Algebra Univers. (2021) 82:16 © 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 1420-8911/21/010001-6 *published online* January 20, 2021 https://doi.org/10.1007/s00012-020-00703-4

Algebra Universalis

Lattice-ordered pregroups are semi-distributive

Nick Galatos, Peter Jipsen, Michael Kinyon and Adam Přenosil

Abstract. We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law which holds in lattice-ordered pregroups.

Mathematics Subject Classification. 06F05, 06B99.

Keywords. Pregroups, ℓ -pregroups, Residuated lattices.

1. Introduction

Lattice-ordered pregroups, or ℓ -pregroups for short, were introduced by Lambek [8], who called them lattice-ordered monoids with adjoints. Their partially ordered counterparts were studied in more detail by Lambek [9,10] and Buszkowski [1,2,3] with linguistic motivations (type grammar) in mind. An ℓ -pregroup is an algebra $\langle G, \wedge, \vee, \cdot, 1, \ell, r \rangle$ where $\langle G, \wedge, \vee \rangle$ is a lattice, $\langle G, \cdot, 1 \rangle$ is a monoid such that multiplication is order-preserving in both arguments, and the unary maps $x \mapsto x^{\ell}$ and $x \mapsto x^{r}$ satisfy the inequalities

 $x^{\ell}x \le 1 \le xx^{\ell}$ and $xx^r \le 1 \le x^r x$.

Alternatively, they are involutive residuated lattices satisfying $x \cdot y \approx x + y$, where addition is the De Morgan dual of multiplication (see [6]). Imposing the equation $x^{\ell} \approx x^{r}$ on ℓ -pregroups yields the variety of ℓ -groups.

The major open question concerning these algebras is whether their lattice reducts are distributive, like the lattice reducts of ℓ -groups. We leave this question open, however, we describe some positive properties of lattice reducts of ℓ -pregroups. These follow from the fact that the distributive law for ℓ -pregroups holds at least up to certain idempotents.

The variety of ℓ -pregroups exhibits an order duality as well as a left–right duality: if $\langle G, \wedge, \vee, \cdot, 1, \ell, r \rangle$ is an ℓ -pregroup, then so are $\langle G, \vee, \wedge, \cdot, 1, r, \ell \rangle$ and

Presented by W. Wm. McGovern.

Algebra Univers.

 $\langle G, \wedge, \vee, \odot, 1, r, \ell \rangle$, where $x \odot y := y \cdot x$. These symmetries imply that if a (quasi)equation holds in all ℓ -pregroups, then so does its order dual, obtained by switching \vee and \wedge as well as ℓ and r, as well as its left–right dual, obtained by switching ℓ and r and reversing the order of multiplication.

We recall that ℓ -pregroups satisfy the following equations:

$$\begin{split} & x(y \wedge z) \approx xy \wedge xz, \quad xx^{\ell}x \approx x, \quad (x \wedge y)^{\ell} \approx x^{\ell} \vee y^{\ell}, \quad (x \vee y)^{\ell} \approx x^{\ell} \wedge y^{\ell}, \\ & (x \wedge y)z \approx xz \wedge yz, \quad xx^{r}x \approx x, \quad (x \wedge y)^{r} \approx x^{r} \vee y^{r}, \quad (x \vee y)^{r} \approx x^{r} \wedge y^{r}. \end{split}$$

Moreover, they also satisfy the equations $x^{\ell r} \approx x \approx x^{r\ell}$.

Let us now recall the definition of semidistributivity. A lattice is called *meet semidistributive* if it satisfies the quasiequation

 $x \wedge y \approx x \wedge z \implies x \wedge (y \vee z) \approx x \wedge y.$

It is called *join semidistributive* if it satisfies the dual quasiequation, namely

$$x \lor y \approx x \lor z \implies x \lor (y \land z) \approx x \lor z.$$

It is called *semidistributive* if it is both meet and join semidistributive. We call an ℓ -pregroup modular or (semi)distributive if its lattice reduct is modular or (semi)distributive.

2. Main results

We now prove an analogue of the distributive law for ℓ -pregroups. The proof given below is the ℓ -pregroup analogue of the proof of distributivity for GBL-algebras due to Galatos and Tsinakis [7, Lemma 2.9].

Proposition 2.1. The following inequalities hold in all ℓ -pregroups:

$$\begin{split} & x \wedge (y \vee z) \leq yy^{\ell}(x \wedge y) \vee zz^{\ell}(x \wedge z), \\ & x \wedge (y \vee z) \leq (x \wedge y)y^{r}y \vee (x \wedge z)z^{r}z. \end{split}$$

Proof. We only prove the first inequality:

$$\begin{split} x \wedge (y \vee z) &\leq (y \vee z)(y \vee z)^{\ell} x \wedge (y \vee z) \\ &= (y \vee z)((y^{\ell} \wedge z^{\ell}) x \wedge 1) \\ &= y((y^{\ell} \wedge z^{\ell}) x \wedge 1) \vee z((y^{\ell} \wedge z^{\ell}) x \wedge 1) \\ &\leq y(y^{\ell} x \wedge 1) \vee z(z^{\ell} x \wedge 1) \\ &= (yy^{\ell} x \wedge y) \vee (zz^{\ell} x \wedge z) \\ &= (yy^{\ell} x \wedge yy^{\ell} y) \vee (zz^{\ell} x \wedge zz^{\ell} z) \\ &= yy^{\ell} (x \wedge y) \vee zz^{\ell} (x \wedge z). \end{split}$$

The second inequality follows by left–right duality.

The only difference between these inequalities and the usual distributive law is the presence of the idempotents yy^{ℓ} and zz^{ℓ} , or $y^{r}y$ and $z^{r}z$. For some special instances of x, y, z we obtain the full distributive law.

Corollary 2.2. Suppose that either ya = x = zb or ay = x = bz holds in an ℓ -pregroup for some a and b. Then $x \land (y \lor z) = (x \land y) \lor (x \land z)$.

Proof. In the former case we have $yy^{\ell}(x \wedge y) = (yy^{\ell}ya \wedge yy^{\ell}y) = ya \wedge y = x \wedge y$ and likewise $zz^{\ell}(x \wedge z) = x \wedge z$. The latter case follows by left-right duality.

Another form of distributivity will in fact be more useful in our proofs.

Proposition 2.3. The following inequalities hold in all ℓ -pregroups:

$$x \wedge (y \lor z) \le yy^{\ell}(x \wedge y) \lor z,$$

$$x \wedge (y \lor z) \le (x \wedge y)y^{r}y \lor z.$$

Proof. In the former case it suffices to observe that $zz^{\ell}(x \wedge z) \leq zz^{\ell}x \wedge zz^{\ell}z \leq zz^{\ell}x \wedge z \leq z$. The latter case follows by left–right duality. \Box

Corollary 2.4. Suppose that either ya = x or ay = x holds in an ℓ -pregroup for some a. Then $x \land (y \lor z) \le (x \land y) \lor z$.

Proof. In the former case $x \land (y \lor z) \leq yy^{\ell}(x \land y) \lor z = (yy^{\ell}ya \land yy^{\ell}y)$ $\lor z = (ya \land y) \lor z = (x \land y) \lor z$. The latter case follows by left-right duality. \Box

We now use this limited form of distributivity to prove that ℓ -pregroups are semidistributive.

Lemma 2.5. The inequality $x' \land (y' \lor z') \leq (x' \land y') \lor z'$ holds whenever there are x and y such that one of the following four cases obtains:

$$\begin{array}{ll} x' = y^{\ell} x, & x' = x y^{\ell}, & x' = y^{r} x, & x' = x y^{r}, \\ y' = y^{\ell} y, & y' = y y^{\ell}, & y' = y^{r} y, & y' = y y^{r}. \end{array}$$

Proof. This follows from Corollary 2.4, since $y^{\ell}yy^{\ell} = y^{\ell}$ and $y^{r}yy^{r} = y^{r}$. \Box

Theorem 2.6. Each ℓ -pregroup is semidistributive.

Proof. By order duality it suffices to prove meet semidistributivity, i.e. that $x \wedge y = x \wedge z$ implies $x \wedge (y \vee z) \leq y$. Suppose therefore that $x \wedge y = x \wedge z$ and let $x' = y^{\ell}x$, $y' = y^{\ell}y$, and $z' = y^{\ell}z$. It follows that $x' \wedge y' = x' \wedge z'$.

Lemma 2.5 now implies that $x' \land (y' \lor z') \leq (x' \land y') \lor z' = (x' \land z') \lor z' = z'$, therefore $x' \land (y' \lor z') \leq x' \land z' = x' \land y' \leq y'$. But multiplying the inequality $x' \land (y' \lor z') \leq y'$ by y on the left yields that $x \land (y \lor z) \leq yy^{\ell}(x \land (y \lor z)) =$ $y(x' \land (y' \lor z')) \leq yy' = yy^{\ell}y = y$. \Box

Each modular join semidistributive (or meet semidistributive) lattice is in fact distributive: modularity implies that it does not contain the pentagon N_5 as a sublattice, while semidistributivity implies that it does not contain the diamond M_3 as a sublattice.

Corollary 2.7. Each modular ℓ -pregroup is distributive.

The problem of determining whether ℓ -pregroups are distributive is therefore equivalent to the problem of determining whether they are modular, i.e. whether some ℓ -pregroup contains the pentagon N_5 as a sublattice.

We can in fact obtain more information about the lattice reducts of ℓ -pregroups with the help of Lemma 2.5, namely that certain non-distributive lattices cannot occur as sublattices of ℓ -pregroups.

Recall that the *monolith* of a subdirectly irreducible algebra is its smallest congruence other than the identity relation.

Definition 2.8. Let **L** be a subdirectly irreducible lattice and μ be its monolith. We shall say that μ *involves* a if $\langle a, b \rangle \in \mu$ for some b distinct from a, i.e. if the μ -equivalence class of a is not a singleton. A triple of elements $\langle a, b, c \rangle$ of **L** will be called *forbidden* if $a \wedge (b \vee c) \nleq (a \wedge b) \vee c$ and moreover μ involves b. The lattice **L** will be called *forbidden* if it contains a forbidden triple.

Theorem 2.9. Forbidden lattices are not sublattices of any ℓ -pregroup.

Proof. Let **L** be a subdirectly irreducible sublattice of an ℓ -pregroup **G** with monolith μ and a forbidden triple $\langle a, b, c \rangle$. Then $\langle b, d \rangle \in \mu$ for some $d \in \mathbf{L}$ distinct from b. We may assume without loss of generality that either d > b or d < b. Suppose first that d > b.

We use $\lambda_y \colon \mathbf{L} \to \mathbf{G}$ to denote the left multiplication map $\lambda_y \colon x \mapsto yx$ and $\rho_y \colon \mathbf{L} \to \mathbf{G}$ to denote the right multiplication map $\rho_y \colon x \mapsto xy$. Recall that these maps are lattice homomorphisms.

Firstly, observe that $\lambda_{bb^{\ell}} : \mathbf{L} \to \mathbf{G}$ is a lattice embedding: if it were not, then $b = \lambda_{bb^{\ell}} b = \lambda_{bb^{\ell}} d \ge d$, since $\langle b, d \rangle \in \mu$. It follows that the map $\lambda_{b^{\ell}} : \mathbf{L} \to \mathbf{G}$ is also a lattice embedding, since $\lambda_{bb^{\ell}} = \lambda_b \circ \lambda_{b^{\ell}}$.

Lemma 2.5 states that $\lambda_{b^{\ell}} a \wedge (\lambda_{b^{\ell}} b \vee \lambda_{b^{\ell}} c) \leq (\lambda_{b^{\ell}} a \wedge \lambda_{b^{\ell}} b) \vee \lambda_{b^{\ell}} c$. Since $\lambda_{b^{\ell}}$ is a lattice embedding, it follows that $a \wedge (b \vee c) \leq (a \wedge b) \vee c$, contrary to the hypothesis that $\langle a, b, c \rangle$ is a forbidden triple.

If instead of d > b we have d < b, we use the map $\rho_{b^{\ell}b}$ instead of $\lambda_{bb^{\ell}}$ to show that $\rho_{b^{\ell}} : \mathbf{L} \to \mathbf{G}$ is a lattice embedding. Then again $\rho_{b^{\ell}} a \wedge (\rho_{b^{\ell}} b \vee \rho_{b^{\ell}} c) \leq (\rho_{b^{\ell}} a \wedge \rho_{b^{\ell}} b) \vee \rho_{b^{\ell}} c$ by Lemma 2.5, hence $a \wedge (b \vee c) \leq (a \wedge b) \vee c$ using the fact that $\rho_{b^{\ell}}$ is a lattice embedding.

Corollary 2.10. A simple non-distributive lattice cannot occur as a sublattice of an ℓ -pregroup.

It is not immediately obvious that this corollary does not follow directly from semidistributivity by some lattice-theoretic argument. For example, the only simple semidistributive lattice with a greatest (or least) element is the two-element chain (see [4]), therefore the corollary does not provide any new information about which lattices with a greatest (or least) element occur as sublattices of ℓ -pregroups. Nevertheless, it is indeed not a direct consequence of semidistributivity: Freese and Nation [4] managed to construct a simple semidistributive lattice which is not distributive.

Finally, let us show that in ℓ -pregroups only powers of positive elements are positive, a fact which is well known in the case of ℓ -groups. The argument

in fact applies to each lattice-ordered monoid satisfying $x \approx (1 \wedge x)(1 \vee x)$ where products distribute over joins and meets. The fact that each ℓ -pregroup satisfies this equation was proved in [5, Lemma 1].

Proposition 2.11. In every ℓ -pregroup $1 \wedge x^n \leq x$ holds for each $n \geq 1$.

Proof. We first observe that $1 \wedge y \leq x(1 \vee x)^m$ if and only if $1 \wedge y \leq x(1 \vee x)^{m+1}$ for all $m \geq 0$ (where $z^0 := 1$ for each z):

$$\begin{split} 1 \wedge y &\leq x(1 \vee x)^m \iff 1 \wedge y \leq (1 \wedge x)(1 \vee x)(1 \vee x)^m \\ \iff 1 \wedge y \leq (1 \wedge x)(1 \vee x)^{m+1} \\ \iff 1 \wedge y \leq (1 \vee x)^{m+1} \wedge x(1 \vee x)^{m+1} \\ \iff 1 \wedge y \leq (1 \vee x)^{m+1} \text{ and } 1 \wedge y \leq x(1 \vee x)^{m+1} \\ \iff 1 \wedge y \leq x(1 \vee x)^{m+1}. \end{split}$$

It follows that $1 \wedge x^n \leq x$ holds if and only if $1 \wedge x^n \leq x(1 \vee x)^{n-1}$. But $1 \wedge x^n \leq x^n \leq xx^{n-1} \leq x(1 \vee x)^{n-1}$.

Corollary 2.12. Let $n \ge 1$. In every ℓ -pregroup $1 \le x^n$ if and only if $1 \le x$.

This yields an alternative proof of the following known fact.

Corollary 2.13. In every ℓ -pregroup $1 \leq x \vee x^{\ell}$.

Proof. By the previous corollary it suffices to prove that $1 \leq (x \vee x^{\ell})^2$: $1 \leq xx^{\ell} \leq xx \vee xx^{\ell} \vee x^{\ell}x \vee x^{\ell}x^{\ell} = (x \vee x^{\ell})^2$.

Acknowledgements

The authors are grateful to the anonymous referee for their careful reading of the manuscript and helpful comments.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- Buszkowski, W.: Lambek grammars based on pregroups. In: P. de Groote, G. Morrill, C. Retoré (eds.) Logical aspects of computational linguistics, LACL 2001, Lecture Notes in Computer Science, vol. 2099, pp. 95–109. Springer (2001)
- [2] Buszkowski, W.: Pregroups: models and grammars. In: H.C.M. de Swart (ed.) Relational Methods in Computer Science, RelMiCS 2001, Lecture Notes in Computer Science, vol. 2561, pp. 35–49. Springer (2002)
- [3] Buszkowski, W.: Type logic and pregroups. Stud. Logic. 87(2–3), 145–169 (2007)
- [4] Freese, R., Nation, J.: A simple semidistributive lattice Int. J. Algebra Comput. https://doi.org/10.1142/S0218196721500119

- [5] Galatos, N., Jipsen, P.: Periodic lattice-ordered pregroups are distributive. Algebra Univ. 68(1-2), 145-150 (2012)
- [6] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices: an algebraic glimpse and substructural logics, Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, New York (2007)
- [7] Galatos, N., Tsinakis, C.: Generalized MV-algebras. J. Algebra 283(1), 254–291 (2005)
- [8] Lambek, J.: Some lattice models of bilinear logic. Algebra Univ. 34, 541–550 (1995)
- [9] Lambek, J.: Type grammar revisited. In: A. Lecomte, F. Lamarche, G. Perrier (eds.) Logical aspects of computational linguistics, Lecture Notes in Computer Science, vol. 1582, pp. 1–27. Springer (1999)
- [10] Lambek, J.: Type grammars as pregroups. Grammars 4, 21–39 (2001)

Nick Galatos and Michael Kinyon Department of Mathematics University of Denver Denver CO 80208 USA e-mail [N. Galatos]: ngalatos@du.edu URL: https://cs.du.edu/~ngalatos/ e-mail [M. Kinyon]: mkinyon@du.edu URL: https://cs.du.edu/~mkinyon/

Peter Jipsen Mathematics Chapman University Orange CA 92866 USA e-mail: jipsen@chapman.edu URL: https://www1.chapman.edu/~jipsen/

Adam Přenosil Department of Mathematics Vanderbilt University Nashville TN 37240 USA e-mail: adam.prenosil@vanderbilt.edu URL: https://sites.google.com/site/adamprenosil

Received: 3 January 2020. Accepted: 9 November 2020.