there exists h P A`
such that x “ ψAphq. Were there a P A with hpaq “ 0, we would have hp�aq “ 0 as well. Moreover, this 
would give that a, �a P ψAphq “ x “ x1. But a P x1 implies that �a R x, a contradiction. This shows that 
the image of h must lie in t´1, 1u and hence

ψArth P A` : p@a P Aqphpaq P t´1, 1uus “ tx P A˚ : x “ x1u.

Thus ψA preserves the designated subset D, and because ψA is a bijection this is sufficient to guarantee 
that it is actually an isomorphism in the category of unpointed Sugihara spaces.

We may now finally describe p´q’ : SRSÑ SS, the dual enriched negative cone functor.

Definition 6.10. For a Sugihara relevant space X “ pX, ď, R, 1, I, τq, let X’ “ I, D “ tx P X : x “ x1u, 
and τ’ be the topology on X’ inherited as a subspace of X. Define X’ “ pX’, ď, D, τ’q. For a morphism 
ϕ : X Ñ Y of SRS, define ϕ’ “ ϕæX’

.

The following shows that this definition makes sense on the level of objects. We put off verifying that the 
definition makes sense for morphisms until Section 6.4.

Lemma 6.11. Let X “ pX, ď, R, 1, I, τq be a Sugihara relevant space. Then X’ is an unpointed Sugihara 
space.

Proof. By the Urquhart duality, there exists a bounded Sugihara monoid A such that A˚ – X as relevant 
spaces. There hence exists a relevant space isomorphism ϕ : A˚ Ñ X. In particular, ϕrIpAqs “ I, and the 
restriction ϕæIpAq is a continuous order isomorphism. Since I is a subspace of a Hausdorff space, it is itself 
Hausdorff. Since IpAq is compact by Lemma 6.5, this gives that ϕæIpAq is a homeomorphism as well. It 
follows as before that I is a Priestley space isomorphic to IpAq, and hence an Esakia space. That pI, ďq is 
a forest also follows from this order isomorphism and the fact that pIpAq, Ďq is a forest by Lemma 6.8.

It remains only to show that D Ď I and that D is a clopen collection of minimal elements. To this end, 
let y P D. Then since ϕ is a bijection, there exists x P A˚ such that ϕpxq “ y. Since y P D, by definition 
we have y “ y1. This yields y1 “ ϕpxq, and because ϕ preserves 1 this shows that y “ ϕpx1q “ ϕpxq. It 
follows from the injectivity of ϕ that x1 “ x, from which it follows that D Ď ϕrtx P A˚ : x “ x1us. Because 
tx P A˚ : x “ x1u Ď IpAq by Lemma 6.7(4), we obtain D Ď I as ϕrIpAqs “ I. Also, if x “ x1 in 
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A˚, then the fact that ϕpxq “ ϕpx1q “ ϕpxq1 gives that ϕpxq P D. This gives that ϕrtx P A˚ : x “ x1us Ď D, 
whence that ϕrtx P A˚ : x “ x1us “ D. Because tx P A˚ : x “ x1u is clopen collection of minimal elements by 
Lemma 6.8, we obtain that D is a clopen collection of minimal elements of I since ϕ is an order isomorphism 
and homeomorphism. It follows that X’ “ pI, ď, D, τ’q is an unpointed Sugihara space as desired. l

6.3. Dual twist products

We next turn our attention to the functor p´q’. Recall that if A is a bounded Sugihara monoid and 
x, y P A˚ Y tAu, we defined

x ¨ y “ tc P A : pDa P x, Db P yqpa ¨ b ď cqu.

With this definition, we have the following.

Lemma 6.12. Let A be a bounded Sugihara monoid, and let x, y P A˚ Y tAu. Then x ̈ y P A˚ Y tAu.

Proof. That x ̈ y is a filter is proven in [30, Lemma 2.1], so it suffices to show that x ̈ y is prime or improper. 
Let a, b P A with a _ b P x ̈ y. Then there exists c P x, d P y such that cd ď a _ b. By residuation, we obtain 
that d ď c Ñ pa _ bq. But as A is semilinear, Proposition 2.2(3) gives c Ñ pa _ bq “ pc Ñ aq _ pc Ñ bq. 
Hence d ď pc Ñ aq _ pc Ñ bq, and as y is upward-closed this yields pc Ñ aq _ pc Ñ bq P y. Since y is prime 
or improper, this shows that c Ñ a P y or c Ñ b P y, whence either cpc Ñ aq P x ̈ y or cpc Ñ bq P x ̈ y. But 
cpc Ñ aq ď a and cpc Ñ bq ď b, so x ¨ y being upward-closed gives that in either case one of a P x ¨ y or 
b P x ̈ y holds, proving the lemma. l

The above shows that ¨ is a bona fide operation on A˚YtAu. A thorough understanding of this operation 
proves essential to our construction of p´q’, and toward this purpose we prove several technical claims 
about this operation.

Lemma 6.13. Let A be a bounded Sugihara monoid and let x, y, z P A˚ Y tAu. Then the following hold.

1. The operation ¨ on A˚ Y tAu is commutative.
2. If y P IpAq, then x Ď x ̈ y.
3. The operation ¨ on A˚ Y tAu is idempotent.
4. If ab P x, then a P x or b P x.
5. If x Ď y, then x ̈ z Ď y ¨ z.
6. If a, b P x, then ab P x.

Proof. For (1), let c P x ¨ y. Then there are a P x, b P y with ab ď c. But then ba ď c gives c P y ¨ x. The 
reverse inclusion follows in the same way.

For (2), let a P x. Then a “ at P x ̈ y, so x Ď x ̈ y.
For (3), let a P x. Then a “ a ¨ a P x ¨ x, so x Ď x ¨ x. On the other hand, if c P x ¨ x then there exist 

a, b P x with ab ď c. Then a ď b Ñ c gives b Ñ c P x by upward closure, so b ̂ pb Ñ cq ď bpb Ñ cq ď c gives 
c P x.

For (4), this follows from the primality of x and that ab ď pa _ bq2 “ a _ b holds in every Sugihara 
monoid.

For (5), let c P x ̈ z. Then there exist a P x, b P z with ab ď c, so a ď b Ñ c gives b Ñ c P x by upward 
closure. Then b Ñ c P y, so bpb Ñ cq P z ¨ y gives c P y ¨ z. Hence x ̈ z Ď y ¨ z.

For (6), this follows from a ̂ b “ pa ̂ bq2 ď ab, which holds in every Sugihara monoid. l
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Lemma 6.14. Let x P A˚ Y tAu. Then x ̂ x1 exists, and x ̂ x1 “ x ̈ x1.

Proof. Either x Ď x1 or x1 Ď x by Lemma 6.7(2), so the meet of x and x1 certainly exists and without loss 
of generality we assume x1 Ď x. Then t P x, so x1 Ď x1 ¨x by Lemma 6.13(2). On the other hand, let c P x1 ¨x. 
Then there exists a P x1 and b P x with ab ď c. This holds iff a ̈ �c ď �b. If �c P x, then b ̈ �c ď �a would 
give �a P x, a contradiction to a P x1. Hence �c R x, so c P x1. Thus x1 ¨x Ď x1, giving x ̈ x1 “ x1 “ x ̂ x1. l

Lemma 6.15. If x, y P IpAq, then x _ y exists and x _ y “ x ̈ y.

Proof. Note that t P x, y implies x, y Ď x ¨ y. On the other hand, let z P A˚ Y tAu with x, y Ď z. Then by 
monotonicity x ̈ y Ď z ¨ z “ z, so x ̈ y “ x _ y. l

In what follows, if x and y are elements of a poset, then we abbreviate “x and y are incomparable” by 
x } y and “x and y are comparable” by x K y. In particular, we use this notation for posets of prime filters 
as above.

Lemma 6.16. If x } y, then x _ y exists and x _ y “ x ̈ y.

Proof. Let a P xzy and b P yzx. Then a R y gives �a P y1, and b R x gives �b P x1. This yields a ̈ �a P x ̈ y1

and b ̈ �b P y ¨x1 “ x1 ¨ y. Note that a ̈ �a “ a ̈ pa Ñ �tq ď �t ď t, and likewise b ̈ �b ď �t ď t. By upward 
closure, we therefore have �t, t P x ̈ y1, x1 ¨ y. We consider some cases.

For the first case, suppose x, y R IpAq. Then x Ď x1 and y Ď y1 by Lemma 6.7, so x ̈ x1 “ x and y ¨ y1 “ y

by Lemma 6.14. From t P x ̈ y1 and Lemma 6.13(2) we have y Ď x ̈ y1 ¨ y. Since y1 ¨ y “ y by Lemma 6.14, 
this gives y Ď x ̈ y. By the same token, t P x1 ¨ y gives x Ď x ̈ y. Thus x, y Ď x ̈ y. If x, y Ď z, then x ̈ y Ď z

follows by monotonicity and idempotence, so x ̈ y “ x _ y.
For the second case, suppose x R IpAq and y P IpAq. Then x Ď x1 and y1 Ď y. Therefore x ¨ y1 Ď x ¨ y. 

Since t P x ̈ y1, t P x ̈ y too. Then x, y Ď x ̈ y, and x ̈ y must be the least among upper bounds for the same 
reason as before.

The case where y R IpAq and x P IpAq follows by symmetry, and we already knew the case where 
x, y P IpAq from Lemma 6.15. l

Lemma 6.17. If x Ď y Ď x1, then x ̈ y “ x.

Proof. By monotonicity, x ̈ x Ď x ̈ y Ď x ̈ x1. Since ¨ is idempotent, this implies that x Ď x ̈ y Ď x ̈ x1. But 
x ̈ x1 “ x ̂ x1 “ x by Lemma 6.14, so x ̈ y “ x. l

Lemma 6.18. Let x, y P A˚ Y tAu. If x and y1 are comparable, then x and y are comparable.

Proof. Suppose that x and y1 are comparable. Without loss of generality we may assume that x Ď y1, since 
the case where y1 Ď x follows from swapping the roles of x and y and the fact that x “ px1q1. We consider 
cases.

First, suppose that x P IpAq. Then by Lemma 6.7(3) we must have x1 Ď x. Thus x1 Ď x Ď y1, so y Ď x

and x and y are comparable.
Second, suppose that y1 R IpAq. Then Lemma 6.7(3) gives that y1 Ď y, and thus x Ď y1 gives x Ď y. 

Hence x and y are again comparable.
In the only remaining case, x R IpAq and y1 P IpAq. If y P IpAq, then y, y1 P IpAq gives y “ y1 by 

Lemma 6.7(4), whence x Ď y follows immediately. We may therefore assume further that y R IpAq. In this 
situation, we have that x Ă x1 and y Ă y1, and moreover x Ă y1 and y Ă x1 hold by hypothesis. By the 
monotonicity and idempotence of ¨, we therefore obtain that x ̈ y Ď x1, y1. Were it the case that x ̈ y P IpAq, 
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this would yield that x1, y1 P Òx ¨ y in IpAq, which would give that x1 and y1 are comparable since IpAq is 
a forest. This immediately yields that x and y are comparable as well. On the other hand, if x ¨ y R IpAq, 
then we argue by contradiction. If x and y are incomparable, then Lemma 6.16 gives that x _ y exists and 
x ̈ y “ x _ y. Then x, y Ď x ̈ y, and if x ̈ y R IpAq we have that x, y Ď Óx ̈ y in the image under 1 of IpAq. 
Since 1 is a dual order isomorphism of IpAq and tz1 : z P IpAqu, the latter set is a dual forest, and this is a 
contradiction. It follows that x and y must be comparable as desired. l

The lemma above has significant consequences, one of which is captured in the following.

Corollary 6.19. Let x, y P A˚ Y tAu with x and y comparable. Then the set tx, y, x1, y1u is a chain under Ď.

Proof. Lemma 6.18 gives that x and y1 are comparable, and likewise that x1 and y are comparable. Because 
any p P A˚ Y tAu is comparable to p1 by Lemma 6.7(2), we have also that x1 and x are comparable and y1

and y are comparable. Since x and y being comparable implies that x1 and y1 are comparable as well, this 
shows that x, y, x1, y1 are pairwise comparable, which gives the result. l

Lemma 6.20. If x R IpAq, y P IpAq, x Ď y, and y Ę x1, then x ̈ y “ y.

Proof. From x2 “ x Ď y we have that x1 and y are comparable by Lemma 6.18. The fact that y Ę x1 gives 
that x1 Ă y. Then x Ď x1 Ď y, and by monotonicity and idempotence x ¨ y Ď x1 ¨ y Ď y. Since x1 Ă y, we 
have also y1 Ă x. Let a P x with a R y1. The latter implies that �a P y, so a ̈ �a P x ̈ y. Then t P x ̈ y, giving 
y Ď x ̈ y ¨ y “ x ̈ y. Thus x ̈ y “ y. l

For a bounded Sugihara monoid A, define the absolute value of x P A˚ by |x| “ x _ x1. By Lemma 6.7, 
for each x P A˚ we have that this join exists, that |x| “ x or |x| “ x1, and that |x| P IpAq.

Lemma 6.21. If |x| Ă |y| and x Ď y, then x ̈ y “ y.

Proof. We consider cases. Observe at the outset that |y| “ y1 cannot occur. If this were the case, then 
|x| Ă |y| would give that x1 Ď |x| Ă y1, whence that y Ă x. This contradicts x Ď y, and is hence impossible. 
Thus |y| “ y. There are two possible cases.

First, suppose that |x| “ x. Then x, y P IpAq, and Lemma 6.15 gives that x ̈ y “ x _ y “ y.
Second, suppose that |x| “ x1. If x “ x1, then the previous case applies, so assume further that x ‰ x1. 

Then x R IpAq by Lemma 6.7(4). Since |y| “ y, we have also that y P IpAq. Because x1 Ă y by hypothesis, 
we have also that y Ę x1. Thus x R IpAq, y P IpAq, x Ď y, and y Ę x1. It hence follows from Lemma 6.20
that x ̈ y “ y as desired. l

Lemma 6.22. If |x| Ă |y| and y Ď x, then x ̈ y “ y.

Proof. Note that it cannot occur that |y| “ y since y Ď x would then contradict x _ x1 “ |x| Ă |y|, so we 
have that |y| “ y1. Then by hypothesis

y Ď x Ď x_ x1 “ |x| Ă |y| “ y1.

It follows by Lemma 6.17 that x ̈ y “ y. l

Lemma 6.23. If |x| “ |y| and x Ď y, then x ̈ y “ x “ x ̂ y.
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Proof. The assumption that |x| “ |y| gives that either x “ y or x1 “ y. In the first case, x ̈y “ x ̈x “ x “ x ̂ y

by the idempotence of ¨. In the second case, we have that x Ď y Ď x1, and Lemma 6.17 yields that 
x ̈ y “ x “ x ̂ y. l

The following summarizes the results obtained above.

Lemma 6.24. Let A be a bounded Sugihara monoid and let x, y P A˚ Y tAu. Then:

x ¨ y “

$

’

’

’

’

&

’

’

’

’

%

x_ y if x, y P IpAq or x } y

y if x K y and |x| Ă |y|
x if x K y and |y| Ă |x|
x^ y if x K y and |x| “ |y|.

Proof. Note that if x, y P IpAq, then x ¨ y “ x _ y by Lemma 6.15. If x } y, then likewise x ¨ y “ x _ y by 
Lemma 6.16.

If x K y and one of |x| Ă |y| or |y| Ă |x| holds, then Lemmas 6.21 and 6.22 show that x ̈ y is whichever 
of x or y has the greatest absolute value. If x K y and |x| “ |y|, then Lemma 6.23 gives that x ̈ y “ x ̂ y. 
This proves the claim. l

Observe that in light of Corollary 6.19, if x and y are comparable, then exactly one of |x| Ă |y|, |x| “ |y|, 
or |y| Ă |x| holds. Hence the above lemma completely describes the multiplication ¨ on A˚YtAu. With this 
operation now completely understood, we describe how p´q’ operates on objects.

Let X “ pX, ď, D, τq be a Sugihara space and let ´Dc “ t´x : x P Dcu be a copy of Dc with XX´Dc “

H. Set X’ “ X Y´Dc. We extend our use of the formal symbol ´ to define a unary operation on X’ by 
stipulating that ´p´xq “ x for ´x P ´Dc and ´x “ x for x P D. We also extend the order ď to a partial 
order ď’ on X’ via the conditions:

1. If x, y P X, then x ď’ y if and only if x ď y,
2. If ´x, ́ y P ´Dc, then ´x ď’ ´y if and only if y ď x, and
3. If ´x P ´Dc and y P X, then ´x ď’ y if and only if x and y are comparable with respect to ď.

For a bounded Sugihara monoid A, define a map ΓA : A˚ Ñ IpAq’ by

ΓApxq “

#

x if x P IpAq
´px1q if x R IpAq.

Lemma 6.7 gives that one of x P IpAq or x1 P IpAq holds for all x P A˚, and x “ x1 “ ´x if both hold. This 
guarantees that the above map is well-defined.

Lemma 6.25. ΓA is an order isomorphism.

Proof. To see that ΓA is order-preserving, let x, y P A˚ with x Ď y. Note that if x, y P IpAq, then the result 
is immediate. If x, y R IpAq, then we have that ΓApxq “ ´px1q ď’ ´py1q “ ΓApyq as y1 Ď x1. If x R IpAq
and y P IpAq, then there is z P IpAq with x “ z1. Since x and y are Ď-comparable, so too must be y and 
x1 “ z. In this event, ´z ď’ y gives ΓApxq ď’ ΓApyq.

Next, to see that ΓA reflects the order, let x, y P A˚ with ΓApxq ď’ ΓApyq. If x, y P IpAq, then it 
immediately follows that x Ď y. If x, y R IpAq, then there exist u, v P IpAq with x “ u1 and y “ v1

and ΓApxq “ ´u and ΓApyq “ ´v. Then we have ´u ď’ ´v. By definition, this holds iff v Ď u, so 
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x “ u1 Ď v1 “ y. In the final case, suppose that x R IpAq and y P IpAq. Then there exists u P IpAq with 
x “ u1, and ΓApxq “ ´u and ΓApyq “ y. By definition ´u ď’ y holds iff u and y are Ď-comparable. If 
u Ď y, then u1 Ď u Ď y gives that x Ď y. If y Ď u, then x “ u1 Ď y1 Ď y gives the result. It follows that ΓA
is order-reflecting.

Since ΓA is order-preserving and order-reflecting, it suffices to see that it is onto in order to see that it is 
an order isomorphism. Let x P IpAq’. If x P IpAq, then ΓApxq “ x. If x R IpAq, then there exists y P IpAq
such that x “ ´y. Then ΓApy

1q “ ´y “ x. This gives the result. l

Lemma 6.26. For each x P A˚ we have ΓApx
1q “ ´ΓApxq.

Proof. Let x P A˚. If x P IpAq, x1 R IpAq, then ΓApx
1q “ ´px2q “ ´x “ ΓApxq. If x, x1 P IpAq, then by 

Lemma 6.7 we have x “ x1. It follows from this that ΓApx
1q “ x1 “ x “ ΓApxq. For the final case, if x R IpAq

and x1 P IpAq, then ΓApx
1q “ x1 “ ´p´px1qq “ ´ΓApxq. This proves the claim. l

Taken together, Lemmas 6.25 and 6.26 show pA˚, Ď,1 q and pIpAq, Ď’, ́ q are isomorphic for a bounded 
Sugihara monoid A. We extend this isomorphism to associated topological structures.

Let τ’ be the disjoint union topology on XY´Dc, where the topology on ´Dc is induced by considering 
it as a (copy of a) subspace of X.

Lemma 6.27. ΓA is continuous.

Proof. Let U Y V Ď IpAq’ be open, where each of the sets U Ď IpAq and V Ď ´tx P IpAq : x “ x1uc are 
open. Since U is an open subset of a clopen subspace of A˚, it is open in A˚ as well. Moreover, V being 
open in the set ´tx P IpAq : x “ x1uc means precisely that tx P IpAq : ´x P V u is open in the clopen 
subspace tx P IpAq : x ‰ x1u of A˚, hence in A˚ as well. Because the function 1 : A˚ Ñ A˚ is continuous, 
we have also that the inverse image tx1 : ´x P V u of tx P IpAq : ´x P V u under 1 is open as well. We hence 
have

Γ´1
A rU Y V s “ Γ´1

A rU s Y Γ´1
A rV s

“ U Y tx1 P A˚ : ´x P V u

is open, which gives the result. l

Lemma 6.28. Let pX, ď, D, τq be an unpointed Sugihara space. Then pX’, τ’q is a compact Hausdorff space.

Proof. The subset D is clopen by definition, so Dc is a closed subspace of the compact Hausdorff space 
pX, τq. It follows that Dc, and hence its copy ´Dc, is a compact Hausdorff space. Since pX’, τ’q is the 
disjoint union of two compact Hausdorff spaces, the result follows. l

Lemma 6.29. ΓA is a homeomorphism.

Proof. From Lemma 6.8 we have that pIpAq, Ď, D, τq, where D “ tx P IpAq : x ‰ x1u and τ is the topology 
inherited from A˚, is an unpointed Sugihara space. Lemma 6.28 hence shows that IpAq’ is a compact 
Hausdorff space. A˚ is a Priestley space, and hence is compact, so ΓA is a continuous bijection from a 
compact space to a Hausdorff space. It follows that ΓA is a homeomorphism. l

Let X “ pX, ď, D, τq be an unpointed Sugihara space. The duality of Section 5 shows that there exists a 
bounded Sugihara monoid A such that X – A`. Moreover, by Remark 6.9 we have that A` is isomorphic 
to IpAq considered as an unpointed Sugihara space. As a consequence, for some bounded Sugihara monoid 



W. Fussner, N. Galatos / Annals of Pure and Applied Logic 170 (2019) 1188–1242 1235
Fig. 6. Hasse diagram for pE`q
’.

A we have that pX’, ď’, ́ q is isomorphic to pIpAq’, Ď’, ́ q, and hence via ΓA to pA˚, Ď, 1q. Because the 
multiplication ̈ on A˚YtAu is determined entirely by the ordering and the involution 1, so too is its restriction 
to a partial multiplication on A˚. Consequently, for each unpointed Sugihara space X “ pX,ď, D, τq we may 
define a partial multiplication ¨ on X’ by

x ¨ y “

$

’

’

’

’

&

’

’

’

’

%

x_ y if x, y P X or x } y, provided the join exists
z if x K y, |y| ‰ |x|, z P tx, yu, and |z| “ maxt|x|, |y|u
x^ y if x K y and |x| “ |y|
undefined otherwise

where |x| “ x if x P X, and | ´ x| “ x if ´x P ´Dc. The foregoing remarks along with Lemma 6.24 show 
that this definition makes sense, and we may moreover define a ternary relation R on X’ by Rxyz if and 
only if x ̈ y exists and x ̈ y ď’ z. With these definitions, we finally arrive at our construction of the functor 
p´q’.

Definition 6.30. For an unpointed Sugihara space X “ pX, ď, D, τq, let X’, ď’, ´, R, and τ’ be as above. 
Define X’ “ pX’, ď’, R, ́ , X, τ’q. For a morphism ϕ : pX, ďX , DX , τXq Ñ pY, ďY , DY , τY q of SS, define 
ϕ’ : X’ Ñ Y’ by

ϕ’
pxq “

#

ϕpxq if x P X,

´ϕp´xq if x P ´Dc
X .

We will shortly show that p´q’ produces a Sugihara relevant space when given an unpointed Sugihara 
space. We will show that it makes sense on the level of morphisms and provides a reverse functor for p´q’ in 
Section 6.4. While p´q’ is a dual version of the enriched negative cone construction, p´q’ is a dual version 
of the twist product variant appearing in Section 2. For reasons illustrated in the following example, we call 
it the reflection construction.

Example 6.31. The dual of the bounded Sugihara monoid EK was described in Example 5.35. Fig. 6 shows 
the result of applying the reflection construction of this section to the dual of EK. Observe that the elements 
aside from h2 (which is the sole element of the designated subset) are copied and reflected across an axis 
determined by the designated subset. One can easily check that this is isomorphic to the Urquhart dual of 
EK.

The following verifies that our definition of p´q’ makes sense on the level of objects.

Lemma 6.32. Let X “ pX, ď, D, τq be an unpointed Sugihara space. Then X’ is a Sugihara relevant space.

Proof. By the duality of Section 5, there exists an unbounded Sugihara monoid A such that X – A`. 
By Remark 6.9, the map ψA witnesses that A` is isomorphic to pIpAq, Ď, DI , τIq, where DI “ tx P
A˚ : x “ x1u and τI is the topology on IpAq induced from the topology on A˚. It follows that X is 
isomorphic to pIpAq, Ď, DI , τIq in the category of unpointed Sugihara spaces, whence that there is a map 
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ϕ : pX’, ď’, ́ , τ’q Ñ pIpAq’, Ď’, ́ , τ’

I q that is an order isomorphism, homeomorphism, and preserves 
´. Because ΓA is an order isomorphism by Lemma 6.25, a homeomorphism by Lemma 6.29, and preserves 
the involution by Lemma 6.26, we have that δ “ Γ´1

A ˝ ϕ is an order isomorphism, homeomorphism, and 
preserves the involution. Because A˚ is a Sugihara relevant space, in order to show that X’ is as well it 
suffices to show that δrXs “ IpAq and that for any x, y, z P X’, Rxyz if and only if Rδpxqδpyqδpzq.

Note that ΓA and ϕ being bijections gives that

δrXs “ pΓ´1
A ˝ ϕqrXs “ Γ´1

rIpAqs “ IpAq.

It remains only to show that δ is an isomorphism with respect to R, so let x, y, z P X’. Then by definition 
x ¨ y exists and x ¨ y ď’ z. But since ¨ is defined in terms of ´ and the order ď’ and δ preserves this 
structure, x ̈ y ď’ z must hold exactly when δpxq ̈ δpyq Ď δpzq holds in A˚, i.e., exactly when Rδpxqδpyqδpzq

holds. It follows that X’ is a Sugihara relevant space isomorphic to A˚. l

6.4. An equivalence between SS and SRS

We turn our attention to verifying that p´q’ and p´q’ really extend to functors in the manner previously 
described, and provide an equivalence between SS and SRS. We first verify that our definitions make sense 
for morphisms.

Lemma 6.33. Let ϕ : X Ñ Y be a morphism of SRS. Then ϕ’ is a morphism of SS.

Proof. Note that since ϕ is a relevant map, we have that ϕ´1rY’s “ X’ by definition. This implies that 
ϕrX’s “ ϕrϕ´1rY’ss Ď Y’, so ϕæX’

has its image in Y’ and ϕ’ is well-defined.
ϕ’ is a continuous isotone map because it is the restriction of a continuous isotone map. To see that ϕ’

is an Esakia map, suppose that x P X’, z P Y’ with ϕ’pxq ď z. Then since ϕpxq, z P Y’, the definition 
of ¨ provides that ϕpxq ¨ z “ ϕpxq _ z “ z and RY ϕpxqzz. As ϕ is a relevant map, this gives that there 
exist u, v P X with RXxuv, z ď ϕpuq, and ϕpvq ď z. That z ď ϕpuq and z P Y’ give ϕpuq P Y’. Note that 
ϕpuq P Y’ implies that u P ϕ´1rY’s “ X’ since ϕ is a relevant map. Since x, u P X’, the definition of ¨
gives x ¨ u “ x _ u. But RXxuv gives that x ¨ u ď v, so x, u ď x _ u ď v. It follows by monotonicity that 
ϕpvq ď z ď ϕpuq ď ϕpvq, so x ď v and z “ ϕpvq. This yields that ϕ’ is a p-morphism.

Finally, note that if x P X with x “ x1, then ϕ’pxq “ ϕ’pxq
1 as ϕ preserves 1. On the other hand, if 

x ‰ x1, then we may assume without loss of generality that x P X’ and x1 R X’ “ ϕ´1rY’s. Then ϕpxq P Y’

and ϕpx1q R Y’, so ϕpxq ‰ ϕpxq1. This yields the result. l

Given a SS-morphism ϕ : X Ñ Y, the function ϕ’ is a relevant map. For comprehensibility we divide 
the proof into pieces.

Lemma 6.34. Let ϕ : X Ñ Y be a morphism of SS. Then ϕ’ is isotone.

Proof. Suppose that x ď’ y. We consider cases.
First, if x, y P X, then ϕ’pxq “ ϕpxq ď ϕpyq “ ϕ’pyq follows from the isotonicity of ϕ.
Second, if x, y R X, then x ď’ y implies ´y ď ´x. The isotonicity of ϕ gives ´ϕ’pyq “ ϕp´yq ď

ϕp´xq “ ´ϕ’pxq, yielding ϕ’pxq ď’ ϕ’pyq.
Third, suppose that x R X and y P X. Then x R X gives that ´x P X, and x ď’ y gives that ´x

and y are ď-comparable. Since ϕ is isotone, this gives that either ´ϕ’pxq “ ϕp´xq and ϕ’pyq “ ϕpyq are 
ď-comparable as well. Note that ϕ’pxq R Y by the definition of ϕ’ since x R X. Hence by the definition of 
ď’ we have that ϕ’pxq ď’ ϕ’pyq. This proves the lemma. l
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Lemma 6.35. Let ϕ : X Ñ Y be a morphism of SS. Then for any x P X’, ϕ’p´xq “ ´ϕ’pxq.

Proof. We consider cases. First, if x P XzDX , then we have that ´x P ´Dc
X , and this gives that ϕ’p´xq “

´ϕp´p´xqq “ ´ϕpxq “ ´ϕ’pxq. Second, if x P DX , then in this situation, we have ϕ’p´xq “ ϕ’pxq “
´ϕ’pxq. Third, if x P ´Dc

X , then we have that ´x P XzDX , and from this we obtain that ϕ’p´xq “
ϕp´xq “ ´p´ϕp´xqq “ ´ϕ’pxq. l

Lemma 6.36. Let ϕ : X Ñ Y be a morphism of SS. Then for any x P X’, ϕ’p|x|q “ |ϕ’pxq|.

Proof. Let x P X’. Then either ´x ď’ x or x ď’ ´x. Since ϕ’ preserves the ordering ď’ by Lemma 6.34
and preserves ´ by Lemma 6.35, we have that ´ϕ’pxq ď’ ϕ’pxq in the first case, and ϕ’pxq ď’ ´ϕ’pxq in 
the second case. In the first case, we therefore have ϕ’pxq _´ϕ’pxq “ ϕ’pxq “ ϕ’p|x|q, and in the second 
case we have ϕ’pxq _´ϕ’pxq “ ´ϕ’pxq “ ϕ’p´xq “ ϕ’p|x|q. In either event, the result follows. l

Lemma 6.37. Let ϕ : X Ñ Y be a morphism of SS. Then ϕ’ preserves the ternary relation R.

Proof. Let x, y, z P X’ with RXxyz. Then x ̈ y exists and x ̈ y ď’ z. We consider two cases.
First, suppose that x ̈ y “ x _ y. Then x _ y ď’ z, so x ď’ z and y ď’ z. Since ϕ’ preserves the order, 

ϕ’pxq, ϕ’pyq ď’ ϕ’pzq. Since ¨ is order-preserving and idempotent, this gives ϕ’pxq ¨ ϕ’pyq ď’ ϕ’pzq, 
hence RY ϕ

’pxqϕ’pyqϕ’pzq.
Second, suppose that x ¨ y ‰ x _ y. Then the definition of the partial multiplication ¨ shows that 

x ¨ y is one of x or y and x K y. Without loss of generality we may assume that x ď’ y and (since 
x ¨ y ‰ x _ y) that x ¨ y “ x. In this situation, the definition of ¨ gives that |y| ď’ |x|. Note Lemma 6.34
shows that ϕ’pxq ď’ ϕ’pyq, so ϕ’pxq ¨ ϕ’pyq must exist by the definition of ¨. Moreover, the fact that 
|y| ď’ |x| together with Lemmas 6.34 and 6.36 give that |ϕ’pyq| ď’ |ϕ’pxq|. The definition of ¨ then 
shows that ϕ’pxq ¨ ϕ’pyq is either ϕ’pxq ^ ϕ’pyq or whichever of ϕ’pxq and ϕ’pyq has greater absolute 
value, but this gives ϕ’pxq ¨ ϕ’pyq “ ϕ’pxq in either case. Because x “ x ¨ y ď’ z, we hence have 
ϕ’pxq ̈ ϕ’pyq “ ϕ’pxq ď’ ϕ’pzq, which gives RY ϕ

’pxqϕ’pyqϕ’pzq as desired. l

Lemma 6.38. Let ϕ : X Ñ Y be a morphism of SS. Then if RY xyϕ
’pzq, there exist u, v P X’ such that 

RXuvz, x ď’ ϕ’puq, and y ď’ ϕ’pvq.

Proof. Suppose that RY xyϕ
’pzq. Then x ̈ y exists and x ̈ y ď’ ϕ’pzq. We consider two cases.

First, suppose that x ̈ y “ x _ y. Then x ď’ ϕ’pzq and y ď’ ϕ’pzq. Taking u “ v “ z gives the result 
as RXzzz.

Second, suppose that x ̈ y ‰ x _y. Then from the definition of ¨ we have that x K y and x ̈ y is one of x or 
y. We may assume without loss of generality that x ď’ y, that x ̈ y “ x (for if x ̈ y “ y, then x ̈ y “ x _ y, 
a contradiction), and that |y| ď’ |x|. Because x, y P Y would give that x ¨ y “ x _ y by the definition 
of ¨, we may further assume that x R Y and hence that |x| “ ´x (for otherwise x ď’ y and Y being 
upward-closed would give x, y P Y ). Note that in this situation the hypothesis that x “ x ̈ y ď’ ϕ’pzq gives 
that ϕ’p´zq ď’ ´x. It follows that ϕ’p|z|q must be comparable to ´x by Corollary 6.19 (as transferred 
along the obvious isomorphism), and we have either ϕ’p|z|q ď’ ´x or ´x ď’ ϕ’p|z|q.

If ϕ’p|z|q ď’ ´x, then ϕp|z|q ď ´x and ϕ being a p-morphism gives that there exists u P X such that 
|z| ď u and ϕpuq “ ´x. Then ´u ď’ ´|z| ď’ z and y ď’ |y| ď’ |x| “ ´x ď’ ϕ’puq, so x ď’ ϕ’p´uq, 
y ď’ ϕ’puq, and p´uq ̈ u “ ´u ď’ z gives the result.

If ´x ď’ ϕ’p|z|q, then |y| ď’ |x| “ ´x gives that y ď’ ϕ’p|z|q. Observing that z ¨ |z| “ z ^ |z| “ z, we 
obtain that x ď’ ϕ’pzq, y ď’ ϕ’p|z|q, and RXz|z|z, giving the result. l
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Lemma 6.39. Let ϕ : X Ñ Y be a morphism of SS. Then if RY ϕ
’pxqyz, there exist u, v P X’ such that 

RXxuv, y ď’ ϕ’puq, and ϕ’pvq ď’ z.

Proof. The fact that RY ϕ
’pxqyz gives that ϕ’pzq ̈ y exists and ϕ’pxq ̈ y ď’ z. We again consider cases.

For the first case, suppose that ϕ’pxq ¨ y “ ϕ’pxq _ y ď’ z. Then ϕ’pxq ď’ z and y ď’ z. If 
ϕ’pxq P Y (Subcase 1.1), then the p-morphism condition gives that there exists u P X with x ď u and 
ϕpuq “ ϕ’puq “ z. Then y ď’ ϕ’puq, ϕ’puq ď’ z, and RXxuu since x ¨ u ď’ u follows from x ď’ u by 
monotonicity and idempotence.

If ϕ’pxq R Y (Subcase 1.2), then we may assume that ϕ’pxq and y are incomparable (since we are in 
the case where ϕ’pxq ̈ y “ ϕ’pxq _ y). Moreover, ´ϕ’pxq “ ϕ’p´xq P Y and ´z ď’ ϕ’p´xq, ´z ď’ ´y. 
Were ´z P Y , this would contradict the fact that Y is a forest, so ´z R Y and hence z P Y . The fact that 
´z and ϕ’p´xq are comparable gives that z and ϕ’p´xq are comparable.

In the event that z ď’ ϕ’p´xq (Subcase 1.2.1), then y ď’ ϕ’p´xq and ϕ’pxq ď’ ´z ď’ z. The result 
follows in this situation from the fact that ´x ̈ x “ x and hence RXxp´xqx.

In the situation that ϕ’p´xq ď’ z (Subcase 1.2.2), we note that ϕ’pxq R Y gives that ϕ’p´xq P Y and 
´x P X. Then ϕ being a p-morphism gives that there exists u P X with ´x ď u and ϕpuq “ ϕ’puq “ z. 
Then since x R X, we have that x ď’ ´x ď’ u and this gives x ̈u ď’ u. Since y ď’ z “ ϕ’puq, ϕ’puq ď’ z, 
the fact that RXxuu gives the result. This completes the first case.

For the remaining cases, we may assume that ϕ’pxq and y are comparable and that not both of ϕ’pxq and 
y are contained in Y . For the second case, assume that |ϕ’pxq| “ |y|, and thus that ϕ’pxq ̈ y “ ϕ’pxq ̂ y.

Suppose that ϕ’pxq ď’ y (Subcase 2.1). Then ϕ’pxq ¨ y “ ϕ’pxq ď’ z. From |ϕ’pxq| “ |y|, we have 
ϕ’pxq “ y or ϕ’pxq “ ´y. If ϕ’pxq “ y, then RXxxx gives the result. If ϕ’pxq “ ´y, then ϕ’p´xq “ y

and RXxp´xqx gives the result.
Now suppose that y ď’ ϕ’pxq (Subcase 2.2). Then ϕ’pxq ¨ y “ y ď’ z. Again, |ϕ’pxq| “ |y| gives 

ϕ’pxq “ y or ϕ’pxq “ ´y. The former gives the result from RXxxx. The latter gives ϕ’p´xq “ y ď’ z, so 
RXxp´xqp´xq gives the result. This yields the second case.

For the third case, suppose that |y| ă |ϕ’pxq|. Then ϕ’pxq ¨ y “ ϕ’pxq ď’ z. If y ď’ ϕ’pxq (Subcase 
3.1), this case may be concluded with RXxxx. On the other hand, if ϕ’pxq ď’ y (Subcase 3.2), we may 
assume that ϕ’pxq R Y , hence that ϕ’p´xq P Y . Then ϕ’p´xq “ |ϕ’pxq|, so y ď’ |y| ď’ ϕ’p´xq. Then 
RXxp´xqx gives the result and the third case.

For the fourth case, suppose that |ϕ’pxq| ă |y|. Then ϕ’pxq ̈ y “ y ď’ z. If ϕ’pxq, y R Y (Subcase 4.1), 
then |ϕ’pxq| “ ´ϕ’pxq ď’ ´y “ |y|. This gives ϕ’p´xq ď ´y and the p-morphism condition implies that 
there exists u P Y with ´x ď u and ϕ’puq “ ϕpuq “ ´y, whence ϕ’p´uq “ y ď’ z. Then ´u ď’ x, and 
the fact that ´u, x R X gives that x ̈ p´uq “ ´u since the value of x ̈ p´uq is either the meet or the one with 
the larger absolute value. Hence RXxp´uqp´uq and y “ ϕ’p´uq ď’ z give the result. In the only remaining 
case, ϕ’pxq P Y and y R Y (Subcase 4.2). Then |ϕ’pxq| “ ϕ’pxq ď’ ´y “ |y|. Since ϕ is a p-morphism, this 
implies that there exists u P X with x ď u and ϕ’puq “ ϕpuq “ ´y. Then y “ ϕ’p´uq and y ď’ z hence 
yields ϕ’p´uq ď’ z. Since x ď’ u, by monotonicity of ¨ we have x ¨ p´uq ď’ u ¨ p´uq “ u ^ ´u ď’ ´u. 
This gives RXxp´uqp´uq, and since y ď’ ϕ’p´uq and ϕ’p´uq ď’ z, this settles the fourth case. This 
completes the proof. l

Lemma 6.40. Let ϕ : X Ñ Y be a morphism of SS. Then ϕ’ is continuous.

Proof. Let U Y V Ď Y’ be open, where U Ď Y and V Ď Dc
Y are open. Note that the map ´ : Y’ Ñ Y’

is a continuous bijection of compact Hausdorff spaces, and is therefore a homeomorphism. By definition, 
pϕ’qq´1rV s is exactly the set tx P Y ’ : ´ϕp´xq P V u. This is precisely t´x P Y ’ : ϕp´xq P V u, so it is the 
inverse image of V under the continuous composite map ϕ ̋ ´. and hence the inverse image of V under this 
map is open. Since pϕ’q´1rU Y V s “ pϕ’q´1rU s Y pϕ’q´1rV s, the result follows. l
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Lemma 6.41. Let ϕ : X Ñ Y be a morphism of SS. Then ϕ’ is a relevant map.

Proof. Previous lemmas show that ϕ’ is a continuous, isotone map that preserves and is a p-morphism with 
respect to the ternary relation R. We also have that pϕ’q´1rY s “ ϕ´1rY s “ X, and ϕ’p´xq “ ´ϕ’pxq by 
Lemma 6.35. This proves the result. l

Lemma 6.42. p´q’ : SRS Ñ SS is functorial.

Proof. Let ϕ : Y Ñ Z and ψ : X Ñ Y be morphisms of SRS. We must show that pϕ ̋ ψq’ “ ϕ’ ˝ ψ’. Let 
x P X’. Then pϕ ̋ ψq’pxq “ ϕpψpxqq “ ϕ’pψ’pxqq follows immediately since p´q’ acts by restriction. That 
p´q’ preserves the identity morphism is obvious. l

Lemma 6.43. p´q’ : SS Ñ SRS is functorial.

Proof. Given Sugihara spaces X “ pX, ďX, DX, τXq, Y “ pY, ďY, DY, τYq, and Z “ pZ, ďZ, DZ, τZq, let 
ϕ : Y Ñ Z and ψ : X Ñ Y be morphisms of SS. Let x P X’. Then x P X or x P t´y : y R DXu. In 
the former case, we immediately obtain that pϕ ˝ ψq’pxq “ pϕ ˝ ψqpxq “ ϕpψpxqq “ ϕ’pψ’pxqq from the 
definition. If x “ ´y where y R DX, then pϕ ˝ ψq’pxq “ ´pϕ ˝ ψqpyq “ ´ϕpψpyqq. On the other hand, 
ψ’pxq “ ´ψpyq is not in Y , and hence ϕ’p´ψpyqq “ ´ϕpψpyqq. This shows that pϕ ˝ ψq’ “ ϕ’ ˝ ψ’ in 
each case. That p´q’ preserves the identity morphism is obvious, so this gives the result. l

Lemma 6.44. Let X “ pX, ď, R, 1, I, τq be a Sugihara relevant space. Then pX’q
’ – X.

Proof. Define a map θX : pX’q
’ Ñ X by

θXpxq “

#

x if x P I
p´xq1 if x R I.

Since x R I implies that ´x P I is an element of X, this map is well-defined. We will show that θX is an 
isomorphism in SRS. Following [30], it suffices to show that θX is an order isomorphism, homeomorphism, 
preserves the involution, is an isomorphism with respect to R, and satisfies θXrIs “ I.

To see that θX is an order isomorphism, first suppose that x, y P pX’q
’ with x ď’ y. If x, y P X’, then 

this means that θXpxq “ x ď y “ θXpyq. If x, y R X’, then ´x, ́ y P X’ and x ď’ y means ´y ď ´x, hence 
p´xq1 ď p´yq1. Then θXpxq “ p´xq1 ď p´yq1 “ θXpyq. Finally, if x R X’ and y P X’, then x ď’ y gives 
that ´x and y are ď-comparable. If ´x ď y, then p´xq1 ď ´x ď y, and if y ď ´x, then p´xq1 ď y1 ď y. In 
either case, θXpxq ď θXpyq. This shows that θX preserves the order.

To show that it reflects the order as well, let x, y P pX’q
’ with θXpxq ď θXpyq. If x, y P X’, then x ď’ y

is immediate. If x, y R X’, then we have p´xq1 ď p´yq1, whence ´y ď ´x. In this case, ´x, ́ y P X’, so it 
follows that x ď’ y from the definition. If x P X’ and y R X’, then x “ θXpxq ď θXpyq “ď’ p´yq1. But 
y R X’ implies that p´yq1 R X’, so this contradicts the fact that X’ is an upset and hence this case cannot 
occur. For the final case, suppose that x R X’ and y P X’. Then p´xq1 ď y by hypothesis. Since y and ´x
are comparable, we obtain also that ´x and y are comparable with ´x, y P X’. By the definition of ď’, 
this entails x “ ´p´xq ď’ y. This yields that θX is order-reflecting.

To see that θX is an order isomorphism, we show that it is onto. Let x P X. If x P I, then x P pX’q
’

as well and θXpxq “ x. If x R I, then x1 P I and hence ´px1q P pX’q
’ and ´px1q R X’. Then θXp´px1qq “

p´p´px1qqq1 “ x2 “ x. This gives that θX is an order isomorphism.
We turn to showing that θX is a homeomorphism. The above shows that θX is a bijection, so since pX’q

’

and X are compact Hausdorff spaces, it suffices to show that θX is continuous. Let W Ď X be open, and set 
U “ W X I and V “ W X Ic. Since I is open by definition, both U and V are open as well. By definition, 
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θ´1
X rU s “ U . Observe that θXpxq R I implies that x R I because x P I would gives θXpxq “ x. Using this 

fact, we obtain

θ´1
X rV s “ tx P pX’q

’ : θXpxq P V u

“ tx P pX’q
’ : p´xq1 P V u.

Now 1 : X Ñ X and ´ : pX’q
’ Ñ pX’q

’ are continuous bijections by definition, and the above is precisely 
the inverse image of V under the composition of ´ and 1. It follows that V is an open subset of pX’q

’

disjoint from X’, whence θ´1
X rW s “ θ´1

X rU s Y θ´1
X rV s is open. It follows that θX is a homeomorphism.

To see that θX preserves the involution, let x P pX’q
’. If ´x R X’, then x P X’ and θXp´xq “

p´p´xqq1 “ x1 “ θXpxq
1. If ´x P X’ with ´x “ x, then by definition x “ x1 and θXp´xq “ ´x “ x “

x1 “ θXpxq
1. If ´x P X’ with ´x ‰ x, then x R X’ and θXp´xq “ ´x “ p´xq2 “ θXpxq

1. This gives the 
preservation of the involution.

That θXrIs “ I is immediate from θXpxq “ x for x P I, so it remains only to show that θX is an 
isomorphism with respect to R. But this follows immediately since R is completely determined by the meet, 
join, and involution, and θX is an involution-preserving order isomorphism. This gives the result. l

Lemma 6.45. Let X be an unpointed Sugihara space. Then pX’q’ – X.

Proof. Let iX : pX’q’ Ñ X be the identity map. Then iX is obviously an isomorphism of SS, and the result 
follows. l

Theorem 6.46. p´q’ and p´q’ witness an equivalence of categories between SRS and SS.

Proof. The lemmas above yield this result provided that we show that the maps θX and iX are natural 
isomorphisms. This is obvious in the latter case, so we need only check the naturality of θX. Let ϕ : X Ñ Y
be a morphism of SRS. We must show that ϕ ̋ θX “ θY ˝pϕ’q

’, so let x P pX’q
’. If x P X’, then providing 

x as an input yields ϕpxq on both sides of this equation. If x R X’, then both sides become ϕp´xq1. This 
gives the result, and yields the equivalence. l

7. Conclusion

The foregoing analysis reveals a rich web of pairwise equivalences among various categories associated 
to R-mingle. Although each of these equivalences is of interest in its own right, their mutually-supporting 
structure provides insight above and beyond that afforded by any of them individually. The Sugihara 
monoids have two features that allow for this sort of analysis. First, they have reducts among the normal 
i-lattices, granting access to the Davey-Werner duality and its connection to twist product constructions. 
Second, they are semilinear, which (among many other consequences) allows for the characterization of the 
ternary relation of the Urquhart duality in terms of the partial multiplication on prime filters only. Due to 
the powerful consequences of these properties, we expect that a similar analysis to that conducted here is 
possible for other classes of semilinear residuated lattices with normal i-lattice reducts.
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Appendix A. Summary of categories and functors

For reference, we include two tables that provide a guide to the numerous categories and functors pertinent 
to this work. Table A.1 summarizes information regarding the most significant categories that we mention, 
whereas Table A.2 provides information about the most important functors connecting them.

Table A.1
Various categories pertinent to this study. Note that when a category of algebras has both a bounded and unbounded variant, 
the bounded variant appears in parentheses. Due to the fact that duals of unbounded algebras are typically pointed ordered 
topological spaces in this study, for categories of structured topological spaces this convention is reversed (i.e., the unpointed 
variant of a category of structured topological spaces is displayed in parentheses). The last column refers to pages where the 
categories were first introduced.

Category Abbreviation Pages
Bounded distributive lattices DL 1202
Normal i-lattices (Kleene algebras) IL (KA) 1210, 1211
Brouwerian algebras (Heyting algebras) Br (HA) 1191
Sugihara monoids (bounded Sugihara monoids) SM (SMK) 1192
Negative cones of Sugihara monoids (Negative cones of bounded Sugihara monoids) EnSM´ (EnSM´

K) 1193
Relative Stone algebras (Gödel algebras) RSA (GA) 1191
Relative Stone algebras with Boolean constant (Gödel algebras with Boolean constant) bRSA (bGA) 1195
Nuclear Heyting algebras nHA 1206
Priestley spaces PS 1202
Pointed Kleene spaces (Kleene spaces) pKS (KS) 1212, 1211
Pointed Esakia spaces (Esakia spaces) pES (ES) 1202, 1202
Sugihara spaces (unpointed Sugihara spaces) pSS (SS) 1220, 1222
Sugihara relevant spaces SRS 1227
bRS-spaces (bGA-spaces) bRSS (bGS) 1203, 1205
Nuclear Esakia spaces nES 1206

Table A.2
A summary of the most significant functors appearing in this study. Following our usual convention, we employ the same notation 
for different functors occupying a conceptually-similar role (e.g., the functors of the many different variants of Priestley duality). 
We also briefly recall how the functors act on objects, and point to pages where full descriptions of the functors may be found.

Functor Action on objects Pages
p´q˚ : DL Ñ PS A˚ is the set of generalized prime filters of A, expanded by 

additional structure
1202, 1227

p´q˚ : HA Ñ ES,
p´q˚ : Br Ñ pES,
p´q˚ : SMK Ñ SRS

p´q
˚ : PS Ñ DL X˚ is the set of clopen up-sets of X with algebraic operations 

(nonempty clopen up-sets for algebras lacking distinguished 
lower bound)

1202, 1227
p´q

˚ : ES Ñ HA,
p´q

˚ : pES Ñ Br,
p´q

˚ : SRS Ñ SMK

p´q’ : SM Ñ bRSA A’ is the negative cone of A with distinguished constant �t 1196
p´q’ : SMK Ñ bGA

p´q
’ : bRSA Ñ SM A’ is an algebra with universe txa, by P A2 : a _ b “

t, a ̂ b ď fu, with term-defined operations
1199

p´q
’ : bGA Ñ SMK

p´q` : SM Ñ pSS A` is the set of p^, _, �q-morphisms into L (K) expanded by 
additional structure

1212, 1214
p´q` : SMK Ñ SS

p´q
` : pSS Ñ SM X` is the set of continuous, structure-preserving maps into L

r(K
Ă

) with defined algebraic operations
1212, 1214

p´q
` : SS Ñ SMK

p´q’ : SRS Ñ SS X’ is the unpointed Sugihara space with universe I 1229

p´q
’ : SS Ñ SRS X’ is the Sugihara relevant space resulting from reflecting X

across the designated subset D
1235
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