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Lattice-ordered pregroups are
semi-distributive

Nick Galatos, Peter Jipsen, Michael Kinyon and Adam Přenosil

Abstract. We prove that the lattice reduct of every lattice-ordered pre-
group is semidistributive. This is a consequence of a certain weak form of
the distributive law which holds in lattice-ordered pregroups.
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1. Introduction

Lattice-ordered pregroups, or �-pregroups for short, were introduced by Lam-
bek [8], who called them lattice-ordered monoids with adjoints. Their par-
tially ordered counterparts were studied in more detail by Lambek [9,10] and
Buszkowski [1,2,3] with linguistic motivations (type grammar) in mind. An
�-pregroup is an algebra 〈G,∧,∨, ·, 1, �, r〉 where 〈G,∧,∨〉 is a lattice, 〈G, ·, 1〉
is a monoid such that multiplication is order-preserving in both arguments,
and the unary maps x �→ x� and x �→ xr satisfy the inequalities

x�x ≤ 1 ≤ xx� and xxr ≤ 1 ≤ xrx.

Alternatively, they are involutive residuated lattices satisfying x · y ≈ x + y,
where addition is the De Morgan dual of multiplication (see [6]). Imposing the
equation x� ≈ xr on �-pregroups yields the variety of �-groups.

The major open question concerning these algebras is whether their lat-
tice reducts are distributive, like the lattice reducts of �-groups. We leave
this question open, however, we describe some positive properties of lattice
reducts of �-pregroups. These follow from the fact that the distributive law for
�-pregroups holds at least up to certain idempotents.

The variety of �-pregroups exhibits an order duality as well as a left–right
duality: if 〈G,∧,∨, ·, 1, �, r〉 is an �-pregroup, then so are 〈G,∨,∧, ·, 1, r, �〉 and
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〈G,∧,∨,
, 1, r, �〉, where x 
 y := y · x. These symmetries imply that if a
(quasi)equation holds in all �-pregroups, then so does its order dual, obtained
by switching ∨ and ∧ as well as � and r, as well as its left–right dual, obtained
by switching � and r and reversing the order of multiplication.

We recall that �-pregroups satisfy the following equations:

x(y ∧ z) ≈ xy ∧ xz, xx�x ≈ x, (x ∧ y)� ≈ x� ∨ y�, (x ∨ y)� ≈ x� ∧ y�,

(x ∧ y)z ≈ xz ∧ yz, xxrx ≈ x, (x ∧ y)r ≈ xr ∨ yr, (x ∨ y)r ≈ xr ∧ yr.

Moreover, they also satisfy the equations x�r ≈ x ≈ xr�.
Let us now recall the definition of semidistributivity. A lattice is called

meet semidistributive if it satisfies the quasiequation

x ∧ y ≈ x ∧ z =⇒ x ∧ (y ∨ z) ≈ x ∧ y.

It is called join semidistributive if it satisfies the dual quasiequation, namely

x ∨ y ≈ x ∨ z =⇒ x ∨ (y ∧ z) ≈ x ∨ z.

It is called semidistributive if it is both meet and join semidistributive. We call
an �-pregroup modular or (semi)distributive if its lattice reduct is modular or
(semi)distributive.

2. Main results

We now prove an analogue of the distributive law for �-pregroups. The proof
given below is the �-pregroup analogue of the proof of distributivity for GBL-
algebras due to Galatos and Tsinakis [7, Lemma 2.9].

Proposition 2.1. The following inequalities hold in all �-pregroups:

x ∧ (y ∨ z) ≤ yy�(x ∧ y) ∨ zz�(x ∧ z),

x ∧ (y ∨ z) ≤ (x ∧ y)yry ∨ (x ∧ z)zrz.

Proof. We only prove the first inequality:

x ∧ (y ∨ z) ≤ (y ∨ z)(y ∨ z)�x ∧ (y ∨ z)

= (y ∨ z)((y� ∧ z�)x ∧ 1)

= y((y� ∧ z�)x ∧ 1) ∨ z((y� ∧ z�)x ∧ 1)

≤ y(y�x ∧ 1) ∨ z(z�x ∧ 1)

= (yy�x ∧ y) ∨ (zz�x ∧ z)

= (yy�x ∧ yy�y) ∨ (zz�x ∧ zz�z)

= yy�(x ∧ y) ∨ zz�(x ∧ z).

The second inequality follows by left–right duality. �

The only difference between these inequalities and the usual distributive
law is the presence of the idempotents yy� and zz�, or yry and zrz. For some
special instances of x, y, z we obtain the full distributive law.
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Corollary 2.2. Suppose that either ya = x = zb or ay = x = bz holds in an
�-pregroup for some a and b. Then x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Proof. In the former case we have yy�(x ∧ y) = (yy�ya ∧ yy�y) = ya ∧ y =
x ∧ y and likewise zz�(x ∧ z) = x ∧ z. The latter case follows by left–right
duality. �

Another form of distributivity will in fact be more useful in our proofs.

Proposition 2.3. The following inequalities hold in all �-pregroups:

x ∧ (y ∨ z) ≤ yy�(x ∧ y) ∨ z,

x ∧ (y ∨ z) ≤ (x ∧ y)yry ∨ z.

Proof. In the former case it suffices to observe that zz�(x∧ z) ≤ zz�x∧ zz�z ≤
zz�x ∧ z ≤ z. The latter case follows by left–right duality. �

Corollary 2.4. Suppose that either ya = x or ay = x holds in an �-pregroup
for some a. Then x ∧ (y ∨ z) ≤ (x ∧ y) ∨ z.

Proof. In the former case x ∧ (y ∨ z) ≤ yy�(x ∧ y) ∨ z = (yy�ya ∧ yy�y)
∨ z = (ya ∧ y) ∨ z = (x ∧ y) ∨ z. The latter case follows by left–right
duality. �

We now use this limited form of distributivity to prove that �-pregroups
are semidistributive.

Lemma 2.5. The inequality x′ ∧ (y′ ∨ z′) ≤ (x′ ∧ y′) ∨ z′ holds whenever there
are x and y such that one of the following four cases obtains:

x′ = y�x, x′ = xy�, x′ = yrx, x′ = xyr,

y′ = y�y, y′ = yy�, y′ = yry, y′ = yyr.

Proof. This follows from Corollary 2.4, since y�yy� = y� and yryyr = yr. �

Theorem 2.6. Each �-pregroup is semidistributive.

Proof. By order duality it suffices to prove meet semidistributivity, i.e. that
x ∧ y = x ∧ z implies x ∧ (y ∨ z) ≤ y. Suppose therefore that x ∧ y = x ∧ z and
let x′ = y�x, y′ = y�y, and z′ = y�z. It follows that x′ ∧ y′ = x′ ∧ z′.

Lemma 2.5 now implies that x′∧(y′∨z′) ≤ (x′∧y′)∨z′ = (x′∧z′)∨z′ = z′,
therefore x′ ∧ (y′ ∨ z′) ≤ x′ ∧ z′ = x′ ∧ y′ ≤ y′. But multiplying the inequality
x′ ∧ (y′ ∨ z′) ≤ y′ by y on the left yields that x ∧ (y ∨ z) ≤ yy�(x ∧ (y ∨ z)) =
y(x′ ∧ (y′ ∨ z′)) ≤ yy′ = yy�y = y. �

Each modular join semidistributive (or meet semidistributive) lattice is
in fact distributive: modularity implies that it does not contain the pentagon
N5 as a sublattice, while semidistributivity implies that it does not contain
the diamond M3 as a sublattice.

Corollary 2.7. Each modular �-pregroup is distributive.
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The problem of determining whether �-pregroups are distributive is there-
fore equivalent to the problem of determining whether they are modular, i.e.
whether some �-pregroup contains the pentagon N5 as a sublattice.

We can in fact obtain more information about the lattice reducts of
�-pregroups with the help of Lemma 2.5, namely that certain non-distributive
lattices cannot occur as sublattices of �-pregroups.

Recall that the monolith of a subdirectly irreducible algebra is its smallest
congruence other than the identity relation.

Definition 2.8. Let L be a subdirectly irreducible lattice and μ be its monolith.
We shall say that μ involves a if 〈a, b〉 ∈ μ for some b distinct from a, i.e. if
the μ-equivalence class of a is not a singleton. A triple of elements 〈a, b, c〉 of
L will be called forbidden if a ∧ (b ∨ c) � (a ∧ b) ∨ c and moreover μ involves b.
The lattice L will be called forbidden if it contains a forbidden triple.

Theorem 2.9. Forbidden lattices are not sublattices of any �-pregroup.

Proof. Let L be a subdirectly irreducible sublattice of an �-pregroup G with
monolith μ and a forbidden triple 〈a, b, c〉. Then 〈b, d〉 ∈ μ for some d ∈ L
distinct from b. We may assume without loss of generality that either d > b or
d < b. Suppose first that d > b.

We use λy : L → G to denote the left multiplication map λy : x �→ yx and
ρy : L → G to denote the right multiplication map ρy : x �→ xy. Recall that
these maps are lattice homomorphisms.

Firstly, observe that λbb� : L → G is a lattice embedding: if it were not,
then b = λbb�b = λbb�d ≥ d, since 〈b, d〉 ∈ μ. It follows that the map λb� : L →
G is also a lattice embedding, since λbb� = λb ◦ λb� .

Lemma 2.5 states that λb�a ∧ (λb�b ∨ λb�c) ≤ (λb�a ∧ λb�b) ∨ λb�c. Since
λb� is a lattice embedding, it follows that a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c, contrary to
the hypothesis that 〈a, b, c〉 is a forbidden triple.

If instead of d > b we have d < b, we use the map ρb�b instead of λbb� to
show that ρb� : L → G is a lattice embedding. Then again ρb�a∧(ρb�b∨ρb�c) ≤
(ρb�a ∧ ρb�b) ∨ ρb�c by Lemma 2.5, hence a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c using the fact
that ρb� is a lattice embedding. �

Corollary 2.10. A simple non-distributive lattice cannot occur as a sublattice
of an �-pregroup.

It is not immediately obvious that this corollary does not follow directly
from semidistributivity by some lattice-theoretic argument. For example, the
only simple semidistributive lattice with a greatest (or least) element is the
two-element chain (see [4]), therefore the corollary does not provide any new
information about which lattices with a greatest (or least) element occur as
sublattices of �-pregroups. Nevertheless, it is indeed not a direct consequence
of semidistributivity: Freese and Nation [4] managed to construct a simple
semidistributive lattice which is not distributive.

Finally, let us show that in �-pregroups only powers of positive elements
are positive, a fact which is well known in the case of �-groups. The argument
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in fact applies to each lattice-ordered monoid satisfying x ≈ (1 ∧ x)(1 ∨ x)
where products distribute over joins and meets. The fact that each �-pregroup
satisfies this equation was proved in [5, Lemma 1].

Proposition 2.11. In every �-pregroup 1 ∧ xn ≤ x holds for each n ≥ 1.

Proof. We first observe that 1∧y ≤ x(1∨x)m if and only if 1∧y ≤ x(1∨x)m+1

for all m ≥ 0 (where z0 := 1 for each z):

1 ∧ y ≤ x(1 ∨ x)m ⇐⇒ 1 ∧ y ≤ (1 ∧ x)(1 ∨ x)(1 ∨ x)m

⇐⇒ 1 ∧ y ≤ (1 ∧ x)(1 ∨ x)m+1

⇐⇒ 1 ∧ y ≤ (1 ∨ x)m+1 ∧ x(1 ∨ x)m+1

⇐⇒ 1 ∧ y ≤ (1 ∨ x)m+1 and 1 ∧ y ≤ x(1 ∨ x)m+1

⇐⇒ 1 ∧ y ≤ x(1 ∨ x)m+1.

It follows that 1 ∧ xn ≤ x holds if and only if 1 ∧ xn ≤ x(1 ∨ x)n−1. But
1 ∧ xn ≤ xn ≤ xxn−1 ≤ x(1 ∨ x)n−1. �

Corollary 2.12. Let n ≥ 1. In every �-pregroup 1 ≤ xn if and only if 1 ≤ x.

This yields an alternative proof of the following known fact.

Corollary 2.13. In every �-pregroup 1 ≤ x ∨ x�.

Proof. By the previous corollary it suffices to prove that 1 ≤ (x ∨ x�)2: 1 ≤
xx� ≤ xx ∨ xx� ∨ x�x ∨ x�x� = (x ∨ x�)2. �
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