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Preface

It is our honor and great pleasure to introduce this volume of Outstanding Contri-
butions to Logic, honoring Arnon Avron’s work on semantics and proof theory of
non-classical logics.

Arnon Avron is a faculty member at the School of Computer Science, Tel Aviv
University, since 1988. His research interests are very broad, spanning over proof
theory, automated reasoning, non-classical logics, foundations of mathematics, and
applications of logic in computer science and artificial intelligence. His foundational
and pioneering contributions have been widely acknowledged and adopted by the
scientific community. This was reflected in an international workshop celebrating
his 60th birthday, held on November 2012 in Tel Aviv University, and followed by
a special issue of The Journal of Logic and Computation (Volume 26, Number 1),
published on February 2016.

This volume is another appreciation of Arnon Avron’s seminal work over the
years. It contains contributions of worldwide leading experts in semantic and proof-
theoretical aspects of computer science logic. We are grateful to the authors for
their positive response to our invitations as well as their cooperation in preparing
inspiring papers in rather limited timeframes. Each submission has gone through a
single-blinded peer-refereeing process by at least two reviewers. It is our pleasant
duty to cordially thank all those who have acted as reviewers of the manuscripts
submitted to this volume:

Leila Amgoud Marcello D’Agostino Edwin Mares
Michał Baczyński J. Michael Dunn Hitoshi Omori
Paolo Baldi Melvin Fitting Graham Priest
Libor Běhounek Andrea Iacona Ricardo Oscar Rodriguez
Katalin Bimbó Rosalie Iemhoff Yaroslav Shramko
Carlos Caleiro Norihiro Kamide Heinrich Wansing
Federico Cerutti Paolo Maffezioli Yoni Zohar
Liron Cohen Sérgio Marcelino

v



vi Preface

Wehope that this bookwill be useful for scholarswhoare interested in the foundations
of non-classical logics. This is an outcome of an initiative by Heinrich Wansing,
who kindly invited us to be this volume’s editors. We would like to thank the series
editor, Sven-Ove Hansson, for his valuable assistance during the preparation of this
book.We also acknowledge with gratitude the financial support by the Israel Science
Foundation (grant numbers 817/15 and 550/19).

Tel Aviv, Israel
Haifa, Israel
July 2020

Ofer Arieli
Anna Zamansky



An Uncertain Road to Certainty

Early Years: 1952–1970

The first error connected with my life was the date of my birth. I was planned to be
born on the dayofLenin’sRussian revolution thatwas supposed to be the beginning of
an era of freedom and justice to all men andwomen all over the world. Unfortunately,
I had disappointed my parents even before the revolution itself did so, and came to
the world 3 days later, on November 10, 1952. I have been the youngest child in
the family, having two sisters, 10 years and 5 years, respectively, older than me. In
addition to being a boy, the first thing my parents noted about me after my birth was
that unlike my sisters, I was a redhead—and being a redhead remained (and still is)
one of my main characteristics, even though I lost most of my hair many years ago.

My parents have by far been the most dominant and influential persons in my life.
My father worked at the small harbor of Tel Aviv (and has always been the leader of
the workers there). This is why I grew up in the area of Tel Aviv that is still called
“the harbor workers’ neighborhood” (although there is no active harbor in Tel Aviv
anymore, and all the harbor’s workers that were living in that neighborhood are long
dead). My mother was a housewife until I was about 9 years old. Then she learned
librarianship, and not long after that she became the legendary librarian of one of
the most prestigious (at least at that time) high schools in Tel Aviv. Objectively (and
certainly from today’s point of view), we were poor (at least until my elder sister left
home, and mymother started to work and earn money too). However, we did not feel
so, and my parents always found the money for what they considered as important.
This did not include pocket money for us, but did include everything connected with
culture, and especially books. They have never saved money on that, and so we
had a huge and versatile collection of books. (Many of these books are still in my
own private library.) Therefore, although neither of my parents had formal education
beyond few years in high school in the countries in which they were born (my father
at Belarus; my mother at Poland), their informal education was greater than most
people I have met in my life. They were also very ideological, and my basic values
and beliefs are still those that were installed in me by their education. (In the daily
newsletter we were reading at home, immediately below its title, these values were

vii



viii An Uncertain Road to Certainty

summarized every day as follows: Zionism; socialism; comradeship among nations.)
Another crucial feature that I think I got from my parents is the urge to fight for my
values and forwhat I believe is right. This short scientific autobiography does not deal
with those aspects and events in my life that are directly connected with those values
and that urge. Still, it is worth noting that I think that they have indirectly influenced
also my mathematical career and research, especially in seeking (and even willing
to fight for) absoluteness: absolute certainty and absolute rigor.

My parents were very proud members of the working class. Nevertheless, they
strongly did not want that their children will also be workers like them. Accordingly,
when it came to us, learning and studying were by far their top priority. Not being
good pupils was simply not an option for us. Luckily for my parents, we were all able
to be very good pupils, and in my case—even an excellent one, the best in class in
most theoretical topics. (In gymnastics, craft, etc. I was horrible...) Strangely, at the
first half of my 8 years in primary school, I was not the best in class in mathematics. I
liked the humanities muchmore, andmy big dream as a child was to be a writer when
I grow up. These tendencies still did not change at the last 2 years of the primary
school, in which I unquestionably became the best in class in mathematics too.

The big change in my attitude to mathematics came in my first year (out of four)
in high school. We had at that year a very good teacher, and with him we started to
learn Euclidean geometry, with its theorems, proofs, and constructions. I simply fell
in love with geometry then (and I still have a great interest in it). I was enchanted by
the realization that interesting geometrical facts can actually be proved from some
obviously true, simple axioms, and I found very great pleasure in solving difficult
geometrical problems. Thus, I devoted thewhole of the Passover vacation of that year
(almost 3 weeks) to a problem that was given to us as a challenge by our teacher: to
show that a triangle in which two angle bisectors are equal is necessarily isosceles.
I still view my success in solving it at that time as one of the greatest mathematical
achievements in my life. (The fact that my big competitor in class failed to solve that
problem gave me extra satisfaction, of course. That competitor too is now a professor
in Tel Aviv University, but in economics.) The love of geometry made me interested
also in other branches of mathematics. So during high school I started to read books
in mathematics whose content was well beyond what we were learning in class. I
was not able to understand at that time everything I read, but I understood enough to
become even more fascinated with mathematics. It became my favorite subject, and
so I decided quite early that it would be what I would study at the university.

University and Army Years: 1970–1978

The title of this section might be confusing, because almost all my years since 1970
(when I finished high school and started to learn mathematics at Tel Aviv university)
can be described as “university years”. But what I mean by my “university years”
is the 5 years in which I was only a student of mathematics, without any teaching
tasks.
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Here I should explain, first of all, thatmost Israelis donot go to university or college
at the age of 18. They go to the army for 3 years instead (if they aremale; female serve
less.) However, I was accepted by the army to a special program called “academic
reserve”. In other words, I was a student with call-up deferred until finishing B.Sc.,
and in my case (since I got it with distinction)—even until finishing M.Sc. That
meant that I spent in a boot camp a great part of the summer vacation between my
first and second years as a student. Otherwise I was living the usual life of an Israeli
male student at the years before and after the 1973 war. (This includes being called
from time to time for a short period of army service.)

As a student, I discovered rather quickly that I am unable to follow the teachers
in class. When I was still trying to understand what is written on one side of the
blackboard, the teacher has already been writing on the other side. So I usually gave
up going to lectures, and instead learned from books, and from lecture notes taken
by students I knew. I was very successful at that, and so I got the highest possible
grade in almost all the courses I took. However, already at that stage there began to
be some gaps between the knowledge I showed at the examinations, and the feeling
of “cheating” that I really felt about some of the proofs we were learning. A few
years later I understood that all the proofs that I had found suspicious either include
implicit applications of the axiom of choice, or introduce sets by using impredicative
definitions. I should emphasize that nobody has told me at that time that there might
be something problematic about such proofs. I also knew then nothing about the
historical debates concerning them. I simply felt uneasy about them, but said (at
that time) nothing about it to anybody. The result was that I began to be more and
more interested in logic and foundations. However, at my first 2 years as a student of
mathematics I knew nobody I could ask about these topics. Luckily for me, this state
changed at my third (and last) year as a B.Sc. student. At that year a professional
logician joined the department of mathematics of Tel Aviv University for the first
time: Yoram Hirshfeld. So at that year I had the opportunity to take courses and
seminars by Yoram on mathematical logic, set theory, computability, and model
theory.

Yoram was a good teacher, and he was also open to talk about things. His courses
and our private discussions made it clear to me that logic and foundations are going
to be my mathematical subjects. The unavoidable conclusion was that I should do
my M.Sc. thesis at the Hebrew University at Jerusalem, whose department of math-
ematics had then (as I learned from Yoram) one of the strongest group of logicians
in the world. It included Michael Rabin, Azriel Levy, Saharon Shelah, and Haim
Gaifman. (M. Megidor came a few years later.) In my first year as an M.Sc. student,
I took courses and had conversations with all of them, and saw that of them Gaifman
was the most philosophically inclined, and is the one to whom I was closer in spirit
and interest. So in my second year at Jerusalem I did my M.Sc. thesis under him.
The subject of that thesis (which has never been published) was progressions of
arithmetical theories. It was strongly connected with Feferman’s famous work on
this subject, and this was the first time I heard Feferman’s name and studied two of
his classical papers.



x An Uncertain Road to Certainty

Although I was anM.Sc. student in Jerusalem, I still spent most of my time at that
period in Tel Aviv. (In Jerusalem I spent at most 2 days, including one night, each
week.) I had good reasons for that: studying mathematics and working on my M.Sc.
thesis occupied only a part of my time at that two crucial years in my life. Thus, I
was working as a teaching assistant (who checks assignments of students) in both
Tel Aviv and Jerusalem; I gave a lot of private lessons, and I was very involved in
political activity (as a leftist, of course). However, what was most important of all
at those 2 years were the time and energy which I devoted to what is in the center
of life of most young men at their early 20s. In my case, this type of activity had
ended already before I finished my M.Sc. thesis: At the beginning of June 1975 I
married my wife, Tsipi, whom I met for the first time about 2 years before. I was
22.5 years old then, and she was (still is...) 2 years younger than me. In the 5 months
that followed our marriage I finished (with great hurry) my M.Sc. thesis; we bought
(with the help of our parents, of course) an apartment in Petah Tiqva (a town near
Tel Aviv), and we moved there a month before I started my full 3 years of military
service.

Despite having an M.Sc. in mathematics when I joined it, my abilities and knowl-
edge in mathematics were not used by the army. This was in sharp contrast to what
happened with most of those who were in the “academic reserve” with me. The
reason was almost certainly my political activity at my university days, together with
the political background of my parents. As a result, I was just waiting for my service
to end, hating almost every moment of it (even though I was not a combat soldier
either). However, I did find enough free time at that period to expand my knowledge
in logic, and in particular to learn that branch of it that I had never learned at the
university: Proof theory. In addition, I started also to study Philosophy on my own,
since I reached at that time the conclusion (which is now even more valid than it was
then) that adequate philosophy is the most important thing for humanity in the crazy
times in which we live.

Two very important events in my life took place at my last year at the army. My
father died at the beginning of that year. About 8 months later my first child, my son
Haim (which is named after him, and is now a Professor of Mathematics at Tel Aviv
University himself) was born. This happened exactly 1 month before my return to
civil life. I was exactly 26 years old then.

Ph.D. Student 1978–1984

If you wonder why it took me 6 years to finish my Ph.D., the answer is that only
before the end of those 6 years the head of the school of mathematics called me to tell
me that if I do not submit my thesis within 4 months, I would not be able to work as
an instructor in the school anymore. So I had no choice, but to sit and write down all
the research I did over those years (which was sufficient for two Ph.D. theses)—and
then to arrange for it to be typed. (There was still no LaTeX then, and I had to change
four different typists before the work was done!) Anyway, I managed to do it in time.
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But had nobody given me a strict deadline, I would probably have never finished my
Ph.D... The trouble was that in addition to being a Ph.D. student, I was occupied with
many other tasks. I was a father of two small children, for whom I was responsible
in most of the afternoons (my daughter Noa was born at 1982); I was teaching in
several places (in addition to the university), and I gave many private lessons too. I
had no choice: we moved at that period to Tel Aviv, to the vicinity of the university,
and our apartment there cost twice as much as our apartment in Petah Tiqva. So we
had to take several loans, in addition to the mortgage on our new apartment. Another
problem was that it was much easier and tempting for me to make progress in my
research than to write down what I had already done in a form which is suitable for
publication (a boring task).

The name of my thesis has been: “The semantics and proof theory of relevance
logics and nontrivial theories containing contradictions”. As this name suggests, its
areawas relevance logics, andmore generally: paraconsistent logics. Howdid I arrive
at this subject? Well, after the army I returned to Prof. Gaifman, and he agreed to
serve again as my supervisor. (But since he was at Jerusalem University, while I
myself was already strongly connected at that time with the School of Mathematics
of Tel Aviv University, I needed to have a supervisor from Tel Aviv too, and Yoram
Hirshfeld agreed to be the one.) I told Gaifman that I am interested in Philosophy,
and I would be happy if my thesis in mathematics will be connected with philosoph-
ical problems. He, in turn, suggested two topics for my thesis. One of them was a
concrete mathematical problem which was open then, and is connected with Gödel’s
incompleteness theorems: to extend to the first-order level Solovey’s theorem about
the completeness of the propositional provability modal logic GL for its arithmetical
interpretation. The other subject was completely different in nature: to provide good
explanations and model(s) for the fact that in both mathematics and physics, there
have been useful inconsistent theories, even though such theories are, in principle,
logically trivial (from a classical, and even intuitionistic, point of view). At the end,
my thesis was devoted to the second topic.

The truth is that at the beginning, the first subject suggested by Gaifman was
more appealing to me. Therefore, it was the one to which my main efforts then
were devoted to. I even had some plan how to attack the problem. Its first step was
to find a cut-free Gentzen-type system for GL. (Already then I was very fond of
Gentzen-type systems, a topic I learned by myself at my years in the army, according
to the advice given to me by Gaifman.) The next step was to show cut-elimination
for QGL, the natural extension of that system to the first-order level. Then I hoped
to show directly that the arithmetical interpretation obeys the same reduction steps
as QGL. I succeeded (or so I thought) to implement a part of this plan. First, I
completed the first two steps. This involved a complicated proof by triple induction
of cut-elimination for QGL. I succeeded also to show the arithmetical validity of
some of its reduction steps. However, I was completely stuck with others. Then a
worse thing happened: I did the horrible mistake of checking again and again the
correctness of my proof of cut-elimination, to make sure that I missed no possible
case. And sure enough, I did discover a case in which something was going wrong.
I tried to overcome the problem, but could not. Then came what I thought to be the
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ultimate disaster: by pursuing the small subcase in which my proof went wrong, I
finally arrived at an example of a sequent which is derivable in QGL, but has there
no cut-free proof. Not only the proof was wrong—so was the theorem itself!

Luckily, by that time I had also some ideas concerning the other subject suggested
to me by Gaifman. So I decided to leave for a while the first subject, and to turn to
the other one. And since I began to make a real progress in it, I had no motivation
to go back to the difficult problem I had left unsolved. However, there was to be
one more chapter in this story. Three years later, I looked at a new issue of the
journal of symbolic logic, and found there ... a paper which presents “my” QGL,

including exactly my faulty proof of cut-elimination for it! I was shocked. Until that
moment in my life (and I was 30 years old then) I did not believe that it is possible
that a respectable journal like JSL may publish a paper with wrong theorems and
mistaken proofs! I told Yoram the story, and he advised me to submit to JSL a paper
about this. So I took from my drawer the stuff that lied there 3 years, turned it into
a paper, and submitted that paper to JSL. It was very quickly accepted, and then
was one of my two first published papers [2].1 (The other one was published at the
same year, 1984, and at the same journal, but it already was in relevance logic.)
That paper actually included some good results and proofs. Thus, it includes correct
(but semantic) proofs of cut-elimination for Gentzen-type versions of the provability
logics GL and Grz. (It turned out that the one for GL had been known before, but
that for Grz was new.) It also contained some nice applications of the arithmetical
fixed point theorem. However, what turned out to be its most significant contribution
was the simplest (and least appreciated by me): the demonstration that QGL does not
admit cut-elimination. Several years later Sergei Artemov told me that reading my
paper was a turning point in his research on the subject, since this has been the first
negative result concerning it. Therefore, it gave the first hint that Solovey’s results in
the propositional case fail in the first-order one. When I told him the above story he
said that I would have saved him a lot of time and efforts had I published it before...

I devoted above a relatively big portion of my academic biography to the story
of QGL. The reason is that I believe that one can learn a lot from it. I personally
certainly did. Nevertheless, what unfortunately I could not internalize is what some
might take as its main practical moral: do not check your proofs—publish them
quickly instead. Checking is at best a waste of time, and you might even lose papers
because of such a dangerous activity!

While still working mainly on provability logics, I started to think also on the
other problem. Again my starting point was the use of Gentzen-type systems. I
introduced three such systems, inducing three different logics, and proved (using
Gentzen’s syntactic method) cut-elimination for them. All my systems were based
on the idea of weakening the structural rule of weakening. My real first achievement
was proving (weak)2 completeness of one of them relative to a certain three-valued
logic which I thought had never been investigated before. I was wrong, of course. A

1 From now on the numbers in square brackets refer to the articles in my list of publications.
2 At that time, I was not aware yet of the importance of consequence relations, and the difference
between strong and weak completeness.
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few months later I discovered, to my dismay, that it was introduced and axiomatized
by Sobociński in the year I was born. Unfortunately, this happened to me again and
again during my academic career. For almost every new interesting idea of mine, it
turned out that someone, somewhere, has thought about it before...

In parallel to my independent thinking about the problem of inconsistent theories,
I started also to read the relevant literature. The only pointer that Gaifman was able
to give me was the classical paper of Anderson and Belnap on Entailment. Soon I
discovered that meanwhile they had published a big book, Entailment. (Volume 1;
the second volume appears almost 20 years later.) Almost everything in this bookwas
completely new to me. Therefore, I studied it extensively. and I was frustrated to find
there all “my” three logics. For one of them,whichwasR→̃ (the implication-negation
fragment of the famous relevant logicR), the book presented evenGR→̃—whichwas
identical to one of “my” Gentzen-type systems. To the other two logics it presents
only equivalent Hilbert-type systems. In particular, there was there a Hilbert-type
counterpart of the logic I preferred most (and later called RMI→̃). Like GR→̃,

my Gentzen-type system for it was obtained from the classical one by deleting the
weakening rule, but unlike in GR→̃ the two sides of a sequent consist in it of sets of
formulas rather than multisets or sequences. (I found that, and I still do, much more
natural.) In addition, I had a rather natural idea of possible semantics for RMI→̃,

based on using “relevance domains”. I also had a nice conjecture that a particular
instance of the general semantics, in the form of a simple infinite-valued matrix, is
characteristic for RMI→̃. I was, therefore, particularly disappointed at first to find
this logic too in Entailment, even though very little information was given there
about it. Luckily, Gaifman saw things differently. He told me that it is actually good
for me that “my” logic had been introduced by others before. He also told me that if
I succeeded to prove my conjecture, I would be able to publish that in the JSL. So I
made an effort, and did manage to prove it. Then, exactly as Gaifman had predicted,
this result, together with related ones, was accepted to the JSL [1]. It was my very
first published paper.

By that time I had completely abandoned provability logics, and concentrated on
relevance logics and paraconsistent logics. In the following years, I developed my
own theory of relevance, and I collected more and more results. However, during my
time as a Ph.D. student I published only a very small part of them. The main body of
my thesis was finally published in three parts [12–14] only several years later. The
main difference between my approach there and that of the main relevantists’ school
was thatmy systemswere purely relevant, and any attempt to add, e.g., an extensional
conjunction∧ to them (for which ϕ ∧ψ → ϕ, ϕ ∧ψ → ψ , and the adjunction rule
are all valid) means losing the variable-sharing property. It seems to me that this was
one of the main reasons that this big work of mine was almost totally ignored, despite
my effort in [21] to get the community’s attention to it. However, the time and efforts
I devoted to my thesis had their merit. First, during those years I became a real expert
about Logic and logics. Second, my thesis contains one (almost) new idea that did
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become rather well-known and popular: the use of hypersequents.3 This was due to
the fact that I could not find a cut-free Gentzen-type system for my main logic, RMI.
My supervisor, Gaifman, asked me if this really matters to me. (Being more a model-
theorist, this did not look so important to him.) My answer was positive, since already
thenmy viewwas that a useful logic should have both an analytic proof system and an
effective semantics. RMI did have the latter, but I needed to introduce hypersequents
in order to be able to provide a decent proof system for it. I proved cut-elimination for
my hypersequential formulation of RMI using an extremely complicated syntactic
proof. This proof was later published in [14]. However, I had published before that
a somewhat easier (but still very complex) versions of the calculus and of my cut-
elimination proof for it in the case of the simpler, and better known, semi-relevant
system RM. A few years later I found cut-free hypersequential calculus for Gödel–
Dummett logic G (also known as LC), in which I introduced the “communication”
rule. The latter, and the use of hypersequents in general, have become since then
the basis of the proof theory of all fuzzy logics. As a result, my name started to
be known among logicians. Well, I always took it as ironical that what was of a
secondary importance in my thesis, done only because of my insistence, is the only
part of my thesis that has given me some fame...

Post-Doc 1984–1988

Tel Aviv 1984–1986

I submittedmy thesis at the end of 1984, but it was finally approved (with distinction)
near the end of 1985. Meanwhile, I was forced to think at last about the problem:
“What do I want to do when I grow up?”. My wish was, of course, to get a position
in mathematics in one of the few universities in Israel. (There were only five then.)
Unfortunately, there was then very little hope for that to happen. There were at that
time almost no jobs inmathematics at the Israeli universities, especially for logicians,
and certainly not to someone like me, who had done his thesis on what was then a
particularly esoteric subject. So how did I become a professor at Tel Aviv University
nevertheless? The simple answer is that I have been lucky.

A few years before I finished my Ph.D., our school of mathematics had decided
to establish a new department: computer science. (Already this decision was a part
of my luck.) In its first years it was very small, and I even have not heard about it.

3 As usual, it turned out that similar structures had been used before. Thus, the referee of my first
paper on hypersequents, [6], pointed out that Pottinger had used what I called “hypersequents” in a
small abstract concerning modal logics. Years later I was shown that Mints too had used a similar
structure in his proof systems for modal logics. Strangely, although I discussed with Mints my use
of hypersequents for G when I was on sabbatical at Stanford, he has never mentioned to me this
fact! Anyway, it was certainly me who first developed the general theory of hypersequents, applied
it for various families of logics, and made it known. (Even the name “hypersequent” is due to me.)
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However, the wish to make it bigger and important led to my first big luck. In 1981,
B. Trakhtenbrot immigrated from the USSR to Israel, and joined the new department
of computer science in our school. He was then a very famous logician and computer
scientist, but I myself had not heard about him before he came, and knew very little
about him also after that. Therefore, it did not even occur to me to make contact
with him. Instead, he made contact with me, since he was looking for people to work
with, and someone had told him that I am one of the few people in the whole school
who have some knowledge in logic. My thesis was not ready yet then, and I was
used to work in isolation from others, and on what was of interest for me. So at first
I viewed my connections with Trakhtenbrot (that he practically forced on me) as a
headache—especially that he was very demanding, and assigned me tasks that were
of no interest for me at that time. The first such task was to read and then explain
to him Martin-Löf’s type theory and its purported relations to computer science,
as described in his famous 1982 paper: “Constructive mathematics and computer
programming”. (Funny, but the fact is that my acquaintance with computer science
started with this paper...) I did not want to do that, but I had no choice. So I did it
the best way I could, and Trakhtenbrot was very impressed. He decided that I have
a great potential—and in few years I found out how crucial for my future was this
good impression I made on whom I viewed then as an old, imperious person! There
is no question that I owe him my career. More than that: after finishing my thesis, he
practically became my mentor for many years, and once I began to really appreciate
the knowledge, insights, and vision of this great scientist, I also learned from him a
lot.

Stupid as I was, after submitting my thesis it did not take me too long to realize
that turning to computer science was my only chance and hope. So I started to try to
learn it. As a part of this attempt to become a computer scientist, I gave an advance
course on automated theorem proving (which I practically learned and taught in
parallel). At the end of that course I was looking for problems to include at the final
home examination of the course. By chance, a friend gave me at about the same
time the following problem as a challenge: Given two points in the plane, construct
by means of a compass alone the corresponding midpoint. I solved it easily using
a bottom-up search. Then it occurred to me that asking how to attack it using a
computer would be a good problem for the home examination. However, before
giving it to my students, I wanted to check whether I can do it myself. This was
also an opportunity to do some programming for the first time after 15 years. (I did
have to write some programs in FORTRAN at my first years at the university.) So I
learned PROLOG, which was very fashionable at that time, because of the Japanese
fifth-generation computer systems project. Then I wrote a program in PROLOG
that could indeed solve the above problem, but was able also to find many other
points that can be constructed by means of a compass alone, given two points in the
plane. An inspection of the output of my program led me to a conjecture about what
points it can produce. So I tried to prove that conjecture, but instead I proved that
it is wrong. (However, the computer itself gave in to my result only after outputting
several thousands points that confirmed my wrong conjecture...) Next I noticed that
my proof of what my program can do can be turned without too many difficulties into
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a simple proof of a strengthening of the classical Mohr–Mascheroni theorem about
constructions by means of a compass alone (which I had heard about by that time).
So I wrote my proof down, and submitted it to the Journal of Geometry, where it was
published [5]. However, the referee has some reservation about my proof, since in
addition to proper intersection points, it allowed also the use of intersection points of
two tangent circles. (This was something that both Mohr and Mascheroni avoided.)
Nevertheless, I was able to remedy this problematic feature of my proof with the help
of a construction given to me by the program, and this was again published at the
Journal of Geometry [11]. I was, and still am, very proud of these two short papers.
I fulfilled in them a big dream that I had had when I was in high school: to prove
an interesting new theorem in Euclidean Geometry that anybody can understand. In
addition, this experience showed me for the first time (but not the last) how fruitful
for my research can teaching a course be.4

While I was devotingmost of myworking time at that period to standard academic
activity (new research; turning parts of my thesis into papers; teaching; learning
new subjects), my main goal then was to find a post-doc position in a good place
abroad—something that was a necessary condition for getting a permanent position
at a university in Israel. This was a rather frustrating task, involving getting one
negative answer after another, even from places that had shown at first some interest.
However, at a certain point my luck (together with the great help of Trakhtenbrot),
found a place for me that proved to be really great: the Department of Computer
Science of Edinburgh University. That department had already been one of the best
in theworld,with giants likeRobinMilner,GordonPlotkin, andRodBurstall. Luckily
for me, at that time they decided to find a new internal research institute called LFCS
(Laboratory for Foundations of Computer Science). Moreover, one of the first two
big projects that were planned for the new LFCS was the construction of the first
Logical Framework (LF): a general computerized system for implementing a variety
of logical systems of all sorts. Therefore, the department was looking for post-docs
who might be able to contribute to this big project, and Trakhtenbrot convinced
them that I am a good candidate. At that academic year (1985–86), I also won the
Rothschild Fellowship for the following year (which I failed to get the year before,
because my thesis was not approved yet). This meant that I would not have financial
problems during my 2 years as a post-doc at Edinburgh. At last, things fell in place
for me!

Edinburgh 1986–1988

I truly fell in love in Edinburgh during the 2 years I spent there. I believe that it
is the most beautiful town in the world. I also like its atmosphere. (Especially in
the summer; the winter is somewhat problematic, because you almost never see the
sun.) Therefore, I am always happy to return to Edinburgh for a visit. However, my

4 The full story, together with an analysis, can be found in [24].
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first months there were not easy at all. I was older than all the other postdoctoral
researchers there, and while almost all of them were not even married, I had two
children: a boy at the age of 8 and a daughter at the age of 4.5. Neither of my
children knew a word in English when we came to Edinburgh, so taking care of them
was a major (and uneasy) task for me at those first months. In addition, it took me
time to find myself in this new environment. I was unable at first to follow what
the people there were talking about; I have difficulties in communicating with them,
and I was still desperate to understand what is computer science.5 Luckily for me,
the atmosphere in the LFCS was rather relaxed and tolerant, unlike the pressure I
heard about from friends that went to the USA. This fact was of great help for me.
There was also a person who helped me a lot at those difficult days. His name was
Furio Honsell. He was an Italian who started his post-doc in Edinburgh a fewmonths
before me.6 Like me, Furio belonged to the LF group, and at the beginning he was
the only one in the department with whom I was able to communicate. Thanks to
him, I started to understand the ideas that underlie the planed design of the LF. On
the other hand, he has learned from me too. In fact, at a certain point I realized that
although logic has a central place in the research made at the LFCS, most (if not
all) of the people there had a rather limited knowledge and narrow view about it. So
I wrote for Furio by hand some pages of remarks about logics and logical systems
that I thought every logician know (or should know). Furio became very enthusiastic
about those remarks. He started to spread their content, and the ideas presented there
had great effect on the theoretical development of the LF, as well as its practical use
for implementing logical systems. Furio then encouraged me to turn my notes into
a paper. I did so several months later. The resulting paper, “Simple Consequence
Relations”, was first published in the form of a technical report of the LFCS about a
year after I came to Edinburgh. Already in this form it became rather popular, and
one of my most successful papers.7

My notes to Furio were one reason for the change in my status in the LFCS from
the sort of an outsider that I was in my first months there, to a respected member,
whose knowledge in logic was much appreciated. The other reason was due again
to a great piece of luck. A few months after I had joined LFCS, another member of
the LF group, Bob Harper,8 returned from a visit in Paris, and brought with him a
preprint of a new big paper of J.Y. Girard. Bob told us that it was what everyone was
talking about at that time at the University of Paris, although he himself could not

5 I frequently say, as a half joke, that I finally understood what is computer science only when I
became an editor of “Theoretical Computer Science”, because from that point something belongs
to computer science if I decide so...
6 Later Furio became the Rector of the University of Udine, and then he served many years as the
Mayor of Udine. He still divides his time between research and politics.
7 The paper was finally published 4 years later in “Information and Computation” [15]. The truth
is that this was not the most appropriate place for it. I chose it only because it was crucial for me at
that time to have papers in respectable journals of computer science.
8 Bob came to Edinburgh a year before me, and by the time I came he has already been a well-
established member of the LFCS. At the time of writing, he is a well-known professor of computer
science at Carnegie Mellon University.
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really understand what is written there. The name of the paper was “Linear Logic”.
Naturally, everyone in the LFCS wanted to understand what it is about—and I was
the first one to succeed. The reason was simple: I soon realized that except for the
notations, linear logic was a very close relative of relevance logics. Accordingly,
there was nothing mysterious forme at Girard’s paper, and so I volunteered to read it
and to lecture about its content. The three lectures I gave on it made great impression
on everyone, including Gordon, Robin, and Rod. Therefore, they were the turning
point of my time in Edinburgh—and this was only the beginning of the great positive
effect that Girard’s linear logic had on my career. Thus, I could rather easily adapt
to linear logic some of the easier things that I had done in my thesis. The result was
submitted to TCS, not long after Girard’s original paper had been published there.
It was quickly accepted and published there too ([7]). This was my very first paper
in a computer science journal, and also the second published paper on linear logic.
(The first was Girard’s paper itself, of course.) Since there was a huge interest in
linear logic at that time, this paper of mine really helped to make my name known.
Ironically, its most important contribution for many was a table I included in it of
translations from Girard’s notations to those which had been used in the relevance
logic literature. That table was called by some relevantists “the Rosetta stone” that
let them understand the very fast growing literature on linear logic, a subject that
was very hot at the end of the 80s and at the 90s. Consequently, my name became
known also in the community of philosophical logic.

I have always found as ironical that the two papers that gave me some fame at the
first stages of my academic career were papers that I myself did not appreciate much,
since they did not have real mathematical depth, and their popularity was mainly due
to ignorance of people about issues that I believed should have been well known.
But I was not complaining, of course. Thanks to these two papers, most of my time
in Edinburgh was rather nice and fruitful. I had other works there, some of them
more important in the long run than the two mentioned above (like [16] and [17]).
I even had there my very first joint paper with other people: the second big paper
on the LF, written by Furio, Ian Mason, and me [22].9 This was significant, since
until then I had worked in complete isolation. (Even with Gaifman, my supervisor,
I met very rarely, and there were years in which we did not meet at all, since he was
abroad.) Even more important was the fact that I met and talked with many scholars.
First, the LFCS has a very international atmosphere. There were people there from
Sweden, Denmark, Poland, Italy, Germany, China, Japan, India, England, Canada,
USA, Australia—and even Scotland! Some of them became good friends of mine.
Second, duringmy 2 years at Edinburgh I took part in several scientificmeetings, and
visited several countries. This was almost a new experience for me. Before coming
to Edinburgh I had participated just in three international meetings, and the first of
them (which was also my very first trip abroad after high school) took part only
when I was 31 years old. (It was the big 7th congress on logic, methodology, and
philosophy of science in Salzburg, 1983.) Things completely changed during my

9 [9] was an earlier, shorter version of it, while R. Polack’s contribution was added later.



An Uncertain Road to Certainty xix

2 years at Edinburgh, and only there I started to be (and to feel as) a part of an
international scientific community.

In my second year at beautiful Scotland, there was only one thing that prevented
me from fully enjoying my stay there: the worry about my future, and the great
uncertainty whether I would find a position in Israel. This uncertainty remained in
force most of the year. But at the end fortune again smiled at me. The computer
science department of Tel Aviv University has only six faculty members when I left
to Edinburgh, but it had 14 (including me) when I returned. My great luck was that
the university decided exactly at that time to really expand it, and the year in which I
applied was the main one in which this decision was implemented. I was one of five
new faculty members that joined it at the end of 1988—the biggest expansion in the
history of our debarment until present, and practically the last time in which someone
whose Ph.D. had not been in computer science was given a tenure-track position in
it. Even so, I would not have been one of the fortunate five had not Trakhtenbrot
strongly fought for me. Without him, even the good letters that were sent on my
behalf by Gordon, Girard, and others would not have helped.

Climbing the Academic Ladder: 1988–1999

Asmy story so far showed, it might be necessary to be lucky in order to get a position
in a place like the School of Mathematics at Tel Aviv University. (I am not saying,
of course, that it can be only a matter of luck.) However, from the point in which one
gets the chance to have a place there, by being given a tenure-track position, luck
has nothing to do with the rest, i.e., actually getting tenure and then being promoted.
It completely depends on what one does. I knew that, and I worked hard during the
period of 10–11 years that followed my return in order to successfully pass through
all the stages of an academic career in Israel, until I became a full professor at
1999. This time I was not lucky at all, since in my case the process consists of no
less than four different stages, with all the agony and the complicated process that
each such stage involves. How come? Well, like all those who joined the computer
science department at those years, I started as a lecturer. (This position practically
does not exist any more in mathematics or computer science; now every new comer
immediately starts as a senior lecturer.) After 1 year, I was promoted to a senior
lecturer.10 In 1992 I got the tenure, in 1995 I became an associate professor, and
since 1999 I am a full professor.11

10 This was an initiative of Trakhtenbrot, and it was a mistake: it was better to wait and get this
promotion together with the tenure.
11 Nowadays, there are just two stages: getting tenure together with a promotion to associate
professor, and becoming a full professor.
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Getting Tenure: 1988–1992

My main worry after my return was still to secure my future by getting tenure. It
was not at all guaranteed, and I even had to work for that harder than others, because
my being a real computer scientist was somewhat suspicious. (On the other hand,
when it came to promotions, it helped my cause that we were then still a part of the
school of mathematics, and so were judged by its standards.) At the first 4 years, my
main research activity was devotedmainly to continuing, finishing, andwriting down
works that I started before returning. However, I was trying to look at new subjects as
well. One of themwas concurrency, because this was a subject in which Trakhtenbrot
was very interested at that time. Just one paper directly came out of this [28], but
learning it gave me ideas how one might use calculi of hypersequents for modeling
parallel computations or processes. I have never managed to seriously pursue those
ideas myself, but recently this was successfully done by others.12 A particularly
fruitful source of ideas and research was my teaching courses in computer science,
since this involved a lot of thinking on the topics of the courses. Thus, [23]was a direct
product of teaching automated reasoning, while [19] and its full version [26] were
inspired bymy course on databases.13 The reason that it wasmewho taught databases
at those years was that I had heard in Edinburgh that its theory has connections with
logic, and there was no real expert then on it in our department. (Now there are two.)
At the first year after my return, I both learned the theory of databases and taught it.
After that I started also to look at interesting research topics that I had found in the
material on databases that I was teaching. The abovementioned work with Yoram
was the first result. However, the really great outcome of my teaching databases for
4 years came several years later. It will be described in the sequel.14

Another academic activity that I continued, of course, at that time was presenting
my work in meetings abroad, and getting to know more people there. The trips that
I made in those 4 years were very important for my career. However, there was
among them one that proved to be particularly important: On April 1991, I returned
to Edinburgh for the first time (out of many) in order to participate in a conference
there, and my wife Tsipi joined me on that trip. Exactly 9 months later my third and
youngest child, Uri, was born (about 10 years after his sister and 13 years after his
brother). This has by far been the most productive academic trip I have ever made!

12 F. Aschieri, A. Ciabattoni, and F. A. Genco; A. Beckman and N. Preining.
13 It should be noted that this was the first, and so far the only, time I had a paper with one of my
three mentors; I have never had a joint paper with either Gaifman or Trakhtenbrot.
14 I should admit that since I left to my course assistant the responsibility for the practical project
that the students of my course had to do, I have never used a database system myself. Well, I have
also taught my children how to ride a bicycle, even though I cannot do it myself...



An Uncertain Road to Certainty xxi

At Stanford: 1992–1993

As I wrote at the beginning, I chose mathematical logic as my area because of
my deep interest in foundations of mathematics and in philosophy of mathematics.
Unfortunately, for almost 17 years after finishing my M.Sc. thesis, I did not have
time to do research on these related subjects. However, I did find time during those
years to think and to read about them. Thus, already when I was a Ph.D. student I
learned about platonism, formalism, logicism, and intuitionism. Surprisingly for me,
my own views about the foundations and nature of mathematics did not fit to any of
these major schools. Then, at a certain point in my conversations on foundations with
Prof. Jonathan Stavi, he told me that views like mine are known as predicativism, and
suggested that I read Feferman’s papers about it. That is how I have come to realize
that I am a predicativist.15 Needless to say, after that I returned to study Feferman’s
papers. Since my M.Sc. thesis had been based on his first two main papers, it was
as if I am simply continuing to the next ones. Anyway, Sol Feferman became my
academic hero, so I strongly wished to have the opportunity to work with him. Our
first meeting took place in the congress at Salzburg in 1983. I simply came to him
and introduced myself as a student of Gaifman, and told him that I am very interested
in his work. Our conversation was rather short. Therefore, I was surprised that he
remembered it when in 1990 I wrote him, and asked to spend some weeks of that
summer in Stanford. He agreed, and arranged the financial side of my 6 weeks visit.
That visit was the beginning of my connections with Sol. It turned out to be also an
opportunity to renew my connections with the LF group: There was a week in which
Gordon, Furio, Ian, and me were all there. (Feferman too was at that time interested
in logical frameworks, so some of our conversations were on that subject.)

At 1992, I knew that I am about to get tenure at last, and so I decided that
it is a good time to take sabbatical abroad. Stanford was, of course, the place I
wanted, but at first it seemed impossible to go there, because of the strong recession
that USA was experiencing at that time. Luckily, Feferman was then the chair of
Stanford’s Department of Mathematics, and at the last moment, when I was about
to go elsewhere, he found a possibility to support my visit. So again I went abroad
with my family (which now included also a baby). This time it was for just 1 year
(1992–3), and to California instead of Scotland. Another difference was that not a
long time after we came to Stanford, I officially got my tenure. Therefore, I was free
fromworrying about my future for the first time in my life (at the age of 40). This fact
allowedme to start devoting a part of my research to foundations of mathematics.My
meetings with Feferman during that year helped me to put my views on that matter
in context, and to understand the related research that had been made up to that
point. As usual with me, no joint paper came out of our discussions. Still, I was able
to surprise Feferman by showing that a certain significant improvement of his own
suggested logical framework, which he had believed to be impossible, is possible

15 Laura Crosilla once asked me how I became a predicativist. My answer was that it seems that I
was born one, and that I only can tell when and how I discovered that I am a predicativist.
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after all. This improvement was strongly connected with my first foundational idea
and subject of research: the use of AL (ancestral logic, also known as transitive
closure logic) as the basic logic that underlies absolutely certain mathematics. (For
me the latter is identical with predicative mathematics.) My study of AL actually
started at that year in Stanford, even though my first paper on this logic [56] was
published only 10 years later.

There were two other important (from my scientific point of view) developments
that took place at that year in Stanford. One was my first meeting with Mike Dunn,
with whom I only had had some correspondence before that. Mike invited me to visit
Indiana University at Bloomington, and to give a lecture there. This has been a very
nice visit, and it included several very useful discussions with Mike and with other
people there.16 The other development was again a meeting. This time it was with
a young fellow I had not heard about before. His name was Richard Zach, and now
he is a famous Professor of Philosophy at the University of Calgary. At that time, he
was still only a research student in TU Wien. He came to a short visit at Stanford
near the end of my year there, and during that visit he initiated a meeting with me. I
could not guess it then, but that meeting was the beginning of my close relations and
friendship with the great group of logic in TUWien and with many people that have
spent time there over the years. (Including, of course, some which are still there.)

Becoming a Full Professor: 1993–1999

The next stage in my academic career came relatively quickly. Two years after
returning from Stanford I became an associate professor. There was a price to pay
for that, though. Not long later, between 1996 and 1998, I had to serve as the chair of
the CS department. The reason was that there were very few professors (either full or
associate) in our department at that time, and each of the others had already done this
job. Therefore, I had no choice but to agree. Being the chair demanded a great part
of my time, and was a very hard test for my nerves. Nevertheless, at the end, both I
and my department somehow survived (not without great difficulties) those 2 years.
Happily, this was the last time I had to take on myself such a big administrative task.

As for my research activity, a part of it continued to be devoted to subjects I had
worked on before, like substructural logics, including relevance logics and linear
logic ([35, 40]). However, the main subject I was working on at that period was
bilattices, and their use for uncertainty reasoning. Originally, bilattices had been
introduced by Ginsberg, but I learned about them fromMel Fitting at a conference in
Varna in 1990. After that I read Fitting’s papers on this subject, and became interested
in it. Therefore, I soon began to be engaged with research on it myself. Most of this

16 One side effect of that visit was that I started to use the name “Dunn–Belnap logic” for the
famous four-valued logic that everyone, including myself, had called “Belnap’s four-valued logic”
until then. Slowly but surely, this more correct name has been adopted by others too. I am really
glad that I have helped in giving my friend Mike the credit he deserves here!
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research was done after returning from Stanford. One of its main achievements, with
which I was particularly pleased, was to be the first to prove a conjecture of Fitting
about the structure of interlaced bilattices ([33]).17 However, this result was a purely
mathematical one.More important from the practical point of viewwas to investigate
the applications of bilattices for logic and reasoning. I carried this investigation
together with my first Ph.D. student, Ofer Arieli. Our fruitful cooperation led to
some papers on logics for uncertain reasoning that are based on using what we call
logical bilattices [29, 32, 38, 39]. Those papers became rather popular.

The logic induced by bilattices is paraconsistent. Moreover, inconsistencies in
our knowledge is one of the major concerns of the vast area of uncertain reasoning,
which may be classified as my area at that time. Accordingly, I naturally returned
to make research on paraconsistent logics. A good opportunity to become updated
about the state of the research on paraconsistency was the first congress on it that
took part at Ghent in 1997. It was a big event, with many invited speakers, but I was
not one of them then. Still, I was happy to present there my work with Ofer in a
contributed talk. That congress was rather fruitful for me: I got to know most people
who were working on the subject, and with many of them I have been keeping close
connections ever since. (And not long after that congress, the community started to
recognize me as one of the main experts in the field of paraconsistency.)

Another meeting that turned out to be very fruitful for my research was the
Tableaux conference that took place in Pont a Mousson at the same year. It was
the first Tableaux meeting (out of many) in which I took part, and I gave there a tuto-
rial on the proof theory of propositional modal logics. But again the most important
outcome for me were the new personal connections I made there. By far, the most
important among them was the acquaintance I made with Beata Konikowska from
the Polish academy. It was the beginning of my first (and so far the only) long-term
cooperation, leading to several joint papers, with a researcher other than my past or
present students.

In addition to the developments in my research, there was also a crucial devel-
opment at those years in my other academic activity: teaching. After returning from
Stanford I became one of the two main teachers of the very first course which is
given by us since then to our first-year students: discrete mathematics. This course
has in our department two parts: an introduction to set theory and general mathe-
matical concepts, and standard subjects in combinatorics and graph theory. When
I started, I knew almost nothing about the second part. However, I was the depart-
ment’s expert on the first, and I was very enthusiastic about this chance to shape the
course according to my views about what every student of mathematics or computer
science should know and understand. Accordingly, I turned the first part of the course
into an advance introduction to the language of mathematics and its logic. I put a

17 Unfortunately, there was also a very unpleasant affair connected with this nice result. One of
those who independently (and using a different method) proved Fitting’s conjecture after me, a
guy named Pinko, refused to recognize my priority. More than that, he blamed me of stealing his
result—even though my paper on the subject had already been published by the time he submitted
his. What Pinko wrote me and tried to do next was simply unbelievable. But something I would
better skip the details here.
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particular emphasis on the correct use of formal expressions. Thus, I introduced the
use of λ-notation and its associated rules into the material of the course, and used it
myself consistently. (The other main teacher did not like it at first, but then learned
to appreciate the advantages of using λ.) This was a small revolution. Indeed, the
course we developed was different from any other one taught in Israel, or presented
in textbooks on discrete mathematics. Therefore, I realized at a certain point that
I should write my own book on discrete mathematics. It took me several years to
complete it. It is a book in Hebrew that only our students can get. However, I do
hope to find one day the time and energy needed in order to translate it into English
and publish it. Anyway, writing this book and teaching this course involved a lot of
thinking. As will be described in the next section that thinking had very significant
consequences for my research as well.

In addition to my book on discrete mathematics, I wrote in those years another
book in Hebrew. It was a small, popular book on Gödel incompleteness theorem and
the problem of the foundations of mathematics. The book was based on 13 short
lectures I gave on this subject in the Israeli radio, in the framework of what is called
“broadcast university”. In contrast to my other book, this one was published in the
broadcast university’s series of books, and it has been rather successful. My book
and a similar one by David Harel on the foundations of computer science are still the
only two books (out of hundreds) in this series that are about mathematical subjects.
I have been urged many times by colleagues to translate it into English, and I hope
that one day I will.

Full Professor 1999–

My becoming a full professor was a very important event for my department. By
this it has reached the minimal number of full professors which is needed in order
to be able to become an independent school. So in the following year we left the
school of mathematics, and became the school of computer science. (Ironically, I
myself was not happy with this move...) As for myself, since I have never wanted
to be the head of anything, my being a full professor was for me the height of my
professional career. I was at last free from any worry about promotions, etc., and
could do research on whatever I like. Accordingly, since then I have been having
peaceful academic life, with no important turn points. I have even been avoiding
any trip abroad that is more than 18 days long. Therefore, during my sabbaticals I
remained in Tel Aviv. On the other hand, there was a very important change in my
status outside the academy: at the end of 2010 I became a grandfather. Since then,
my two elder children gave me more grandchildren, and at the time of writing the set
of my grandchildren includes three grandsons and two granddaughters. I hope and
believe that one day my youngest son will add new members to this exclusive set.

One remarkable event in my academic life, that did take place at the period
described in this last section, was the workshop “Logic: Between Semantics and
Proof Theory”, which was held at Tel Aviv University on November 2012, on the
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occasion of my 60th birthday. I was really moved and very grateful to see so many
friends coming from all over the world to take part in this celebration. Later most of
them (as well as others) also contributed papers to the proceedings of that workshop,
which was published in February 2016 in the form of a huge special issue in my
tribute of the Journal of Logic and Computation. The workshop itself was organized
by my previous Ph.D. student Anna Zamansky, with the help of Ofer Arieli, and the
Ph.D. students I had at that time.

Talking about students, I have not had too many. Still, I was very lucky with those
that I did have. All of them were exceptionally good (from any point of view). I
should add here that I am proud about the fact that all the students who have finished
their Ph.D. under my supervision have found positions in the Israeli academy: Ofer
Arieli is a Professor at the Academic College of Tel Aviv, Anna Zamansky is an
Associate Professor at Haifa University, Ori Lahav is at Tel Aviv University, Liron
Cohen at Beer-Sheva University, and Yoni Zohar is joining Bar-Ilan University next
year. (I am sure that they will all become full professors in the future.)

So far about honor. In the rest of this section, I describe my major ideas and
directions of research during the years that passed since I became a full professor.

Non-deterministic Matrices

At the abovementioned congress on paraconsistency at Ghent, I met Diderik Batens
for the first time, and heard from him about his adaptive logics. I wished to know
more about this approach to paraconsistency, and so suggested adaptive logics to a
newM.Sc. student of mine, Iddo Lev, as the topic of his M.Sc. thesis. While studying
together Batens’ papers I discovered a very interesting idea hidden in one of them.
It was connected with the semantics that Batens gave to the basic ordinary (i.e., not
adaptive) logic CLuN, on which adaptive logics are based. CLuN is obtained from
positive classical logic by adding to it the axiom of excluded middle, and it is easy to
see that a corresponding cut-free Gentzen-type system is obtained from the classical
one by deleting the left introduction rule for negation. Batens’ semantics for that
system looks at first strange to me, and in trying to understand better what is going
on there, I realized that its presentation can be simplified and better understood if it
is put in the form of what I immediately called “two-valued non-deterministic matrix
(Nmatrix)”. (Here being in a computer science department was rather helpful!)

The notion of an Nmatrix is a generalization of the usual (algebraic/truth-
functional) notion of a logical many-valued matrix, in which the “truth-tables” that
correspond to the connectives may be non-deterministic. Once this idea occurred to
me, I immediately saw its great potential.18 So after Iddo submitted his M.Sc. thesis
and became my Ph.D. student, we devoted our joint research to it. We started with

18 As in the case of hypersequents, it turned out that I had not been the first to have this idea. Ori
Lahav found at a certain point that both Schütte and Girard applied certain three-valued Nmatrices
in their books on proof theory. Much before Ori’s discovery, J. Marcos sent me a paper of Crawford
and Etherington, which uses another three-valued Nmatrix. Years later I discovered by accident that
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generalizing the case of CLuN, by showing that every logic which is obtained from
classical logic by deleting some of its Gentzen-type logical rules has a character-
istic two-valued Nmatrix. Then we generalized this too, by introducing the notion
of a canonical Gentzen-type system, and showing that such a system admits cut-
elimination iff it is not trivial; iff it has a characteristic two-valued Nmatrix; and
iff it satisfies a certain simple, easy to check, coherence criterion. ([52,61]. The
implications of these results to the “tonk” problem are described in [92].)

After completing the study of two-valued Nmatrices, the turn came of multiple-
valued Nmatrices. The first related main result was due to Iddo: He proved that the
compactness theoremapplied for every logic that has a characteristic finiteNmatrix.19

Unfortunately, after that Iddo decided to switch into the area that really interested
him: AI. So although he had already made a nice progress, he left it all, and went
to Stanford in order to do there his Ph.D. in AI and NLP. So I continued without
him (sometimes with the help of Beata Konikowska). Thus, following meetings and
discussions with W. Carnielli and J. Marcos, I found that the use of Nmatrices is
particularly efficient for the study of their big family of paraconsistent logics called
LFIs (logics of formal inconsistency). This study revealed again the big advantage
of the semantic framework of Nmatrices: the modularity it allows in developing
effective semantics aswell as cut-freeGentzen-type systems, for families that contain
thousands of logics.

The framework of Nmatrices has been one of my main research topics as a full
professor. Many of my papers at this period, either alone, or with others, are devoted
to various directions of its applications. Some examples of such directions are first-
order languages and beyond (together with Anna Zamansky); constructive logics and
non-deterministic Kripke frames (together with Ori Lahav); fuzzy logics (together
withYoni Zohar); proof theory (together with Beata andAnna); and knowledge bases
(together with Beata, J. Ben-Naim, andY. Dvir). [97] is a survey ofmost of the results
in this area at its first 10 years.

the Russian logicianY. V. Ivlev practically introducedNmatrices not long beforeme. He called them
“quasi-matrices” and applied certain special such “quasi-matrices” in modal logics. (This discovery
was rather embarrassing for me, because I saw that Ivlev had a talk about it in a conference at Torun
at 1998, in which I took part too. The name of the talk was “Quasi-matrix logic as a para-consistent
logic for dubitable information”, and I do not even remember whether I attended it or not. Even
if I did, I certainly did not understand then what the speaker was saying—which is usually what
happens to me in talks... Strangely, nobody has ever told me about Ivlev’s work. Not even Ivlev
himself!) Nevertheless, I did reach the idea independently, and as in the case of hypersequents, I
was the one who turned it into a new subject of its own, with many diverse applications.
19 Later, I found out that this generalizes a similar theorem of Shoesmith and Smiley for ordinary
matrices.
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The Book on Paraconsistent Logics

In 2010, Ofer had a sabbatical, and he had the idea to use it in order to write a
first extensive book on paraconsistent logics. (There was no such a book then.20) He
suggested to Anna and me to join, and we both liked the idea. We thought then that
it would take us about a year. However, the project turned out to involve much more
work than we had anticipated at its beginning. At a certain point, we realized that
our initial plan for the book (which includes topics like non-monotonic inference
mechanisms, first-order systems, and several more) was too ambitious. In order to be
sure that we finish the project one day, we decided to restrict it to the propositional
level, within it to ordinary (monotonic) logics, and among them only to what we call
effective logics. For the latter, we made a list of criteria that a logic should satisfy in
order to count as such. However, even with this restricted scope, we soon saw that a
lot of research is needed in order to write a book of the type we want.

• First, we had to provide exact definitions for many fuzzy notions that had been
used in the literature on paraconsistent logics. This even includes the very notion
of a “paraconsistent” logic itself. Our precise definitions naturally led, in turn, to
the need for precise propositions about the various defined notions and about the
relations among them (together with precise proofs of those propositions).

• Second, we discovered that many of the logics that we had thought should unques-
tionable be dealt with in our book were not meeting yet all our criteria for effec-
tivity. So we had to fill in many serious gaps that existed in the knowledge about
those logics, while we were writing our book.

As a result of all these circumstance, our goal of writing a book on paraconsistent
logics developed into a massive research program, which led to many new ideas and
results, as well as to papers that described them. The work took us, therefore, more
than 8 years, and the book was published only in 2018. On the other hand, I (at
least) am very pleased with the final outcome—I see it as the climax and ultimate
conclusion of my 40 years of research on paraconsistent logics of all sorts.

Safety Relations and Predicative Mathematics

In my course on discrete mathematics, I was putting a lot of emphasis on teaching
students how to correctly manipulate formal expressions, like abstract set terms and
λ-terms. With the former I had the problem that not every such term can be taken
as denoting a set. ({x | x) /∈x} is a case in point.) So I developed (and taught) a
system of syntactic rules, closely connected to the axioms of the formal set theory
ZF, for writing legal abstract set terms. At a certain point, I noticed some similarity
between those rules and Ullman’s rules for writing safe (i.e., domain independent)

20 In contrast, by the time we finished writing our book there were at least two. Neither of them has
the broad scope of our book, though.
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queries in database theory. To exploit this similarity, I had to generalize the domain
independence property of formulas to a relation between a formula and its set of
free variables. Following Ullman, I called such a relation “safety relation”. Using
one particular such relation, I was able to provide a rather convenient formalization
of ZF in a language which allows the use of abstract set terms. My formulation was
based on purely syntactical principles (most of them taken from database theory),
and has very natural axioms. I believed that my system may be useful for MKM
(MathematicalKnowledgeManagement). So I published it [58], and then generalized
it to a general syntactic framework for formalizing set theories [77].

The next step in this line of research came when I observed that there is actually
a property of formulas (due to Gödel) called absoluteness, which is very important
in the meta-theory of set theories on one hand, and on the other it is really close
(semantically and syntactically) to the property of domain independence (d.i.) which
is used in database theory. Moreover, my notion of a safety relation unifies these
two properties in a rather nice way: a formula is d.i. if it is safe with respect to its
whole set of free variables; a formula is absolute if it is safe with respect to the empty
set of free variables. This observation, together with the recognition (already due to
Poincaré and Weyl) that absoluteness is the key idea and notion in the predicativist
program, made it possible for me to contribute at last to the research on predicative
mathematics, and even to develop my own version of predicativity. At first, there
was one obstacle, though, to do so in a fully satisfactory way: As long as I confined
myself to the use of a first-order language (augmented with variable binding term
operators), there was essentially just one way to introduce the natural numbers as
a set into my framework: by using brute force. However, I saw that this problem
could be solved easily and naturally if ancestral logic and its language are used as
the underlying logic and language. I was, of course, happy to introduce both into
my framework. Combining that with the basic principles of safety, I developed a
syntactically defined predicative set theory which I am calling PZF. (See [91].)

Predicative mathematics has been (and still is) one of my major research topics
in recent years. One direction of this research is developing classical analysis within
PZF and related systems. This was one of the main subjects investigated by Liron
Cohen at her Ph.D. thesis. (See [127, 128].) Understanding other approaches to
predicativity and comparing them to mine is another important current direction of
research. Thus,my latest (so far) rather big paper [139] is doing that toWeyl’s original
system in his classical book “Das Kontinuum” from 1918, while my Ph.D. student
Nissan Levy and I are at present investigating the relations of my systems with those
which have been studied in Friedman-Simpson’s program of Reverse Mathematics.

The part of my research that is connected with the use of safety relation has
one more branch, whose ultimate goal is to develop a general, unified theory of
constructions and computations. It started with yet another observation about safety
relations, which this time I made when I was teaching an advance course devoted
to Gödel’s incompleteness theorems: that the same principles that underlie d.i. in
databases, and absoluteness in set theory, can be used to characterize decidability of
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formulas in computability theory and formal number theory. Some steps toward the
aims of this branch have been made in [78] and [130].21

A Proof from THE BOOK

I would like to end my story with a very short paper of mine (together with my
old friend and colleague Nachum Dershowitz) that I admit to be particularly proud
of. Like my papers on geometric constructions with a compass, it is not a paper on
logical matters, and like those papers (and many other works of mine), it has grown
out from a course I was teaching: the course on discrete mathematics (again).

As I said above, our course in discrete mathematics includes a chapter on graph
theory. The choice what to include in it was made by Prof. Michael (Miki) Tarsi, one
of our experts in combinatorics, who was the other principal teacher of the course.
Despite the very short time that we were able to allocate to this topic, Miki wanted
to teach in our course at least one nontrivial nice result in graph theory, and he chose
for that Cayley’s formula for the number of trees. The only proof that he knew (and
so also I, who have learned the subject from him) was the one which is based on
Prüfer’s code. Accordingly, Cayley’s formula has been taught since then by all of us
using basically that proof. However, every year when I was reaching the subject, I
gave some thought to it, trying to get deeper understanding of the theorem and its
proof, and better ways to present it to the students. At a certain point, I decided that
it would be easier to derive Cayley’s formula from another formula (which I learned
later that Cayley had known too), for which using a Prúfer’s code is somewhat easier
and clearer. After few years it occurred to me that the easier formula can further be
generalized. So I devoted some thinking to the whole subject—and at a certain point
I was surprised to realize that I have found a proof of Cayley’s formula which is
totally different from the one I had known. I also discovered a sequence related to
the topic whose limit was the famous number e .

With all my past experience, I could not believe that the proof and limit that I had
found were new. Therefore, I sent them first to the experts in combinatorics in Israel
that I knew. None of them had been acquainted with either, but I was told by Noga
Alon that there are many known proofs of Cayley’s formula. So I started to look
at the literature, and indeed saw many proofs. In fact, in the famous Proofs from
THE BOOK (of M. Aigner, G. M. Ziegler) alone I found four.22 However, none
of the proofs I read could be viewed as identical to mine (even though one of the
proofs in Proofs from THE BOOK was based on a similar approach). Meanwhile,
Nachum found a significant simplification of one important step in my proof. With

21 Like Iddo Lev, Shahar Lev (no family connections) is a former brilliant M.Sc. student and then
Ph.D. student of mine, who did not finish his thesis. In his case, the reason was that he got tired of
the academy, and left it for challenges at the industry, which he finds as more exciting.
22 This is a book that presents selected particularly nice proofs from all branches of mathematics—
proofs of the type that its authors believe should belong to “THE BOOK”, in which, according to
Erdös, God keeps the most beautiful mathematical proofs.
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that improvement, the proof became the simplest one that Nachum and I know.
Therefore, we decided to dare and submit a short notice (about half a page long) to
the AmericanMathematical Monthly, containing our proof and the limit I had found.
Its very pretentious title was Cayley’s Formula: A Page from The Book, and under
this name it was accepted and published [121]. Our choice of title was vindicated
when a new 6th edition of Proofs from THE BOOK was published. In that edition
our proof replaces one of the previous four, and it is described there as a “marvelous
proof”.

And this, I believe, is a marvelous place to end this autobiography.

Arnon Avron
Tel Aviv, Israel
June 2020



Contents

1 Introduction: Non-classical Logics— Between Semantics
and Proof Theory (In Relation to Arnon Avron’s Work) . . . . . . . . . . . 1
Ofer Arieli and Anna Zamansky
1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Paraconsistency and Nondeterminism . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Relevance Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Bilattice-Valued Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Other Forms of Non-Classical Reasoning . . . . . . . . . . . . . . . . . . . 7
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Interpretations of Weak Positive Modal Logics . . . . . . . . . . . . . . . . . . . 13
Katalin Bimbó
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Groups of Positive Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Semantics for the Kernel Logic with Disjunction . . . . . . . . . . . . . 19
2.4 Interpreting the Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Semantics for Logics with Conjunction . . . . . . . . . . . . . . . . . . . . . 29
2.6 Further Additions to the Kernel Logics . . . . . . . . . . . . . . . . . . . . . 33
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 On Axioms and Rexpansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Carlos Caleiro and Sérgio Marcelino
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Adding Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 A General Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 A Better (Less General) Construction . . . . . . . . . . . . . . . 46

3.4 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xxxi



xxxii Contents

3.5 Analytic Multiple-Conclusion Calculi . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Credal Calculi, Evidence, and Consistency . . . . . . . . . . . . . . . . . . . . . . . 71
Walter Carnielli and Juliana Bueno-Soler
4.1 How Should Logic, Probability, and Their Generalizations

Be Related? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Paraconsistency, in the Guise of LFIs . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Formal Consistency, Possibilistic Measures,

and Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 Possibility and Necessity Measures over Cie . . . . . . . . . 77
4.3.2 The Principle of Minimum Specificity (PMS)

and Paraconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Contradictory Evidence via Multi-source Reasoning . . . . . . . . . . 85
4.5 Conclusion and Further Challenges . . . . . . . . . . . . . . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Theorems of Alternatives for Substructural Logics . . . . . . . . . . . . . . . 91
Almudena Colacito, Nikolaos Galatos, and George Metcalfe
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Theorems of Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Degree-Preserving Gödel Logics with an Involution:
Intermediate Logics and (Ideal) Paraconsistency . . . . . . . . . . . . . . . . . 107
Marcelo E. Coniglio, Francesc Esteva, Joan Gispert, and Lluis Godo
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Truth-Preserving Gödel Logics . . . . . . . . . . . . . . . . . . . . 112
6.2.2 Degree-Preserving Gödel Logics with Involution . . . . . 115

6.3 Logics Defined by Matrices Over [0, 1]G∼ by Means
of Order Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Logics Between G≤
n∼ and CPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4.1 The Intermediate Logics of G≤
n∼ for n > 4 . . . . . . . . . . . 124

6.4.2 Example: the Case n = 5 . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5 Ideal and Saturated Paraconsistent Extensions of G≤

n∼ . . . . . . . . 129
6.6 Saturated Paraconsistency and Finite-Valued Łukasiewicz

Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.7 A Final Remark: Relationship to Logics of Formal

Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



Contents xxxiii

7 R-Mingle is Nice, and so is Arnon Avron . . . . . . . . . . . . . . . . . . . . . . . . . 141
J. Michael Dunn
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Background. The Systems R of Relevant Implication

and E of Entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 The Creation of R-Mingle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4 Ohnishi and Matsumoto’s System S of “Strict

Implication” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.5 Various Fragments of R-Mingle—What a Nightmare! . . . . . . . . 152
7.6 Some of Arnon Avron’s Contributions to the Study

of R-Mingle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.6.1 Arnon Avron and Hypersequents . . . . . . . . . . . . . . . . . . . 155
7.6.2 Arnon Avron’s Characterization of Semi-relevant

Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.6.3 Arnon Avron’s Characterization of Relevance

Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.7 A Consumer Report Style Checklist . . . . . . . . . . . . . . . . . . . . . . . 157
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8 The Strict/Tolerant Idea and Bilattices . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Melvin Fitting
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 ST, Classical Logic, and One New Example . . . . . . . . . . . . . . . . 168
8.3 ST and FOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.4 Bilattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.5 Consistent, Anticonsistent, Exact . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.6 Logical Bilattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.7 A Family of Strict/Tolerant Logics . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.8 Bilattice Representation Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.9 Logical De Morgan Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.10 Generating Strict/Tolerant Examples . . . . . . . . . . . . . . . . . . . . . . . 186
8.11 And More? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9 What Is Negation in a System 2020? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Dov M. Gabbay
9.1 Negation in Deductive (Monotonic or Non-monotonic)

Systems with Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.2 Calculus of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.3 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

10 Relevance Domains and the Philosophy of Science . . . . . . . . . . . . . . . . 223
Edwin Mares
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.2 Relevant Disjunction Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 225



xxxiv Contents

10.3 Relevance Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
10.4 A Dappled World? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.5 The Problems of Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.6 RDS and the Limits of Paraconsistency . . . . . . . . . . . . . . . . . . . . . 237
10.7 A Syntactic Turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10.8 Towards a Theory of RDS Revision . . . . . . . . . . . . . . . . . . . . . . . . 244
10.9 Summing Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

11 Consequence Relations with Real Truth Values . . . . . . . . . . . . . . . . . . 249
Daniele Mundici
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
11.2 Syntax and Semantics of Sentential Logics . . . . . . . . . . . . . . . . . . 252
11.3 Dropping the “Consequentia Mirabilis” Axiom . . . . . . . . . . . . . . 254
11.4 TheDifferential Semantics of Łukasiewicz Infinite-Valued

Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
11.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

12 Geometric Rules in Infinitary Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Sara Negri
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
12.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
12.3 Geometric Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

12.3.1 Examples of Geometric Axioms and Rules . . . . . . . . . . 273
12.4 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

12.4.1 Cut Admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
12.5 An Intuitionistic Infinitary Calculus . . . . . . . . . . . . . . . . . . . . . . . . 282

12.5.1 A Proof of the Infinitary Barr Theorem . . . . . . . . . . . . . 289
12.6 Concluding Remarks and Further Work . . . . . . . . . . . . . . . . . . . . . 290
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

13 Connexive Variants of Modal Logics Over FDE . . . . . . . . . . . . . . . . . . 295
Sergei Odintsov, Daniel Skurt, and Heinrich Wansing
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
13.2 Semantics for Connexive FDE-Based Modal Logics . . . . . . . . . . 300

13.2.1 Semantics for KFDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
13.2.2 Connexive Extensions of KFDE . . . . . . . . . . . . . . . . . . . 301
13.2.3 Semantics for cMBL and scMBL . . . . . . . . . . . . . . . . . 302

13.3 Tableau Calculi for Connexive FDE-Based Modal Logics . . . . . 303
13.3.1 Tableau Calculi for cBK−, cKN4, scBK−,

and scKN4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
13.3.2 Tableau Calculi for cMBL and scMBL . . . . . . . . . . . . . 304

13.4 Soundness and Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
13.4.1 cBK−, cKN4, scBK−, and scKN4 . . . . . . . . . . . . . . . . . 305
13.4.2 cMBL and scMBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



Contents xxxv

13.5 Some Properties of cBK−, cKN4, scBK−, scKN4,
cMBL, and scMBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

13.6 On Algebraizability of the Connexive Logics cBK−,
cKN4, and cMBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

13.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

14 Comments on the Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Arnon Avron
14.1 Bimbo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
14.2 Caleiro, Marcelino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
14.3 Carnielli and Bueno-Soler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
14.4 Colacito, Galatos, and Metcalfe . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
14.5 Coniglio, Esteva, Gispert, and Godo . . . . . . . . . . . . . . . . . . . . . . . 323
14.6 Dunn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
14.7 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
14.8 Gabbay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
14.9 Mares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
14.10 Mundici . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
14.11 Negri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
14.12 Odintsov, Skurt, and Wansing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

List of Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331



Editors and Contributors

About the Editors

Ofer Arieli is a Professor of Computer Science at the School of Computer Science,
the Academic College of Tel Aviv. He received his B.Sc. in Mathematics and
Computer Science from the Hebrew University in Jerusalem, and M.Sc. and Ph.D.
in Computer Science from Tel Aviv University. Afterward (2000–2001), he was
a Postdoc Researcher at the Department of Computer Science, the University of
Leuven, Belgium. His main research interests are related to the applications of
non-classical logics in Artificial Intelligence and to reasoning with incomplete and
inconsistent information.

Anna Zamansky is anAssociate Professor at the Information SystemsDepartment,
University of Haifa. She received her B.A. and M.Sc. in Computer Science from the
Technion, Israeli Institute of Technology and her Ph.D. in Computer Science from
Tel Aviv University. Afterward (2010–2012), she was a Marie Curie Postdoctoral
Researcher in the Computational Logic Group at the Technical University of Vienna,
Austria. Her research interests include applied logic and reasoning with inconsistent
information.

Both Ofer Arieli and Anna Zamansky were Ph.D. students of Arnon Avron, and have
continued collaborating with him ever since, co-authoring a book on the theory of
paraconsistent logics (College Publications, 2018).

Contributors

Ofer Arieli School of Computer Science, Tel Aviv Academic College, Tel Aviv,
Israel

Arnon Avron School of Computer Science, Tel Aviv University, Tel Aviv, Israel

xxxvii



xxxviii Editors and Contributors

Katalin Bimbó Department of Philosophy, University of Alberta, Edmonton, AB,
Canada

Juliana Bueno-Soler School of Technology, University of Campinas - Unicamp,
Limeira, SP, Brazil

Carlos Caleiro SQIG - Instituto de Telecomunicações, Dep. Matemática - Instituto
Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Walter Carnielli Centre for Logic, Epistemology and the History of Science and
Department of Philosophy, University of Campinas - Unicamp, Campinas, SP, Brazil

Almudena Colacito Mathematical Institute, University of Bern, Bern, Switzerland

Marcelo E. Coniglio Dept. of Philosophy - IFCH and Centre for Logic, Episte-
mology and the History of Science, University of Campinas, Campinas, Brazil

J. Michael Dunn Luddy School of Informatics, Computing and Engineering, and
Department of Philosophy, Indiana University, Bloomington, IN, USA

Francesc Esteva Artificial IntelligenceResearch Institute (IIIA) -CSIC,Barcelona,
Spain

Melvin Fitting TheGraduate School andUniversityCenter, CityUniversity ofNew
York, New York, NY, USA

Dov M. Gabbay University of Luxembourg, Luxembourg, Luxembourg;
King’s College London, London, England

Nikolaos Galatos Department of Mathematics, University of Denver, Denver, CO,
USA

Joan Gispert Departament de Matemàtiques i Informàtica, Universitat de
Barcelona, Barcelona, Spain

Lluis Godo Artificial Intelligence Research Institute (IIIA) - CSIC, Barcelona,
Spain

Sérgio Marcelino SQIG - Instituto de Telecomunicações, Dep. Matemática -
Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Edwin Mares School Philosophy, Victoria University, Wellington, New Zealand

George Metcalfe Mathematical Institute, University of Bern, Bern, Switzerland

Daniele Mundici Department of Mathematics and Computer Science “Ulisse
Dini”, University of Florence, Florence, Italy

Sara Negri Department of Mathematics, University of Genoa, Genoa, Italy

Sergei Odintsov Sobolev Institute of Mathematics, Novosibirsk, Russia

Daniel Skurt Department of Philosophy I, Ruhr University Bochum, Bochum,
Germany



Editors and Contributors xxxix

Heinrich Wansing Department of Philosophy I, Ruhr University Bochum,
Bochum, Germany

Anna Zamansky Department of Information Systems, University of Haifa, Haifa,
Israel



Chapter 1
Introduction: Non-classical Logics—
Between Semantics and Proof Theory
(In Relation to Arnon Avron’s Work)

Ofer Arieli and Anna Zamansky

Abstract We recall some of the better known approaches to non-classical logics,
with an emphasis on the contributions of Arnon Avron to the subject and in relation
to the papers in this volume.

1.1 Motivation and Scope

Classical logic is by allmeans themost extensively studied and applied logic inMath-
ematics, Philosophy, Engineering, Computer Science, Economy, and other areas.Yet,
its original motivation was to capture mathematical reasoning, which is monotonic
in nature, and does not aim at handling incomplete, imprecise, and/or inconsistent
information. Indeed, a major shortcoming of classical logic is that any conclusion
whatsoevermay be inferred from a classically inconsistent set of premises, thus a sin-
gle contradiction “pollutes” thewhole set of premises.Moreover, situations involving
inductive definitions, reasoning over time, representations of norms and obligations,
fuzzy concepts, and so forth are not always well captured by “pure” classical logic.

Nowadays, there is an increasing quest for alternative, non-classical formalisms,
stimulated by various practical considerations. Reasoning about time, resources, or
programs; reasoning with uncertainty or inconsistency; commonsense reasoning—
all these gave rise to a plethora of different formalisms: temporal, constructive,
substructural, nonmonotonic, paraconsistent, and many more. Many of them have
become active fields of research with numerous applications.
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In Avron (1999), Arnon Avron indicates that “there is no limit to the number of
logics that logicians (and non-logicians) can produce”, and identifies three “ingredi-
ents” that a “natural” logics should have:

• “natural” primitives, which intuitively correspond to concepts informally used
outside the realm of formal logic, such as implication, negation, conjunction, and
necessity;

• a simple, illuminating semantics; and
• a “nice” proof system making it easy to find proofs in the corresponding logic.

Indeed, working on the intersection between semantics and proof theory, and inves-
tigating families of intuitively motivated (non-classical) formalisms that have “nice”
and meaningful proof-theoretical and semantical characterizations, is a main theme
in Avron’s seminal contributions, to which this volume of the OCL series is devoted.

Practically, it is of course impossible to cover even a small fragment of the non-
classical disciplines that have been introduced over the years. (Some introductory
books on the subject are, e.g., Bell et al. 2001; Priest 2012; Schechter 2005; van
Benthem et al. 2009.) We chose to concentrate here on some fields and approaches
in which Avron has made significant contributions at different times of his research
career, such as paraconsistent logics, substructural logics, or logics that are based
on many-valued semantics, either algebraic or non-deterministic.1 In the following
sections, we recall the subareas of the disciplines that are relevant to the contributions
in this volume, and briefly summarize the topics discussed in the related chapters.

1.2 Paraconsistency and Nondeterminism

One of the key principles of classical logic is that of explosion, “ex contradictione
sequitur quodlibet”, allowing the inference of any proposition from a single pair of
contradicting statements. It has been repeatedly attacked on various philosophical
grounds, as well as because of practical reasons: in its presence every inconsistent
theory or knowledge-base is totally trivial. Paraconsistent logics are alternatives to
classical logic which do not have this drawback.

While the roots of paraconsistent thinking may be traced back already to Aris-
totelian logic, it is commonly agreed that the foundations of paraconsistent reasoning
in modern times where laid at the beginning of the twentieth century by the Rus-
sian logician (Vasilev, 1993) and the Polish philosopher Łukasiewicz (Lukasiewicz
andWedin 1971). Other paraconsistent systems were later introduced independently
by the pioneering works of Jaśkowski (1948), Nelson (1959), Anderson and Belnap

1 Some other contributions of Avron, which are not related to the theme of this volume, are not
covered here. This includes his research on the foundations of mathematics, especially predicative
mathematics (e.g., Avron 2008a, 2010; Avron and Cohen 2016), logical frameworks (e.g., Avron
et al. 1992; Avron 2008b), as well as purely mathematical results (like Avron 1990a; Avron and
Dershowitz 2016).
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(1962), and da Costa (1974). In recent years, paraconsistent reasoning is a very active
research topic withmany applications. Some collections of papers on this subject and
further references can be found in Batens et al. (2000), Béziau et al. (2007, 2015),
and Carnielli et al. (2001).

Nowadays, Avron is one of the most influential and leading figures in the study of
paraconsistent logics, having a variety ofworks ondifferent aspects and approaches to
inconsistent information. In a number of papers (e.g., Avron 2002; Arieli et al. 2011),
he has given syntactic and semantic characterizations of what should be regarded a
“negation operator”, and has defined in a clear and precise way what properties
are expected from a logic for reasoning with inconsistency (called “ideal” in Arieli
et al. 2011). These and other issues are presented in a comprehensive textbook on
paraconsistent logics that Avron co-authored (see Avron et al. 2018).

Definitions of negation operators and the study of their properties and characteri-
zations in different contexts have been a subject for long-standing debates and works
in the last decades. We recall, for instance, the collection of papers on this subject
in Gabbay and Wansing (1999). The paper of Dov Gabbay in this volume, titled
“What is negation in a system 2020?”, is concerned with these very issues. In the
paper, Gabbay recalls his 1986 publication on the concept of negation (see Gabbay
1986) and expands it according to the developments and findings in recent years.

Desirable properties of paraconsistent logics, and in particular the notions of
their maximality, are reexamined for degree-preserving Gödel logics in the paper of
Marcelo Coniglio, Francesc Esteva, Joan Gispert, and Lluis Godo, titled “Degree-
preserving Gödel logics with an involution: intermediate logics and (ideal) para-
consistency”. The authors introduce the notion of saturated paraconsistency (which
relaxes the condition of ideal paraconsistency by not requiring maximality with
respect to classical propositional logic), and fully characterize the saturated para-
consistent logics between the degree-preserving finite-valued extensions of Gödel’s
fuzzy logic with an involutive negation and classical logic. They also identify a large
family of saturated paraconsistent logics in the family of intermediate logics for
degree-preserving finite-valued Łukasiewicz logics.

One of the most prominent approaches to paraconsistent reasoning, originally
developed by da Costa’s Brazilian School, encompasses a large family of paracon-
sistent logics known now as Logics of Formal Inconsistency (LFIs). These logics are
based on the idea of internalizing the notion of (in)consistency at the object language
level. The efforts of a very active group of Brazilian logicians on this family of logics
are summarized in Carnielli et al. (2007) as well as a in more recent book (Carnielli
and Coniglio 2016). The paper “Credal calculi, evidence, and consistency”, by Wal-
ter Carnielli and Juliana Bueno-Soler studies credal calculi, which are possibility and
necessity measures, based on LFIs. These can be used as belief and plausibility mea-
sures supporting artificial reasoning that not only automatically practices suspension
of judgment, but also respects the beliefs of agents, even when they are contradictory
(and so acting as a belief revision procedure).

A significant contribution to the study and understanding of LFIs was obtained by
Avron’s ideas on generalizing the notion of amulti-valuedmatrix. In (Avron and Lev,
2005), he introduced a natural generalization of the class of standard multi-valued
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matrices, called non-deterministic matrices (Nmatrices), which (among others) pro-
vide in a modular way simple, useful, and finite semantics for LFIs (as well as for
many important logics lacking finite semantics that is based on ordinary, determinis-
tic matrices). This also guides a systematic process in defining analytic Gentzen-type
proof systems for LFIs (see Avron et al. 2013, 2015). The paper “On axioms and
rexpansions” by Carlos Caleiro and Sérgio Marcelino is directly related to the line of
research on non-deterministic semantics. In particular, the authors study the general
problem of strengthening the logic of a given (partial) (non-deterministic) matrix
with a set of axioms, using the idea of rexpansion, a notion introduced by Avron and
Zohar (2019).

1.3 Relevance Logics

Relevance logics, introduced by Anderson and Belnap in (Anderson and Belnap,
1962), aim to capture the common view that in valid inferences the assumptions
should be relevant to the conclusion. As such, relevant logics are non-explosive
and so they may be viewed as a kind of paraconsistent logics. We refer the readers
to Anderson and Belnap (1975), Read (1988), Anderson et al. (1992), Dunn and
Restall (2002), Mares (2004), Bimbó (2006), Avron (2014b), Avron et al. (2018) for
some extensive books and surveys on the subject. Avron has contributed to the study
on relevance logics throughout his academic career. Examples of recent contributions
are Avron (2014a, 2014b, 2016). His most important footprints in this study are his
investigations of the semi-relevant logic RM , and the introduction of the relevant
logics RM I (Avron 1990b), RM Im (or RM I ¬→) (Avron 1984b), and S RM Im (Avron
1997).

• The logic RM I is a relevant version of the logic RM (see below), in which the
implication → and the additive conjunction ∧ both have the variable sharing
property. Its semantics is based on the idea that propositions may be divided into
“domains of relevance”, with a “relevance relation” R defined on the collection of
these domains. Classical logic is valid within each domain, while the propositions
ϕ → ψ and ϕ ∧ ψ are necessarily false if the domains of ϕ and ψ are not related
by R.

• The logic RM Im is the purely intensional (or “multiplicative”) fragment of
RM I , and has particularly nice properties. In particular, it has the Scroggs prop-
erty (Anderson and Belnap 1975; Avron 2016), an ordinary cut-free Gentzen-type
formulation, and is sound and weakly complete with respect to a very simple
infinite matrix called Aω.

• The logic S RM Im is the extension of RM Im with its admissible rule ϕ ⊗ ψ/ϕ,
where⊗ is the multiplicative “conjunction”. Avron showed that unlike RM Im , the
logic S RM Im is strongly sound and complete with respect toAω, and he provided
for it too a corresponding cut-free Gentzen-type formulation.
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In the more general context of the study of substructural logics, it is worth men-
tioning the influential work of Avron (1988), where he has pinpointed the relation
between relevance logic and linear logic.

In this volume, relevant reasoning is considered from several perspectives, some
of them are related to the contributions of Avron to the subject.

• In “R-mingle has nice properties, and so does Arnon Avron”, Michael Dunn pro-
vides a nice overview on the relevant logic RM , introduced by him and McCall.2

As noted in Dunn and Restall (2002), RM is “by far the best understood of the
Anderson-Belnap style systems”. Indeed, RM has sound and completeHilbert- and
Gentzen-type proof systems and a clear semantics in terms of Sugihara matrices.
Moreover, RM has some other desirable characteristics, such as being decidable,
paraconsistent, and it satisfies the Scroggs’ property. In his paper, Dunn describes
the history of RM , including the system of Ohnishi and Matsumoto as well as his
own experience with a problem concerning entailment (the logic E) as an inter-
section of a pair of logics that led to the invention of RM . In the process, a series
of results about RM are mentioned, also in relation to the extensive study of RM
by Avron.

• In his paper, “Relevance domains and the philosophy of science”, Edwin Mares
applies a variant of Avron’s logic RM I to model what the philosopher of science
Nancy Cartwright has called the “dappled world”. In this world, scientific theories
represent restricted aspects and regions of the universe. Mares characterizes such
theories byAvron’s algebraic structures that are used for giving semantics to RM I ,
and shows, among others, how the paraconsistent nature of RM I can be used for
dealing with inconsistencies within and between the scientific theories.

• The paper of Almudena Colacito, Nikolaos Galatos, and George Metcalfe, titled
“Theorems of alternatives for substructural logics”, consists of a generalization
of an early result by Avron about the logic RM . It shows that Avron’s theorem
belongs to a family of results that may be understood as “theorems of alternatives”
for substructural logics. It is shown that a variety of logics admit such a theorem,
and the relation with interpolation and density is discussed.

1.4 Bilattice-Valued Logics

In (Belnap 1977a, 1977b), Belnap introduced a framework for collecting and process-
ing information coming from different sources. His formalism is based on Dunn’s
four-valued algebraic structure (Dunn 1966), in which the elements are simultane-
ously arranged in two lattice orders. This structure may be viewed as a particular case
of Ginsberg’s bilattices (Ginsberg 1988), which have been shown particularly useful
for providing fixpoint semantics to logic programs (Fitting 1991, 1993, 2002), and

2 Sadly, Prof. J. Michael Dunn passed away prior to witnessing the publication of this volume. We
shall cherish memories of him as a great logician, and as the title of his manuscript suggests, a very
kind and humble man.
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for fuzzy (Cornelis et al. 2007) and paraconsistent (Arieli and Avron 1996, 1998,
2000a) reasoning (see also the survey in Fitting 2006).

In (Arieli and Avron, 1998), Avron has shown that the Dunn–Belnap four-valued
logic is a characteristic logic among bilattice-based logics, and related these logics
to nonmonotonic and preferential reasoning (Arieli and Avron 2000b). He also made
an important contribution to the algebraic study of bilattices by investigating the
structure of a family of bilattices, called interlaced bilattices (see Avron 1996b).

This volume contains two contributions that are related to bilattice-based rea-
soning. One, by Melvin Fitting (titled “The strict/tolerant idea and bilattices”),
presents a general theory of strict/tolerant versus classical counterparts for non-
distributive (as well as distributive) De Morgan logics. The algorithm for construct-
ing the strict/tolerant logic makes use of bilattice products, which provide interlaced
logical bilattices with negation and conflation. In process, Fitting gives an overview
of the essentials of the bilattice theory.

In the other contribution, “Connexive variants of modal logics over FDE”, Sergei
Odintsov, Daniel Skurt, and Heinrich Wansing relate connexive logics (Wansing
2014), modalities, and bilattice-valued semantics, through a series of (paraconsistent
and decidable) logics, to which they provide sound and complete tableau calculi.
To some of the systems, algebraizability in the sense of Blok and Pigozzi is also
established.

1.5 Modal Logics

The incorporation in the language of modal operators is a well-established and com-
mon method for non-classical reasoning that has many successful applications (see,
e.g., Bull and Segerberg 2001 and Chellas 1980 for some introductory manuscripts
to the subject). The main contributions of Avron to this area are threefold:

• Avron’s first contribution was his paper in (Avron, 1984a). Among other things,
in this paper, he introduced sequent calculi for the modal provability logics GL
and Grz, and proved cut-elimination for both of them.3 He further showed that
contrary to what was believed and even published before, the natural first-order
extension of the sequent calculus for GL does not admit cut-elimination. This was
the first negative result in this area.

• The second contribution of Avron has been due to his generalization of Gentzen’s
sequents, known as “hypersequents” (Avron 1987, 1996a). A hypersequent is a
finite set (or sequence) of sequents, which may be regarded as their disjunction.
The original motivation for introducing these structures was to provide cut-free
Gentzen-type systems for some relevance logics. However, Avron soon discovered
that it is useful for other families of logics too. Thus, beginning with his paper
in (Avron, 1991), hypersequents provide a major framework for the proof theory

3 In the case of Grz, he was the first to do so.
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of fuzzy logics (see Metcalfe et al. 2009). In the context of modal logics, the
incorporation of hypersequents allowed him to provide a cut-free calculus for S5
(to which an ordinary cut-free sequent calculus is not known, see Avron 1996a;
Avron and Lahav 2018).

• Avron’s third contribution to this area is related to his work on paraconsistent rea-
soning, and it is concerned with establishing its connections to two famous modal
logics, B and S5 (see Avron and Zamansky 2016 and Avron et al. 2018, Chap. 9).
In particular, it was shown that the minimal paraconsistent logic which satisfies the
replacement property (i.e., equivalence of two formulas implies their congruence)
is equivalent to the well-known Brouwerian modal logic B. Interestingly, B is a
very robust paraconsistent logic, in the sense that almost any axiom which has
been used in the context of LFIs (see Sect. 1.2) is either already a theorem of B,
or its addition to it leads to a logic which is no longer paraconsistent. There is
only one exceptional axiom, the addition of which leads to another famous modal
logic: S5 (the modal logic which is induced by the class of Kripke frames in which
the accessibility relation is an equivalence relation).

Modal logics are discussed in this volume with respect to different frameworks.
We have already mentioned in the previous section the paper of Odintsov, Skurt, and
Wansing that studies various connexive modal logics. Modal notions are also central
in the paper of Carnielli and Bueno-Soler, which is mentioned in Sect. 1.2. In another
paper on the subject, titled “Interpretations of weak positive modal logics”, Katalin
Bimbó examines relational semantics for two positive (negation-free) modal logics:
one contains conjunction but not disjunction, and the other contains disjunction but
not conjunction. Both of these logics have implication, fusion, and fission, and they
make room for the development of sequent calculi in which the two basic modal
connectives may be introduced independently (but can be defined from each other
in the presence of a suitable negation). The two logics are inspired by related works
in the context of relevance and linear logics.

1.6 Other Forms of Non-Classical Reasoning

This volume contains some chapters that are related to further applications of non-
classical logics, which are not covered in the previous sections. They are summarized
below.

In his paper “Consequence relations with real truth-values”, Daniele Mundici
draws inspiration from Avron’s paper in (Avron, 2015), where he investigates a
general notion of implication that does not assume the availability of any proof
system and thus does not depend on the notion of a “use” of a formula in a given proof
system. This notion typically occurs in relevance logics, suggesting a generalized
semi-implication, which leads to aweak form of the classical-intuitionistic deduction
theorem. Mundici builds on these ideas using a similar approach in the context
of a [0,1]-valued Łukasiewicz logic, also revising the Bolzano–Tarski paradigm of
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“semantic consequence”. It is shown that the Łukasiewicz axiom guarantees the
continuity and the piecewise linearity of the implication operation, a desirable fault-
tolerance property of any real-valued logic.

Avron has also contributed to the mechanization of mathematics. One of the
main tools he has suggested for this (e.g., in Avron 2003; Avron and Cohen 2016)
is the use of ancestral logic (an extension of first-order logic with an operation
for transitive closure) in order to overcome the insufficiency of first-order logic in
dealing with some notions and constructions in mathematics. Together with Liron
Cohen, Avron has considered and applied two versions of ancestral logic: classical
and intuitionistic. In her paper “Geometric rules in infinitary logic”, Sara Negri
takes a different approach. Instead of using transitive closure, she concentrates on
the theories which are based on the very large and central class of what are called
geometric axioms. On the other hand, she allows the use in the language and in
proofs of infinitary disjunctions. Again, her system has two versions: classical and
intuitionistic. As an application, Negri presents a simple proof, in which the axioms
of choice is not used, of the infinitary Barr’s theorem. This theorem connects classical
derivability of geometric implications with their intuitionistic derivability.

1.7 Conclusion

The content of this volume is very diverse, representing the state of the art of the logi-
cal study on reasoning with non-classical logics in different contexts and for different
purposes. As we have already noted previously, it is not possible to have a complete
coverage of the area in one volume. In fact, this volume does not even pretend to
provide an exhaustive reference of all the contributions of Avron to the subject. Hav-
ing said this, we believe that the chapters of this book, written by worldwide leading
experts in the area, cover many of the active research subjects in contemporary (non-
classical) logic, and faithfully reflect the diversity and mathematical depth of Arnon
Avron’s work.
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Chapter 2
Interpretations of Weak Positive Modal
Logics

Katalin Bimbó

Abstract This paper investigates set-theoretical semantics for logics that contain
unary connectives, which can be viewed as modalities. Indeed, some of the logics
we consider are closely related to linear logic. We use insights from the relational
semantics of relevance logics together with a new version of the squeeze lemma in our
semantics for logics with disjunction (but no conjunction). The ideal-based seman-
tics, which takes co-theories to be situations, dualizes the theory-based semantics
for logics with conjunction (but no disjunction).

Keywords Relational semantics · Three-termed relation · Modal logic ·
Relevance logic · Sequent calculus · Semi-lattice

2.1 Introduction

Modal concepts—especially necessity and to a lesser extent possibility—intrigued
thinkers for many centuries, as attested by Cresswell et al. (2016). The modern
approach to modal logics that contain unary connectives as formal counterparts of
necessity and possibility originates in the work of C. I. Lewis. He preferred a particu-
larmodal logic, nonetheless, defined several logics of strict implication (a connective,
which combines necessity andmaterial conditional). Gödel (1986) introduced a prov-
ability interpretation for modal connectives, and with the set-theoretical semantics
blossoming, a variety of informal meanings were attached to unary connectives from
the 1950s onward. On the other hand, investigations into proof systems shifted from
an exclusively axiomatic approach to more constrained calculuses. Different view-
points do not always lead to a preference for one logic. For example, S5 is arguably
the simplest normal modal logic from a semantical point of view, because in its mod-
els all worlds can be linked through the total relation on worlds. And, of course, S5
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has a rather uncomplicated axiomatic formulation too. However, there is no elegant
sequent calculus as an extension of LK from Gentzen (1964) that formalizes S5.
However, a more general class of proof systems, the so-called hypersequent calcu-
luses, can be used to formalize S5 too. Hypersequent calculuses were introduced by
Arnon Avron (1987), and they proved to be a versatile framework with wide-ranging
applications. See Avron’s articles Avron (1991, 1996).

The normal modal system S4 turned out to be an all-around pleasant normal
modal logic. It has natural connections to intuitionistic logic and topology; it can
be modeled in set-theoretical semantics on quasi-ordered frames; it has a sequent
calculus formalization. Normal modal logics are often axiomatized in a language
with necessity (�) where possibility (♦) is merely an afterthought (or a defined
connective).Accordingly, onemight completely omit♦, and then two straightforward
sequent calculus rules can introduce �, which happens to be S4’s necessity. These
rules were added to relevance logics too, in particular, Meyer (1966) added them
to the sequent calculus formulation of lattice-R (the non-distributive version of the
logic of relevant implication). Kripke (1963) suggested sequent calculus rules that
allow the proof of the equivalence of ¬�¬A and ♦A. Thereby, he made room for
the development of sequent calculuses in which � and ♦ (or similar connectives)
may be introduced independently, but they can be proved to be definable from each
other in the presence of a suitable negation.

The logics that we consider below have further motivations. Girard (1987) intro-
duced linear logic that uses two punctuation symbols for a pair of unary connectives.
Avron (1988) noted that the “of-course” connective (i.e., ! ) is similar to � and the
“why-not” connective (i.e., ? ) is like ♦. The analogy cannot go all the way, because
linear logic is not the same logic as S4, for instance, conjunction and disjunction
cannot be proved to distribute over each other due to the absence of unrestricted
weakening and contraction rules.1 The modalities of linear logic, which are also
called exponentials, are essential to linear logic. MALL (linear logic without modal-
ities) is a somewhat uninteresting logic, and it is, for example, easily shown to be
decidable. The introduction of the exponentials allows for a modeling of the use of
resources. Contingent facts must be handled with tight control, whereas information
that is necessary can be always assumed, and information that is possible may be
concluded at any time.

In the logics we consider, we will omit some connectives, but these will not be the
modalities. First of all, negation is completely excluded from our logics; hence, the
adjective “positive” in the title. It is an interesting question that was investigated by
Dunn (1995) which axioms would suffice in the context of a negation-free logic with
distributive conjunction and disjunction to force � and ♦ to have an interpretation
through a shared binary relation. However, it seems to us that those axioms would
require the inclusion of the usual structural rules into a sequent calculus; hence, we

1 Semantical considerationsmay suggest that ! and♦, on one hand, plus ? and�, on the other hand,
are better pairings (cf. Bimbó 2007; Bimbó and Dunn 2008). However, both the proof-theoretical
and the semantic analogies are mere analogies, which we underline by not using a notation (like �
or ♦) that have deeply ingrained connotations in modal logic.
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do not aim to focus on logics in which modalities share part of their interpretation.
Second,wewant to omit oneof conjunctionor disjunction too. Scrutinizing fragments
of a logic help us understand the whole logic. It may appear that omitting two
connectives will unreasonably diminish the expressive power of our logics. However,
it is not so; one of the logics that we consider is equivalent to full linear logic in a
smaller vocabulary. (See Kopylov 2001 for a reduction of full linear logic.) This is a
strong motivation to investigate this group of logics.

We start the next section by introducing some positive modal logics through
sequent calculuses. We will select certain rules as immutable, and permit some
variations of the other rules. Section 2.3 defines a dual semantics for logics that
contain disjunction but no conjunction. The inspiration here comes from the idea
that it depends on our viewpoint whether a semi-lattice is a meet semi-lattice or a
join semi-lattice. Then, in Sect. 2.5, we proceed to defining a semantics for those
logics that have only conjunction. In Sect. 2.6, we consider the semantic impact of
some further variations in the logics. Finally, we add some concluding remarks in
Sect. 2.7.

2.2 Groups of Positive Modal Logics

Sequent calculuses provide an elegant and controlled way to define logics. We want
to limit our consideration to logics that share certain connectives except that in some
of the logics there is a conjunction connective but there is no disjunction, whereas
in the other logics there is a disjunction connective but no conjunction.

We already mentioned that investigating fragments of logics adds to our under-
standing of a logic. Also, some of the logics are of independent interest, because
they were introduced without considerations for the other logics in their group. For
instance, conjunction, which is in many ways the easiest to deal with among the
connectives, has been added to pure implicational relevance logics. Beyond these
reasons to consider some of these logics, we think that there is a theoretical interest
in investigating the semantics for our two groups of logics; furthermore, it is fruitful
to do this by placing them side by side.

Further, we will allow some variance in the choice of (pairs of) structural rules.
The structural rules impact the properties of all the connectives except the two lattice
connectives (conjunction and disjunction), which we introduce through rules that are
independent of the structural connective (i.e., ; ). The changes in the meaning of the
affected connectives will be reflected algebraically and in the matching semantical
conditions. (We give at once all the connective and structural rules from which we
will select certain rules for our logics.)

Definition 2.2.1 (Languages) The languages are defined over a denumerable set of
propositional variables, which we denote by P. The signatures in the two groups
of logics are 〈 t0, ◦2,→2,+2,∧2,⪧1,⪦1〉 and 〈 t0, ◦2,→2,+2,∨2,⪧1,⪦1〉, where a
superscript indicates the number of arguments for a connective. The set of formulas
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is generated by the following (context-free) grammar, where P may be rewritten as
any of its elements, and � is either ∧ or ∨—depending on the signature.

A := P | t | (A ◦ A) | (A → A) | (A + A) | (A �A) | ⪧A | ⪦A

Remark 2.2.1 We use the symbols ⪧ and ⪦ for the unary connectives that we
consider modalities. If we would have the same background logic as in normal
modal logics (i.e., if we would have two-valued propositional logic as a basis), then
⪧ could be viewed as � and ⪦ as ♦ (using usual notation from alethic modal logics)
due to the rules that introduce these connectives. However, the logics we start with
lack any sort of negation and some of the usual structural rules may be omitted too.
To guard against misleading connotations, we use the symbols⪧ and⪦ for the unary
connectives.2 Should it be required, we shall call ⪧ a solid and ⪦ a fluid modality.
The intuition behind the labels is that⪧A can be introduced from A in the antecedent,
while⪦A can be obtained from A in the succedent. That is,⪧A is a very firm premise,
and ⪦A is a flaccid conclusion.

We will use finite multisets of formulas in the sequent calculuses below. (We will
drop the adjective “finite” fromnowon, becausewe nowhere use infinitemultisets.)A
multiset comprises finitely many tokens that are of finitely many types. A usual nota-
tion for amultiset employs brackets and commas. For instance, [A,A,B,B,B,D, E]
is a multiset with exactly seven tokens that fall into at most four types. In a multiset,
the order of listing the elements does not matter, but the number of occurrences of
an element makes a difference, that is, multisets are halfway between sets and lists.
We use �,�, . . . as variables for multisets of formulas (including the empty multi-
set). As usual in sequent calculuses, we will omit the delimiters, and we will replace
commas with semicolons, because of a link to intensional connectives.3 A;� is the
same multiset as �;A, that is, the multiset union of � and [A].
Definition 2.2.2 (Sequents) A sequent is an ordered pair of multisets of formulas.
Instead of 〈�,�〉, we write the sequent as � ⊫�.

All the rules that we may include in any of the logics we consider are collected
together in the next definition. �⪧ indicates that each element of � starts with ⪧;
similarly, for a � with ⪦.

Remark 2.2.2 None of the rules below are new with us. The rule and the axiom for
t originated in relevance logic (cf. Dunn 1973, 1986). The rules for ∧ and ∨ are
independent of ; , because only one of A and B occurs in the one-premise rules, and
� and� are shared in the two-premise rules. The rules ◦,→, and+ are the usual rules
for fusion, implication, and fission in the context of relevance logic (see, e.g., Dunn
1986 and Bimbó and Dunn 2015). In the linear logic framework, these are the rules

2 The notation used here is the same notation that we used in Bimbó (2017).
3 Semicolonswere introduced in sequent calculuses for positive relevance logics,where it is essential
to have multiple structural connectives. See, for example, Dunn (1973, 1986).
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for ⊗, � and `. These three connectives are intensional connectives—informally
speaking—hence, their rules are structure dependent. We already discussed con-
nections between S4 and the introduction rules for the modalities. We may mention
though that weaker (than S4) modal logics have been formalized with more restricted
rules.

Definition 2.2.3 The list of axioms and rules is as follows.

Axioms: A⊫A (I) ⊫ t (⊫ t)

Operational rules:

�;A⊫�

�;A ∧ B ⊫�
(∧⊫1)

�;B ⊫�

�;A ∧ B ⊫�
(∧⊫2)

� ⊫A;� � ⊫ B;�

� ⊫A ∧ B;�
(⊫∧)

�;A⊫� �;B ⊫�

�;A ∨ B ⊫�
(∨⊫)

� ⊫A;�

� ⊫A ∨ B;�
(⊫∨1)

� ⊫ B;�

� ⊫A ∨ B;�
(⊫∨2)

� ⊫�

�; t ⊫�
( t⊫)

�;A;B ⊫�

�;A ◦ B ⊫�
(◦⊫)

� ⊫A;� �⊫ B;�

�;�⊫A ◦ B;�;�
(⊫◦)

� ⊫A;� �;B ⊫�

�;�;A → B ⊫�;�
(→⊫)

�;A⊫ B;�

� ⊫A → B;�
(⊫→)

�;A⊫� �;B ⊫�

�;�;A + B ⊫�;�
(+⊫)

� ⊫A;B;�

� ⊫A + B;�
(⊫+)

�;A⊫�

�;⪧A⊫�
(⪧⊫)

�⪧ ⊫A;�⪦

�⪧ ⊫⪧A;�⪦
(⊫⪧)

�⪧;A⊫�⪦

�⪧;⪦A⊫�⪦
(⪦⊫)

� ⊫A;�

� ⊫⪦A;�
(⊫⪦)

Structural rules:

�;A;A⊫�

�;A⊫�
(W⊫)

� ⊫A;A;�

� ⊫A;�
(⊫W )

�;⪧A;⪧A⊫�

�;⪧A⊫�
(⪧W⊫)

� ⊫⪦A;⪦A;�

� ⊫⪦A;�
(⊫⪦W )

� ⊫�

�;⪧A⊫�
(⪧K⊫)

� ⊫�

� ⊫⪦A;�
(⊫⪦K )

� ⊫�

�;A⊫�
(K⊫)

� ⊫�

� ⊫A;�
(⊫K )

In all the sequent calculuses we consider, proofs are defined standardly as a tree
with all the leaves being axioms and other nodes justified by applications of rules (see,
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e.g., Bimbó 2015b for a precise definition and sample proofs). A sequent � ⊫� is
provable if there is a proof rooted in the sequent � ⊫�.A is a theorem when t ⊫A
(or equivalently, ⊫A) is provable.

The cut rule takes the following form, and it is known to be admissible for the
calculuses that do or do not include some of the pairs of the structural rules.4

� ⊫�;A A;�⊫�

�;�⊫�;�
cut

Now that we have reasonable syntactic specifications (namely, sequent calculuses
for the logics we want to consider, we will algebraize them. For the latter, we use the
equivalence relation that holds between A and B when A⊫ B and B ⊫A are both
provable.

We start with two logics—one with disjunction, the other with conjunction—that
we call kernel logics. These logics form the modality-free core of our logics, and
isolating them allows us to interpret them first, which is quite complicated in itself.

Definition 2.2.4 (Kernel logics) The logicC∧ is defined by the axioms, and the rules
for ∧, t, ◦,→, and +, and the logic C∨ is defined by the axioms, and the rules for
∨, t, ◦,→, and +.

Lemma 2.2.5 The Lindenbaum algebra of C∧ is A∧ and the Lindenbaum algebra
of C∨ is A∨. The algebras are A∧ = 〈A; ∧, t, ◦,→,+〉, where (a1)–(a4) hold, and
A∨ = 〈A; ∨, t, ◦,→,+〉, where (a4)–(a7) hold.
(a1) 〈A; ∧〉 is a meet semi-lattice (an msl, for short);
(a2) 〈A; t, ◦,→〉 is a residuated Abelian monoid;
(a3) + is an msl-ordered Abelian semi-group operation;
(a4) a ◦ (b + c) ≤ (a ◦ b) + c hemi-distributivity of ◦ over +;
(a5) 〈A; ∨〉 is a join semi-lattice (a jsl, for short);
(a6) 〈A; t, ◦,→〉 is a jsl-ordered residuated Abelian monoid;
(a7) + is a monotone Abelian semi-group operation.

Proof The proof proceeds along well-known lines; we provide two sample steps
(and leave the rest of the details to the reader).
1. Let us assume that A⊫ B as well as B ⊫A are provable. We wish to show that
A ∨ C ⊫ B ∨ C and B ∨ C ⊫A ∨ C are provable too. The following proof segments
suffice:

(⊫∨1)
A

...
⊫ B

A⊫ B ∨ C
C ⊫ C

C ⊫ B ∨ C (⊫∨2)

A ∨ C ⊫ B ∨ C (∨⊫)

(⊫∨1)
B

...
⊫A

B ⊫A ∨ C
C ⊫ C

C ⊫A ∨ C (⊫∨2)

B ∨ C ⊫A ∨ C (∨⊫)

4 For example, 〈(⪧K⊫), (⊫⪦K )〉 is a pair that may be included or omitted. The cut theorem for the
calculuses here is Theorem 15 in Bimbó (2017). The proof of the cut theorem in Bimbó (2015a, §3)
is triple-inductive proof for the intensional part of our calculuses with modalized structural rules.
See also Chap. 7 in Bimbó (2015b).
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Proving the equivalence of C ∨ A and C ∨ B is similar.
2. Again, let us suppose thatA and B are equivalent. We will show that so are C ◦ A
and C ◦ B. Consider the following proofs (with the parts yielding the assumption
omitted):

C ⊫ C A
...
⊫ B

C;A⊫ C ◦ B
C ◦ A⊫ C ◦ B (◦⊫)

(⊫◦)
C ⊫ C B

...
⊫A

C;B ⊫ C ◦ A
C ◦ B ⊫ C ◦ A (◦⊫)

(⊫◦)

The equivalence of A ◦ C and B ◦ C may be proved similarly. �

Remark 2.2.3 The labels we used in the lemma are fairly standard; nevertheless,
we fix their meaning with (tacitly) universally quantified axioms. Both A∧ and A∨
are definable by finitely many equations, but we utilize some inequations and even
quasi-inequations for the sake of familiarity. ((a4) is an inequation itself, and we do
not repeat it.)

(a1) a ∧ a = a, a ∧ b = b ∧ a, a ∧ (b ∧ c) = (a ∧ b) ∧ c; a ∧ b = a iff a ≤ b;
(a2) t ◦ a = a, a ◦ b = b ◦ a, a ◦ (b ◦ c) = (a ◦ b) ◦ c, a ◦ b ≤ c iff a ≤ b → c;
(a3) a + b = b + a, a + (b + c) = (a + b) + c, a + (b ∧ c) = (a + b) ∧ (a + c);
(a5) a ∨ a = a, a ∨ b = b ∨ a, a ∨ (b ∨ c) = (a ∨ b) ∨ c; a ∨ b = b iff a ≤ b;
(a6) t ◦ a = a, a ◦ b = b ◦ a, a ◦ (b ◦ c) = (a ◦ b) ◦ c, a ◦ b ≤ c iff a ≤ b → c;
(a7) a + b = b + a, a + (b + c) = (a + b) + c, a + b ≤ a + (b ∨ c).

2.3 Semantics for the Kernel Logic with Disjunction

The disjunction connective is often thought to be more problematic than conjunction
is. There are many reasons for this—from the natural language equivalents of ∧ and
∨ to the natural deduction rules for these connectives. However,∧ and∨ share many
similarities, especially when they are viewed abstractly as lattice operations. A lattice
turned upside down, so to speak, is a lattice, and some of its features (such as being
modular or distributive) are unaffected. Similarly, a meet semi-lattice flipped over is
a join semi-lattice, and vice versa.

Semantically speaking, sets of filters give a representation for conjunction through
intersection, and the presence of conjunction guarantees that filters exist. Dually, sets
of ideals allow disjunction to be represented by intersection.Most often though,when
both connectives are in a logic, moreover, they distribute over each other, a subset of
filters is used with union standing in for disjunction. In general, filters are prevailing
in logicians’ thinking about semantics, because they can be viewed as theories, that
is, deductively closed sets of formulas. (Of course, equivalence classes of formulas
and the formulas themselves are different kinds of entities, but a 1–1 correspondence
justifies the view purported in the previous sentence.) In this paper, we develop the
view that takes the duality of conjunction and disjunction seriously when only one
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of them is in a logic. We will provide semantics for logics with disjunction in terms
of ideals.5

Definition 2.3.1 A frame for C∨ is F = 〈U, I,
, R, R+〉, where the elements of the
quintuple satisfy conditions (f0)–(f10).6

(f0) U �= ∅, I ⊆ U , R ⊆ U 3, R+ ⊆ U 3, 
 ⊆ U 2, I �= ∅, ↑I = I ,
(f1) ∀α α 
 α, ∀α ∀β ∀γ ((α 
 β ∧ β 
 γ ) ⇒ α 
 γ ),
(f2) ∀α ∀β ∀γ ∀α′ ∀β ′ ∀γ ′ ((α 
 α′ ∧ β 
 β ′ ∧ γ ′ 
 γ ∧ Rαβγ ) ⇒ Rα′β ′γ ′),
(f3) ∀α ∃β (Rβαα ∧ β /∈ I ),
(f4) ∀α ∀β ∀γ ((Rαβγ ∧ α /∈ I ) ⇒ γ 
 β),
(f5) ∀α ∀β ∀γ (Rαβγ ⇒ Rβαγ ),
(f6) ∀α ∀β ∀γ ∀δ (R(αβ)γ δ ⇔ Rα(βγ )δ),
(f7) ∀α ∀β ∀γ ∀α′ ∀β ′ ∀γ ′ ((α′ 
 α ∧ β ′ 
 β ∧ γ 
 γ ′ ∧ R+αβγ ) ⇒ R+α′β ′γ ′),
(f8) ∀α ∀β ∀γ (R+αβγ ⇒ R+βαγ ),
(f9) ∀α ∀β ∀γ ∀ε (∃δ (R+αδε ∧ R+βγ δ) ⇔ ∃δ (R+αβδ ∧ R+δγ ε)),
(f10) ∀α ∀γ ∀δ ∀ε ∀ϑ ((R+εγ δ ∧ Rαϑδ) ⇒ ∃β (Rαβε ∧ R+βγϑ)).

Remark 2.3.1 U is a set of situations. I is a distinguished subset of U , which is
non-empty and is upward closed with respect to the pre-order (
) onU . (↑I denotes
the cone generated by I .) R is related to both → and ◦, and hence we do not attach a
subscript. R and R are each other’s complements, that is, R = U 3 − R. We write the
arguments of R and R following the relation symbol, (usually) without parentheses
or commas (as customary in the literature). Although R is the relation associated
to ◦ and →, it is clearer if we express some of the properties of R in terms of R.
R(αβ)γ δ is shorthand for ∃ζ (Rαβζ ∧ Rζγ δ), and similarly, Rα(βγ )δ stands for
∃ζ (Rβγ ζ ∧ Rαζδ). For the next definition, we note that C is the set of cones onU ,
that is, C = {W ⊆ U : ∀α ∀β ((α ∈ W ∧ α 
 β) ⇒ β ∈ W ) }.

We have already explained informally a couple of the frame conditions. Some of
the lengthy stipulations, for example (f2) and (f7), may be simply rephrased as R
is monotone increasing in its first two argument places and monotone decreasing in
its third, and the other way around for R+. Or to put it even more informally and
concisely, R↑↑↓ and R+ ↓↓↑ characterize the tonicity of the relations with respect
to 
. To give another example, (f5) and (f8) express the commutativity of ◦ and +,
respectively. These operations may be thought of as “living” in the third argument
place with their arguments in the first two.

Definition 2.3.2 A model for C∨ is M = 〈F, v〉, where F is a frame (as in Defi-
nition 2.3.1), and v is a valuation function of type v : P −→ C. v gives rise to a
satisfiability relation via (m0)–(m5).7

5 The duality between filters and ideals, which is rooted in the duality of ∧ and ∨, has a storied
past in logic (see Halmos 1962, p. 22 and Dunn 2019, p. 28). Our semantics are also motivated by
semantics for relevance logics in a broad sense of relevance (see Avron 1984, 2014; Bimbó and
Dunn 2009).
6 Lowercase Greek letters range over elements of U , and we will use logical symbols in the meta-
language which may be thought—for the sake of simplicity—to be those in two-valued logic.
7 As a rule, we only indicate the situation that makes a formula true in a model in the � notation,
and we omit mentioning F or v—to enhance readability.
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(m0) α � p iff α ∈ v(p);
(m1) α � t iff ∃ι ∈ I ι 
 α;
(m2) α � A ∨ B iff α � A and α � B;
(m3) α � A ◦ B iff ∀β ∀γ (Rβγα ∨ β � A ∨ γ � B);
(m4) α � A → B iff ∃β ∃γ (Rαβγ ∧ β � A ∧ γ � B);
(m5) α � A + B iff ∃β ∃γ (R+βγα ∧ β � A ∧ γ � B).

Lemma 2.3.3 (Heredity lemma) For all formulas A, { α : α � A } ∈ C.

Proof The lemma expresses that all formulas are interpreted by cones of situations.
The proof is fairly standard. The cases for p and t follow from Definition 2.3.2. The
case forA ∨ B is immediate, because the set of cones C is closed under intersection.
The last three cases follow from (m3) and (m4) using (f2), and from (m5) using (f7).
(We omit further details.) �

Remark 2.3.2 The idea that propositions are upward closed sets of situations orig-
inated in Kripke (1965) in the modeling of intuitionistic logic, where situations are
not maximally consistent. In relevance logic, additionally, the situations may not be
negation consistent, and hence theMeyer–Routley semantics utilizes upward closure
too.

A model M comprises a set of propositions, that is, cones of situations, some of
which correspond to formulas. We will denote the proposition of A by ‖A‖.
Theorem 2.3.4 (Soundness) If ⊫A is provable in C∨, then ‖A‖ ⊆ I in anyM that
is a model in the sense of Definition 2.3.2.

Proof We detail two steps in the proof, and leave the rest of the proof—which is
straightforward—to the reader.
1. First, we show that ‖ t ◦ A‖ = ‖A‖. Let us assume that α ∈ ‖A‖, as well as,
Rβγα and β /∈ ‖ t‖. By (f4), it follows that α 
 γ , and hence by Lemma 2.3.3,
γ ∈ ‖A‖. We can write this as ∀β ∀γ (Rβγα ∨ β � t ∨ γ � A), which means that
α ∈ ‖ t ◦ A‖. For the other direction, let us assume that α /∈ ‖A‖. This can bemerged
with (f3) into ∃β (Rβαα ∧ β � t ∧ α � A). The latter means that α � t ◦ A.
2. The → operation on propositions is, indeed, the residual of ◦. For one direction,
we show that if γ /∈ ‖A ◦ B‖ and ‖B → C‖ ⊆ ‖A‖, then γ /∈ ‖C‖. From the former,
we get that ∃α ∃β (Rαβγ ∧ α � A ∧ β � B). Then, α � B → C is immediate. The
latter means that ∀δ ∀ζ ((Rαδζ ∧ δ � B) ⇒ ζ � C). Obviously, γ � C follows, as we
wanted to show.

For the other direction, we start with the assumptions that α � B → C and
‖C‖ ⊆ ‖A ◦ B‖. The first can be spelled out as ∃β ∃γ (Rαβγ ∧ β � B ∧ γ � C), and
then γ � A ◦ B is immediate. By (m3),∀δ ∀ζ ((Rδζγ ∧ δ � A) ⇒ ζ � B). Sincewe
already have Rαβγ and β � B, we obtain α � A. �

Remark 2.3.3 An impetus in this paper is that we want to take seriously the duality
between conjunction and disjunction to the extent that we want to replace theories
with co-theories in the canonical model. When ∨ is in the language of a logic, then
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it is natural to consider the weakest formula implied by a pair of formulas and then
take all the formulas that could imply that. This is just like considering the strongest
formula that implies a pair of formulas in the presence of ∧, and afterward gathering
all the formulas that are implied by that formula. (Technically speaking, if there is no
conjunction, but there is a disjunction, then theories are informationally too weak.)
This has an impact on the shape of the whole semantics—as the frame conditions
already suggest. The book Bimbó and Dunn (2008, Ch. 4) used prime cones in the
semantics of logics that algebraize into a join semi-lattice, whereas Bimbó and Dunn
(2005) proposed a range of semantics for Kleene logic and action logic. Here we
buildmodels for logicswith disjunction exclusively fromco-theories, or equivalently,
ideals. (See also Bimbó 2007, 2009, where duality is explored for relevance logics
with both ∧ and ∨.)
Definition 2.3.5 The canonical frame for C∨ is F = 〈I, I,⊆, R, R+〉, where the
elements are specified by (c0)–(c3).

(c0) I is the set of non-empty ideals on A∨; ⊆ is set inclusion;
(c1) ι = { a ∈ A : a ≤ [ t ] } and I = { δ ∈ I : ι ⊆ δ };
(c2) Rαβγ iff ∀a ∀b (a ◦ b ∈ γ ⇒ (a ∈ α ∨ b ∈ β));
(c3) R+αβγ iff ∀a ∀b ((a ∈ α ∧ b ∈ β) ⇒ a + b ∈ γ ).

We will obtain completeness in two stages—just like we built up a model in two
steps.

Lemma 2.3.6 The canonical frame (from Definition 2.3.5) is in the class of frames
(from Definition 2.3.1).

Proof 1. We take it that it is obvious that I is a non-empty cone of ideals, and ⊆
is a pre-order (indeed, a weak partial order) on the set of ideals. R and R+ are also
appropriately defined with respect to their type. Hence, (f0) and (f1) hold. We leave
the verification of conditions (f2), (f3), and (f7) to the reader.
2. Now, we show that (f4) holds. Let us assume that Rαβγ and α /∈ I . First of all,
we note that by the definition of I , for any δ, [ t ] ∈ δ if and only if δ ∈ I . γ �= ∅,
and hence, for some c, c ∈ γ . However, [ t ] ◦ c = c, and if [ t ] /∈ α, then by the
definition of R, c ∈ β. This means that γ ⊆ β.
3. To show that (f5) is true on the canonical frame, we will assume Rαβγ and
b ◦ a ∈ γ . ◦ is commutative in A∨, which means that a ◦ b ∈ γ . By the definition of
R, it follows that a ∈ α or b ∈ β. Since, a and b are arbitrary in our assumption, we
have that ∀a ∀b (b ◦ a ∈ γ ⇒ (b ∈ β ∨ a ∈ α)), that is, Rβαγ , which is what we
wanted to prove.
4. For (f6),we assume R(αβ)γ δ. By eliminating the abbreviation,wehave that Rαβζ

and Rζγ δ.We need an ideal forβ and γ to bear R to.We defineϑ = ({ b ◦ c : ∃a (a /∈
α ∧ a ◦ b ◦ c ∈ δ) }], that is, we collect those b ◦ c’s together for which a fusion with
an a that is not an element of α is an element of δ, and we close the set under join.
From the definition of ϑ , Rαϑδ follows. If b ◦ c ∈ ϑ , then by the tonicity of ◦ and the
definition of ϑ , we have that a ◦ b ◦ c ∈ δ for some a. However, R(αβ)γ δ implies
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that a ∈ α or b ∈ β or c ∈ γ ; hence, b ∈ β or c ∈ γ , if a /∈ α. Showing that the
condition holds in the other direction is similar.
5. Let us assume that R+αβγ , a ∈ α, and b ∈ β. Then a + b and b + a are elements
of γ . Obviously, ∀b ∀a ((b ∈ β ∧ a ∈ α) ⇒ b + a ∈ γ ), which establishes R+βαγ ;
hence, (f8) holds.
6. To prove that (f9) is true, we assume that R+αδε and R+βγ δ. We take arbi-
trary elements of α, β and γ , namely, a, b, and c. We define ϑ = (α + β],
that is, ϑ = ({ e : ∃d ∈ α ∃g ∈ β e ≤ d + g }]. The definition of ϑ guarantees that
R+αβϑ . If e ≤ (a1 + b1) ∨ (a2 + b2), then a1 + b1 + c ∈ δ and a2 + b2 + c ∈ δ.
However, a1 ∨ a2 ∈ α and b1 ∨ b2 ∈ β, and a1 + b1 + c ≤ (a1 ∨ a2) + (b1 ∨ b2) +
c and a2 + b2 + c ≤ (a1 ∨ a2) + (b1 ∨ b2) + c; hence, (a1 + b1 + c) ∨ (a2 + b2 +
c) ≤ (a1 ∨ a2) + (b1 ∨ b2) + c. It is immediate from (a1 ∨ a2) + (b1 ∨ b2) + c ∈ δ

that (a1 + b1 + c) ∨ (a2 + b2 + c) ∈ δ. This completes showing that R+ϑγ δ, and
therefore the frame condition guaranteeing the associativity of + holds.
7. Lastly,we prove that (f10) holds. Let us assume that R+εγ δ and Rαϑδ hold. Let us
consider for β the ideal ({b : ∃a (a ◦ b ∈ ε ∧ a /∈ α)}]. The definition guarantees that
Rαβε holds. We have to show that R+βγϑ also holds with our β. Let us assume that
b ∈ β and c ∈ γ . Then a ◦ b ∈ ε with some a /∈ α, hence, (a ◦ b) + c ∈ δ, because
R+εγ δ.However, by (a4),a ◦ (b + c) ≤ (a ◦ b) + c,whichmeans thata ◦ (b + c) ∈
δ (because δ ∈ I). But a /∈ α, and Rαϑδ is true, which means that by the definition
of R, b + c ∈ ϑ . This is what is needed for R+βγϑ . �

Beforewe proceed to the definition of the canonical model, we introduce a lemma,
which may be viewed as a version of the squeeze lemma. The squeeze lemma was
originally proved for relevance logics. (See part of Lemma 12 in Routley and Meyer
1973, and its generalization, Lemma 2.3.19 in Bimbó and Dunn 2008.) The idea is
that a relation R may hold between theories α, β and the prime theory γ as Rαβγ .
However, the situations in a model must be prime, and hence α and β have to be
extended to prime theories α′ and β ′ while maintaining R (i.e., Rα′β ′γ should hold).
In the case when R is associated with fusion, α and β cannot be arbitrarily expanded
(lest R cease to hold). Hence, α′ and β ′ are “squeezed” into the space between α

and β, and where R fails. The notion of primeness, which (in logic) most commonly
used in connection to filters, can be adapted to co-theories and cones too—as the
following definition shows. We use our version of the squeeze lemma in the proof
of Lemma 2.3.12.

Definition 2.3.7 Let 〈X,
〉 be a set with a pre-order. The sets of cones, principal
cones, downward directed cones, and prime cones are defined by (1), (2), (3), and
(4), respectively. (Y ⊆ X everywhere.)

(1) Y is a cone iff ∀x ∀y ((x ∈ Y ∧ x 
 y) ⇒ y ∈ Y ).
(2) Y is a principal cone iff ∃y (y ∈ Y ∧ ∀x (x ∈ Y ⇔ y 
 x)).
(3) Y is a downward directed cone iff Y is a cone and

∀x ∀y ((x ∈ Y ∧ y ∈ Y ) ⇒ ∃z(z ∈ Y ∧ z 
 x ∧ z 
 y)).
(4) If X is a jsl, thenY is a prime cone iff ∀x ∀y (x ∨ y ∈ Y ⇔ (x ∈ Y ∨ y ∈ Y )).
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We denote the set of cones on X by C(X) (or simply by C—as before—when the
underlying set X is clear from context). Similarly, C�, C� and CP denote the sets of
principal, downward directed and prime cones, respectively.

We used similar notation for sets of various kinds of cones starting with Bimbó
and Dunn (2008). As F or I denote the set of f ilters or ideals, C denotes the set of
cones. The decorations on C intend to suggest that a principal cone is generated by
a single element (�), a downward directed cone includes a lesser element for each
pair (�) and P indicates primeness.

Definition 2.3.8 Let R be defined as in (c2) in Definition 2.3.5. Then Q is defined
as Qxyγ ⇔ Rx yγ , that is, Qxyγ ⇔ ∀a ∀b ((a ∈ x ∧ b ∈ y) ⇒ a ◦ b ∈ γ ), where
x, y, γ are the complements of x, y, and γ , and x, y, γ ∈ I. Furthermore, we extend
the latter definition to Q′ by allowing x, y ∈ C (rather than x, y ∈ CP).

Remark 2.3.4 We note that if x ∈ I, then x ∈ CP (in any jsl). Q and Q′ are similar
to the definition of the ternary relation in the Meyer–Routley semantics for relevance
logics in Routley and Meyer (1973), when ◦ is in the language. In that situation, the
canonical accessibility relation holds on the set of prime filters, and then it is relaxed
so that filters may appear in the first and second argument places. Just as in the case
of R in the Meyer–Routley semantics, Q and Q′ are antitone (monotone decreasing)
in their first two argument places and monotone (monotone increasing) in the third.

Lemma 2.3.9 (Squeeze lemma) If Qxyγ , with x, y ∈ C� and γ ∈ I on the canon-
ical frame of the logic C∨, then there are x ′, y′ ∈ CP �st x ⊆ x ′, y ⊆ y′ and Qx ′y′γ .

Proof We will maximize elements of pairs by Zorn’s lemma. Let us define E =
{ 〈C1,C2〉 : x ⊆ C1 ∧ y ⊆ C2 ∧ Q′C1C2γ ∧ C1,C2 ∈ C� }. Clearly, E is not empty,
because 〈x, y〉 ∈ E . The inclusion⊆ between pairs is point-wise, that is, 〈C1,C2〉 ⊆
〈D1, D2〉 when C1 ⊆ D1 and C2 ⊆ D2. Similarly,

⋃
i∈I 〈C1i ,C2i 〉 stands for 〈⋃i∈I

C1i ,
⋃

i∈I C2i 〉. Then, if I (I �= ∅) is a linear order with ≤, then
⋃

i∈I 〈C1i ,C2i 〉 ∈ E
assuming that each 〈C1i ,C2i 〉 ∈ E . By Zorn’s lemma, there is a maximal element in
E , let us say, 〈D1, D2〉.

A maximal element is a pair of prime cones, as we show next. We prove that
D1 is prime; D2 can be shown to be prime by switching indices. Let a1 ∨ a2 ∈
D1. If a1, a2 /∈ D1, then there are b1, b2 ∈ D2 �st a1 ◦ b1 /∈ γ and a2 ◦ b2 /∈ γ . By
construction, D2 ∈ C�, and hence there is some b ∈ D2 with the property that b ≤
b1 and b ≤ b2. Then by the monotonicity of ◦, a1 ◦ b /∈ γ and a2 ◦ b /∈ γ , hence
(a1 ◦ b) ∨ (a2 ◦ b) /∈ γ . However, (a1 ◦ b) ∨ (a2 ◦ b) = (a1 ∨ a2) ◦ b, which leads
to a contradiction. �

The proof of the squeeze lemma would be slightly simpler if we could restrict our
attention to one of the argument places of Q′, provided that in the other argument
place we already have a prime cone.

Corollary 2.3.10 Let α, β, γ ∈ I and x, y ∈ C� on the canonical frame of C∨. If
Q′αxγ , then there is an x ′ ∈ CP �st x ⊆ x ′ and Qαx ′γ . Similarly, from Q′yβγ ,
Qy′βγ follows, for some y′ ∈ CP extending y.
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Definition 2.3.11 The canonical model is M = 〈F, v〉, when F is the canonical
frame (from Definition 2.3.5), and v is defined by (c4).

(c4) v(p) = { δ ∈ I : [p] ∈ δ } and v( t) = I .

As we indicated in footnote 7, α � A may be read as “A is true in situation α,”
then Lemma 2.3.12 is a “Truth Lemma” saying that a situation makes a formula true
precisely, when it contains the equivalence class of the formula.

Lemma 2.3.12 The canonical valuation v extended to the relation�has the property
that α � A iff [A] ∈ α.

Proof 1. The claim is obviously true for p by (c4), and for t by (c1) and (c4).
2. Let us considerA ∨ B. α � A ∨ B iff α � A and α � B. By inductive hypothesis,
[A] ∈ α and [B] ∈ α. But this holds exactly when [A ∨ B] ∈ α, because α ∈ I.
3. Next, let our formula beA ◦ B. For one direction, we start with γ � A ◦ B. Then,
∃α ∃β (Rαβγ ∧ α � A ∧ β � B). By inductive hypothesis, [A] /∈ α and [B] /∈ β.
Then [A ◦ B] /∈ γ , by the definition of R.

For the converse, we assume that [A ◦ B] /∈ γ . We note that all principal cones
are downward directed, and hence ↑[A],↑[B] ∈ C�. Then Q′ holds between these
principal cones and γ (where Q′ is the relation in Definition 2.3.8). By Lemma 2.3.9,
there are x ′ and y′ �st ↑[A] ⊆ x ′, ↑[B] ⊆ y′ and Qx ′y′γ . Since x ′, y′ ∈ CP, we know
that x ′, y′ ∈ I. Then R x ′ y′γ ; moreover, [A] /∈ x ′ and [B] /∈ y′, hence, by hypothesis,
x ′ � A, and, similarly, y′ � B. In sum, γ � A ◦ B.
4. Finally, let us consider A → B. First, we assume that α � A → B, that is,
∃β ∃γ (Rαβγ ∧ β � A ∧ γ � B). By the hypothesis of induction, [A] /∈ β and
[B] ∈ γ . From the latter, it follows that [(A → B) ◦ A] ∈ γ , hence by the definition
of R, [A → B] ∈ α, as we wanted to show.

Now, let us assume that [A → B] ∈ α. The relation Q′ introduced in Defini-
tion 2.3.8 holds between α and two cones as Q′α[[A])([B]] (where [[A]) is the prin-
cipal cone generated by [A] and ([B]] is the prime cone, which is the complement
of the principal ideal generated by [B]). To show that Q′ indeed holds, let us assume
that for some C, [C] ∈ α but [C ◦ A] ∈ ([B]]. By residuation, [C] ≤ [A → B], which
means that [C] ∈ α. From the contradiction, we may conclude that [C ◦ A] /∈ ([B]].
We note that ([B]] ∈ CP and [[A]) ∈ C�. By an application of Corollary 2.3.10,
there is a y �st Qαy([B]] where y ∈ CP and [[A]) ⊆ y. This means that Rαy([B]].
By the hypothesis of induction, y � A and ([B]] � B. Since R holds, we have that
α � A → B, as we had to prove.
5. We turn to + now. Let γ � A + B. Then ∃α ∃β (R+αβγ ∧ α � A ∧ β � B). By
inductive hypothesis, [A] ∈ α and [B] ∈ β, which yields [A + B] ∈ γ together with
the definition of R+.

For the converse, let us assume that [A + B] ∈ γ . We form two principal ideals
([A]] and ([B]] that we call α and β, respectively. By the hypothesis of induction,
α � A and β � B. By the monotonicity of +, R+αβγ holds. Then ∃α ∃β (R+αβγ ∧
α � A ∧ β � B), that is, γ � A + B, as we aimed to show. �
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Lemma 2.3.13 (Separation) If t ⊯A → B, then there is a β �st β ∈ ‖B‖ but β /∈
‖A‖.
Proof To start with, notice that [A] /∈ ([B]]. By Lemma 2.3.12, ([B]] ∈ ‖B‖ and
([B]] /∈ ‖A‖. Of course, ([B]] ∈ I, and hence it can be taken as the β in the claim.
We could state the lemma as a catchphrase: a pair of non-equivalent formulas can be
separated by an ideal. �

Having collected all the bits together, we have completeness.

Theorem 2.3.14 (Completeness) C∨ is complete with respect to the class of its
frames.

2.4 Interpreting the Modalities

Now we consider the addition of the two modal operators to the algebras of our
kernel logics. Then we proceed to defining adequate semantics for them.

Definition 2.4.1 An algebra A∧
m has similarity type 〈2, 0, 2, 2, 2, 1, 1〉, and A∧

m =
〈A; ∧, t, ◦,→,+,⪧,⪦〉,where (a1)–(a4) (from Lemma 2.2.5) and (a8)–(a13)
(below) hold.

(a8) ⪧(a ∧ b) ≤ ⪧a,
(a9) ⪦(a ∧ b) ≤ ⪦a,
(a10) ⪧a ≤ a,
(a11) ⪧a ≤ ⪧⪧a,
(a12) a ≤ ⪦a,
(a13) ⪦⪦a ≤ ⪦a.
An algebra A∨

m has similarity type 〈2, 0, 2, 2, 2, 1, 1〉, and A∨
m = 〈A; ∨, t, ◦,→

,+,⪧,⪦〉, where (a4)–(a7) (from Lemma 2.2.5) and (a10)–(a15) hold.

(a14) ⪧a ≤ ⪧(a ∨ b),
(a15) ⪦a ≤ ⪦(a ∨ b).

Remark 2.4.1 The content of (a8)–(a9) (and (a14)–(a15), respectively) is that both
modalities are monotone. The four other inequations that we will consider are rem-
iniscent of inequations that hold of � and ♦ in an S4 modal algebra. �A → A and
�A → ��A are theorems of S4 (when → is material implication)—together with
their duals A → ♦A and ♦♦A → ♦A. In the algebra of S4, these would turn into
�a ≤ a, �a ≤ ��a, a ≤ ♦a, and ♦♦a ≤ ♦a. However, ≤ in that context is the
order relation of a Boolean algebra. If we add the connective rules for ⪧ and ⪦ to
our kernel logics C∧ and C∨, then the logics we get algebraize into A∧

m and A∨
m,

respectively. (We leave the easy verification of this to the reader.) Hence, we denote
these logics by C∧

m and C∨
m.

Definition 2.4.2 A frame for C∨
m is as in Definition 2.3.1 with two new binary

relations R⪧ and R⪦ added, for which (f11)–(f17) hold.
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(f11) R⪧ ⊆ U 2, R⪦ ⊆ U 2;
(f12) ∀α ∀β ∀α′ ∀β ′((α′ 
 α ∧ β 
 β ′ ∧ R⪧αβ) ⇒ R⪧α′β ′);
(f13) ∀α ∀β ∀α′ ∀β ′((α′ 
 α ∧ β 
 β ′ ∧ R⪦αβ) ⇒ R⪦α′β ′);
(f14) ∀α R⪧αα;
(f15) ∀α ∀β ∀γ ((R⪧γα ∧ R⪧αβ) ⇒ R⪧γβ);
(f16) ∀α ∀β (R⪦αβ ⇒ α 
 β);
(f17) ∀α ∀β (R⪦αβ ⇒ ∃γ (R⪦αγ ∧ R⪦γβ)).

Informally, R⪧ and R⪦ may be thought of as accessibility relations on situations
(like the accessibility relation in normal modal logics, e.g., in Kripke 1963, 1959).
(f12) and (f13) give the tonicity for R⪧ and R⪦, moreover the same tonicity: R⪧↓↑
and R⪦↓↑. (f14) and (f15) require R⪧ be reflexive and transitive. (f17) is the dual of
(f15) and expresses density (like the frame condition corresponding to ��A ⊃ �A
in the case of normal modal logics). Lastly, (f16) means that R⪦ is a subrelation of
.

Remark 2.4.2 We could have defined our logics by axiom systems without includ-
ing the analogs of axioms (T) and (4) (or (♦T) and (♦4)). Then, (a10)–(a13) would
not hold in the Lindenbaum algebra, and (f13)–(f16) could be omitted from among
the frame conditions.

Next, Definition 2.3.2 is extended with clauses for ⪧ and ⪦.

Definition 2.4.3 Amodel for C∨
m is a model on a frame for C∨

m with Definition 2.3.2
extended with (m6) and (m7).

(m6) α � ⪧A iff ∃β (R⪧βα ∧ β � A);
(m7) α � ⪦A iff ∃β (R⪦βα ∧ β � A).

The truth of the following lemma, which adds two cases to Lemma 2.3.3, is
practically immediate from (f12) and (f13) together with (m6) and (m7). (We omit
the details of the proof.)

Lemma 2.4.4 ‖⪧A‖ ∈ C(U ) and ‖⪦A‖ ∈ C(U ).

Now we can extend Theorem 2.3.4.

Theorem 2.4.5 The modal logic C∨
m is sound for the class of models from Defini-

tion 2.4.3.

Proof We give three of the cases that pertain to ⪦. One of the ⪧ cases is analogous,
and the two others are easy (hence, omitted).
1. Let us assume that β ∈ ‖⪦(A ∨ B)‖. Then ∃α (R⪦αβ ∧ α ∈ ‖A ∨ B‖). Using
(m2) fromDefinition 2.3.2 and properties of the metalanguage quantifier, we get that
∃α (R⪦αβ ∧ α ∈ ‖A‖) and ∃α (R⪦αβ ∧ α ∈ ‖B‖). This means, by (m2) again, that
β ∈ ‖⪦A‖, and symmetrically, β ∈ ‖⪦B‖.
2. We prove that ‖⪦A‖ ⊆ ‖A‖. Let β ∈ ‖⪦A‖, that is, ∃α (R⪦αβ ∧ α ∈ ‖A‖). By
(f16), we know that α 
 β, and by Lemma 2.4.4, β ∈ ‖A‖.
3. To show that (a13) holds when the frame has property (f17), let us assume that
β ∈ ‖⪦A‖. By (m7), ∃α (R⪦αβ ∧ α ∈ ‖A‖). However, (f17) then guarantees that
R⪦αγ and R⪦γβ hold for some γ . Hence, γ ∈ ‖⪦A‖ and so β ∈ ‖⪦⪦A‖. �
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We add the definitions of two relations to the previously described canonical
frame.

Definition 2.4.6 The canonical frame for C∨
m is as in Definition 2.3.5 with two

binary relations, R⪧ and R⪦, added that satisfy (c4) and (c5).

(c4) R⪧αβ iff ∀a (a ∈ α ⇒ ⪧a ∈ β),
(c5) R⪦αβ iff ∀a (a ∈ α ⇒ ⪦a ∈ β).

Lemma 2.4.7 The canonical frame of C∨
m is a frame for the logic according to

Definition 2.4.2.

Proof As sample steps we prove two properties, and leave the rest to the reader.
1. For (f12), let us assume the antecedent of the universally quantified condition.
And let us also assume that a ∈ α′. Then, a ∈ α, because α′ 
 α, hence⪧a ∈ β. But
β 
 β ′, which means that R⪧α′β ′, as we needed to show.
2. Since (a10) holds, (f14) is stipulated in a structure for C∨

m. Let us assume that
α ∈ I, that is, α is a canonical situation. Since (a10) holds, ⪧a ∈ α whenever a is an
element of α. That is, R⪧αα. �

We also have to prove that the canonical valuation—the definition of which is
unchanged—but which is extended with (m6) and (m7) leaves Lemma 2.3.12 true.
(We do not repeat the lemma, which remains the same word by word; however, we
add two steps to the proof.)

Proof We add two cases to the previous proof.
6. To continue the structural induction, let us assume that the formula is ⪦A. If
α ∈ ‖⪦A‖, then ∃β (R⪦βα ∧ β ∈ ‖A‖). By hypothesis, [A] ∈ β, and then [⪦A] ∈
α due to the definition of R⪦. For the other direction, let us start with [⪦A] ∈ α. The
principal cone ([A]] is an ideal, and ∀[C] ([C] ∈ ([A]] ⇒ [⪦C] ∈ α), because of the
monotonicity of ⪦. By hypothesis, ([A]] ∈ ‖A‖, hence, ([A]] is suitable for β in
∃β (R⪦βα ∧ β ∈ ‖A‖). That is, α ∈ ‖A‖, as we had to show. �

7. Let us assume thatα � ⪧A, that is, ∃β (R⪧βα ∧ β � A). By inductive hypothesis,
[A] ∈ β, hence by the definition of R⪧, [⪧A] ∈ α.

For the other direction, we start with the latter as our assumption. We take for β

the principal ideal generated by [A], that is, ([A]]. If [B] ∈ β, then [B] ≤ [A], and
by the monotonicity of⪧, [⪧B] ≤ [⪧A]. However, then [⪧B] ∈ α, because α ∈ I. In
other words, ∀[B] ([B] ∈ β ⇒ [⪧B] ∈ α), which means that R⪧βα. Since [A] ∈ β,
β � A. Then, ∃β (R⪧βα ∧ β � A), and so α � ⪧A, as we need. �

As before, Lemma 2.4.7 (canonical frame lemma), Theorem 2.4.5 (soundness the-
orem),Lemma2.3.13 (separation lemma), and the expandedversionofLemma2.3.12
(truth lemma) imply completeness, which is the next theorem.

Theorem 2.4.8 (Completeness) C∨
m is complete with respect to its class of frames

from Definition 2.4.2.

Now we give a semantics for C∧
m, and then we will return to further expansions

in both groups of logics.
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2.5 Semantics for Logics with Conjunction

We have been emphasizing the duality between ∧ and ∨ that stretches into the rela-
tional semantics. However, the following semantics utilizes an idea in the modeling
of +, the analog of which we did not use in the previous section. The following
semantics is more “usual” than the semantics we introduced in the previous sections;
hence, we will present it in a more concise way.

Definition 2.5.1 A structure for C∧
m (fromDefinition 2.4.1) is F = 〈U, ι,
, R, R+,

R⪧, R⪦〉, where (s0)–(s11) hold. (X,Y , and Z are metavariables that range over
propositions in a model on F.)

(s0) U �= ∅, ι ∈ U , 
 ⊆ U 2, R ⊆ U 3, R+ ⊆ U 3, R⪧ ⊆ U 2, R⪦ ⊆ U 2;
(s1) ∀α α 
 α, ∀α ∀β ∀γ ((α 
 β ∧ β 
 γ ) ⇒ α 
 γ );
(s2) ∀α ∀β ∀γ ∀α′ ∀β ′ ∀γ ′ ((α′ 
 α ∧ β ′ 
 β ∧ γ 
 γ ′ ∧ Rαβγ ) ⇒ Rα′β ′γ ′);
(s3) ∀α ∀β (Rιαβ ⇔ α 
 β);
(s4) ∀α ∀β ∀γ ∀δ (∃ϑ (Rϑγ δ ∧ Rαβϑ) ⇔ ∃ϑ (Rαϑδ ∧ Rβγϑ));
(s5) ∀α ∀β ∀γ ∀δ ∀ϑ ((Rαβϑ ∧ Rϑγ δ) ⇒ ∃ϑ (Rαγϑ ∧ Rϑβδ));
(s6) ∀α ∀β ∀γ ∀α′ ∀β ′ ∀γ ′ ((α′ 
 α ∧ β ′ 
 β ∧ γ 
 γ ′ ∧ R+αβγ ) ⇒ R+α′β ′γ ′);
(s7) ∀α ∀β ∀γ (R+αβγ ⇒ R+βαγ );
(s8) ∀α ∀β ∀γ ∀ε (∃δ (R+αβδ ∧ R+δγ ε) ⇔ ∃ϑ (R+αϑε ∧ R+βγϑ));
(s9) ∀α ∀β ∀γ ∀δ ∀ν ((R+αγ δ ∧ R+βνδ ∧ α ∈ X ∧ β ∈ Y ∧ γ ∈ Z ∧ ν ∈ Z)⇒

∃ϕ ∃ψ ∃ε ∃π (ϕ ∈ X ∧ ψ ∈ Y ∧ π ∈ Z ∧ ϕ 
 ε ∧ ψ 
 ε ∧ R+επδ));
(s10) ∀α ∀β ∀γ ∀δ ∀ε ((Rαεδ ∧ R+βγ ε) ⇒ ∃ϑ (Rαβϑ ∧ R+ϑγ δ));
(s11) ∀α ∀β ∀α′ ∀β ′ ((α′ 
 α ∧ β 
 β ′ ∧ R⪧) ⇒ αβR⪧α′β ′);
(s12) ∀α ∀β ∀α′ ∀β ′ ((α′ 
 α ∧ β 
 β ′ ∧ R⪦) ⇒ αβR⪦α′β ′);
(s13) ∀α ∀β (R⪧βα ⇒ β 
 α);
(s14) ∀α ∀β (R⪧βα ⇒ ∃ γ (R⪧βγ ∧ R⪧γα));
(s15) ∀α R⪦αα;
(s16) ∀α ∀β ∀γ ((R⪦βα ∧ R⪦γβ) ⇒ R⪦γα).

Remark 2.5.1 U is a set of situations with an element ι, which is the logical situa-
tion. The relation 
 pre-orders the situations, whereas the R relations cater for the
modeling of the connectives. The tonicities of the relations are R↓↓↑, R+ ↓↓↑, R⪧↓↑,
R⪦↓↑. Some of these conditions state more than what is required for C∧

m. In particu-
lar, (s6), (s11), and (s12) stipulate anti-tonicity for argument places of the respective
accessibility relations that are not utilized. These stronger-than-necessary conditions
are forward looking, in the sense that they do not interfere with completeness (or
soundness), and they point toward straightforward extensions of C∧

m.
(s4) and (s5) guarantee associativity and commutativity for ◦. (s7) and (s8) do

the same for +. (s9) may require some further explanation. There is a clear paral-
lel between the definitions of the modal operations in the Kripke-style semantics
of normal modal logics and how they distribute over conjunction or disjunction.
The distribution type of + (i.e., +: ∧,∧ −→ ∧) would lead along those lines to
the definition γ � A + B iff ∀α ∀β (R+αβγ ⇒ (α � A ∨ β � B)). Definition 2.5.2,
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however, defines the satisfaction for a formula A + B differently, by (n5). There-
fore, to guarantee that ‖(A + C) ∧ (B + C)‖ ⊆ ‖(A ∧ B) + C‖, we have to impose
a condition on the structure (with reference to models). (s9) refers to X,Y , and Z ,
which are sets of situations. Propositions are cones that are selected in a model. In the
canonical model, they are easily distinguishable, because they are principal cones of
situations that are generated by a principal cone in the Lindenbaum algebra. (That
is, the proposition ‖A‖ is [[[A])).)
Definition 2.5.2 A model for C∧

m is M = 〈F, v〉, where F is a structure as in Defi-
nition 2.5.1, and v is a valuation of type v : P −→ C. v gives rise to a satisfiability
relation by (n0)–(n7).

(n0) α � p iff α ∈ v(p);
(n1) α � t iff ι 
 α;
(n2) α � A ∧ B iff α � A and α � B;
(n3) α � A ◦ B iff ∃β ∃γ (Rβγα ∧ β � A ∧ γ � B);
(n4) α � A → B iff ∀β ∀γ ((Rαβγ ∧ β � A) ⇒ γ � B);
(n5) α � A + B iff ∃β ∃γ (R+βγα ∧ β � A ∧ γ � B);
(n6) α � ⪧A iff ∃β (R⪧βα ∧ β � A);
(n7) α � ⪦A iff ∃β (R⪦βα ∧ β � A).

Lemma 2.5.3 (Heredity lemma) For all formulas A, ‖A‖ ∈ C(U ).

Proof The claim holds for p ∈ P by the specification of v. ‖ t‖ = ↑ι by (n1). C is
closed under ∩, hence, ‖A ∧ B‖ ∈ C according to (n2). The cases for the intensional
connectives—including+with its unconventional definition—are all similar to each
other with the exception of the case for →, which we detail here. Let us assume that
α � A → B and α 
 ε. Were ε � A → B, we would have that Rεβγ and β � A but
γ � B. Rεβγ implies Rαβγ by (s2), and together with β � A, we have that γ � B.
The contradiction means that ε ∈ ‖A → B‖, as we aimed to demonstrate. �

Theorem 2.5.4 (Soundness) If A is a theorem of C∧
m, then ↑ι ⊆ ‖A‖ in any model

M, from Definition 2.5.2.

Proof Parts of the proof are easy or similar to proofs of soundness for certain impli-
cational logics.8 (Hence, we leave most of the proof to the reader.)
1. First, we prove that ‖ t ◦ A‖ = ‖A‖. From left to right, we assume that α ∈
‖A‖. Having combined (s1) and (s3), we have that Rιαα. By (n1) and (n3), it is
immediate that α ∈ ‖ t ◦ A‖. For the other inclusion, let us suppose the latter. By
(n3), ∃ι′ ∃β (Rι′βα ∧ ι′ ∈ ‖ t‖ ∧ β ∈ ‖A‖). From (n1), we obtain that ι 
 ι′, hence,
by (s2), Rιβα. Then, β 
 α by (s3), and ‖A‖ ∈ C implies that α ∈ ‖A‖.
2. Next, we prove that ‖A + B‖ = ‖B + A‖. We start with γ � A + B, that is,
∃α ∃β (R+αβγ ∧ α � A ∧ β � B). The frame condition (s7) gives that R+βαγ ,
hence it is obvious that ∃β ∃α (R+βαγ ∧ β � B ∧ α � A), that is, γ � B + A.
3. Third, we show that+ distributes over∧ into∧—despite its somewhat unconven-
tional definition. Let δ ∈ ‖(A ∧ B) + C‖. (n5) gives us that ∃α ∃γ (R+αγ δ ∧ α �

8 See, for example, Dunn (1991, 1993), Bimbó (2007, 2014) and Bimbó and Dunn (2008).
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A ∧ B ∧ γ � C). However, then α � A as well as α � B. We may recuperate
the two α’s separately, and thereby we get both δ � A + C and δ � B + C, i.e.,
δ � (A + C) ∧ (B + C).

For the other direction, we assume that δ ∈ ‖(A + C) ∧ (B + C)‖. That is,
δ ∈ ‖A + C‖ and δ ∈ ‖B + C‖. By (n5), ∃α ∃γ (R+αγ δ ∧ α � A ∧ γ � C) and
∃β ∃ν (R+βνδ ∧ β � B ∧ ν � C). ‖D‖ is a proposition in the model, for any D,
and hence we can use (s9). Having detached the antecedent of the universally
quantified conditional, we have for some ϕ,ψ, π and ε that R+επδ as well as
ϕ ∈ ‖A‖, ψ ∈ ‖B‖, ϕ 
 ε, ψ 
 ε, and π ∈ ‖C‖. Using Lemma 2.5.3, we have
that ε ∈ ‖A‖ and also ε ∈ ‖B‖. Then δ � A + C as well as δ � B + C, giving
δ ∈ ‖(A + C) ∧ (B + C)‖ as we need for the distribution type of +.
4. We show that ⪧ behaves as desired. Since ⪧ does not distribute over ∧ (unlike
� does in normal modal logics), (n6) resembles the truth condition for ♦. First, we
prove that ‖⪧(A ∧ B)‖ ⊆ ‖⪧A‖. If β � ⪧(A ∧ B), then ∃α (R⪧αβ ∧ α � A ∧ B).
From α � A and α � B, we use the former, and in one step, we obtain β � ⪧A.
5. Let us assume that α � ⪧A. Then ∃β (R⪧βα ∧ β � A), and by (s13), β 
 α.
Then, Lemma 2.5.3 guarantees that α � A.
6. Lastly, we show that the density of the R⪧ relation suffices for ‖⪧A‖ ⊆ ‖⪧⪧A‖.
From α � ⪧A, we get R⪧βα where β � A, for some β. But by (s14), there is a γ �st
R⪧βγ ; hence, γ � ⪧A, but then this, with R⪧γα, yields α � ⪧⪧A. �

Definition 2.5.5 The canonical structure for C∧
m is F = 〈F, ι,⊆, R, R+, R⪧, R⪦〉,

where the components are given by (c0)–(c5).

(c0) F is the set of non-empty filters on A∧
m; ⊆ is set inclusion;

(c1) ι = { a ∈ A : [ t ] ≤ a };
(c2) Rαβγ iff ∀a ∀b ((a ∈ α ∧ b ∈ β) ⇒ a ◦ b ∈ γ );
(c3) R+αβγ iff ∀a ∀b ((a ∈ α ∧ b ∈ β) ⇒ a + b ∈ γ );
(c4) R⪧αβ iff ∀a (a ∈ α ⇒ ⪧a ∈ β);
(c5) R⪦αβ iff ∀a (a ∈ α ⇒ ⪦a ∈ β).

Remark 2.5.2 The defining clauses for the accessibility relations associated to the
connectives ◦, +, ⪧, and ⪦ are lookalikes, which is in concordance with (n3), (n5)–
(n7). The differences between ⪧ and ⪦ are confined to their properties that are
expressed by the inequations (a10)–(a13).

Lemma 2.5.6 The canonical structure of C∧
m (from Definition 2.5.5) is a structure

for the logic in the sense of Definition 2.5.2.

Proof Most of the proof goes along lines that are similar to proofs from relevance
logics. We focus on the frame conditions for the connectives + and ⪦ (and we omit
some other details). Notice that (s6) and (s12) hold because of the clauses (c3) and
(c5).
1. To prove (s7), we start with R+αβγ and the assumption that some arbitrary
elements a and b, a ∈ α and b ∈ β. Since a + b ∈ γ and b + a = a + b, R+βαγ

holds.
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2. Next,we assume that the antecedent of the conditional in (s8) is the case.Wedefine
ϑ = { d : ∃b ∃c (b ∈ β ∧ c ∈ γ ∧ b + c ≤ d) }. Informally, ϑ = [β + γ ). If b ∈ β

and c ∈ γ , then obviously, b + c ∈ ϑ , which means that R+βγϑ . If d ∈ ϑ , then
there are b ∈ β and c ∈ γ �st b + c ≤ d by the definition of ϑ . Let also a ∈ α. By the
initial assumption, a + b ∈ δ, hence (a + b) + c ∈ ε. (a + b) + c = a + (b + c),
and so a + (b + c) ≤ a + d implies that a + d ∈ ε. This means that R+αϑε.
3. The next definition will specify the canonical valuation, however in a rather
unsurprising fashion. Thus, we will use here already what we prove a bit later,
namely, for any A, ‖A‖ = { α ∈ F : [A] ∈ α }. In other words, ‖A‖ = [[[A])), the
set of canonical situations that make the formulaA true constitute an upward closed
set of situations with the least element being the principal cone generated by the
equivalence class of A.

Now, if R+αγ δ and R+βνδ, where α ∈ ‖A‖, β ∈ ‖B‖, and γ, ν ∈ ‖C‖, for some
A,B, and C, then there are ϕ and ψ generating the former two propositions. That
is, ‖A‖ = [ϕ) and ‖B‖ = [ψ). Since [A] ∈ ϕ and [B] ∈ ψ , and [C] ∈ γ, ν, both
[A + C] and [B + C] are elements of δ. Of course, then [(A + C) ∧ (B + C)] ∈ δ

too, because δ ∈ F. The least element in [ϕ) ∩ [ψ), let us say, ε satisfiesA ∧ B, and
the least element in ‖C‖, let us say, π satisfies C. Also, R+επδ, because [(A + C) ∧
(B + C)] = [(A ∧ B) + C].
4. To prove (s15), we take an α ∈ F and assume that a ∈ α. This condition is linked
to inequation (a12), which together with the assumption implies that ⪦a ∈ α. Then,
by (c5) from Definition 2.5.5, we have that R⪦αα.
5. Finally, let R⪦βα and R⪦γβ hold. Toward the goal of showing that R⪦γα obtains,
let c ∈ γ . Then⪦a ∈ β, and further⪦⪦a ∈ α. But (a13) guarantees that⪦⪦a ≤ ⪦a,
hence ⪦a ∈ α. �

Definition 2.5.7 The canonical model M is defined on the canonical structure F by
choosing v as in (c6).

(c6) v(p) = { α ∈ F : [p] ∈ α } and v( t) = [ι).
In words, an atomic formula is mapped into the set of filters that contain its

equivalence class, and the interpretation of t is the set of situations that expand the
logical situation ι.

Lemma 2.5.8 The canonical valuation extended to� has the property that α ∈ ‖A‖
iff [A] ∈ α.

Proof The cases for p and t are self-evident from the above definition.
1. The following series of iff’s suffices for the conjunction case. α ∈ ‖A ∧ B‖ iff
α ∈ ‖A‖ and α ∈ ‖B‖ iff [A] ∈ α and [B] ∈ α iff [A ∧ B] ∈ α.
2. Let γ ∈ ‖A + B‖. By (c3), ∃α ∃β (R+αβγ ∧ α ∈ ‖A‖ ∧ β ∈ ‖B‖). By hypothe-
sis, [A] ∈ α and [B] ∈ β. The canonical definition of R+ gives us that [A] + [B] ∈ γ .

For the other direction, let [A + B] ∈ γ . The filters [[A]) and [[B]) are elements
of ‖A‖ and ‖B‖, respectively, by the hypothesis of the induction. Were [C] ≥ [A]
and [D] ≥ [B], we would have [A + B] ≤ [C + D]. That is, for any such C and D,
[C + D] ∈ γ . By (c3), this establishes that R+[[A])[[B])γ , hence γ ∈ ‖A + B‖.
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In lieu of three more cases, we note that the reasoning in case 2 depended on
the tonicity of the connective, the satisfiability condition, and the kind of definition
of the canonical relation, which are “shared” between ◦, +, ⪧, and ⪦. For →, we
note that this connective is the residual of ◦. The claim for A → B follows from
(n4) along well-known lines. (There is no need for a squeeze lemma here—unlike
in Routley and Meyer (1973), for instance—because the canonical situations are not
prime theories.) �

Lemma 2.5.9 If t ⊯A → B, then there is an α �st α ∈ ‖A‖ but α /∈ ‖B‖.
Proof The condition means that [B] /∈ [[A]), but of course, [A] ∈ [[A]). That is,
[[A]) will do for our α. �

Corollary 2.5.10 Each proposition in the canonical model is of the form [[[A])).
Remark 2.5.3 Principal cones are disagreeable and pleasant at the same time. They
are rare (which is unfortunate). But they provide an easy way to avoid complicated
objects in a model, and they ground the propositions in the canonical model, which
allows for an elegant characterization of propositions.

2.6 Further Additions to the Kernel Logics

The kernel logics did not include any of the structural rules—whether modalized
or not. It is reasonable to assume that the structural rules are added in pairs, which
ensures that the resulting sequent calculuses continue to admit the cut rule. Accord-
ingly, we specify ten (in)equations, which we think of as five pairs.

Definition 2.6.1 The following five pairs of (in)equations may be added to the alge-
bras A∧

m and A∨
m:

(k1) a ◦ ⪧b ≤ a, (k2) a ≤ ⪦b + a,
(w1) ⪧a ≤ ⪧a ◦ ⪧a, (w2) ⪦a + ⪦a ≤ ⪦a,
(l1) ⪧a ◦ ⪧b = ⪧(a ∧ b), (l2) ⪦(a ∨ b) = ⪦a + ⪦b,
(K1) a ◦ b ≤ a, (K2) a ≤ b + a,
(W1) a ≤ a ◦ a, (W2) a + a ≤ a.

Remark 2.6.1 The labels are intended to be suggestive: the k’s and w’s hint at the
combinators K and W, and through them to the thinning and contraction rules. The
lowercase letters indicate the result of the addition of modalized rules, and the l’s
include the k’s and w’s. (Of course, including (l1) requires ∧, and (l2) needs ∨, and
hence from this pair only one can be added to A∧

m or A∨
m.)

If all the structural rules are included, then the rules for ∧ and ◦, and the rules
for ∨ and + become equivalent; furthermore, ∧ and ∨ distribute over each other.
That is, we can no longer exclude one or the other connective, and we essentially
have a positive S4-like modal logic (with a distributive lattice in the background).
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The semantics could be simplified in the latter case, giving a much more familiar
semantics.

We will focus on the effect of the modalized structural rules in this brief section.
We indicate the addition of pairs of rules to a logic or thematching pairs of inequations
to an algebra by the subscripts k, w, and l, which replace the subscript m.

First, we expand the semantics that we defined for C∨
m.

Definition 2.6.2 A frame for C∨
m is extended by the following clauses when the

inequations in Definition 2.6.1 hold in A∨
m:

(fk1) ∀α ∀β ∀γ ∀δ ((Rαβγ ∧ R⪧δβ) ⇒ γ 
 α), ‖A‖ �= ∅, for any A;
(fk2) ∀α ∀β ∀γ ∀δ ((R+αβγ ∧ R⪦δα) ⇒ β 
 γ );
(fw1) ∀α ∀β ∀γ ∀δ ((R⪧δγ ∧ Rαβγ ) ⇒ (R⪧δα ∨ R⪧δβ));
(fw2) ∀γ ∀δ (R⪦δγ ⇒ ∃ε (R⪦δε ∧ R+εεγ ));
(fl2) ∀α ∀β ∀γ ∀ε ∀ϑ ((R+αβγ ∧ R⪦εα ∧ R⪦ϑβ) ⇒ ∃δ (R⪦δγ ∧ ε 
 δ ∧ ϑ 
 δ)),

∀α ∀β (R⪦αβ ⇒ ∃γ (R⪦αγ ∧ R+γ γβ)).

Remark 2.6.2 We have not introduced any new connectives or changed the satisfi-
ability conditions for the existing ones. This means that we can use Definition 2.4.3
for a model without modifying it.

The proof of the following theorem is straightforward, and hence we omit the
details.

Theorem 2.6.3 (Soundness) If A is a theorem of C∨
k (C∨

w, C
∨
l ), then ‖A‖ ⊆ I in

any model on a frame for C∨
m with the respective frame conditions added.

The definitions of the canonical frame and of the canonical model are unaltered
from Definitions 2.4.6 and 2.4.3.

Lemma 2.6.4 The canonical frame satisfies (fx) when the algebra of the logic sat-
isfies the inequation (x), where x ∈ { k1, k2,w1,w2, l2 }.
Proof We provide a couple of sample steps from the proof, and leave the rest to the
reader.
1. Let us prove that (fk1) holds. Let Rαβγ and R⪧δβ hold, and let a ∈ γ . We want
to show that a ∈ α. γ ∈ I and a ◦ ⪧b ≤ a, hence a ◦ ⪧b ∈ γ . From the definition
of R⪧, we get that ∃c (c ∈ δ ∧ ⪧c /∈ β). But b was arbitrary, that is, a ◦ ⪧c ∈ γ too.
Then, the definition of R with ⪧c /∈ β implies that a ∈ α. In sum, γ ⊆ α.
2. To establish (fw2) on the canonical frame, let us assume that R⪦δγ . Let us take
ε be (⪦δ], that is, the ideal generated by the elements ⪦a where a ∈ δ. Obviously,
R⪦δε, by (c5) in Definition 2.4.6. If b ∈ ε, then there is a ⪦a ∈ ε �st b ≤ ⪦a and
a ∈ δ. However, the latter and our original assumption imply that ⪦a ∈ γ . By (w2),
⪦a + ⪦a ≤ ⪦a, hence ⪦a + ⪦a ∈ γ , and so R+εεγ . �

Theorem 2.6.5 The logics C∨
k (C∨

w, C
∨
l ) are complete with respect to their classes

of frames.
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Now we turn to the group of logics that contain conjunction.

Definition 2.6.6 A structure for C∧
m is extended by the following clauses when the

inequations in Definition 2.6.1 hold in A∧
m.

(sk1) ∀α ∀β ∀γ ∀δ ((Rαβγ ∧ R⪧δβ) ⇒ α 
 γ ), ‖A‖ �= ∅, for any A;
(sk2) ∀γ ∀δ ∃α (R⪦δα ∧ R+αγ γ );
(sw1) ∀γ ∀δ (R⪧δγ ⇒ ∃ε (R⪧δε ∧ Rεεγ ));
(sw2) ∀α ∀β ∀γ ∀ε ∀ϑ ((R+αβγ ∧ R⪦εα ∧ R⪦ϑβ) ⇒ ∃δ (R⪦δγ ∧ (ε 
 δ ∨ ϑ 
 δ)));
(sl1) ∀α ∀β ∀γ ∀ε ∀ϑ ((Rαβγ ∧ R⪧εα ∧ R⪧ϑβ) ⇒ ∃δ (R⪧δγ ∧ ε 
 δ ∧ ϑ 
 δ)),

∀γ ∀δ (R⪧δγ ⇒ ∃α (R⪧δα ∧ Rααγ )).

Once again, we state the soundness theorem and leave filling out the details of its
proof to the reader. (The steps are easy, because the conditions on the structure are
directly applicable.)

Theorem 2.6.7 (Soundness) If A is a theorem of C∧
k (C∧

w, C
∧
l ), then I ⊆ ‖A‖ in

any model on a frame for C∧
m with the respective conditions for each logic added.

Once again, the definitions of the canonical structure and of the canonical model
are unchanged from Definitions 2.5.5 and 2.5.7.

Lemma 2.6.8 The canonical structure satisfies (sx) when the algebra of the logic
satisfies the inequation (x), where x ∈ { k1, k2,w1, l1 }.
Proof We prove some of the cases in detail and leave the others to the reader. For
variety, we deal with the conditions for the three inequations that were not considered
in the proof for the ideal semantics.
1. Weprove that (sk2) holds on the canonical frame. Let γ and δ be given.We set α to
be the filter generated by {⪦b : b ∈ δ }. This definition guarantees that R⪦δα holds. If
c ∈ α, then there is a⪦b ∈ α �st⪦b ≤ c and b ∈ δ. For any a ∈ γ , a ≤ ⪦b + a, which
puts ⪦b + a into γ . Since ⪦b ≤ c, ⪦b + a ≤ c + a. This establishes that R+αγ γ .
2. For (sw1), let us assume that R⪧δγ is the case. We define ε as [⪧δ), which right
away gives us that R⪧δε. If ⪧d1,⪧d2 ∈ ε, then d1, d2 ∈ δ. Hence, d1 ∧ d2 ∈ δ and
⪧(d1 ∧ d2) ∈ ε, and also ⪧(d1 ∧ d2) ∈ γ . The following chain of inequations shows
that ⪧d1 ◦ ⪧d2 ∈ γ . ⪧(d1 ∧ d2) ≤ ⪧(d1 ∧ d2) ◦ ⪧(d1 ∧ d2) ≤ ⪧d1 ◦ ⪧d2. Thus,
Rεεγ , as we intended to prove.
3. (sl1) has two parts. Let us assume the antecedent of the first clause. We consider
[ε, ϑ) for δ. This clearly ensures that ε ⊆ δ and ϑ ⊆ δ. If d ∈ δ, then a ∧ b ≤ d for
some a ∈ ε and b ∈ ϑ . By the assumption,⪧a ∈ α and⪧b ∈ β as well as⪧a ◦ ⪧b ∈
γ . However, ⪧a ◦ ⪧b ≤ ⪧(a ∧ b) ≤ ⪧d, meaning ⪧d ∈ γ and R⪧δγ .

Now let R⪧δγ hold. We define α as [⪧δ) and show that it is in the desired
relationship with δ and γ . Well, R⪧δα follows by α’s definition. If a, b ∈ α, then
there are⪧c ≤ a and⪧d ≤ b �st c, d ∈ δ and c ∧ d ∈ δ. Then⪧(c ∧ d) ≤ a ∧ b, and
⪧(c ∧ b) ∈ γ . By the monotonicity of ◦,⪧c ◦ ⪧d ≤ a ◦ b, but⪧(c ∧ d) ≤ ⪧c ◦ ⪧d,
which shows that a ◦ b ∈ γ , and therefore Rααγ . �

Theorem 2.6.9 The logic C∧
k is complete with respect to its class of structures.
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Remark 2.6.3 The last theorem does not claim completeness for C∧
w or C∧

l , and
Lemma 2.6.8 does not include the (sw2) condition. Although (sw2) is sufficient for
‖⪦A + ⪦A‖ ⊆ ‖⪦A‖ to hold in a model, and perhaps the condition is even minimal
in some sense, it seems not to be provable on the canonical frame.

We leave dealing with the non-modalized inequations for another occasion.
Here, we only mention some sample conditions. In C∧, conditions that guarantee
that (K1) and (W1) hold would be the familiar ∀α ∀β ∀γ (Rαβγ ⇒ α 
 γ ) and
∀α ∀β ∀γ (Rαβγ ⇒ ∃δ (Rαβδ ∧ Rδβγ )). In C∨, we could stipulate ∀α ∀β Rαβα

together with requiring that for no A, ‖A‖ = I, for (K1). And either ∀α Rααα or
∀α ∃β ∃γ (Rβγα ∧ β 
 α ∧ γ 
 α) would guarantee that (W1) holds.

2.7 Conclusions

We investigated some ways of providing set-theoretical semantics for logics with-
out negation but with various intensional operations. In the two groups of logics we
delineated, we retained exactly one of the two lattice connectives, and argued for lift-
ing their duality to a duality in the whole outlook of the semantics. For our semantics
based on ideals, we proved a new version of the primeness (squeeze) lemma yielding
prime cones rather than prime filters. We also entertained a new interpretation of
fission. Weak positive modal logics, at least some of them, were introduced outside
of a systematic overview of variations across logics, because they are of independent
importance. Our anticipation is that the relational semantics will facilitate applica-
tions of some related techniques to obtain further results about weak positive modal
logics.
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Chapter 3
On Axioms and Rexpansions

Carlos Caleiro and Sérgio Marcelino

Abstract Westudy the general problemof strengthening the logic of a given (partial)
(non-deterministic) matrix with a set of axioms, using the idea of rexpansion. We
obtain two characterization methods: a very general but not very effective one, and
then an effective method which only applies under certain restrictions on the given
semantics and the shape of the axioms. We show that this second method covers
a myriad of examples in the literature. Finally, we illustrate how to obtain analytic
multiple-conclusion calculi for the resulting logics.

3.1 Introduction

The work reported in this paper has three underlying aims.
First, and foremost, on a higher level reading, this paper is an acclamation of

the modularization power enabled by non-deterministic matrices (Nmatrices), as
proposed and developed by Arnon Avron, along with his coauthors and students
over the past 15 years (Avron and Lev 2005; Avron 2005a, b, 2007; Avron et al.
2007; Avron and Zamansky 2011; Avron et al. 2012, 2013; Avron and Zohar 2019),
and used by many others (Marcelino and Caleiro 2017; Caleiro and Marcelino 2019;
Ciabattoni et al. 2014; Baaz et al. 2013; Caleiro et al. 2019; Marcelino and Caleiro
2019; Coniglio and Golzio 2019) when seeking for a clear semantic rendering of
logics resulting from strengthening a given base logic.
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Secondly, in the technical developments we propose, this paper can be seen as an
application of the ideas behind rexpansions (Avron and Zohar 2019) of Nmatrices,
in the form of a generalization of the systematic method put forth in Ciabattoni et al.
(2014) for obtaining modularly a suitable semantics for a given logic strengthened
with additional axioms (and new unary connectives). Expectedly, the method may
yield in general a partial non-deterministic matrix (PNmatrix) (Baaz et al. 2013),
partiality being a feature that adds to the conciseness of Nmatrices but which is
known to contend with analyticity.

Last but not least, this paper is an opportunity for putting into practice the tech-
niques developed in Marcelino and Caleiro (2019); Caleiro and Marcelino (2019)
for obtaining an analytic multiple-conclusion calculus for the logic defined by any
finite PNmatrix (under a reasonable expressiveness proviso). This is in contrast with
comparable results for sequent-like calculi (Baaz et al. 2013; Ciabattoni et al. 2014),
for which partiality seems to devoid them of a usable (even if generalized) subfor-
mula property capable of guaranteeing analyticity (and elimination of non-analytic
cuts).

The paper is organized as follows. In Sect. 3.2, we recall (or suitably adapt) the
necessary notions about logics, their syntax and semantics. Section3.3 presents two
methods for using rexpansions in order to obtain semantic characterizations of the
strengthening with additional (schema) axioms Ax of the logic of a given PNmatrix
M. The first method, presented in Sect. 3.3.1, is completely general but unfortunately
produces an infinite PNmatrix even when a finite one would be available. In order to
overcome this drawback, in Sect. 3.3.2, we present another more economic method,
generalizing (Ciabattoni et al. 2014), which, under suitable requirements, always pro-
vides a finite PNmatrix when starting from finite M and Ax. Section3.4 is devoted to
illustrating the application of themethod of Sect. 3.3.2 to somemeaningful examples.
Then, in Sect. 3.5, we show that (under minimal expressiveness requirements on M)
the results of Marcelino and Caleiro (2019); Caleiro and Marcelino (2019) can be
used to provide analytic multiple-conclusion calculi to the strengthened logics by
exploring the semantics obtained by our method and provide illustrative examples.
We close the paper in Sect. 3.6, with some concluding remarks and topics for future
work.

3.2 Preliminaries

For the sake of self-containment, and in order to fix notation and terminology, we
start by recalling (or suitably adapting, or generalizing) a number of useful notions
and results. Instead of going through this material sequentially, the reader could as
well jump this section for the moment and refer back here whenever necessary.

A propositional signature� is a family {�(k)}k∈N of sets, where each�(k) contains
the k-place connectives of�. To simplify notation, we express the fact that © ∈ �(k)

for some k ∈ N by simply writing © ∈ �, and we write�′ ∪ � or�′ ⊆ � to denote
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the union or the inclusion, respectively, if �′ is also a signature. Given a signature
�, the language L�(P) is the carrier of the absolutely free�-algebra generated over
a given denumerable set of sentential variables P . Elements of L�(P) are called
formulas. Given a formula A ∈ L�(P), we denote by var(A) (resp. sub(A)) the
set of variables (resp. subformulas) of A, defined as usual; the extension of var
and sub, and other similar functions, from formulas to sets thereof is defined as
expected. A substitution is a member σ ∈ L�(P)P , that is, a function σ : P →
L�(P), uniquely extendable into an endomorphism ·σ : L�(P) → L�(P). Given
� ⊆ L�(P), we denote by �σ the set {Aσ : A ∈ �}. For A ∈ L�(P), define Ainst =
{Aσ : σ ∈ L�(P)P} and �inst = ⋃

A∈�

Ainst.

Given formulas A, A1, . . . , An ∈ L�(P) with var(A) ⊆ {p1, . . . , pn}, we write
A(A1, . . . , An) to denote the formula Aσ where σ(pi ) = Ai for 1 ≤ i ≤ n.

Given a signature �, a �-PNmatrix (partial non-deterministic matrix) is a struc-
ture M = 〈V, D, ·M〉 such that V is a set (of truth-values), D ⊆ V is the set of des-
ignated values, and ©M : V k → ℘(V ) is a function (truth-table) for each k ∈ N and
each k-place connective © ∈ �. When ©M(x1, . . . , xk) 
= ∅ for all x1, . . . , xk ∈ V
we say that the truth-table of © in M is total. When ©M(x1, . . . , xk) has at most one
element for all x1, . . . , xk ∈ V we say that the truth-table of © in M is deterministic.
Of course, deterministic does not imply total. Given �′ ⊆ �, we say that M is �′-
total if the truth-tables in M of the connectives © ∈ �′ are all total. Analogously, we
say that M is �′-deterministic if the truth-tables in M of the connectives © ∈ �′ are
all deterministic. When the�-PNmatrixM is�-total, or just total, it is simply called
a �-Nmatrix, or Nmatrix (non-deterministic matrix). When a �-Nmatrix M is �-
deterministic, or just deterministic, it is simply called a�-matrix, or a logical matrix.
For the sake of completing the picture, when a �-PNmatrix M is deterministic we
call it a �-Pmatrix, or Pmatrix.

Granted a �-PNmatrix M = 〈V, D, ·M〉, a M-valuation is a function v : L�(P)

→ V such that v(©(A1, . . . , Ak)) ∈ ©M(v(A1), . . . , v(Ak)) for every k ∈ N, every
k-place connective © ∈ �, and every A1, . . . , Ak ∈ L�(P). We denote the set of
all M-valuations by ValM. Given a formula A ∈ L�({p1, . . . , pn}), we extend the
usual notation for connectives and use AM : V n → ℘(V ) to denote the function
defined by AM(x1, . . . , xn) = {v(A) : v ∈ ValM with v(pi ) = xi for 1 ≤ i ≤ n} for
every x1, . . . , xn ∈ V .

As is well known, if M = 〈V, D, ·M〉 is a matrix then every function f : Q → V
with Q ⊆ P can be extended to a M-valuation (in an essentially unique way for
all formulas A with var(A) ⊆ Q). As a consequence, AM(x1, . . . , xn) is a singleton
when M is a matrix, or more generally when there is �′ ⊆ � such that A ∈ L�′(P)

and M is �′-deterministic and �′-total. If M is only known to be �′-deterministic,
we can at least guarantee that AM(x1, . . . , xn) has at most one element. When M is
a Nmatrix, however, AM(x1, . . . , xn) can be a large (non-empty) set. Still, we know
fromAvron andZamansky (2011) that a function f : � → V with� ⊆ L�(P) canbe
extended to a M-valuation provided that sub(�) ⊆ � and that f (©(A1, . . . , Ak)) ∈
©M( f (A1), . . . , f (An)) whenever ©(A1, . . . , Ak) ∈ �. In case M is a PNmatrix, in
general, one does not even have such a guarantee (Baaz et al. 2013), unless f (�) ∈
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TM = ⋃
v∈ValM ℘(v(L�(P))). In other words, given X ⊆ V , we have X ∈ TM if

the values in X are all together compatible in some valuation of M. Of course,
AM(x1, . . . , xn) 
= ∅ if {x1, . . . , xn} ∈ TM.

A set of valuations V ⊆ ValM characterizes a generalized (multiple-conclusion)
consequence relation �V ⊆℘(L�(P)) × ℘(L�(P)) defined by � �V � when for
every v ∈ V if v(�) ⊆ D then v(�) ∩ D 
= ∅. Of course, it also defines the more
usual (single conclusion) consequence relation V ⊆℘(L�(P)) × L�(P) such that
� V A when � �V {A}. In both cases, �V and V are substitution invariant, and
respectively a Scott (Scott 1974) and Shoesmith and Smiley (Shoesmith and Smiley
1978) consequence relation, or else a Tarskian consequence relation, when V is
closed for substitutions, that is, if v ∈ V and σ ∈ L�(P)P then v ◦ ( ·σ ) ∈ V .

We simplywrite�M orM, instead of�ValM orValM , respectively, and say that the
consequences are characterized byM. With respect to given consequence relations�
or , we say that M is sound if � ⊆ �M or  ⊆ M, and we say that M is complete
if �M ⊆ � or M ⊆ .

A refinement of a �-PNmatrix M = 〈V, D, ·M〉 is any �-PNmatrix M
′ =

〈V ′, D′, ·M′ 〉 with V ′ ⊆ V , D′ = D∩V ′, and ©M′(x1, . . . , xk) ⊆ ©M(x1, . . . , xk)
for every k ∈ N, every k-place connective © ∈ �, and every x1, . . . , xk ∈ V ′. It
is clear, almost by definition, that ValM′ ⊆ ValM. When it is always the case that
©M′(x1, . . . , xk) = ©M(x1, . . . , xk) ∩ V ′ then the refinement is called simple andM

′
is denoted by MV ′ . Clearly, v ∈ ValM implies that v ∈ ValMV ′ with V ′ = v(L�(P)),
and also that MV ′ is a non-empty total refinement of M. This observation justifies
the equivalent definition of TM put forth in Caleiro and Marcelino (2019).

E : V → ℘(U ) is an expansion function if E(x) 
= ∅ for every x ∈ V , and E(x) ∩
E(x ′) = ∅ if x ′ ∈ V is distinct from x . Given X ⊆ V , we abuse notation and use E(X)

to denote
⋃

x∈X E(x). One associates to E its contraction Ẽ : E(V ) → V such that,
for each y ∈ E(V ), Ẽ(y) ∈ V is the unique such that y ∈ E(Ẽ(y)). The E-expansion
of a �-PNmatrix M = 〈V, D, ·M〉 is the �-PNmatrix E(M) = 〈E(V ), E(D), ·E(M)〉
such that ©E(M)(y1, . . . , yk) = E(©M(Ẽ(y1), . . . , Ẽ(yk))) for every k ∈ N, every k-
place connective © ∈ �, and every y1, . . . , yk ∈ E(V ). By construction, it is clear
that Ẽ preserves and reflects designated values, i.e., Ẽ(y) ∈ D if and only if y ∈ E(D).
Further, given a function f : L�(P) → E(V ), f ∈ ValE(M) if and only if Ẽ ◦ f ∈
ValM.

A rexpansion of a �-PNmatrix M = 〈V, D, ·M〉 is a refinement of some E-
expansion ofM. WhenM

† = 〈V †, D†, ·M†〉 is a rexpansion ofM, we still have that if
v† ∈ ValM† then Ẽ ◦ v† ∈ ValM. Consequently, we have that Ẽ(AM†(x1, . . . , xn)) ⊆
AM(Ẽ(x1), . . . , Ẽ(xn)), for every A ∈ L�({p1, . . . , pn}) and x1, . . . , xn ∈ V †.

It is easy to see that the refinement relation, the expansion relation, and thus also
the rexpansion relation, are all transitive.

We end this section with a very simple but useful lemma.

Lemma 3.2.1 Let�′ ⊆ � andM = 〈V, D, ·M〉 be a�′-deterministic�-PNmatrix.
If M

† = 〈V †, D†, ·M†〉 is a rexpansion of M, A ∈ L�′({p1, . . . , pn}), and y, z ∈
AM†(x1, . . . , xn) then y ∈ D† if and only if z ∈ D†.
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Proof Assume that M
† is a refinement of the expansion of M with E . If y, z ∈

AM†(x1, . . . , xn) then Ẽ(y), Ẽ(z) ∈ Ẽ(AM†(x1, . . . , xn)) ⊆ AM(Ẽ(x1), . . . , Ẽ(xn)).
Since M is �′-deterministic and A ∈ L�′(P) it follows that AM(Ẽ(x1), . . . , Ẽ(xn))
has at most one element, and thus Ẽ(y) = Ẽ(z). Therefore, y ∈ D† iff Ẽ(y) ∈ D iff
Ẽ(z) ∈ D iff z ∈ D†. �

3.3 Adding Axioms

Given a signature �, a Tarskian consequence relation  over �, and Ax ⊆ L�(P),
the strengthening of  with (schema) axioms Ax is the consequence relation Ax

defined by � Ax A if and only if � ∪ Axinst  A.

Our aim is to provide an adequate (and usable) semantics for Ax, given a seman-
tic characterization of , a task that is well within the general effort of characterizing
combined logics (Caleiro et al. 2005; Marcelino and Caleiro 2016, 2017). The fol-
lowing simple result, whose (simple) proof we omit, is a corollary of Lemma 2.7
of Caleiro et al. (2019).

Proposition 3.3.1 Let M = 〈V, D, ·M〉 be a �-PNmatrix and Ax ⊆ L�(P). The
consequence relation Ax

M
is characterized by ValAx

M
= {v ∈ ValM : v(Axinst

) ⊆ D}.
Our aim in the forthcoming subsections is to design some systematic way of using

the ideas behind rexpansions for transforming M into a PNmatrix whose valuations
somehow coincide with ValAx

M
.

3.3.1 A General Construction

As a first attempt, we employ a general technique from the theory of combining
logics (Caleiro et al. 2005; Marcelino and Caleiro 2016, 2017). The overall idea,
when starting from a given PNmatrix and a set of strengthening axioms, is to pair
each formula of the logic with its possible values but guaranteeing that instances of
axioms can only be paired with designated values.

Theorem 3.3.2 Let M = 〈V, D, ·M〉 be a �-PNmatrix and Ax ⊆ L�(P).
The consequence Ax

M
is characterized by the rexpansion M

�

Ax = 〈V �

Ax, D
�

Ax, ·M�

Ax
〉 of

M defined by

• V �

Ax = {(x, A) ∈ V × L�(P) : if A ∈ Axinst then x ∈ D},
• D�

Ax = D × L�(P),
• for each k ∈ N and © ∈ �(k),

©
M

�

Ax
((x1, A1), . . . , (xk, Ak)) =
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{(x,©(A1, . . . , Ak)) ∈ V �

Ax : x ∈ ©M(x1, . . . , xn)}.

Proof We prove, in turn, that M�

Ax is a rexpansion of M, and then the soundness and
completeness of M

�

Ax with respect to Ax
M
.

Rexpansion. It is easy to see that the PNmatrix M
�

Ax is a refinement of the expan-
sion of M with E(x) = {x} × L�(P). Ẽ : V �

Ax → V is such that Ẽ(x, A) = x ,
and clearly preserves and reflects designated values. Using Proposition 3.3.1, it
suffices to show that {Ẽ ◦ v� : v� ∈ Val

M
�

Ax
} = ValAx

M
.

Note that if v� ∈ Val
M

�

Ax
and v�(A) = (x, B) then B ∈ Ainst. Namely, we have B =

Aσ where σ ∈ L�(P)P is such that σ(p) = C if v�(p) = (y,C).

Soundness. Since M
�

Ax is a rexpansion of M with E , we know that if v� ∈
Val

M
�

Ax
then Ẽ ◦ v� ∈ ValM. Further, if A ∈ Axinst and v�(A) = (x, B) then B ∈

(Axinst
)inst = Axinst and Ẽ(v�(A)) = x ∈ D. We conclude that {Ẽ ◦ v� : v� ∈

Val
M

�

Ax
} ⊆ ValAx

M
and thus that Ax

M
⊆

M
�

Ax
.

Completeness. Reciprocally, if v ∈ ValM and v(Axinst
) ⊆ D then v = Ẽ ◦ v� with

v�(A) = (v(A), A) for each A ∈ L�(P). Since v ∈ ValM, the fact that v(Axinst
) ⊆

D guarantees that v� ∈ Val
M

�

Ax
. We conclude that ValAx

M
⊆ {Ẽ ◦ v� : v� ∈ Val

M
�

Ax
}

and thus that 
M

�

Ax
⊆ Ax

M
. �

In the definition of M
�

Ax, if ©M(x1, . . . , xk) ∩ D = ∅ and moreover one has
©(A1, . . . , Ak) ∈ Axinst then ©

M
�

Ax
((x1, A1), . . . , (xk, Ak)) = ∅, which in general

explains why the resulting PNmatrix may fail to be total. Still, M�

Ax is deterministic
(actually a Pmatrix) when M is a (P)matrix. These two observations mean that the
construction actually uses partiality in a most relevant way, but not non-determinism,
which is simply imported from the starting PNmatrix. Note also that the construction,
though fully illustrative of the power of rexpansions (generalized to PNmatrices) to
accommodate new axioms, has other drawbacks. In fact, M

�

Ax is always infinite,
even if starting from a finite M. Further, the structure of M

�

Ax is quite syntactic, as it
incorporates an obvious pattern-matching mechanism for recognizing instances of
axioms into the received structure of M.

In general, it is not possible to domuch better, as it may happen thatAx
M

cannot be
characterized by a finite PNmatrix. For instance, as noted in Avron and Zohar (2019),
Avron and coauthors show inAvron (2007) that the logic resulting from strengthening
the Nmatrix characterizing the basic paraconsistent logic BK of Avron et al. (2012)
with the axiom ¬(p1 ∧ ¬p1) → ◦p1 yields a logic that cannot be characterized by
a finite Nmatrix. Thus, in order to improve on our result, it can be useful to look
for suitable ways of controlling the shape of the axioms considered, as many other
examples are known to have finite characterizations (Avron 2005a, 2007; Avron et al.
2012; Ciabattoni et al. 2014; Avron and Zohar 2019; Carnielli and Coniglio 2016).
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On the other hand, the construction of Theorem 3.3.2 unveils a very interesting
property of PNmatrices: every axiomatic extension of the logic of a finite (or denu-
merable) PNmatrix can be characterized by a denumerable PNmatrix. Just by itself,
the result entails that intuitionistic propositional logic (IPL) can be given by a single
denumerable PNmatrix, sharply contrasting with the known fact that a characteristic
matrix for IPL needs to be non-denumerable (see Gödel (1932), Wroński (1974),
Wójcicki (1998)).

Example 3.3.3 Fix a suitable signature containing the two-place connective→, and
use the method above for strengthening with the usual axioms Int of intuitionistic
logic the consequence relation characterized by the NmatrixMP = 〈{0, 1}, {1}, ·MP〉
where ©MP(x1, . . . , xk) = {0, 1} for every k-place © ∈ � such that © 
= →, and
→MP has the truth-table below.1

→MP 0 1
0 0, 1 0, 1
1 0 0, 1

It is easy to see that MP is precisely the consequence determined by the single rule
p p→q

q of modus ponens, and so 
MP

�

Int
is precisely IPL. �

This idea applies also to propositional normal (global) modal logic K.

Example 3.3.4 For simplicity, take a signature containing only the 1-placemodality
�, and the 2-place connective→. The logic determined by the rules ofmodus ponens
and necessitation, i.e., p

� p , is easily seen to be characterized by theNmatrixMP� =
〈{0, 1}, {1}, ·MP�〉 given by the truth-tables below.

→MP� 0 1
0 0, 1 0, 1
1 0 0, 1

�MP�
0 0, 1
1 1

Collecting in Norm the usual axioms of classical implication plus the normalization
axiom �(p → q) → (�p → �q) and applying Theorem 3.3.2, we get a denumer-
able PNmatrix (MP�)

�

Norm characterizing K. �
These cases suggest another possible obstacle to improving our result, namely

when the received PNmatrix is not deterministic and actually mixes designated with
undesignated values in some entry of its truth-tables. When the basis is deterministic
(enough) many examples are known to be finitely characterizable.

1 For simplicity, in this and other examples, we omit the usual brackets of set notation when describ-
ing the truth-tables.
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3.3.2 A Better (Less General) Construction

In order to improve on the construction presented in the previous subsection, we will
borrow full inspiration from the construction in Ciabattoni et al. (2014), and try to
push the boundaries of the scope of application of the underlying ideas.

Let � be a signature, fix �d ⊆ � and set U ⊆ (� \ �d)(1) to be the set of all
1-place connectives not in�d . We shall consider the set U∗ of all finite strings of ele-
ments of U (the Kleene closure of U). We shall use ε to denote the empty string, and
uw ∈ U∗ to denote the concatenation of strings u, w ∈ U∗.We use prfx(w) to denote
the set of all prefixes of stringw, including ε. Givenw ∈ U∗ and A ∈ L�(P)we will
use wA to denote the formula defined inductively by εA = A, and •wA = •(wA)

if • ∈ U .

Definition 3.3.5 Let © ∈ � be a k-place connective. �d -simple formulas based on
© are formulas B ∈ L�({p1, . . . , pk}) such that B = Aσ for some structure formula
A ∈ L�d ({q1, . . . , qn, r1, . . . , rm}) and some substitution σ for which

• σ(qi ) = wi p j with wi ∈ U∗ and 1 ≤ j ≤ k, for each 1 ≤ i ≤ n, and
• σ(rl) = ul©(p1, . . . , pk) with ul ∈ U∗, for each 1 ≤ l ≤ m.

For ease of notation, we will simply write

A(. . . wi p j . . . ul©(p1, . . . , pk) . . . )

for a generic �d -simple formula based on ©.

The look-ahead set induced by B is 	B = (∪n
i=1 prfx(wi )) ∪ (∪m

l=1 prfx(ul)).

We call �d -simple formula to any formula which is �d -simple based on some2

connective of �. The look-ahead set induced by a set � of �d -simple formulas is3

	� = {ε} ∪ (∪B∈�	B). �
�d -simple formulas will be the allowed shapes of our (schema) axioms. Compar-

ing with Ciabattoni et al. (2014), our setup is strictly more general in that it allows
for an arbitrary base signature�. If we set�d to consist of the usual 2-place connec-
tives of positive logic ∧,∨,→, and let � = �d ∪ U where U collects a number of
additional 1-place connectives (e.g., ¬, ◦), we recover the setup of Ciabattoni et al.
(2014).

2 Since not all the variables q1, . . . , qn, r1, . . . , rm need to occur in A, it may well happen that the
subformula ©(p1, . . . , pk) ends up not appearing in the �d -simple formula B based on ©. For this
reason, such a �d -simple formula can also be based on any available k′-place connective distinct
from ©, as long as k′ ≥ k (more precisely, k′ needs to be at least as big as the number of distinct
variables p j occurring in B).
3 Note that, in our definition, 	� is not simply the union of the look-ahead sets of each formula
in �. We not only want 	� to be closed for taking prefixes, but we want ε ∈ 	� even if � = ∅ (a
rather pathological case).
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For instance, axiom B = ◦¬(p1 ∧ p2) → (¬ ◦ p1 ∨ ¬ ◦ p2) is�d -simple in this
setting, as can be seen by taking A = r1 → (q1 ∨ q2), © = ∧, and σ(q1) = w1 p1 =
¬ ◦ p1, σ(q2) = w2 p2 = ¬ ◦ p2, thus with w1 = w2 = ¬◦, and σ(r1) = u1(p1 ∧
p2) = ◦¬(p1 ∧ p2), thus with u1 = ◦¬.

Easily, all axioms covered in Ciabattoni et al. (2014) are �d -simple. However,
p1 ∧ ¬p1 or p1 → (¬p1 → ¬p2) fall outside the scope of Ciabattoni et al. (2014)
but are still �d -simple (based on any of the 2-place connectives, as the rl variables
are not necessary). Axioms like ¬(p1 ∧ ¬p1) → ◦p1 are not �d -simple, due to the
interleaved nesting of ¬ and ∧, and fall outside the scope of both methods.

Having set up our syntactic restriction on the set of allowed axioms, we will still
need to match them with appropriate semantic restrictions. Before we do it, we need
to shape up another crucial idea from Ciabattoni et al. (2014): when strengthening
with a set of axioms Ax, the truth-values of the intended PNmatrix will correspond
to suitable functions f : 	Ax → V where V is the set of truth-values of the given
PNmatrix; when the value of a formula A is f this does not only settle its face value
to f (ε) but also gives as look-ahead information the value f (w) for the value of
formulas wA with w ∈ 	Ax.

Definition 3.3.6 Let M = 〈V, D, ·M〉 be a �-PNmatrix and Ax a set of �d -simple
formulas. For each v ∈ ValM and A ∈ L�(P), we define f Av ∈ V	Ax by letting
f Av (w) = v(wA) for each w ∈ 	Ax. �.

It is worth noting that, by definition, f Av (uw) = f wA
v (u) whenever uw ∈ 	Ax.

We can finally put forth our improved construction, taking �d -simple axioms.
In order to make it work it will suffice to require that the given PNmatrix is �d -
deterministic (not necessarily �d -total). The more general condition, though, will
be to require that the PNmatrix is a rexpansion of a �d -deterministic PNmatrix, as
the crucial necessary property is granted by Lemma 3.2.1.

Theorem 3.3.7 Let M = 〈V, D, ·M〉 be a �-PNmatrix and Ax ⊆ L�(P).
If there exists �d ⊆ � such that M is a rexpansion of some �d -deterministic

PNmatrix, and the formulas in Ax are all �d -simple, then the consequence Ax
M

is
characterized by the rexpansion M




Ax = 〈V 


Ax, D



Ax, ·M


Ax
〉 of M defined by

• V 


Ax = ⋃

v∈ValAx
M

{ f Av : A ∈ L�(P)},

• D


Ax = { f ∈ V 


Ax : f (ε) ∈ D},
• for each k ∈ N and © ∈ �(k),

©
M




Ax
( f1, . . . , fk) =

⋃

v∈ValAx
M

{ f ©(A1,...,Ak )
v : Ai ∈ L�(P) with f Ai

v = fi for 1 ≤ i ≤ k}.
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Proof We prove that M



Ax is a rexpansion of M, and then its soundness and com-
pleteness with respect to Ax

M
.

Rexpansion. It is simple to check that the PNmatrix M



Ax is a refinement of
the expansion of M with E(x) = { f ∈ V	Ax : f (ε) = x}. Just note that one has
f ©(A1,...,Ak )
v (ε) = v(©(A1, . . . , Ak)) ∈ ©M(v(A1), . . . , v(Ak)) = ©M( f A1

v (ε),

. . . , f Ak
v (ε)) whenever it is the case that v ∈ ValM, k ∈ N, © ∈ �(k) and A1, . . . ,

Ak ∈ L�(P). Ẽ : V 


Ax → V is such that Ẽ( f ) = f (ε), and clearly preserves and
reflects designated values. As before, using Proposition 3.3.1, it suffices to show
that {Ẽ ◦ v
 : v
 ∈ Val

M



Ax
} = ValAx

M
.

For a 1-place connective• ∈ U andu ∈ U∗ such thatu• ∈ 	Ax, given a valuationv
 ∈
Val

M



Ax
,we have thatv
(•A)(u) = v
(A)(u•), simply becausev
(•A) ∈ •

M



Ax
(v
(A))

and by definition of •
M




Ax
there must exist v ∈ ValAx

M
such that v
(•A) = f •B

v and

v
(A) = f Bv . It easily follows, by induction, that if w ∈ U∗ is such that uw ∈ 	Ax

then also v
(wA)(u) = v
(A)(uw).

Soundness. Since M



Ax is a rexpansion of M with E , if v
 ∈ Val
M




Ax
then Ẽ ◦ v
 ∈

ValM. Hence, when B = A(. . . wi A j . . . un©(A1, . . . , Ak) . . . ) ∈ Axinst then set-
ting y = v
(B)(ε) we have

y ∈ AM(. . . v
(wi A j )(ε) . . . v
(un©(A1, . . . , Ak))(ε) . . . ) =

AM(. . . v
(A j )(wi ) . . . v
(©(A1, . . . , Ak))(un) . . . ).

By definition of ©
M




Ax
, we know there exist v ∈ ValAx

M
and B1, . . . , Bk ∈ L�(P)

such that v
(©(A1, . . . , Ak)) = f ©(B1,...,Bk )
v and v
(A j ) = f

B j
v for 1 ≤ j ≤ k.

Thus, we have

y ∈ AM(. . . f
B j
v (wi ) . . . f ©(B1,...,Bk )

v (un) . . . ) =

AM(. . . v(wi B j ) . . . v(un©(B1, . . . , Bk)) . . . ).

Clearly, setting z = v(A(. . . wi B j . . . un©(B1, . . . , Bk) . . . )) we also have

z ∈ AM(. . . v(wi B j ) . . . v(un©(B1, . . . , Bk)) . . . ).

Using Lemma 3.2.1, since A ∈ L�d (P) and M is a rexpansion of a �d -
deterministic PNmatrix, we conclude that y ∈ D iff z ∈ D. Now, it is also the case
that A(. . . wi B j . . . un©(B1, . . . , Bk) . . . ) ∈ Axinst and we know that v ∈ ValAx

M
,

so we conclude that z ∈ D. Therefore, y ∈ D and v
(B) ∈ D


Ax. We conclude
{Ẽ ◦ v
 : v
 ∈ Val

M



Ax
} ⊆ ValAx

M
and Ax

M
⊆

M



Ax
.

Completeness. Reciprocally, if v ∈ ValAx
M

then v = Ẽ ◦ v
 with v
(A) = f Av for
each A ∈ L�(P). It is immediate, by definition of ©

M



Ax
, that f ©(A1,...,Ak )

v ∈



3 On Axioms and Rexpansions 49

©
M




Ax
( f A1

v , . . . , f Ak
v ) for every k-place connective © ∈ � and formulas A1, . . . ,

Ak ∈ L�(P).Weconclude thatv
 ∈ Val
M




Ax
. Therefore,wehaveValAx

M
⊆ {Ẽ ◦ v� :

v� ∈ Val
M

�

Ax
} and 

M
�

Ax
⊆Ax

M
. �.

As intended, we have pushed the boundaries of the method in Ciabattoni et al.
(2014) as much as we could. Beyond the arbitrariness of the signature, and the
more permissive syntactic restrictions on the axioms, we also allow a more general
PNmatrix to start with. Instead of demanding it to be the two-valued Boolean matrix
on the�d -connectives, we simply require that it be a rexpansion of any Pmatrix. This
has the advantage of applying to a large range of non-classical base logics, but also
of making the method incremental, allowing us to add axioms one by one and not
necessarily all at once. Further, in our method, the interpretation of the connectives
not in �d is completely unrestricted, which contrasts with Ciabattoni et al. (2014),
where the remaining (1-place) connectives are implicitly forced to be fully non-
deterministic. This additional degree of freedom allowed by our method applies not
only to the connectives in U , but also to any other connectives not appearing in the
structural formulas of the axioms.

3.4 Worked Examples

In order to show theworkings and scope of themethodwehave put forth in Sect. 3.3.2,
we shall now consider a few meaningful illustrative examples.

Example 3.4.1 Suppose that we want to add to the logic of classical implication a
negation connective satisfying the explosion axiom p1 → (¬p1 → p2).

We consider the signature � with a single 2-place connective →, and a sin-
gle 1-place connective ¬, and we start from the two-valued (P)Nmatrix B =
〈{0, 1}, {1}, ·B〉 given by the truth-tables below.

→B 0 1
0 1 1
1 0 1

¬B

0 0, 1
1 0, 1

Clearly, →B corresponds to the usual matrix truth-table of classical implication.
The truth-table of ¬B is fully non-deterministic.

Setting �d to contain only →, and U = {¬} it is clear that B is �d -deterministic
and that the axiom is �d -simple. With Exp = {p1 → (¬p1 → p2)}, we have that
	Exp = {ε,¬}. From Theorem 3.3.7, the strengthening of B with Exp is character-
ized by the PNmatrix B




Exp = 〈{00, 01, 10, 11}, {10, 11}, ·
B




Exp
〉, where
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→
B




Exp
00 01 10 11

00 10 10 10 ∅
01 10 10 10 ∅
10 00, 01 00, 01 10 ∅
11 ∅ ∅ ∅ 11

¬
B




Exp

00 00, 01
01 10
10 00, 01
11 11

Note that, for ease of notation, we are denoting a function f ∈ V 


Exp simply by the
string f (ε) f (¬). For instance, the value 01 corresponds to the function such that
f (ε) = 0 and f (¬) = 1. In this example, all four possibilities correspond to truth-
values of the resulting PNmatrix. The reader may refer to Example 3.4.3 below, for
a situation where this does not happen.

For illustration purposes, let us clarify why ¬
B




Exp
(10) = {00, 01}. Easily, if

xy ∈ ¬
B




Exp
(10) it is clear that x = 0 as this is the value of the ¬ look-ahead pro-

vided by the value 10. The fact that y can be either 0 or 1 boils down to noting
that ¬B(0) = {0, 1}, none of these choices being incompatible with satisfying the
axiom. Namely, 10 = f p1

v and 00 = f ¬p1
v for any B-valuation v with v(p1) = 1 and

v(¬p1) = v(¬¬p1) = 0 and classical for other formulas, whereas 10 = f p1
v and

01 = f ¬p1
v would result from any fully classical B-valuation with v(p1) = 1, both

valuations clearly in ValExp
B

. Another interesting case is¬
B




Exp
(01) = {10}. Easily, the

1 on the left of 10 is explained by the 1 on the right of 01. Once again,¬B(1) = {0, 1}.
However, we must exclude 11 because 01 = f Av and 11 = f ¬A

v would jointly imply
that v(¬A → (¬¬A → A)) = 0 and therefore v /∈ ValExp

B
. Similar justifications can

be given, for instance, to explain why 11 →
B




Exp
00 = ∅.

ThePNmatrixB



Exp obtained is slightlymore complex thanone could expect.Note,
however, that the value 11 is isolated from the others in the sense that a valuation
that assigns 11 to some formula must assign 11 to all formulas. Concretely, B


Exp has

two maximal total refinements: the three-valued Nmatrix (B



Exp){00,01,10} one would
expect, plus the trivial one-valued matrix (B




Exp){11} (whose only trivial valuation is

irrelevant for the definition of Exp
B

). �
Let us now consider a slight variation on this theme.

Example 3.4.2 To see the contrast with the previous example, suppose now that we
want to add to the logic of classical implication a negation connective satisfying the
weaker partial explosion axiom p1 → (¬p1 → ¬p2). This is a case that is out of
the scope of the method in Ciabattoni et al. (2014).

The setting up we need to consider is the same used in Example 3.4.1: the
same �, �d and U , and the same starting PNmatrix B. Setting now Exp¬ =
{p1 → (¬p1 → ¬p2)}, we still have that 	Exp¬ = {ε,¬}. From Theorem 3.3.7,
the strengthening of B with Exp¬ is now characterized by the PNmatrix B




Exp¬
=

〈{00, 01, 10, 11}, {10, 11}, ·
B




Exp¬
〉, where using the same notation convention used

in Example 3.4.1, we have
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→
B




Exp¬
00 01 10 11

00 10 10 10 ∅
01 10 10, 11 10 11
10 00, 01 00, 01 10 ∅
11 ∅ 01 ∅ 11

¬
B




Exp¬
00 00, 01
01 10, 11
10 00, 01
11 11

The PNmatrix B



Exp¬
is more interesting than before. Note that it also has two

maximal total refinements: the three-valued Nmatrix (B



Exp¬
){00,01,10} (which is pre-

cisely the same as the one obtained in Example 3.4.1), plus the two-valued matrix
(B




Exp¬
){01,11} (whose implication is classical but whose negation is always desig-

nated). �
Next, we will analyze a number of examples that appear scattered in the literature

and show how our method can be systematically used in all of them. We start by
revisiting an example from Avron (2005b), paradigmatic of many similar examples
considered by Avron and coauthors.

Example 3.4.3 Let us consider strengthening the logic CLuN from Batens (2000,
1980) with the double negation elimination axiom ¬¬p1 → p1. Actually, for the
sake of simplicity, we shall consider only the {¬,→}-fragment of the logic.

Let �d contain a single 2-place connective →, U contain a 1-place connec-
tive ¬. The (fragment of the) logic CLuN is characterized by the Nmatrix M =
〈{0, 1}, {1}, ·M〉 with:

→M 0 1
0 1 1
1 0 1

¬M

0 1
1 0, 1

It is clear that M is �d -deterministic and that the axiom is �d -simple. If we let
DNe = {¬¬p1 → p1}, we have that 	DNe = {ε,¬,¬¬}. From Theorem 3.3.7, the
strengthening of M with DNe, which is well known to coincide with the logic Cmin

of Carnielli and Marcos (1999, 2002), is characterized by the four-valued Nmatrix
M




DNe = 〈{010, 101, 110, 111}, {101, 110, 111}, ·
M




DNe
〉, where

→
M




DNe
010 101 110 111

010 D


DNe D


DNe D


DNe D


DNe

101 010 D


DNe D


DNe D


DNe

110 010 D


DNe D


DNe D


DNe

111 010 D


DNe D


DNe D


DNe

¬
M




DNe

010 101

101 010

110 101

111 110, 111

Above, for ease of notation, we are denoting a function f ∈ V 


DNe simply by the
string f (ε) f (¬) f (¬¬). As this is a new feature in our row of examples, it is worth
explaining why only four of the eight possible such functions appear as truth-values
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of the resulting Nmatrix. Namely, 000, 001, 100 are all unattainable as f Av in the
Nmatrix M since ¬

M



DNe
(0) = 1. The remaining string 011 is excluded for more

interesting reasons, as any M-valuation v with 001 = f Av makes v(¬¬A → A) = 0
and thus v /∈ ValDNe

M
.

This example shows that our method, though very general, may not be as tight as
possible. It is a mandatory topic for further research to best understand how to equate
the equivalence between this Nmatrix and the three-valued Nmatrix from Avron
(2005b).

If we want to strengthen the resulting logic, Cmin, with the double negation intro-
duction axiom p1 → ¬¬p1, we can readily apply Theorem 3.3.7 to M




DNe and
DNi = {p1 → ¬¬p1}, obtaining (up to renaming of the truth-values) the three-
valued Nmatrix N = (M




DNe)



DNi = 〈{01, 10, 11}, {10, 11}, ·N〉, where
→N 01 10 11
01 10, 11 10, 11 10, 11
10 01 10, 11 10, 11
11 01 10, 11 10, 11

¬N

01 10
10 01
11 11

Note that, by construction, the Nmatrix N has three values g : 	DNi → V 


DNe
which, given that	DNi = {ε,¬,¬¬}, can be written in string notation as g(ε)g(¬)g
(¬¬), corresponding to the strings 010101010, 101010101, 111111111. Clearly,
each of them can be named simply by their first two symbols.

It is interesting to further note that this Nmatrix is isomorphic to M



DNe∪DNi. This
is a particularly happy case as, in general, adding axioms incrementally, instead of
all at once (as in Ciabattoni et al. (2014)), will yield an equivalent PNmatrix but not
necessarily the same, often with more truth-values. �

We now consider a more elaborate example in the family of paraconsistent logics,
as also tackled by Avron and coauthors, which is developed in detail in Ciabattoni
et al. (2014).

Example 3.4.4 As in Example 5.1 of Ciabattoni et al. (2014), we want to character-
ize the logic obtained by adding two additional 1-place connectives ¬, ◦ to positive
classical logic, subject to the set of axioms Ax containing:

p1 ∨ ¬p1

p1 → (¬p1 → (◦p1 → p2))

◦p1 ∨ (p1 ∧ ¬p1)

◦p1 → ◦(p1 ∧ p2)

(¬p1 ∨ ¬p2) → ¬(p1 ∧ p2)
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Let �d contain the three 2-place connectives ∧,∨,→, and U contain the two
1-place connectives ¬, ◦ and consider the Nmatrix C = 〈{0, 1}, {1}, ·C〉 with

∧C 0 1
0 0 0
1 0 1

∨C 0 1
0 0 1
1 1 1

→C 0 1
0 1 1
1 0 1

¬C ◦C
0 0, 1 0, 1
1 0, 1 0, 1

It is clear thatC is�d -deterministic and that the axioms are all�d -simple. Further,
we get	Ax = {ε,¬, ◦}. From Theorem 3.3.7, the strengthening Ax

C
is characterized

by the PNmatrix C



Ax = 〈{011, 101, 110, 111}, {101, 110, 111}, ·
C




Ax
〉, where

∧
C




Ax
011 101 110 111

011 011 011 011 ∅
101 011 101 ∅ ∅
110 011 ∅ 110 ∅
111 ∅ ∅ ∅ 111

∨
C




Ax
011 101 110 111

011 011 101 110 ∅
101 101 101 ∅ ∅
110 110 ∅ 110 ∅
111 ∅ ∅ ∅ 111

→
C




Ax
011 101 110 111

011 101, 110 101 110 ∅
101 011 101 ∅ ∅
110 011 ∅ 110 ∅
111 ∅ ∅ ∅ 111

¬
C




Ax
◦
C




Ax

011 101, 110 101, 110
101 011 101
110 110 011
111 111 111

For ease of notation, once again, we are denoting a function f ∈ V 


Ax simply by
the string f (ε) f (¬) f (◦).

Notably, the PNmatrix C



Ax is slightly different from the PNmatrix obtained using
the method in Ciabattoni et al. (2014). Still, it is easy to see thatC


Ax has twomaximal
total refinements: the three-valued PNmatrix (C




Ax){011,101,110} (which is an equivalent
refinement of the PNmatrix in Ciabattoni et al. (2014) maximizing the partiality),
plus the trivial one-valued matrix (C




Ax){111}. �
Our next example deals with Nelson-like logics and twist-structures.

Example 3.4.5 Theadditionof a paraconsistentNelson-like (Nelson1948;Vakarelov
1977; Odintsov 2008) strong negation ∼ to a given intermediate logic (as in Kracht
(1998)) can be easily captured by our construction.

Let �d be a signature containing binary connectives ∧,∨,→, and U contain the
1-place connective∼, and consider an Nmatrix M = 〈V, {1}, ·M〉whose {∧,∨,→}-
reduct of M, dubbed N, is an implicative lattice (Odintsov 2008), and such that
∼M (x) = V for every x ∈ V , and let Ax contain:

∼∼ p1 → p1 p1 → ∼∼ p1

∼ (p1 ∨ p2) → (∼ p1∧ ∼ p2) (∼ p1 ∧ ∼ p2) → ∼ (p1 ∨ p2)
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∼ (p1 ∧ p2) → (∼ p1∨ ∼ p2) (∼ p1∨ ∼ p2) → ∼ (p1 ∧ p2)

∼ (p1 → p2) → (p1∧ ∼ p2) (p1∧ ∼ p2) → ∼ (p1 → p2)

Clearly, the axioms in Ax are �d -simple and 	Ax = {ε,∼,∼∼}. From Theo-
rem 3.3.7, Ax

M
is characterized by the matrix M




Ax = 〈V 


Ax, D



Ax, ·M


Ax
〉 isomorphic

to the well-known full twist-structure N
�� over N (see Odintsov (2008)). Namely,

we have V 


Ax = { f ∈ V {ε,∼,∼∼} : f (ε) = f (∼∼)}. For simplicity, we can represent
each such function f ∈ V 


Ax simply by the pair ( f (ε), f (∼)). Hence, we have

• V 


Ax = V × V and D


Ax = {1} × V ,
• (x1, y1) ∧

M



Ax
(x1, y1) = (x1 ∧M x2, y1 ∨M y2),

• (x1, y1) ∨
M




Ax
(x1, y1) = (x1 ∨M x2, y1 ∧M y2),

• (x1, y1) →
M




Ax
(x2, y2) = (x1 →M x2, x1 ∧M y2), and

• ∼
M




Ax
(x, y) = (y, x).

When we take N to be the two-valued Boolean matrix, and using now xy instead of
(x, y), we obtain, M




Ax = 〈{00, 01, 10, 11}, {10, 11}, ·
M




Ax
〉, where

∧
M




Ax
00 01 10 11

00 00 01 00 01
01 01 01 01 01
10 00 01 10 11
11 01 01 11 11

∨
M




Ax
00 01 10 11

00 00 00 10 10
01 00 01 10 11
10 10 10 10 10
11 10 11 10 11

→
M




Ax
00 01 10 11

00 10 10 10 10
01 10 10 10 10
10 00 01 10 11
11 00 01 10 11

∼
M




Ax

00 00
01 10
10 01
11 11

Note this semantics coincides precisely with the semantic extension of Belnap’s
four-valued logic (Belnap 1977b, a) with true implication of Avron (Arieli and Avron
1998).

If we further impose the axiom

∼ p1 → (p1 → p2)

we obtain corresponding explosive versions of Nelson’s construction. Making
Ax′ = Ax ∪ {∼ p1 → (p1 → p2)}, the resulting twist-structure is now a refinement
resulting from isolating the truth-value (1, 1), i.e., such that for ∗ ∈ {∧,∨,→}
we have (1, 1) ∗

M



Ax
(x, y) = (x, y) ∗

M



Ax
(1, 1) = ∅ if (x, y) 
= (1, 1). Concretely,
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if we take N to be the two-valued Boolean matrix, again, we obtain the Pmatrix
M




Ax′ = 〈{00, 01, 10, 11}, {10, 11}, ·
M




Ax′ 〉, where
∧

M



Ax′ 00 01 10 11

00 00 01 00 ∅
01 01 01 01 ∅
10 00 01 10 ∅
11 ∅ ∅ ∅ 11

∨
M




Ax′ 00 01 10 11

00 00 00 10 ∅
01 00 01 10 ∅
10 10 10 10 ∅
11 ∅ ∅ ∅ 11

→
M




Ax′ 00 01 10 11

00 10 10 10 ∅
01 10 10 10 ∅
10 00 01 10 ∅
11 ∅ ∅ ∅ 11

¬
M




Ax′

00 00
01 10
10 01
11 11

Easily, M



Ax′ has two maximal total refinements: the three-valued matrix

(M



Ax′){00,01,10}, plus the trivial one-valued matrix (M



Ax′){11}. Expectedly, we have

that (M



Ax′){00,01,10} is precisely the matrix characterizing the three-valued logic of

Vakarelov (Vakarelov 1977; Kracht 1998) (which coincides with Ax′
M

, and is known
to be translationally equivalent to Łukasiewicz’s three-valued logic). �

Next, we will show, by means of an example, that our method subsumes the idea
of swap-structure semantics put forth in Carnielli and Coniglio (2016), Coniglio and
Golzio (2019).

Example 3.4.6 As in Coniglio and Golzio (2019), we consider obtaining a semantic
characterization of the non-normal modal logic T of Kearns (Kearns 1981), which
coincides with the logic Sa+ of Ivlev (Ivlev 1988). This can be done by using our
method to characterize the logic obtained by a 1-place connective � to the {¬,→}-
fragment of classical logic, further demanding theTm axioms of Coniglio andGolzio
(2019), namely,

�(p1 → p2) → (�p1 → �p2)

�(p1 → p2) → (�¬p2 → �¬p1)

¬�¬(p1 → p2) → (�p1 → ¬�¬p2)

�¬p1 → �(p1 → p2)

�p2 → �(p1 → p2)

�¬(p1 → p2) → �¬p2

�¬(p1 → p2) → �p1
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�p1 → p1

�p1 → �¬¬p1

�¬¬p1 → �p1

Let �d contain →, and U = {¬,�}. Take the Nmatrix D = 〈{0, 1}, {1}, ·D〉 with
→D 0 1
0 1 1
1 0 1

¬D �D

0 1 0, 1
1 0 0, 1

Clearly the axioms in Tm are �d -simple. Furthermore, now, we have that 	Tm =
{ε} ∪ prfx({�,�¬,¬�¬,�¬¬}) = {ε,¬,¬�,¬�¬,�,�¬,�¬¬}.Note that for
any f ∈ V 


Tm and ¬w ∈ 	Tm we have f (¬w) = 1 − f (w). Note also that due to
the last two axioms of Tm, it follows that f (�¬¬) = f (�) for any f ∈ V 


Tm.
Hence, we can represent each f simply by the string f (ε) f (�) f (�¬). Further,
note that the antepenultimate axiom �p1 → p1 guarantees both that f (�) ≤ f (ε)
and f (�¬) ≤ f (¬) = 1 − f (ε). Now, applying Theorem 3.3.7, we conclude that
the strengthening Tm

D
is characterized by the four-valued Nmatrix given by D




Tm =
〈{000, 001, 100, 110}, {100, 110}, ·

D



Tm
〉, where

→
D




Tm
000 001 100 110

000 100, 110 100 100, 110 110
001 110 110 110 110
100 000 000 100, 110 110
110 000 001 100 110

¬
D




Tm
�

D



Tm

000 100 000, 001
001 110 000, 001
100 000 000, 001
110 001 100, 110

It is straightforward to check that this Nmatrix is isomorphic to the Kearns and Ivlev
semantics (Kearns 1981; Ivlev 1988), also recovered in Coniglio and Golzio (2019),
by renaming the truth-values 000, 001, 100, 110 by f, F, t, T , respectively. �

We finish this section with another example, starting from a non-classical base,
namely, Łukasiewicz’s five-valued logic.

Example 3.4.7 We start from Łukasiewicz’s logic L5 and strengthen it by axiom
((p1 → ¬p1) → p1) → p1 in order to obtain Łukasiewicz’s three-valued logic L3

(see, for instance, (Wójcicki 1998; Gottwald 2001)). In this case, no new connectives
are added.

Let �d contain the 2-place connective →, and also the 1-place connective ¬, and
let U = ∅. Let also Ax = {((p1 → ¬p1) → p1) → p1}. Consider the five-valued
matrix L5 = 〈{0, 1

4 ,
1
2 ,

3
4 , 1}, {1}, ·L5〉 with:
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→L5 0 1
4

1
2

3
4 1

0 1 1 1 1 1
1
4

3
4 1 1 1 1

1
2

1
2

3
4 1 1 1

3
4

1
4

1
2

3
4 1 1

1 0 1
4

1
2

3
4 1

¬L5

0 1
1
4

3
4

1
2

1
2

3
4

1
4

1 0

Clearly the axiom is �d -simple and 	Ax = {ε}. Hence we represent any f ∈ V 


Ax
simply by f (ε). From Theorem 3.3.7, the strengthening Ax

L5
is characterized by the

well-known three-valued matrix (L5)



Ax = L3 = 〈{0, 1
2 , 1}, {1}, ·L3〉, where

→L3 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

¬L3

0 1
1
2

1
2

1 0

�
Examples 3.4.1, 3.4.4, 3.4.6 are also covered by the method in Ciabattoni et al.

(2014). The two-valuedbased case ofExample 3.4.5 could also beobtainedusingCia-
battoni et al. (2014), but not the general case we deal with, over an arbitrary implica-
tive lattice. Example 3.4.3, the way it is formulated, is outside the scope of Ciabat-
toni et al. (2014), not only because it starts from a Nmatrix where negation is not
fully non-deterministic, but also because we are adding one axiom and then another.
Examples 3.4.2, 3.4.7 are also not covered by Ciabattoni et al. (2014). Namely,
Example 3.4.2 uses an axiom which does not respect their syntactic criteria, and
Example 3.4.7 uses a five-valued non-classical matrix.

3.5 Analytic Multiple-Conclusion Calculi

In the work of Arnon Avron on Nmatrices and rexpansions, obtaining a concise
semantics for a logic (typically in the form of a Nmatrix) is not an end in itself but a
means for obtaining (sequent-like) analytic calculi for that logic (Avron et al. 2007,
2012, 2013). In other works (e.g., Ciabattoni et al. (2014), Baaz et al. (2013)), the
semantics (typically in the form of a PNmatrix) is not a basis for obtaining a calculus
but it is still instrumental in proving its analyticity (when the PNmatrix is total).
In this paper, so far, we have not worried about proof-theoretic aspects. Therefore,
this is a good point for applying to our previous construction the techniques devel-
oped in Marcelino and Caleiro (2019); Caleiro and Marcelino (2019) for obtaining
analytic multiple-conclusion calculi for logics defined by finite PNmatrices, under a
reasonable expressiveness proviso. This contrasts with the above-mentioned results



58 C. Caleiro and S. Marcelino

for sequent-like calculi (Avron et al. 2013; Baaz et al. 2013; Ciabattoni et al. 2014),
for which partiality seems to devoid them of a usable (even if generalized) subfor-
mula property capable of guaranteeing analyticity (and elimination of non-analytic
cuts).

In what follows, we will consider so-called multiple-conclusion calculi, a simple
generalization of Hilbert-style calculi with (schematic) inference rules of the form
�
�

, where � (premises read conjunctively, as usual) and � (conclusions read dis-
junctively) are sets of formulas. Such calculi were studied by Shoesmith and Smiley
in Shoesmith and Smiley (1978), and have very interesting properties. A set R of
such multiple-conclusion rules induces a consequence relation �R by means of an
adequate notion of proof, simply defined as a tree-like version of Hilbert-style proofs.
We shall show some illustrative examples later, but refer the reader to Shoesmith and
Smiley (1978), Marcelino and Caleiro (2019, 2017) for details. As usual, we say that
R constitutes a calculus for a consequence relation � if �R = �.

A setS ⊆ L�({p}) induces a simple notion of a generalized subformula: A is aS-
subformula of B if A ∈ subS(B) = sub(B) ∪ {S(B ′) : S ∈ S, B ′ ∈ sub(B)}. We
say that R is an S-analytic calculus if whenever � �R � then there exists a proof
of � from � using only formulas in subS(� ∪ �). For finite S, we have shown
in Marcelino and Caleiro (2019, 2017) that S-analyticity implies that deciding �R

is in coNP, and that proof-search can be implemented in EXPTIME.

Producing analytic calculi for logics characterized by finite PNmatrices is possi-
ble, as long as the syntax of the logic is sufficiently expressive (a notion intimately
connected with the methods in Shoesmith and Smiley (1978), Avron et al. (2007),
Avron et al. (2013), Caleiro et al. (2015), Ciabattoni et al. (2014)). Fix a�-PNmatrix
M = 〈V, D, ·M〉. A pair of non-empty sets of elements ∅ 
= X,Y ⊆ V are separated,
X#Y , if X ⊆ D and Y ⊆ V \ D, or vice versa. A formula S with var(S) ⊆ {p} with
SM(z) 
= ∅ for every z ∈ V , and such that SM(x)#SM(y) is said to separate x and y,
and called a (monadic) separator. The PNmatrix M is said to be monadic if there is
a separator for every pair of distinct truth-values.

Granted a monadic PNmatrix M = 〈V, D, ·M〉 and some set S = {Sxy : x, y ∈
V, x 
= y} of monadic separators for M such that each Sxy separates x and y,
a discriminator for M is the V -indexed family S̃ = {S̃x }x∈V , with each S̃x =
{Sxy : y ∈ V \ {x}}. Each S̃x is naturally partitioned into �x = {S ∈ S̃x : SM(x) ⊆
D} and �x = {S ∈ S̃x : SM(x) ⊆ V \ D}. This partition is easily seen to character-
ize precisely each of the truth-values of M.

Given X ⊆ V , we denote by �∗
X any of the possible sets built by choosing one

element from each �x for x ∈ X , that is, �∗
X ⊆ ⋃

x∈X �x is such that �∗
X ∩ �x 
= ∅

for each x ∈ X . Analogously, we let �
∗
X denote any of the possible sets built by

choosing one element from each �x for x ∈ X , that is, �
∗
X ⊆ ⋃

x∈X �x is such
that �

∗
X ∩ �x 
= ∅ for each x ∈ X . The following result is taken from Caleiro and

Marcelino (2019).

Theorem 3.5.1 Let M = 〈V, D, ·M〉 be a monadic PNmatrix with discriminator S̃.
Then, RS̃

M
= R∃ ∪ RD ∪ R� ∪ RT is an S-analytic calculus for �M, where
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• R∃ contains, for each X ⊆ V and each possible �
∗
X and �∗

V \X , the rule

�
∗
X (p)

�∗
V \X (p)

.

• RD contains, for each x ∈ V , the rule

�x (p)

p, �x (p)
if x ∈ D or

�x (p), p

�x (p)
if x /∈ D

.
• R� = ⋃

©∈� R© where, for © ∈ �(k), R© contains, for each x1, . . . , xk ∈ V and
y /∈ ©M(x1, . . . , xk), the rule

⋃

1≤i≤k
�xi (pi ) , �y(©(p1 . . . , pk))

⋃

1≤i≤k
�xi (pi ) , �y(©(p1 . . . , pk))

.

• RT contains, for each X ⊆ V with X /∈ TM, the rule
⋃

xi∈X
�xi (pi )

⋃

xi∈X
�xi (pi )

.

It is worth understanding the role of each of the rules proposed, as they fully cap-
ture the behavior ofM. Namely, R∃ allows one to exclude combinations of separators
that do not correspond to truth-values. Actually, in examples where the separators S
are such that, in all cases, SM(z) ⊆ D or SM(z) ⊆ V \ D, one can always in practice
set up the discriminator in a way that makes all R∃ rules trivial, in the sense that they
will necessarily have a formula that appears both as a premise and as a conclusion.
Rules in RD distinguish those combinations of separators that characterize desig-
nated values from those that characterize undesignated values. Again, in practice,
whenever M has both designated and undesignated values and S(p) = p is used to
separate them, all RD rules are also trivial. The most operational rules are perhaps
R� , as they completely determine the interpretation of connectives in M. The rules
in R = R∃ ∪ RD ∪ R� already guarantee that �R = �M, but not necessarily analyt-
icity. The rules in RT are crucial in proving analyticity (they are already derivable
from the previous rules, but with seemingly non-analytic proofs). Indeed, rules in RT
guarantee that one deals with combinations of separators that correspond to values
taken within a total refinement of M.

In order to be able to apply this general result to obtain analytic calculi for the
logics characterized by the PNmatrices produced by the method we have devised in
Sect. 3.3.2, we need to make sure that the PNmatrices are monadic. Of course, not
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every PNmatrix is monadic, but we can easily show that our construction preserves
monadicity.

Proposition 3.5.2 Let M = 〈V, D, ·M〉 be a �-PNmatrix and Ax ⊆ L�(P) that
fulfill the conditions of Theorem 3.3.7. If M is monadic then M




Ax is also monadic.

Proof Let f A1
v1

, f A2
v2

∈ V 


Ax with f A1
v1


= f A2
v2

. This means that there exists w ∈ 	Ax

such that x1 = f A1
v1

(w) 
= f A2
v2

(w) = x2. Given that M is monadic, we know that
there exists S ∈ L�({p}) which separates x1 from x2 in M, that is, SM(x1)#SM(x2).
We show that R(p) = S(w p) separates f A1

v1
from f A2

v2
in M




Ax.

Given f Bv ∈ V 


Ax we know (from the completeness part of the proof of Theo-
rem 3.3.7) that v
(C) = f Cv for each C ∈ L�(P) defines a valuation v
 ∈ ValV 


Ax
.

Easily, then, v
(R(B)) ∈ R
M




Ax
(v
(B)) = R

M



Ax
( f Bv ), and therefore R

M



Ax
( f Bv ) 
= ∅.

In order to show that R
M




Ax
( f A1

v1
)#R

M



Ax
( f A2

v2
)we just need to show that R

M



Ax
( f A1

v1
)

(ε) ⊆ SM(x1)#SM(x2) ⊇ R
M




Ax
( f A2

v2
)(ε), and use the fact that in a rexpansion desig-

nated values are preserved and reflected.
Take i ∈ {1, 2} and any valuation v
 ∈ Val

M



Ax
with v
(p) = f Ai

vi
. We have that

v
(R(p)) = v
(S(w p)) ∈ S
M




Ax
(v
(w p)). Thus, it follows that v
(R(p))(ε) ∈ S

M



Ax

(v
(w p))(ε) ⊆ SM(v
(w p)(ε)) = SM(v
(p)(w)) = SM( f Ai
vi

(w)) = SM(xi ). �

Note that this result encompasses the sufficient expressiveness preservation result
of Ciabattoni et al. (2014), as the two-valued Boolean matrix is trivially separable
using just S(p) = p.

We now illustrate the powerful result of Theorem 3.5.1 by producing suitably
analytic calculi for the resulting logics in each of the examples of Sect. 3.4. In some
cases, we also take the opportunity to illustrate the (obvious) notion of proof in
multiple-conclusion calculi. In each of the examples, rules R∃ and RD are omitted,
as they are all trivial, as discussed before. We refer the reader to Marcelino and
Caleiro (2019); Caleiro and Marcelino (2019) for further details.

Example 3.4.1, revisited. In Example 3.4.1 we have obtained a four-valued PNma-
trix characterizing the strengthening of the logic of classical implication with the
additional axiom p1 → (¬p1 → p2). Easily, S = {p,¬p} is a corresponding set of
monadic separators, which yields the discriminator S̃ with S̃x = S for each truth-
value x . This gives rise to the following partitions.

x �x �x

00 ∅ {p,¬p}
01 {¬p} {p}
10 {p} {¬p}
11 {p,¬p} ∅

Using Theorem 3.5.1, the following rules constitute an S-analytic calculus R for
the logic.
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p , p → q
r1

p , p → q

q
r2

q

p → q
r3

p , ¬p

q
rExp

After simplifications, the rules r1–r3 correspond to R→, and rExp to RT with
X = {00, 11}, X = {01, 11}, and X = {10, 11}.

For illustration, we next depict an analytic proof of�R p1 → (¬p1 → p2). Note
that rules with multiple conclusions give rise to branching in the proof-tree, which
makes it necessary for the target formula p1 → (¬p1 → p2) to appear in all the
branches.

∅

p1 → (¬p1 → p2)p1

¬p1 → p2

p1 → (¬p1 → p2)

r3

¬p1

p1 → (¬p1 → p2)

rExp

r1

r1

�
Example 3.4.2, revisited. In Example 3.4.2 we have obtained a four-valued PNma-
trix characterizing the strengthening of the logic of classical implication with the
additional axiom p1 → (¬p1 → ¬p2). Easily, one can reuse the set of monadic
separators, and the discriminator, from the previous example.

Using Theorem 3.5.1, an S-analytic calculus R for the logic can be obtained by
replacing the rule rExp of Example 3.4.1 with the rule below.

p , ¬p

¬q
rExp¬

Expectedly, rule rExp¬ corresponds to RT with X = {00, 11}, and
X = {10, 11}. �
Example 3.4.3, revisited. In Example 3.4.3 we have obtained a four-valued Nma-
trix characterizing Cmin, the strengthening of the logic CLuN with the additional
axiom ¬¬p1 → p1. Easily, S = {p,¬p,¬¬p} is a corresponding set of monadic
separators, which allows for the discriminator S̃ with S̃010 = {p}, S̃101 = {p,¬p},
and S̃110 = S̃111 = {p,¬p,¬¬p}, giving rise to the following partitions.
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x �x �x

010 ∅ {p}
101 {p} {¬p}
110 {p,¬p} {¬¬p}
111 {p,¬p,¬¬p} ∅

Using Theorem 3.5.1, the following rules constitute an S-analytic calculus R for
Cmin.

p , p → q
r1

p , p → q

q
r2

q

p → q
r3 p , ¬p

r4
¬¬p

p
r5

After simplifications, the rules r1–r3 correspond to R→, and r4, r5 to R¬.
We then obtained a three-valued Nmatrix characterizing the strengthening of Cmin

with the axiom p1 → ¬¬p1. Easily, S ′ = {p,¬p} is a corresponding set of monadic
separators, which allows for the discriminator S̃ ′ with S̃ ′

01 = {p}, and S̃10 = S̃11 =
{p,¬p}, giving rise to the following partitions.

x �x �x

01 ∅ {p}
10 {p} {¬p}
11 {p,¬p} ∅

Using Theorem 3.5.1, an S ′-analytic calculus R′ for the logic can be obtained by
joining to the calculus R obtained above the new R¬ rule:

p

¬¬p

�
Example 3.4.4, revisited. InExample 3.4.4wehaveobtained a four-valuedPNmatrix
characterizing the strengthening of positive classical logic with axioms

p1 ∨ ¬p1

p1 → (¬p1 → (◦p1 → p2))

◦p1 ∨ (p1 ∧ ¬p1)

◦p1 → ◦(p1 ∧ p2)

(¬p1 ∨ ¬p2) → ¬(p1 ∧ p2)
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It is easy to see thatS = {p,¬p, ◦p} is a corresponding set ofmonadic separators,
which allows for the discriminator S̃ with S̃011 = {p}, S̃101 = {p,¬p}, and S̃110 =
S̃111 = {p,¬p, ◦p}. This gives rise to the following partitions.

x �x �x

011 ∅ {p}
101 {p} {¬p}
110 {p,¬p} {◦p}
111 {p,¬p, ◦p} ∅

Using Theorem 3.5.1, the following rules constitute an S-analytic calculus R for
the logic.

p , q

p ∧ q
r1

p ∧ q

p
r2

p ∧ q

q
r3

¬p

¬(p ∧ q)
r4

p

p ∨ q
r5

q

p ∨ q
r6

p ∨ q

p , q
r7

p , p → q

q
r8

q

p → q
r9 p , p → q

r10

p , ¬p
r11 p , ◦p r12

p

¬p , ◦p r13
p , q , ¬q

¬p
r14

p , ¬p , ◦p
q

r15

After simplifications, the rules r1–r4 correspond to R∧, r5–r7 to R∨, r8–r10 to R→,
r11 to R¬, r12 and r13 to R◦. Finally, r14 and r15 result from RT , with X = {101, 110}
and X = {111, 011}, respectively.

Sample proofs, namely, for some of the axioms, with a very similar calculus can
be found in Caleiro and Marcelino (2019). �
Example 3.4.5, revisited. In Example 3.4.5 we have obtained a four-valued twist-
structure characterizing the addition of a paraconsistent Nelson-like strong negation
to positive classical logic. Easily, S = {p,∼ p} is a corresponding set of monadic
separators, yielding the discriminator S̃ with S̃x = S for each truth-value x . This
gives rise to the following partitions.

x �x �x

00 ∅ {p,∼ p}
01 {∼ p} {p}
10 {p} {∼ p}
11 {p,∼ p} ∅

Using Theorem 3.5.1, the following rules constitute an S-analytic calculus R for
the logic.

p ∧ q

p
r1

p ∧ q

q
r2

p , q

p ∧ q
r3

∼ p

∼ (p ∧ q)
r4

∼ q

∼ (p ∧ q)
r5

∼ (p ∧ q)

∼ p , ∼ q
r6
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p

p ∨ q
r7

q

p ∨ q
r8

p ∨ q

p , q
r9

∼ (p ∨ q)

∼ q
r10

∼ (p ∨ q)

∼ q
r11

∼ p , ∼ q

∼ (p ∨ q)
r12

p , p → q

q
r13

q

p → q
r14 p , p → q

r15

∼ (p → q)

p
r16

∼ (p → q)

∼ q
r17

p , ∼ q

∼ (p → q)
r18

p

∼∼ p
r19

∼∼ p

p
r20

After simplifications, the rules r1–r6 correspond to R∧, r7–r12 to R∨, r13–r18 to
R→, r19 and r18 to R∼.

A strengthening with an additional (explosion) axiom ∼ p1 → (p1 → p2) was
then shown to be characterized by a four-valued Pmatrix. It is straightforward to see
that one can reuse the set of monadic separators, and the discriminator, from above.
Using Theorem 3.5.1, an S-analytic calculus R′ for the logic can be obtained by
simply adding to R the new RT rule

p ,∼ p

q

obtained by considering X = {11, 00}, X = {11, 01}, and X = {11, 10}. �
Example 3.4.6, revisited. In Example 3.4.6 we obtained a four-valuedNmatrix char-
acterizing the non-normalmodal logic ofKearns and Ivlev (Kearns 1981; Ivlev 1988).
It is not difficult to check (namely, using Proposition 3.5.2) that S = {p,�p,�¬p}
is a set of monadic separators for the Nmatrix. This allows for the discriminator S̃
with S̃000 = S̃001 = {p,�¬p}, and S̃100 = S̃110 = {p,�p}, which gives rise to the
following partitions.

x �x �x

000 ∅ {p,�¬p}
001 {�¬p} {p}
100 {p} {�p}
110 {p,�p} ∅

Using Theorem 3.5.1, we get an S-analytic calculus R for the logic.

p , p → q
r1

p , p → q

q
r2

q

p → q
r3

p , ¬p
r4 p , ¬p

r5

�(p → q) , �p

�q
k

�(p → q) , �¬q

�¬p
k1

�p , �¬q

�¬(p → q)
k2
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�¬p

�(p → q)
m1

�q

�(p → q)
m2

�¬(p → q)

�¬q
m3

�¬(p → q)

�p
m4

�p

p
T

�p

�¬¬p
dn1

�¬¬p

�p
dn2

After simplifications, the rules r1–r3, k, k1–k2, m1–m4 correspond to R→, r4–r5
and dn1–dn2 to R¬, and T to R�. It is interesting to note that rules r1–r5 characterize
classical logic, and the remaining rules are in a one-to-one correspondence with the
axioms considered (seeConiglio andGolzio (2019)). The only less obvious case is the
rule k2. For this reasonwe present below an analytic proof of the corresponding axiom
K2 = ¬�¬(p → q) → (�p → ¬�¬q), i.e., �R K2. Note that K2 is obtained in
all the branches of the proof-tree, except for the leftmost one, which is discontinued
due to rule r4 (as signaled by the use of ∗).

∅

K2¬�¬(p → q)

�p → ¬�¬q

K2

r3

�p

¬�¬q

�p → ¬�¬q

K2

r3

r3

�¬q

�¬(p → q)

∗

r4

k2

r5

r1

r1

�
Example 3.4.7, revisited. In Example 3.4.7 we have obtained the usual three-valued
Łukasiewicz’s matrix (by strengthening the five-valued Łukasiewicz logic with an
additional axiom). Easily, S = {p,¬p} is a set of monadic separators, yielding the
discriminator S̃ with S̃0 = S̃ 1

2
= {p,¬p}, and S̃1 = {p}, which gives rise to the

following partitions.
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x �x �x

0 {¬p} {p}
1
2 ∅ {p,¬p}
1 {p} ∅

Using Theorem 3.5.1, the following rules constitute an S-analytic calculus R for
L3.

p , ¬p
r1

p

¬¬p
r2

¬¬p

p
r3

p , p → q , ¬q
r4

p , p → q

q
r5

q

p → q
r6

¬p

p → q
r7

¬q , p → q

¬p
r8

¬(p → q)

p
r9

¬(p → q)

¬q
r10

p , ¬q

¬(p → q)
r11

After simplifications, the rules r1–r3 correspond to R¬, and r4–r11 to R→. For
illustration, we depict an analytic proof of the added axiom A = ((p → ¬p) →
p) → p), i.e., �R A.

∅

¬p

p → ¬p

¬((p → ¬p) → p)

A

r7

r11

r6

A(p → ¬p) → p

¬¬p

p

A

r6

r3

p → ¬p

p

A

r6

r5

p

A

r6

r4

r4

�
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3.6 Concluding Remarks

In this paper we have shown that rexpansions of (P)(N)matrices are a universal tool
for explaining the strengthening of logics with additional axioms. This does not
come as a surprise, as non-determinism and partiality are well known for enabling a
plethora of compositionality results in logic. Our general method in Theorem 3.3.2
is not effective, but it still brings about some interesting phenomena, such as the
possibility of building a denumerable semantics for intuitionistic propositional logic
(where the precise roles of non-determinism and partiality need further clarification).
More practical, though, is our less general method in Theorem 3.3.7 as, despite the
necessary restrictions on its scope, it brings about an effective method for producing
finite semantic characterizations whenever starting from a finite basis. Our results
cover a myriad of examples in the literature, namely, those motivated by the study of
logics of formal inconsistency, which played an important role in the work of Arnon
Avron. Besides, our effective method, while more general and incremental, is fully
inspired by the fundamental ideas in Ciabattoni et al. (2014). It is also worth noting
that our results apply not just to the Tarskian notion of consequence relation, but also
to the multiple-conclusion case. An obvious topic for further work is to provide a
usable tool implementing these methods.

Other opportunities for further research, aimed at generalizing the results pre-
sented, would be to find more general syntactic conditions on the set of allowed
axioms. For instance, the number of sentential variables occurring in an axiom seems
to be easy to flexibilize by artificially extending the logic with big-arity connectives.
Beyond axioms, one could think even further away, and consider strengthening log-
ics with fully fledged inference rules. In any case, such extensions will expectedly
need more sophisticated techniques than the simple idea behind look-aheads.

These results reinforce the need to better understand the conditions under which
two (P)(N)matrices characterize the same logic. This is by nomeans a trivial question,
but we believe that the notion of rexpansion can be a useful tool in that direction.

If not for its own sake, this line of research aimed at providing effective semantic
characterizations for combined logics is quite well justified by another recurring goal
of many of the papers that inspired us: ultimately obtaining suitably analytic calculi
for the resulting logics.
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Chapter 4
Credal Calculi, Evidence, and
Consistency

Walter Carnielli and Juliana Bueno-Soler

Abstract This paper defends the use of possibility and necessity models based on
the Logics of Formal Inconsistency, taking advantage of their expressivity in terms
of the notions of consistency (◦) and inconsistency (•). The present proposal directly
generalizes the approach of Besnard and Lang (Proceedings of 10th Conference on
Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco, pp. 69–76
1994), whose main guidelines we borrow here. Some basic properties of possibility
and necessity functions over the Logics of Formal Inconsistency are obtained and
it is shown, by revisiting a paradigmatic example, how paraconsistent possibility
and necessity reasoning can, in general, attain realistic models for artificial judge-
ment. We will call such models credal calculi, emphasizing some of their appealing
consequences.

Keywords Credal calculi · Paraconsistency · Contradiction · Consistency ·
Logics of Formal Inconsistency

4.1 How Should Logic, Probability, and Their
Generalizations Be Related?

The term probabilistic logic (also referred to as probability logic) first appeared in
print in Nilsson (1986), where Nilsson specifies that the (generalized) truth value of
a sentence, defined in the interval [0, 1] is taken to be the probability of that sentence
in ordinary first-order logic.
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The aim of a probabilistic logic is to combine the capacity of probability theory
to handle uncertainty with the capacity of deductive logic to exploit the structure
of deductions. As van Benthem wittily remarks in van Benthem (2017), there is
an inescapable trade off between these two modes of reasoning: while quantitative
probability produces less certain conclusions, but is applicable to all of life around
us, deductive logic (qua qualitative) produces absolute certainty, but in a limited
range—its ‘greatest triumphs’ to be found in mathematics and automated deduction.
It is agreed, as confirmed byLeitgeb (2016), that probabilitymeasures in probabilistic
logic are typically defined on formulas rather than on sets (events), as is usually done
in standard probability theory.

The agreement between the trends of thought in probabilistic logic ends there,
however. For Leitgeb (2016), specifying a probabilistic logic for a logical conse-
quence relation is semantically determined by quantifying over probability measures
(declaring, for instance, ‘for all probability measures P’). Leitgeb classifies prob-
abilistic logics along two dimensions: those which do not involve reference to (or
quantification over) probability measures on the object level, and those which do.
The underlying base logic for probability measures in Leitgeb (2016) is assumed to
be classical, although he admits that there are also probability measures for which
classical logic is not presupposed.

This already divides the field of probabilistic logic into two halves, but there is
more: the notion of probability measure can itself be generalized in several ways.
More than that, specifying a probabilistic logic by quantifying over probability mea-
sures is not the only way to build probabilistic logics: instead of quantifying over
probability measures, the probabilistic measure itself can be intrinsically connected
with (and dependent to) the deduction of a certain logic. Thus, for instance, if the
logic lacks the Law of Excluded Middle (as in intuitionistic logic) or lacks the Law
of Explosion (as in paraconsistent logics) the probability measure P can be such that
P(α) + P(¬α) does not add to 1, or P(α) + P(¬α) can exceed 1.

We can say, in a simplified way, that probability is logic generalized, or that prob-
ability is a special case of generalized logic, or even that logic and probability are two
extreme ways of reasoning governed by certain metamathematical (or metaphysical)
laws.

The view that probability is a logic generalized (or the logical interpretation of
probability), regarding probability as an epistemic notion concerned with degrees of
belief, can be represented by Leibniz, but also Boole and later Carnap align with the
same tradition which can be viewed as a logicist program in probability.

Ramsey plays an important role in this alignment, representing a mixture of the
first and third views. His paper Ramsey (1990) conceived a theory that regarded prob-
ability and degrees of belief governed by consistency (or coherence) under certain
laws—those laws being the ‘laws of probability’. This idea founded the modern the-
ory of subjective probability by proposing a way to measure people’s beliefs through
a bettingmethod. In this way, someone’s degree of belief will satisfy the laws of prob-
ability as much as this person behaves rationally. From this perspective, Ramsey can
be considered the first one to conceive the well-known Dutch book theorem.
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But what is this ‘consistency’ advocated by Ramsey? It’s certainly not just a
reduction to the current idea of ‘lack of contradiction’. He believed that probability
is the object of logic, but not merely of classical logic. His idea of consistency can
be understood as including persistence in obeying certain rational principles; as he
puts it in Ramsey (1990), p. 78:

We find, therefore, that a precise account of the nature of partial belief reveals that the laws
of probability are laws of consistency. [...] Having any definite degree of belief implies a
certain measure of consistency, namely willingness to bet on a given proposition at the same
odds for any stake, the stakes being measured in terms of ultimate values.

By relying on some intuitive rules of rational behavior, Ramsey could give a joint
axiomatization of probability and utility showing that the measure of our ‘degrees of
belief’ satisfies such laws of probability. We can summarize Ramsey’s position by
saying that the logic of consistency for probability does not coincide with a logic of
truth.

In this sense, probability expands and generalizes logic, but not necessarily only
classical logic, as Adams (1998) implies. Unless one completely rules out logical
pluralism (the view that there is more than one correct logic), Adam’s opinion is
clearly a philosophical mistake, as there are several cases of probability calculi based
on non-classical logics.

From this point of view, probability is a special case of generalized logic, in the
sense that probability laws are dependent on the logic that we are assuming. This is
the approach we take in this paper, investigating the interest of measures generalizing
probabilities, where such measures are subject to non-standard logics.

A logicist view relating logic and probability was defended by Jan Łukasiewicz
in 1913. In a publication in German (cf. Łukasiewicz 1970) Łukasiewicz maintained
that probability theory would gain from being dependent on purely logical concepts,
and claimed that this could save probability from its ‘obscure philosophical conno-
tation’. Łukasiewicz’s idea was to replace the concept of probability measures by
the concept of truth value (in turn regarded as degrees of truth). He was able to show
that all laws of probability could be obtained from an (infinite) many-valued logical
calculus, thus boldly linking probability and non-classical logic. Although (appar-
ently) Łukasiewicz never endorsed the idea that different logics would give rise to
different notions of probability (as he was more concerned with the foundations of
the ‘right’ probability theory), he was nonetheless just one step away from that.

Going a bit further, as we do here and have argued elsewhere, one can regard
probability as directly logic-dependent (seeBueno-Soler andCarnielli 2016), and this
is the same for possibility and necessity measures. Possibility theory is an approach
to uncertainty that can handle incomplete information. It is comparable to (and can be
thought as generalizing) probability theory, albeit differing from probability theory
as it uses a pair of dual mappings (possibility and necessity measures) instead of
only one. Similar to probability measures, necessity and possibility measures can
profitably be generalized to non-classical logics.
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The aim of this paper is to show how necessity and possibility measures can be
defined on the basis of the Logics of Formal Inconsistency (LFIs), extending previous
work by Besnard and Lang (1994) in a rather natural way.

In previous papers (Bueno-Soler andCarnielli 2016 andCarnielli andBueno-Soler
2017), we have investigated probability theories based on LFIs, emphasizing their
interest and applicability. This paper goes a step further, generalizing our previous
work towards possibility and necessity functions, and at the same time generalizing
the work in Besnard and Lang (1994). That paper opened an area of study by propos-
ing possibility and necessity functions over non-classical logics, concentrating on the
da Costa calculus C1. Although this was a natural choice at that time, and the paper
offers valuable insights on the use of paraconsistent calculus with regard to possibil-
ity and necessity functions, there are some improvements that can be implemented
in the light of new theories that extend the hierarchy Cn .

The present approach is based on theLogics of Formal Inconsistency, a generaliza-
tion of da Costa’s original hierarchy that takes into account operators for consistency
(◦) and inconsistency (•), in a certain sense materializing the intuition of F. Ramsey.
LFIs turn out to be highly flexible logic systems, as well as fixing some definitional
problems of the original logics Cn (see, e.g., Carnielli et al. 2019 for references and
discussion). This point will be clarified in the next section.

Since necessity measures and possibility measures can, respectively, be regarded
as belief measures and plausibility measures, we refer (in an informal and generalist
way) to the logic systems employing them as credal calculi, considering that belief
can be regarded as generalized probability.

4.2 Paraconsistency, in the Guise of LFIs

Paraconsistency is the investigation of logic systems endowed with a negation ¬,
such that not every contradiction of the form α and ¬α entails everything; in other
words, a paraconsistent logic does not suffer from deductive trivialism, in the sense
that a contradiction does not necessarily trivialize the deductive machinery of the
system by proving everything.1

Deductive trivialism stems from the fact that classical logic abhors contradictions,
since it endorses the inference rule of Ex Contradictione Sequitur Quodlibet, or
Principle of Explosion:

(PEx) α,¬α � β

which authorizes one to derive anything from a pair of contradictory propositions
α,¬α.2 The big challenge for paraconsistent logics is to avoid entertaining such

1 There is another sense of trivialism, according to which everything is true. This should not be
confused with deductive trivialism.
2 This is independent from the fact that classical logic endorses the validity of the Principle of
Non-Contradiction: (PNC) � ¬(α ∧ ¬α), see Carnielli et al. (2018).
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an explosive negation, while still preserving resources for designing an expressive
logic.

The Logics of Formal Inconsistency are a broad family of paraconsistent logics
whose language, as mentioned, internalizes a notion of consistency independent of
(but related to) negation, usually formalized by a new connective ◦. In this setting,
the notion of inconsistency (•) is not necessarily the negation of consistency (¬◦).

Consistent statements are those too rigid to admit contradictions, errors or vague-
ness, as well as exemplified by passwords. While a password does not permit any
single mistake, an Internet search with typos usually returns acceptable results. Pass-
words are rigid, or ‘consistent’, in the sense that their effect is destroyed by a contra-
diction, while an Internet search can cope with the contradictions imposed by a typo.
Starting from these basic intuitions that contradictions do not affect everything in
the same way, LFIs do not validate the Principle of Explosion in its draconian form,
that is, it is not the case that from any pair of contradictory sentences everything
follows. The Principle of Explosion is, instead, taken into a tractable form, restricted
to consistent sentences. Therefore, a contradictory theory is not necessarily trivial,
provided the contradiction does not refer to something consistent.

This flexibility of the LFIs is expressed in the following law, termed the Principle
of Gentle Explosion:

(PGE) ◦α,α,¬α � β, for every β, although α,¬α � β, for some β.

This feature of the LFIs leads to the notion that not all contradictions are equiv-
alent, and that not all contradictions may cause deductive triviality. However, some
special contradictions, the ‘consistent contradictions’, may indeed cause deductive
explosion. LFIs expand the realm of classical logic, which may be recovered (if one
so decides) by simply supposing that all kinds of propositions are consistent.

So, differently from standard logic, consistency is not synonymous with freedom
from contradiction. The meaning of consistency in the LFIs is dictated by its axioms,
as occurs with negation (and all other connectives). Some linguistic approximations
of the idea of ‘consistent’ are ‘coherent’, ‘orderly’, ‘tidy’, etc., as inWilliams (1978),
where it is argued that inconsistency and contradiction should not be confused, and
that one may be justified in believing inconsistent propositions.

It should be clear that the notions of consistency and non-contradiction are not
coincident in the LFIs, and that the same holds for the notions of inconsistency and
contradiction. There is, however, a fully fledged hierarchy of LFIs where consistency
is gradually connected to non-contradiction; the reader is referred to Carnielli et al.
(2007) and to Carnielli and Coniglio (2016) for a detailed treatment of the LFIs,
along with conceptual motivations.

This paper, as mentioned, is devoted to redesigning the proposal of Besnard and
Lang (1994) by carefully substituting the base logic C1 by Cie, a logic much weaker
than C1 but one that boasts the same relevant properties with regard to the logical
treatment of possibility and necessity functions, with some significant advantages.

First, as it is well known, the logics in the hierarchy Cn (C1 included, obviously)
are hardly algebraizable: there is little, if any, hopeof achieving aKolmogorovian-like
approach to probabilistic theories (and their generalizations), based on Cn systems.
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This is due to the non-validity of a replacement theorem (which would establish
the validity of intersubstitutivity of provable equivalents, (IpE)), for such logics.
Indeed, Theorem 3.51 in Carnielli and Marcos (2002) shows that (IpE) cannot hold
in any paraconsistent extension of Ci (or, for that matter, in any LFI) in which either
(¬α ∨ ¬β) � ¬(α ∧ β) or ¬(α ∧ β) � (¬α ∨ ¬β) hold.

Nevertheless, there is still a chance of obtaining (IpE) in extensions of Ci by the
addition of weaker forms of contraposition deduction rules, as discussed in Sect.
3.7 of Carnielli and Marcos (2002). Recent (unpublished) results obtained with the
help of interactive theorem provers encourage us to conjecture that this is the case
(see Carnielli et al. 2020). This is one of the strongest reasons to prefer Cie (a slight
extension of Ci) instead of C1. On the other hand, a logic system weaker than Cie
would be further away from classical logic, limiting real applications.

A second reason to prefer an LFI is the unnaturalness of the well-behavedness
operator αo of da Costa’s C1, and analogous definitions for the whole hierarchy Cn .
The fact that αo is defined by ¬(α ∧ ¬α), together with the axiomatic propagation
of this operator through other connectives ((αo ∧ βo) entailing (α#β)o for all binary
connectives #) makes the semantics for C1 (and even worse for general Cn) quite
clumsy. Quoting from Carnielli et al. (2019), p. 4:

At first glance, it may seem that the consistency operator of LFIs and the well-behavedness
operator of da Costa’s Cn hierarchy ... are the same thing when applied to a proposition α.
This view, however, is mistaken. LFIs are a generalization of da Costa’s idea of expressing
the metalogical notion of consistency inside the object language. Even though the logics
of Cn hierarchy (for 1 ≤ n < ω) end up being a special case of LFIs, an important point
distinguishes LFIs from da Costa’s Cn . In the latter, as we have just seen, αo is an abbrevi-
ation of ¬(α ∧ ¬α), while in LFIs the unary connective ◦ may be primitive and logically
independent from non-contradiction. So, in some LFIs, the equivalence between ◦α and
¬(α ∧ ¬α) does not hold.

A third reason to prefer Cie over C1 is that it has a nice quasi-finite valued
semantics. Indeed, Avron (2007) proved that Cie (which he calls Bcie) is sound and
completewith respect to a non-deterministic three-valuedmatrix, in thisway confirm-
ing the decidability of Cie by a simple algorithm. Although a possible-translations
semantics based on 3-valued tables and the corresponding decidability had already
been obtained for Cie (see Marcos 2008), the non-deterministic semantics of Avron
(2007) is the simplest possible and makes Cie semantically as close as possible to
an elementary three-valued logic.

To sum up, the logicC1 is unnecessarily heavy and bulky for the task of supporting
a good and useful possibilistic theory, and it is our purpose to contend that this can
be better achieved by starting from an LFI.
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4.3 Formal Consistency, Possibilistic Measures, and
Knowledge Representation

As widely recognized (see, e.g., Besnard and Laenens 1994 and Dubois and Prade
2015) reasoning fromcontradictory premises is a critical issue, since large knowledge
bases are inexorably prone to incorporate contradictions. Contradictory information
comes from the fact that data is provided by different sources, or by a single source
that delivers contradictory data as certain.

The connections between the possibilistic and the paraconsistent paradigms are
deep and complex; Dubois and Prade (2015), for instance, gives an overview of the
various forms of contradiction that can be accommodated into possibilistic logic,
defining concepts such as ‘paraconsistency degree’ and ‘paraconsistent completion’.
We believe, however, that defining possibility and necessity measures directly over
the LFIs helps this connection, for the reasons given above. Paraconsistent logics
offer simple and effective models for reasoning in the presence of contradictions, as
they avoid collapsing into deductive trivialism by an uncomplicated logic machinery.
Taking into consideration that it is more natural and efficient to reason from a contra-
dictory information scenario than trying to remove the contradictions involved, the
investigation of credal calculi concerned with necessity and possibility measures is
well justified.

Although Besnard and Laenens (1994) refers to the ‘inferential weakness’ of
paraconsistent logics, that paper is concerned with the calculusCω , a lower deductive
bound of the hierarchy Cn which is considerably distinct from the elements of the
hierarchy, and is not the deductive limit to this hierarchy (see Carnielli and Marcos
1999 in this respect). We intend to show that the LFIs are better candidates, and
in particular that Cie, a Logic of Formal Inconsistency which, as said, differs very
little from standard logic, can be used as a basis for paraconsistent necessity and
possibility measures with an appealing potential for applications. Employing Cie is
suggestive (as it is a sub-classical logic which is close in spirit to classical logic) but
other choices can be thought of.

4.3.1 Possibility and Necessity Measures over Cie

Definition 4.3.1 The system Cie is composed by

1. Axioms

(PC+) all positive axioms of PC
(PI) p ∨ ¬p

(bC1) ◦p ⊃ [p ⊃ (¬p ⊃ q)]
(cf) ¬¬p ⊃ p
(ce) p ⊃ ¬¬p
(Ci) ¬ ◦ p ⊃ (p ∧ ¬p)

2. Rule
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(MP) From α and α ⊃ β it follows β.

Axiom bC1 embodies the Principle of Gentle Explosion. Although the negation¬
of Cie is more subtle than classical negation, a ‘strong’ or classical negation∼ can be
recovered within Cie, thus making Cie able to regain any classical reasoning (since
all other connectives will act classically in the presence of a classical negation):

∼α
Def= α ⊃ [p ∧ (¬p ∧ ◦p)]

From the semantic viewpoint, Cie can be semantically characterized by a two-
valued non-truth functional valuation semantics. As most logics of the family of
LFIs, Cie cannot be characterizable by finite matrices, see, e.g., Theorem 4.29 of
Carnielli et al. (2007). Alternatively, it can also be proved to be sound and complete
by possible-translations semantics based on three-valued ingredients (Marcos 2008;
Carnielli andMarcos 2002). Asmentioned above,A.Avron provided inAvron (2007)
an elegant sound and complete non-deterministic three-valued matrix semantics for
Cie. All thismakesCie close to amany-valued logic, as it can be regarded as a special
combination of three-valued logics, and at the same time minimally (but essentially)
deviating from classical logic.

The idea of a graded notion of possibility in the formof a relation between possible
worlds was introduced by David Lewis in 1963, in what he called ‘comparative
possibility’. The idea evolved progressively to possibility theory and possibilistic
measures in the hands of Lotfi Zadeh, Didier Dubois and Henri Prade (cf. Dubois and
Prade 2006). Possibilitymeasures and their dual counterpart, necessitymeasures, can
be understood respectively as plausibility and belief functions, or even as imprecise
(approximate) probabilities.

The main point of this paper, as was pointed out, is to show why is it interesting to
combine possibility theory with paraconsistency in the manner of the LFIs. On one
hand, possibility theory based on classical logic is able to handle contradictions, but
at the cost of complicated maneuvers (Dubois and Prade 2015). On the other hand,
paraconsistent logics cannot easily express uncertainty in a gradual way. The blend
of both via the LFIs, in view of the operators of consistency and inconsistency, offers
a simple and natural qualitative and quantitative tool to reason with uncertainty. In
view of the above rationale, the particular LFI we have chosen to carry out this
combination, Cie, has some significant advantages,

Contrary towhat happens inmanyLFIs, the logicCie does not distinguish between
inconsistency and contradiction as a consequence of its axiomatic presentation, and
also allows for reduction of double negations. It is convenient to emphasize such
properties, notably the ones concerned with consistency and inconsistency, as a the-
orem:

Theorem 4.3.2 The following hold in

1. �Cie •¬α ≡ •α ≡ ¬ ◦ α ≡ α ∧ ¬α
2. �Cie α ≡ ¬¬α
3. �Cie ◦ ◦ α
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4. �Cie ◦ • α
5. (α ⊃ ◦β) �Cie (¬ ◦ β ⊃ ¬α)

6. (α ⊃ ¬ ◦ β) �Cie (◦β ⊃ ¬α)

7. (¬α ⊃ ◦β) �Cie (¬ ◦ β ⊃ α)

8. (¬α ⊃ ¬ ◦ β) �Cie (◦β ⊃ α)

9. �Cie α ∨ ◦α, �Cie ¬α ∨ ◦α
Proof 1. Item 1: Theorems 3.31, 4.2.7, and 4.28 of Carnielli et al. (2007),
2. Item 2: from axioms (ce) and (c f )) (Definition 4.3.1).
3. Items 3 to 9: from Fact 3.33, Fact 3.34, and Lemma 3.43 of Carnielli andMarcos

(2002).
�

Items (3) and (4) above show a simple yet relevant attribute of the axiomatized
notions of consistency and inconsistency: they are themselves consistent in their own
sense. Items (5) to (9) show how the presence of consistent parts help to recover bits
of standard reasoning. This makesCieminimally deviating from classical logic, and
easier to understand the role of the paraconsistent possibility and necessity measures.
Moreover, as mentioned, classical logic can be encodedwithinCie, as well as inmost
LFIs,3 so making the credal calculi based on LFIs a legitimate expansion of standard
reasoning.

A generic notion of logic-dependent necessity measures is given by the conditions
below, inspired by Lewis Lewis (1976) (to the best of our knowledge, the first to
consider, after Carnap, probability measures for logical sentences).

Definition 4.3.3 A necessity function (or measure) for the language L of Cie, or a
Cie-necessity function, is a function N : L 
→ R satisfying the following conditions,
where �Cie stands for the syntactic derivability relation of Cie:

1. Non-negativity: 0 ≤ N (ϕ) ≤ 1 for all ϕ ∈ L
2. Tautologicity: If �Cie ϕ, then N (ϕ) = 1
3. Anti-Tautologicity: If ϕ �Cie, then N (ϕ) = 0
4. Comparison: If ψ �Cie ϕ, then N (ψ) ≤ N (ϕ)

5. Conjunction: N (ϕ ∧ ψ) = min{N (ϕ), N (ψ)}
Acondition N (α) = λ can be understood as expressing that ‘α is certain to degree

λ’ (in all normal states of affairs).
Possibilistic measures are also useful when representing preferences expressed as

sets of prioritized goals, as, e.g., some lattice-valued possibility measures studied in
the literature instead of real-valued possibility measures.

We do not want to imply that Cie is the only basis for defining useful necessity or
possibility functions; other LFIs sharing the same signature can be good candidates.
A particularly apt candidate is the three-valued logic LFI1. This logic has several
properties that justify its role as one of the most natural three-valued paraconsistent
logics, as argued in Avron (1991). In addition to having been specially designed to

3 See discussions on the Derivability Adjustment Theorems in Carnielli et al. (2007).
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be used in databases (cf. Carnielli et al. 2000), all their binary connectives behave
classically, and LFI1 is maximal with respect to classical sentential logic.

The properties of Cie-necessity functions permit us to derive some immediate,
but useful consequences, that attest that we do not need the full force of C1:

Theorem 4.3.4 1. If φ1, . . . ,φn �Cie ψ then mini=1,n N (φi ) ≤ N (ψ).
2. N (•¬α) = N (•α) = N (¬ ◦ α) = min{N (α), N (¬α)}
3. N (•α) = N (α) or N (•α) = N (¬α)

4. N (◦ϕ ∧ ϕ ∧ ¬ϕ) = 0
5. min{N (•α), N (◦α)} = 0 (Metaconsistency)

Proof 1. An iterated application of Comparison.
2. A consequence of Theorem 4.3.2 (1) and the Conjunctive property of necessity

functions.
3. Immediate after (2).
4. A consequence of Anti-Tautologicity and Conjunction.
5. Again, a consequence of Anti-Tautologicity and Conjunction since ◦ϕ ∧ •ϕ is

a bottom particle.
�

Analogously, a generic notion of logic-dependent possibility measures (dual to a
necessity function) is defined as follows:

Definition 4.3.5 A possibility function (or measure) for the language L of Cie,
or a Cie- possibility function, is a function � : L 
→ R satisfying the following
conditions:

1. Non-negativity: 0 ≤ �(ϕ) ≤ 1 for all ϕ ∈ L
2. Tautologicity: If �Cie ϕ, then �(ϕ) = 1
3. Anti-Tautologicity: If ϕ �Cie, then �(ϕ) = 0
4. Comparison: If ψ �Cie ϕ, then �(ψ) ≤ �(ϕ)

5. Disjunction: �(ϕ ∨ ψ) = max{�(ϕ),�(ψ)}
A condition �(α) = λ can be understood as expressing that ‘α is possible to

degree λ’. If L is the standard classical logic, an L-possibility or -necessity function
is a classical possibility or -necessity function (with the understanding that ◦α holds
for any classical sentence α).

It is also instructive to note that analogous properties of necessity measures as in
Theorem4.3.4 hold for possibilisticmeasures, and that in both cases the values for the
negationof a sentence are independent of the values of that sentence, their relationship
being expressed by the operators of consistency (or equivalently inconsistency); in
other words, N (¬α) and N (α) are in principle independent, and somehow N (•α) =
N (¬ ◦ α) expresses their relationship (similarly for �).

The meaning of such axioms is clear in showing how possibility and neces-
sity functions can be perceived as logic-dependent: Non-Negativity, Disjunction
and Conjunction are independent of any underlying logic, whereas Tautologicity,
Anti-Tautologicity, and Comparison are clearly logic-dependent axioms.
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By reviewing more carefully the intuition behind such measures, we can say that
a value for a necessity function N (α) > 0 measures how much α holds in the most
normal situations, or how much α is a ‘commonly accepted’ belief. In other words,
one may act as if α were ‘almost’ true. A value for a possibility function �(α) > 0
measures how much α is plausible, though perhaps unexpected.

The main difference between probability and possibility is that (standard) prob-
ability is self-dual, in the sense that ‘it is not probable that not-α’ means that ‘it is
probable that α’, while possibility is not: ‘it is not possible that not-α’ does not mean
‘it is possible that α’, but ‘it is necessary that α’.

An assertion like ‘it is not possible that α’ does not entail anything about the
possibility, nor about the impossibility of not-α. Also, It may happen that �(α) =
�(¬α), as well as N (α) = N (¬α).

There is a significant distinction at this point between standard and paraconsistent
possibility and necessity measures. In the standard case one cannot be doubtful,
that is, one cannot be both ‘somewhat certain’ about a proposition and about its
negation, in the sense ofmaintaining N (ϕ) > 0 and N (¬ϕ) > 0 since N (ϕ ∧ ¬ϕ) =
0 = min{N (ϕ), N (¬ϕ)}. This kind of reasoning, however, can be expressed in the
present theory: N (ϕ) and N (¬ϕ) can be both positive. Notice, notwithstanding, that
one cannot have N (ϕ) > 0, N (¬ϕ) > 0 and N (◦ϕ) > 0. That is, one cannot be
both ‘somewhat certain’ about a consistent proposition and its negation in view of
Theorem 4.3.4, item (4).

As much as in the standard case, one may have both �(ϕ) = 1 and �(¬ϕ) = 1
unproblematically, as this merely acknowledges a state of total ignorance about the
truth value of ϕ. What one cannot have, either in the standard theory or in the present
theory, is �(ϕ) = 0 and �(¬ϕ) = 0 (in view of consequences of Tautologicity and
Disjunction for�-measures; just recall that�(ϕ ∨ ¬ϕ) = 1 because �Cie ϕ ∨ ¬ϕ).
This justifies investigating possibility and necessity theories based on Logics of
Formal Inconsistency and Undeterminateness (LFIUs), where this would be possible
(see Sect. 4.5) in view of the non-universal validity of the Law of Excluded Middle.

The relationship between possibility and necessity measures depends on the
strength of the logical connectives involved. Under certain conditions (e.g., for clas-
sical logic, or under sufficiently strong properties for a negation �, as in Proposition
4 of Besnard and Lang (1994)) the following dualities hold:

NecPos N is a necessity function iff �N (ϕ) = 1 − N (� ϕ) is a possibility function
PosNec � is a possibility function iff N�(ϕ) = 1 − �(� ϕ) is a necessity function

It should be clear that the strong negation ∼ definable in the logic Cie fulfills
the requirements of Proposition 4 in Besnard and Lang (1994), which means that in
principle we can restrict ourselves to elect one of the measures as preferential inCie,
taking the other as defined.
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4.3.2 The Principle of Minimum Specificity (PMS) and
Paraconsistency

Although quite flexible, standard necessity and possibility measures do not cope well
with contradictions, since they treat contradictions in a global form (see a detailed
explanation in Besnard and Lang (1994)), even if in a gradual way. This is the
main reason to define them based upon paraconsistent logics; although they lack
graduality, LFIs offer a tool for handling contradictions in knowledge bases in a
local form, by locating the contradictions on critical sentences. Yet, the combination
of them reaches a good balance: the paraconsistent paradigm by itself does not allow
for any fine-grained graduality in the treatment of contradictions, which may lead to
some loss of information when contradictions appear in a knowledge base. But when
enriched with possibility and necessity functions, a new reasoning tool emerges.

At this point, it may be convenient to address a minimal information-theoretical
treatment, just enough to discuss an illustrative example of the potentialities of the
credal calculi when endowed with the consistency operators granted by the LFIs. We
will be adapting some definitions from Besnard and Lang (1994), also revisiting the
same example in that paper (itself borrowed from [Cho 94]) in order to highlight the
potentialities and naturalness of the necessity measures built over the LFIs.

Consider a finite collection of items of information about a certain event X repre-
sented as pairs 〈φi ,αi 〉, 1 ≤ i ≤ n, for φi ∈ L,αi ∈ [0, 1], interpreted as uncertain
pieces of information about X whosemeaning is ‘My belief that X is φi isαi ’. 〈φi , 1〉
means ‘My belief that X is φi is certain’, while 〈φi , 0〉 means ‘total ignorance about
X ’.

In general, 〈φi ,αi 〉 is defined by the grade of credibility deriving from some body
of evidence as defined by the mathematical concept of belief function in the way of
Shafer [12] (but other measures are also accepted4).

The items of information about a certain event can be collected into a finite
Cie-knowledge base K B0 = {〈φi , ρi 〉 : 1 ≤ i ≤ n} where φi ∈ L, ρi ∈ [0, 1] and ρi

respect the conditions of a necessity measure (i.e., there is some necessity function
N such that N (φi ) = ρi when defined), under the following provisos:

1. if ϕ is a tautology and ϕ ∈ K B0 then 〈ϕ, 1〉 ∈ K B0;
2. K B0 is non-trivial, that is, K B0 does not deduce (by means of the logicCie) any

bottom particle ⊥.

The second proviso reflects an important presumption of the LFIs (and of para-
consistent logics in general): the distinction between contradictoriness and triviality.
ACie-knowledge base can be contradictory, but not deductively trivial. Consistency
is the concept that makes the bridge between them: only a consistency contradiction

4 Shafer’s proposal as a theory of probable reasoning (and the Dempster-Shafer theory for that
matter) is open to a number of objections, as discussed in Williams (1978). This aspect is not
particularly relevant to our approach, since it is robust enough to correct distortions caused by a
less precise belief function.
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leads to deductive triviality. This is granted by Principle of Gentle Explosion (see
axiom bC1 in Sect. 4.3.1).

We consider two information-theoretic principles, one of them to complete a
Cie-knowledge base: the Principle of Evidence, and another one the Closed-World
Assumption, to be specified below.

Since sentences inCie-knowledge bases belong to the language L ofCiewithout
• and ◦ (as they are sentences about facts, and not about consistency or inconsistency
of facts) the Principle of Evidence requires that we add to K B0 a sentence •α any
time α and ¬α belong to K B0, as well as all tautologies in Cie, thus stipulating an
extended knowledge base:

K B = K B0 ∪ {〈•α, ρ〉 : 〈α, ρ1〉 ∈ K B0 and 〈¬α, ρ2〉 ∈ K B0}

where ρ = min{ρ1, ρ2}.
Definition 4.3.6 A necessity function N satisfies K B iff for every 〈φi , ρi 〉 ∈
K B, N (φi ) ≥ ρi .

The Principle of Minimum Specificity, PMS (Dubois and Prade 1987; Kraus et al.
1990) is a guiding provision of possibility theory. Also referred to as the minimum
compact ranking and rational closure, it states that no hypothesis not known to be
impossible should be left out. In this way, it induces a canonical necessity function
which can be shown to be the smallest among all necessity functions satisfying the
knowledge base.

Definition 4.3.7 Given a Cie-possibilistic knowledge base K B, the λ-cut K Bλ of
K B is defined as K Bλ = {φ : 〈φ, ρ〉 ∈ K B and æ ≥ ˘}.

A λ-cut singles out the items of information about a certain event X such that
‘My belief that X is φ’ is at least λ.

Definition 4.3.8 The minimum specificity closure of a Cie-possibilistic knowledge
base K B is the function N ∗

K B (called a pre-necessity measure) defined by
N ∗

K B(φ) = sup{λ : K Bλ �Cie φ}.
We now state our second information-theoretic principle, the Closed-World

Assumption applicable to extend the pre-necessity measure N ∗
K B in the following

way: when N ∗
K B is not defined (the piece of information φ does not appear in the

database K B) then N ∗
K B(φ) = 0 and N ∗

K B(¬φ) = 0. That is, when there is no evi-
dence, either favorable or contrary, the pieces of information are considered to be
consistent, since in this case N ∗

K B(•φ) = 0, we can take N ∗
K B(◦φ) = 1 (what means,

in other words, assuming that consistency is maximal by lack of evidence to the
contrary).

The next result sketches a proof showing how a pre-necessity measure N ∗
K B can

be extended to a necessity measure.

Theorem 4.3.9 N ∗
K B can be extended to a Cie-necessity function NK B.
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Proof We first show some fundamental properties of N ∗
K B :

1. Non-negativity: obvious by the definition of K B0,
2. Conditional Tautologicity: If �Cie ϕ and N ∗

K B(ϕ) is defined, i.e., ϕ ∈ K B, then
N ∗

K B(ϕ) = 1 by construction of K B.
3. Anti-Tautologicity: If ϕ �Cie, then K Bλ �Cie ϕ , for every λ, as K B does not

contain any bottom particle. Then sup{λ : K Bλ �Cie ϕ} = sup ∅ = 0.5 Thus
N ∗

K B(ϕ) = 0 if ϕ is a bottom particle.
4. Conditional Comparison: If ψ �Cie ϕ and N ∗

K B(ψ) and N ∗
K B(ϕ) are defined

(that is, ϕ,ψ ∈ K B) then N ∗
K B(ψ) ≤ N ∗

K B(ϕ), since sup{λ : K Bλ �Cie ψ} ≤
sup{λ : K Bλ �Cie ϕ}.

5. Quasi-Conditional Conjunction: If N ∗
K B(ϕ ∧ ψ), N ∗

K B(ψ), and N ∗
K B(ϕ) are

defined (that is, all sentences belong to K B) then N ∗
K B(ϕ ∧ ψ) ≤ min{N ∗

K B(ψ),

N ∗
K B(ϕ)}, since sup{λ : K Bλ �Cie ϕ ∧ ψ} ≤ sup{λ : K Bλ �Cie ϕ} and sup{λ :

K Bλ �Cie ϕ ∧ ψ} ≤ sup{λ : K Bλ �Cie ψ}.
Now, if N ∗

K B(ϕ ∧ ψ) < min{N ∗
K B(ψ), N ∗

K B(ϕ)}, change the value of N ∗
K B(ϕ ∧

ψ) in K B to 〈ϕ ∧ ψ, ρ〉 where ρ = min{N ∗
K B(ψ), N ∗

K B(ϕ)}. This establishes
Conjunction.
The above items show that N ∗

K B conditionally satisfies the clauses of Definition
4.3.3. N ∗

K B can be nowextended to aCie-necessity function NK B in the following
way, for the sentences α where N ∗

K B(α) is not defined (that is, ϕ /∈ K B) under
the proviso that α �= ⊥:

a. If �Cie ϕ and N ∗
K B(ϕ) is not defined set N ∗

K B(ϕ) = 1. This establishes Tau-
tologicity.

b. Ifψ �Cie ϕ, and N ∗
K B(ψ) or N ∗

K B(ϕ) is undefined, set the value of N ∗
K B(ψ) to

be the same as N ∗
K B(ϕ). Vice versa for the other case. If neither are defined,

set the value of both as 1. This establishes Comparison.
c. If N ∗

K B(ϕ ∧ ψ), N ∗
K B(ψ), and N ∗

K B(ϕ) are all undefined, set N ∗
K B(ϕ ∧ ψ) =

N ∗
K B(ϕ) = N ∗

K B(ψ) = 1
If two of them are undefined, set them as the defined one.
If just one of them is undefined, there are two subcases:
– If N ∗

K B(ϕ ∧ ψ) is undefined, set N ∗
K B(ϕ ∧ ψ) = min{N ∗

K B(ψ), N ∗
K B(ϕ)}.

– If either N ∗
K B(ψ) or N ∗

K B(ϕ) is undefined, set its value as the same as
N ∗

K B(ϕ ∧ ψ).
d. No sentences of the form •ϕ and ◦ϕ belong simultaneously to K B, since

K B is non trivial by hypothesis. If N ∗
K B(•α) or N ∗

K B(◦α) is defined, set the
other one such that N ∗

K B(•α) + N ∗
K B(◦α) = 1. If neither are defined, set

N ∗
K B(•α) = 0 and N ∗

K B(◦α) = 1.
The pre-necessity measure N ∗

K B is therefore extended to NK B which enjoys
the properties of Definition 4.3.3 for all sentences in the language.

�

5 We are supported by the following properties: (1) every real number is both an upper and a lower
bound of an empty set, and (2) If A ⊂ B are sets of real numbers and sup exists, then sup A ≤ supB,
see, e.g., Harzheim (2005).
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The intuition behind NK B is to provide a necessity function with a ‘higher degree
of generality’, and therefore with a ‘lower degree of specificity’. We can now prove
that NK B is indeed minimal:

Theorem 4.3.10 For any Cie-necessity function N, N satisfies K B iff N (ϕ) ≥
NK B(ϕ) for every ϕ such that 〈ϕ,λ〉 ∈ K B for some λ.

Proof N satisfies K B by Definition 4.3.6 iff for every 〈φ, ρ〉 ∈ K B, N (φ) ≥ ρ.
As NK B = N ∗

K B for sentences in K B and N ∗
K B ≤ N by Definition 4.3.8, the result

follows. �
Non-monotonic and paraconsistent logics are no strangers to each other. In certain

cases, we may not need non-monotonic reasoning if we are within a paraconsistent
domain. Non-monotonic logic is structurally closed to the internal reasoning of belief
revision, as argued in Gärdenfors (1991), where it is shown that the formal struc-
tures of the two theories are similar. Following a suggestion in Besnard and Lang
(1994), in light of Kraus et al. (1990), it is possible to define a natural non-monotonic
consequence relation6 on databases acting under the logic Cie as follows:

Definition 4.3.11 K B |∼ φ iff NK B(φ) > NK B(•φ)

The definition above can be equivalently written as the following:

Theorem 4.3.12 K B |∼ φ iff NK B(φ) > NK B(¬φ) and K B |∼ ¬φ iff NK B(¬φ)

> NK B(φ).

Proof Consequence of Theorem 4.3.4. �
The general non-monotonic consequence relation φ |∼ K B ψ is defined by φ |∼

K B ψ iff NK B(φ ⊃ ψ) > NK B(φ ⊃ •ψ) (or equivalently φ |∼ K B ψ iff NK B(φ ⊃
ψ) > NK B(φ ⊃ ¬ψ)).

Intuitively, φ |∼ K B ψ means ‘If φ, then normally ψ’, or ‘ψ is a plausible conse-
quence of φ’. In the particular case of K B, φ is deducible from K B iff the certainty
of φ is higher than the degree of inconsistency of φ, or equivalently, iff the certainty
of φ is higher than the certainty of ¬φ.

4.4 Contradictory Evidence via Multi-source Reasoning

By revisiting a paradigmatic example of Cholvy (1994) andBesnard and Lang (1994)
we can appraise the suitability of general paraconsistent credal calculi, exemplified
by the present case of Cie possibility and necessity measures in formalizing artificial
reasoning with discernment, producing sensible judgements.

Two witnesses, W1 and W2, report a crime, under the following pieces of testi-
monial evidence:

6 Formally, the fact that the consequence relation K B |∼ φ is monotonic follows from results
in Dubois and Prade (1991) but it can be checked that if K B ⊂ K B ′ and K B |∼ φ it does not
necessarily follow that K B ′ |∼ φ, in view of the role of the sup operator.
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1. W1 is certain the suspect was a woman with blond hair, and believes (with
different degrees of uncertainty) that she was using glasses, wearing a hat and
driving a BMW.

2. W2 is also certain the suspect was a indeed a woman, but with brown hair and
that she was not using glasses, and believes (with some degree of uncertainty)
she was not driving a BMW. W2 cannot say anything about a hat.
Now, let us assign a necessity function N to this information provided by W1

and W2 (where λ,λ′,λ′′,λ′′′ < 1):
3. For W1:

N ( f emale) = 1; N (blond) = 1; N (glasses) = λ; N (hat) = λ′; N (B MW ) =
λ′′.

4. For W2:
N ( f emale) = 1; N (¬blond) = 1; N (¬glasses) = 1; N (¬B MW ) = λ′′′.

Let K B be a possibilistic knowledge base containing the credal information
extracted from the witnesses, that is, K B contains the items of information
{〈 f emale, 1〉, 〈blond, 1〉, 〈¬blond, 1〉, 〈glasses,λ〉, 〈¬glasses, 1〉, 〈hat,λ′〉,
〈B MW,λ′′〉, 〈¬B MW,λ′′′〉}. The canonical necessity function NK B now gives the
followingvalues, in linewithTheorem4.3.4 and applying theClosed-WorldAssump-
tion:

• NK B( f emale) = 1; NK B(¬ f emale) = 0; NK B(• f emale) = 0
• NK B(blond) = 1; NK B(¬blond) = 1; NK B(•blond) = 1
• NK B(B MW ) = λ′′; NK B(¬B MW ) = λ′′′; NK B(•B MW ) = min{λ′′,λ′′′}
• NK B(hat) = λ′; NK B(¬hat) = 0; NK B(•hat) = 0
• NK B(glasses) = λ; NK B(¬glasses) = 1; NK B(•glasses) = λ

From this setting the non-monotonic associated logic K B |∼ is able to conclude
that:

K B |∼ f emale, K B |∼ hat , K B |∼ ¬glasses, K B � |∼ blond, K B � |∼
¬blond, K B |∼ B MW if λ′′′ < λ′′ (respectively, K B |∼ ¬B MW if λ′′′ > λ′′, or
K B � |∼ B MW , K B � |∼ ¬B MW if λ′′′ = λ′′).

The results are not substantially different from previous examples (compare to
Besnard and Lang 1994) but the prospects on being based on LFIs (and LFIUs
in general) are wider, for the following reasons: first, the logic Cie is lighter than
C1 (and of Cn) in not having to carry the weight of the axioms for propagation
of consistency, unnecessary for the context of possibility and necessity measures
(see discussion in Sect. 5.2 of Carnielli and Marcos 2002). Cie, however, enjoys
all the relevant properties for dealing with useful credal calculi, and the treatment
initiated here paves the way for using other LFIs. Second, Cie has more appealing
semantics and is a candidate for having a better algebraic counterpart (see discussion
in Sect. 4.2).

The resulting logic is able to perform artificial reasoning that not only automat-
ically practices suspension of judgement, avoiding cognitive bias, but at the same
time respects the beliefs of agents, even when contradictory. At the same time, it is
performing an automatic procedure of belief revision, moving from a paraconsistent
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to a classicized configuration. It is to be noted that the paraconsistent stage is crucial,
permitting to avoid trivialism and taking rational profit of the whole situation. But
more than performing judicious artificial reasoning, the logic is qualified to produce
explanations by analyzing the conclusions from the credal database.

4.5 Conclusion and Further Challenges

Some naive criticisms of paraconsistency seem to imply that while it is a good theory
which makes it possible to reason with contradictory opinions, beliefs and other
situations without falling into trivialism, an ideal missing step would be to ‘restore
consistency’ in the sense of solving the problems caused by contradictions. This is, of
course, not the role of a paraconsistent logic (and that is the reasonwhy such criticisms
aremisplaced).Nonetheless, the above paraconsistent non-monotonic logic built over
LFI-based possibility and necessity measures does perform this ‘second step’, acting
as a belief revision procedure, with clear interest for applications.

The consequence relation |∼ is non-monotonic and paracomplete (it may be pos-
sible that K B � |∼ α and K B � |∼ ¬α) and works on the basis of paraconsistent credal
measures, weighing contradictory evidence, partial evidence and missing evidence.
It is also related to the notions of conclusive and non-conclusive evidence, as well
as of preservation of evidence.

The paper Rodrigues et al. (2020) introduces the logic of evidence and truth L ETF

as an extension of the Belnap-Dunn four-valued logic FDE. L ETF is equipped with
a classicality operator ◦ and its dual to non-classicality operator •. It would be
interesting to define possibility and necessity measures over L ETF , generalizing the
probability measures defined over L ETF and to further investigate the connections
between the formal notions of evidence and the graded notions of possibility and
necessity.

Both L ETJ (introduced in Carnielli and Rodrigues 2017) and L ETF are part of
the family of the Logics of Formal Inconsistency and Undeterminedness or LFIUs
(cf. Carnielli et al. 2019 for references and results on duality). In the LFIUs, not only
the Principle of Gentle Explosion holds (principle 2) ◦α,α,¬α � β, but also ◦α �
α ∨ ¬α. What this means is that neither α ∧ ¬α unrestrictedly causes deductive
trivialism nor that α ∨ ¬α holds unrestrictedly: they both depend on the consistency
of α (◦α). This has a deep effect on the possibility and necessity measures, as we
have suggested in previous sections. This encourages the development of possibility
and necessity systems based on the LFIUs, a project that we leave for future work.

There are some other research lines to be investigated concerning LFIUs and
necessity measures. For instance, Benferhat et al. (1995) study three consequence
relations with the ability to infer non-trivial conclusions from contradictory knowl-
edge bases. In each case a certain ‘level of paraconsistency’ is computed for each
conclusion, and the consequence relations treat inconsistency in a local way, in
contrast with the more frequent global approaches developed in the literature. This
approach can be promptly generalized to LFIUs.
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As several authors have pointed out (e.g., Pearl 1988;Nilsson 1993), and famously
proved in Lewis (1976), there is a remarkable discrepancy between the probability
of material condition versus conditional probability: P(¬α ∨ β) seems not to reflect
the proper meaning of ‘if α then β’ especially when P(α) is very small compared to
P(¬α ∨ β) < 1. So the proper modeling of a rule ‘if α then β’ which is not certain
but likely, applied to a rare eventα seems to be P(β/α), and the same for possibilistic
measures. This suggests that it would be interesting to investigate probability in logics
with no ‘naive’ implication, as in Rodrigues et al. (2020).

It wouldn’t be too bold to say that this kind of cautious logic machinery that
balances the partial, missing or even contradictory evidence could help to mitigate
some criticisms raised by the abusive use of algorithms in today’s society. It is
argued in O’Neil (2016), for instance, by giving several examples, that mathematical
models can work as ideological tools which contribute to exacerbate oppression and
inequality.We should thus worry about invisible failures by algorithms used in social
media and daily life. The present proposal, by emphasizing credal calculi based on
formal consistency and inconsistency that produces prudent decisions and offers
explanations, could hopefully be helpful to develop less oppressive algorithms.
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Chapter 5
Theorems of Alternatives for
Substructural Logics

Almudena Colacito, Nikolaos Galatos, and George Metcalfe

Abstract Atheoremof alternatives provides a reduction of validity in a substructural
logic to validity in its multiplicative fragment. Notable examples include a theorem
of Arnon Avron that reduces the validity of a disjunction of multiplicative formulas
in the “R-mingle” logic RM to the validity of a linear combination of these formulas,
and Gordan’s theorem for solutions of linear systems over the real numbers that
yields an analogous reduction for validity in Abelian logic A. In this paper, general
conditions are provided for axiomatic extensions of involutive uninorm logic without
additive constants to admit a theorem of alternatives. It is also shown that a theorem
of alternatives for a logic can be used to establish (uniform) deductive interpolation
and completeness with respect to a class of dense totally ordered residuated lattices.

5.1 Introduction

In Avron (1987), Arnon Avron proved a remarkable theorem relating derivability
in the “R-mingle” logic RM (see, e.g., Dunn 1970; Anderson and Belnap 1975;
Avron 1986) formulated with connectives +, ¬, ∧, and ∨, to derivability in its
multiplicative fragment with connectives + and ¬. More precisely, Avron proved
that a disjunction of multiplicative formulas ϕ1 ∨ . . . ∨ ϕn is derivable in RM if and
only if ϕ j1 + . . . + ϕ jk is derivable in RM for some 1 ≤ j1 < . . . < jk ≤ n. Indeed,
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two proofs are given of this result. The first is an easy consequence of a (quite
hard) cut elimination proof for a proof system for RM defined in the framework of
hypersequents, introduced in the paper as sequences of sequents. The second proof is
semantic and makes use of the completeness of RM and its multiplicative fragment
with respect to an infinite-valued and a three-valued matrix, respectively.

The central aim of the first part of this paper is to show that Avron’s theorem
belongs to a family of results that may be understood as “theorems of alternatives”
for substructural logics. Such theorems in the field of linear programming are duality
principles stating that either one or another linear system has a solution over the real
numbers, but not both (see, e.g., Dantzig 1963). In particular, Gordan’s theorem
(replacing real numbers with integers) asserts that for any M ∈ Z

m×n ,

ei ther yTM > 0 for some y ∈ Z
m or Mx = 0 for some x ∈ N

n\{0}.

This version of Gordan’s theorem is proved in Colacito and Metcalfe (2017) by
extending partial orders on free abelian groups to total orders and formulated as a
correspondence between derivability in Abelian logic A (see, e.g., Meyer and Slaney
1989; Casari 1989; Metcalfe et al. 2005) and derivability in its multiplicative frag-
ment. That is, a disjunction of multiplicative formulas ϕ1 ∨ . . . ∨ ϕn is derivable in
A if and only if λ1ϕ1 + · · · + λnϕn is derivable in A for some λ1, . . . , λn ∈ N not
all 0. In Sect. 5.3, we provide a sufficient condition for an axiomatic extension of
involutive uninorm logic without additive constants IUL− (see Metcalfe and Mon-
tagna 2007) to satisfy such an equivalence. The condition is based on derivability
and determines a family of substructural logics admitting a theorem of alternatives
that includes RMt (RM with an additional truth constant), involutive uninorm min-
gle logic without additive constants IUML− (axiomatized relative to RMt by 1 → 0,
see Metcalfe and Montagna (2007)), Abelian logic A, and the “balanced” extension
BIUL− of IUL− with additional axioms nϕ → ϕn and ϕn → nϕ for each n ∈ N.

The second part of the paper focuses on applications of theorems of alternatives. In
Sect. 5.4, we show that if an extension of IUL− with a theorem of alternatives admits
deductive interpolation or right uniform deductive interpolation (see, e.g., Metcalfe
et al. 2014; van Gool et al. 2017; Kowalski and Metcalfe 2019) for its multiplica-
tive fragment, then the full logic admits the property. For example, this provides an
alternative proof that RMt admits deductive interpolation (and hence right uniform
deductive interpolation), first proved in Meyer (1980) (see also Avron 1986; Mar-
chioni and Metcalfe 2012). In Sect. 5.5, we show that any extension of IUL− that
derives 1 → 0 and has a theorem of alternatives is complete with respect to a class
of dense totally ordered residuated lattices. Obtaining such a “dense chain complete-
ness” result is important in the field ofmathematical fuzzy logic as a key intermediate
step toward proving that an axiom system is “standard complete,” that is, complete
with respect to a class of algebras with lattice reduct [0, 1] (see, e.g., Jenei and Mon-
tagna 2002; Metcalfe and Montagna 2007; Ciabattoni and Metcalfe 2008; Baldi and
Terui 2016; Metcalfe and Tsinakis 2017; Galatos and Horčik 2021). Although the-
orems of alternatives hold only for a fairly narrow class of substructural logics, we
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obtain here new dense chain completeness proofs for IUML− and A, and a dense
chain completeness result for BIUL− that does not seem to be easily proved using
other methods developed in the literature.

5.2 Preliminaries

Let L be any propositional language and let FmL denote the set of formulas of this
language over a fixed countably infinite set of variables, denoting arbitrary variables
and formulas by p, q, r, . . . and ϕ,ψ, χ, . . . , respectively. Given � ⊆ FmL, we let
Var(�) denote the set of variables occurring in �, shortening Var({ϕ}) to Var(ϕ).
We also denote the formula algebra of L by FmL and recall that a substitution for L
is a homomorphism σ : FmL → FmL.

A substitution-invariant consequence relation over L is a set �L ⊆ P(FmL) ×
FmL that satisfies the following conditions for all � ∪ �′ ∪ {ϕ} ⊆ FmL (writing
� �L ϕ to denote 〈�,ϕ〉 ∈ �L):

(i) if ϕ ∈ �, then � �L ϕ (reflexivity);
(ii) if � �L ϕ and � ⊆ �′, then �′ �L ϕ (monotonicity);
(iii) if � �L ϕ and �′ �L ψ for every ψ ∈ �, then �′ �L ϕ (cut);
(iv) if � �L ϕ, then σ [�] �L σ(ϕ) for any substitution σ for L (substitution-

invariance).

If also � �L ϕ implies �′ �L ϕ for some finite �′ ⊆ �, then �L is called finitary.
An ordered pair L = 〈L,�L〉, where �L is a substitution-invariant consequence

relation over a propositional language L, is called a logic over L. We call another
logic L′ an extension of L if �L ⊆ �L′ . Given X ⊆ FmL, we also call the smallest
extension of L that includes X an axiomatic extension of L and denote it by L ⊕ X .

Let us consider a propositional language Lm with binary connectives →, · and
constants 1, 0, defining ¬ϕ := ϕ → 0, ϕ + ψ := ¬ϕ → ψ , and, inductively, 0ϕ :=
0, ϕ0 := 1, (n + 1)ϕ = nϕ + ϕ, and ϕn+1 = ϕn · ϕ for n ∈ N. We shorten FmLm to
Fmm and call its members multiplicative formulas.Multiplicative linear logicMLL
over Lm can be defined via derivability in the axiom system:

(ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) (ϕ → (ψ → χ)) → ((ϕ · ψ) → χ)

(ϕ → (ψ → χ)) → (ψ → (ϕ → χ)) ϕ → (ψ → (ϕ · ψ))

ϕ → ϕ ϕ → (1 → ϕ)

¬¬ϕ → ϕ 1

ϕ ϕ → ψ

ψ
(mp)

The following useful deduction theorem is proved by an easy induction on the height
of a derivation in an axiomatic extension of MLL.
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Lemma 5.2.1 (cf. Avron 1988) Let L be an axiomatic extension of MLL. Then for
any � ∪ {ϕ,ψ} ⊆ Fmm,

� ∪ {ϕ} �L ψ ⇐⇒ � �L ϕn → ψ for some n ∈ N.

It will also be useful later to consider the logic MLLu defined over Lm by the
axiom system for MLL extended with the “unperforated” rule schema

nϕ

ϕ
(un) (n ∈ N

+).

LetL� be the propositional languagewith connectives∧,∨, ·,→, 1, and 0, shortening
FmL�

to Fm�.Multiplicative additive linear logic without additive constantsMALL−
over L� can be defined via the axiom system for MLL extended with the axiom and
rule schema

(ϕ ∧ ψ) → ϕ ϕ → (ϕ ∨ ψ)

(ϕ ∧ ψ) → ψ ψ → (ϕ ∨ ψ)

((ϕ → ψ) ∧ (ϕ → χ)) → (ϕ → (ψ ∧ χ)) ((ϕ → χ) ∧ (ψ → χ)) → ((ϕ ∨ ψ) → χ)

ϕ ψ

ϕ ∧ ψ
(adj)

Appropriate algebraic semantics for MALL− and other substructural logics are
provided by classes of residuated lattices (Blount and Tsinakis 2003; Jipsen and
Tsinakis 2002; Galatos et al. 2007). An involutive commutative residuated lattice
is an algebraic structure A = 〈A,∧,∨, ·,→, 1, 0〉 such that 〈A,∧,∨〉 is a lattice
(where a ≤ b :⇐⇒ a ∧ b = a), 〈A, ·, 1〉 is a monoid, ¬¬a = a for all a ∈ A, and
→ is the residual of ·, i.e., b ≤ a → c ⇐⇒ a · b ≤ c for all a, b, c ∈ A. It is easily
shown (see, e.g., Galatos et al. 2007) that the class of all involutive commutative
residuated lattices can be defined by equations and hence forms a variety that we
denote by InCRL.

Let K be any class of involutive commutative residuated lattices. We define for
� ∪ {ϕ} ⊆ Fm�,

� |=K ϕ :⇐⇒ for anyA ∈ K and homomorphism e : Fm� → A,

1 ≤ e(ψ) for all ψ ∈ � =⇒ 1 ≤ e(ϕ).

It is easily checked that |=K is a substitution-invariant consequence relation over
L�; moreover, if K is a variety (equational class), this consequence relation will be
finitary (see, e.g., Metcalfe et al. 2014).

For any logic L = MALL− ⊕ A for some A ⊆ Fm�, we obtain a variety

VL := {A ∈ InCRL | |=A ψ for all ψ ∈ A}.
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The following algebraic completeness theorem is then standard.

Proposition 5.2.2 (cf. Galatos et al. 2007) If L = MALL− ⊕ A for someA ⊆ Fm�,
then for all � ∪ {ϕ} ⊆ Fm�,

� �L ϕ ⇐⇒ � |=VL ϕ.

The multiplicative fragment of an extension L of MALL− is the logic Lm defined
over Lm with �Lm := �L ∩ (P(Fmm) × Fmm). In order to reduce consequence in
L to consequence in Lm, we require distributivity properties that are satisfied, in
particular, when L is complete with respect to a class of totally ordered algebras. We
therefore consider involutive uninorm logic without additive constants (see Metcalfe
and Montagna 2007), which may be defined as

IUL− := MALL− ⊕ {((p → q) ∧ 1) ∨ ((q → p) ∧ 1)}.

For any variety V of involutive commutative residuated lattices, let us denote the
class of totally ordered members of V by Vc. For axiomatic extensions of IUL−, we
obtain the following more specialized completeness result.

Proposition 5.2.3 (cf. Metcalfe and Montagna 2007; Galatos et al. 2007) If L =
IUL− ⊕ A for some A ⊆ Fm�, then for all � ∪ {ϕ} ⊆ Fm�,

� �L ϕ ⇐⇒ � |=Vc
L

ϕ.

Using the previous proposition, it is straightforward to prove that in any axiomatic
extension L of IUL−, each formula ϕ ∈ Fm� is equivalent both to a conjunction of
disjunctions of multiplicative formulas and a disjunction of conjunctions of multi-
plicative formulas. It is also straightforward to establish the following equivalences:

� �L ϕ1 ∧ ϕ2 ⇐⇒ � �L ϕ1 and � �L ϕ2

� ∪ {ψ1 ∧ ψ2} �L ϕ ⇐⇒ � ∪ {ψ1, ψ2} �L ϕ

� ∪ {ψ1 ∨ ψ2} �L ϕ ⇐⇒ � ∪ {ψ1} �L ϕ and � ∪ {ψ2} �L ϕ.

Consequence in L can therefore be reduced to consequences of the form � �L ϕ1 ∨
. . . ∨ ϕn where � ∪ {ϕ1, . . . , ϕn} ⊆ Fmm .

The following axiomatic extensions of IUL− will be of particular interest in this
paper:

A := IUL− ⊕ {(p → p) → 0, 0 → 1}
RMt := IUL− ⊕ {p → (p + p), (p + p) → p}

IUML− := RMt ⊕ {1 → 0}
BIUL− := IUL− ⊕ {np → pn, pn → np | n ∈ N}.
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The varieties VA, VRMt , and VIUML− are term-equivalent to lattice-ordered abelian
groups, Sugihara monoids, and odd Sugihara monoids, respectively, while VBIUL−

(where “B” stands for “balanced”) consists of involutive commutative residuated
lattices satisfying xn ≈ nx for all n ∈ N.

5.3 Theorems of Alternatives

We will say that an extension L of IUL− admits a theorem of alternatives if for any
multiplicative formulas � ∪ {ϕ1, . . . , ϕn} ⊆ Fmm ,

� �L ϕ1 ∨ . . . ∨ ϕn ⇐⇒ � �L λ1ϕ1 + · · · + λnϕn for some λ1, . . . , λn ∈ N not all 0.

Such logics must satisfy the law of excluded middle and a “mingle” axiom.

Lemma 5.3.1 Let L be an extension of IUL− that admits a theorem of alternatives.
Then

(i) �L p ∨ ¬p.
(ii) �L 0 → 1.

Proof For (i), it suffices to observe that �L ¬p + p and hence, by the theorem of
alternatives for L, also �L p ∨ ¬p. For (ii), we note first that �IUL− (¬p + ¬p) ∨
(p + p). Hence, by the theorem of alternatives for L, we obtain �L λ(¬p + ¬p) +
μ(p + p) for some λ,μ ∈ N not both 0. If μ �= 0, then substituting 1 for p yields
�L μ(1 + 1) and, by a further application of the theorem of alternatives, �L 1 + 1.
Similarly, if λ �= 0, then substituting 0 for p yields �L λ(1 + 1) and, again by the
theorem of alternatives, �L 1 + 1. In both cases, it follows that �L 0 → 1. �

We therefore define IUL	 = IUL− ⊕ {p ∨ ¬p, 0 → 1} and note that one direc-
tion of the theorem of alternatives holds for any extension of this logic.

Lemma 5.3.2 For any extension L of IUL	 and � ∪ {ϕ1, . . . , ϕn} ⊆ Fmm,

� �L λ1ϕ1 + · · · + λnϕn for some λ1, . . . , λn ∈ N not all 0 =⇒ � �L ϕ1 ∨ . . . ∨ ϕn .

Proof Observe that for any� ∪ {ϕ,ψ, χ} ⊆ Fm�, if� �L (ϕ + ψ) ∨ χ , then� �L

(¬ϕ → ψ) ∨ χ and, since �L ϕ ∨ ¬ϕ, also � �L ϕ ∨ ψ ∨ χ . The claim follows by
a simple inductive argument. �

Wenowestablish a sufficient condition for extensions of IUL	 that are axiomatized
via additionalmultiplicative formulas by considering corresponding axiomatic exten-
sions of MLL. Since 0 → 1 is derivable in the multiplicative fragment of any exten-
sion of IUL	, we let MLL0 := MLL ⊕ {0 → 1} and MLLu

0 := MLLu ⊕ {0 → 1}.
Lemma 5.3.3 Let A ⊆ Fmm and suppose that for any � ∪ {ϕ} ⊆ Fmm,
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� �IUL	⊕A ϕ ⇐⇒ � �MLL0⊕A λϕ for some λ ∈ N
+.

Then IUL	 ⊕ A admits a theorem of alternatives and its multiplicative fragment is
MLLu

0 ⊕ A.

Proof By Lemma 5.3.2, it suffices to prove the left-to-right direction of the theorem
of alternatives for IUL	 ⊕ A. Suppose that � �IUL	⊕A ϕ1 ∨ . . . ∨ ϕn for some � ∪
{ϕ1, . . . , ϕn} ⊆ Fmm and let p be a variable such that p /∈ Var(� ∪ {ϕ1, . . . , ϕn}).
Observe that

{ϕ1 → p, . . . , ϕn → p, ϕ1 ∨ . . . ∨ ϕn} �IUL	⊕A p

and hence
� ∪ {ϕ1 → p, . . . , ϕn → p} �IUL	⊕A p.

By assumption, there exists λ ∈ N
+ such that

� ∪ {ϕ1 → p, . . . , ϕn → p} �MLL0⊕A λp.

But then, using Lemma 5.2.1, there exist λ1, . . . , λn ∈ N such that

� �MLL0⊕A (ϕ1 → p)λ1 → . . . → (ϕn → p)λn → λp.

If all the λ1, . . . , λn are 0, then we can substitute p with ϕ1 and obtain � �MLL0⊕A
λϕ1. Otherwise, we substitute p with 0 and obtain

� �MLL0⊕A λ1ϕ1 + · · · + λnϕn.

So clearly also � �IUL	⊕A λ1ϕ1 + · · · + λnϕn .
Finally, it follows directly from the assumption and the fact that {λϕ} �IUL	 ϕ that

MLLu
0 ⊕ A is the multiplicative fragment of IUL	 ⊕ A. �

We are now able to formulate a sufficient condition for admitting a theorem of
alternatives for logics axiomatized relative to IUL	 by multiplicative formulas.

Theorem 5.3.4 Let A ⊆ Fmm and suppose that for some n0 ∈ N, whenever n ≥
n0, there exist m ∈ N

+, k ∈ N such that �MLL0⊕A (np)k → m(pn). Then IUL	 ⊕ A
admits a theorem of alternatives and its multiplicative fragment is MLLu

0 ⊕ A.

Proof Assume that for some n0 ∈ N, whenever n ≥ n0, there exist m ∈ N
+, k ∈ N

such that�IUL	⊕A (np)k → m(pn). By Lemma 5.3.3, to show that IUL	 ⊕ A admits
a theorem of alternatives and its multiplicative fragment is MLLu

0 ⊕ A, it suffices to
prove that for any � ∪ {ϕ} ⊆ Fmm ,

� �IUL	⊕A ϕ ⇐⇒ � �MLL0⊕A λϕ for some λ ∈ N
+.
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Suppose first that � �MLL0⊕A λϕ for some λ ∈ N
+. Then also � �IUL	⊕A λϕ and,

since {λϕ} �IUL	⊕A ϕ, it follows that� �IUL	⊕A ϕ. Toprove the converse,we assume
contrapositively that �0 := � satisfies

(	) �0 �MLL0⊕A λϕ for all λ ∈ N
+.

We enumerate Fmm as (ψi )i∈N. Suppose now that �N for some N ∈ N contains ψi

or ¬ψi for all i < N and satisfies (	). Consider ψN and suppose for a contradiction
that for some λ,μ ∈ N

+,

�N ∪ {ψN } �MLL0⊕A λϕ and �N ∪ {¬ψN } �MLL0⊕A μϕ.

By Lemma 5.2.1, there exist r, s ∈ N such that

�N �MLL0⊕A (ψN )r → λϕ and �N �MLL0⊕A (¬ψN )s → μϕ.

Using the fact that �MLL0 0 → 1, it follows easily that also

(i) �N �MLL0⊕A (ψN )rs → sλϕ and (ii) �N �MLL0⊕A (¬ψN )rs → rμϕ,

where (ii) can be rewritten, more conveniently, as

(ii’) �N �MLL0⊕A rsψN + rμϕ.

By assumption, with n = rst for some large t ∈ N
+, there existm ∈ N

+, k ∈ N such
that

�MLL0⊕A (rst (ψN ))k → m(ψN )rst .

Observe also that, using (i) and (ii’),

�N �MLL0⊕A m(ψN )rst → mstλϕ and �N �MLL0⊕A (rst)ψN + (r tμ)ϕ.

Hence �N �MLL0⊕A (rst (ψN ))k → mstλϕ, yielding

�N �MLL0⊕A (mstλ + krtμ)ϕ,

which contradicts the assumption that �N satisfies (	). So �N can be extended with
either ψN or ¬ψN to obtain �N+1 ⊆ Fmm that satisfies (	). We then let

�∗ :=
⋃

i∈N
�i ,

noting that, by a simple argument using the fact that �MLL0⊕A is finitary, �∗ also
satisfies (	).

Next, we define a binary relation 
 on Fmm by
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ψ 
 χ :⇐⇒ �∗ �MLL0⊕A ψ → χ and �∗ �MLL0⊕A χ → ψ.

It is then straightforward to show that 
 is, in fact, a congruence on Fmm and hence
that the set of equivalence classes Fmm/
 = {[ψ] | ψ ∈ Fmm}, where [ψ] = {χ ∈
Fmm | ψ 
 χ} can be equipped with well-defined binary operations · and → and
constants [1] and [0]. Now define also

[ψ] ≤ [χ ] :⇐⇒ �∗ �MLL0⊕A ψ → χ.

This is a total order by construction and hence we can equip 〈Fmm/
, ·,→, [1], [0]〉
also with meet and join operations ∧ and ∨. It is then straightforward to show that
the resulting algebra belongs to InCRL and satisfies each member of A ∪ {p ∨
¬p, 0 → 1}. Finally, we consider a homomorphism e mapping each formula χ to
its equivalence class [χ ], obtaining [1] ≤ e(ψ) for allψ ∈ �	 and [1] �≤ e(ϕ). Hence
� �IUL	⊕A ϕ as required. �

Clearly, the logics BIUL−, A, RMt, and IUML− defined in Sect. 5.2 satisfy
the condition of the previous theorem and admit a theorem of alternatives. More
generally, we obtain the following result for extensions of BIUL−.

Corollary 5.3.5 For any A ⊆ Fmm, the logic BIUL− ⊕ A admits a theorem of
alternatives and its multiplicative fragment is MLLu

0 ⊕ {np → pn, pn → np | n ∈
N} ⊕ A.

Note that in the statement of Theorem 5.3.4, the m ∈ N
+, k ∈ N satisfying the

condition �MLL0⊕A (np)k → m(pn) depend, in general, on the particular n ≥ n0. If
the logic proves a knotted axiom of the form pt → pt+1 (t ∈ N

+), however, these
parameters can be fixed.

Corollary 5.3.6 For any A ⊆ Fmm and k,m, r, s, t ∈ N
+, with r, s ≥ t , the logic

IUL	 ⊕ A ∪ {pt → pt+1, (rp)k → m(ps)} admits a theorem of alternatives and its
multiplicative fragment isMLLu

0 ⊕ A ∪ {pt → pt+1, (rp)k → m(ps)}.
For example, the logic IUL	 ⊕ {p2 → p3, (4p)5 → 6(p7)} has a theoremof alter-

natives. More generally, for any A ⊆ Fmm and t, u, r0, k0,m0, s0, . . . , ru−1, ku−1,

mu−1, su−1 ∈ N
+, where all the ri and si are congruent to i modulo u and greater or

equal to t , the logic IUL	 ⊕ A ∪ {pt → pt+u} ∪ {(ri p)ki → mi (psi ) | 0 ≤ i < u}
admits a theorem of alternatives. To see this, we apply Theorem 5.3.4 with n0 =
max({ri | i < u} ∪ {si | i < u}). For each n ≥ n0, we let i be the remainder of divid-
ing n by u and choose k = ki , m = mi . That (np)k → mpn is derivable in this logic
can be shown by reasoning that in the corresponding variety of residuated lattices,
(np)ki ≤ (ri p)ki ≤ mi (psi ) ≤ mi (pn). (The last inequality follows from repeated
applications of pt ≤ pt+u and the first by repeated applications of (t + u)p ≤ tp,
which follows from pt ≤ pt+u and involutivity.)

Let us note that in the special cases of A, RMt, and IUML−, the theorem of alter-
natives can be established à la Avron (1987) using either the completeness of the
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logic and its multiplicative fragment with respect to certain algebras or a hyperse-
quent calculus that admits cut elimination. However, in the case of BIUL− and other
logics covered by the above results, suitable algebras and hypersequent calculi are
not available, so these methods cannot be followed. What can be said is that if an
extension of IUL	 admits a theorem of alternatives, then any analytic calculus for
its multiplicative fragment can be extended to an analytic calculus for the full logic
using versions of the mix and split rules.

5.4 Interpolation

A logic L over a propositional language L is said to have the deductive interpolation
property if for any finite � ∪ {ϕ} ⊆ FmL satisfying � �L ϕ, there exists � ⊆ FmL
with Var(�) ⊆ Var(�) ∩ Var(ϕ) such that � �L ϕ and � �L ψ for all ψ ∈ �. It is
easily shown (see, e.g., van Gool et al. 2017) that this is equivalent to the following
condition:

(†) For any finite� ⊆ FmL and X ⊆ Var(�), there exists� ⊆ FmLwithVar(�) ⊆
X such that for any ϕ ∈ FmL satisfying Var(�) ∩ Var(ϕ) ⊆ X ,

� �L ϕ ⇐⇒ � �L ϕ.

If � in (†) can always be finite, then L is said to have the right uniform deductive
interpolation property. If � can always be finite, but (†) is restricted to formulas
ϕ ∈ FmL with Var(ϕ) ⊆ X , then L is said to be coherent. It is proved in Kowalski
and Metcalfe (2019) that L has the right uniform deductive interpolation property if
and only if it has the deductive interpolation property and is coherent.

Recall that the multiplicative fragment of an extension L of MALL− is the logic
Lm defined overLm with consequence relation �Lm := �L ∩ (P(Fmm) × Fmm). We
show now that an extension of IUL− that admits a theorem of alternatives inherits
deductive interpolation and coherence properties from its multiplicative fragment.

Theorem 5.4.1 LetL be an extension of IUL− that admits a theorem of alternatives.

(a) If Lm has the deductive interpolation property, then so does L.
(b) If Lm is coherent, then so is L.
(c) If Lm has the right uniform deductive interpolation property, then so does L.

Proof Suppose for (a) that Lm has the deductive interpolation property. We consider
first any finite � ⊆ Fmm and X ⊆ Var(�). By assumption, there exists � ⊆ Fmm

such that Var(�) ⊆ X and for any ϕ ∈ Fmm satisfying Var(�) ∩ Var(ϕ) ⊆ X ,

� �L ϕ ⇐⇒ � �L ϕ.

Hence also for any ϕ1, . . . , ϕn ∈ Fmm satisfying Var(�) ∩ Var({ϕ1, . . . , ϕn}) ⊆ X ,
by the theorem of alternatives,



5 Theorems of Alternatives for Substructural Logics 101

� �L ϕ1 ∨ . . . ∨ ϕn ⇐⇒ � �L λ1ϕ1 + · · · + λnϕn for some λ1, . . . , λn ∈ N not all 0

⇐⇒ � �L λ1ϕ1 + · · · + λnϕn for some λ1, . . . , λn ∈ N not all 0

⇐⇒ � �L ϕ1 ∨ . . . ∨ ϕn .

Moreover, recalling that every ϕ ∈ Fm� is equivalent in L to a conjunction of dis-
junctions of formulas in Fmm and that for any � ∪ {ψ1, ψ2} ⊆ Fm�,

� �L ψ1 ∧ ψ2 ⇐⇒ � �L ψ1 and � �L ψ2,

it follows that for any ϕ ∈ Fm� satisfying Var(�) ∩ Var(ϕ) ⊆ X ,

� �L ϕ ⇐⇒ � �L ϕ.

Now consider any finite � ⊆ Fm� and X ⊆ Var(�). Since for any � ∪ {ψ1, ψ2} ⊆
Fm�,

� ∪ {ψ1 ∧ ψ2} �L ϕ ⇐⇒ � ∪ {ψ1, ψ2} �L ϕ,

we may assume that � consists of disjunctions of formulas in Fmm . Suppose that
� = �′ ∪ {ψ1 ∨ ψ2} and there exist �1 ∪ �2 ⊆ Fm� such that Var(�1 ∪ �2) ⊆ X
and for any ϕ ∈ Fm� satisfying Var(�) ∩ Var(ϕ) ⊆ X ,

�′ ∪ {ψ1} �L ϕ ⇐⇒ �1 �L ϕ and �′ ∪ {ψ2} �L ϕ ⇐⇒ �2 �L ϕ.

We define

� := {(χ1 ∧ . . . ∧ χn) ∨ (χ ′
1 ∧ . . . ∧ χ ′

m) | χ1, . . . , χn ∈ �1, χ ′
1, . . . , χ

′
m ∈ �2}.

Then Var(�) ⊆ X and for any ϕ ∈ Fm� satisfying Var(�) ∩ Var(ϕ) ⊆ X ,

� �L ϕ ⇐⇒ �′ ∪ {ψ1 ∨ ψ2} �L ϕ

⇐⇒ �′ ∪ {ψ1} �L ϕ and �′ ∪ {ψ2} �L ϕ

⇐⇒ �1 �L ϕ and �2 �L ϕ

⇐⇒ � �L ϕ.

Hence, it follows by induction on the number of occurrences of ∨ in � that there
exists � ⊆ FmL such that Var(�) ⊆ X and for any ϕ ∈ FmL satisfying Var(�) ∩
Var(ϕ) ⊆ X ,

� �L ϕ ⇐⇒ � �L ϕ.

For (b) and (c), we just note that if Lm is coherent or has the right uniform deductive
interpolation property, then the construction described above will also yield a set
� that is finite and hence L will be coherent or have the right uniform deductive
interpolation property, respectively. �
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For example, deductive interpolation for the multiplicative fragment of RMt can
be established proof theoretically via a Maehara lemma argument for the sequent
calculus for this fragment defined in Avron (1987). This yields a further proof of the
fact that RMt has the deductive interpolation property, first proved in Meyer (1980)
(see also Avron 1986; Marchioni and Metcalfe 2012). Indeed, since the variety of
Sugihara algebras corresponding to RMt is locally finite, this logic is coherent and
has the right uniform deductive interpolation property. Similarly, it can be shown
semantically that the multiplicative fragment of A has the right uniform deductive
interpolation property and hence that the same holds for the full logic (see Metcalfe
et al. 2014 for a proof that proceeds along these lines without mentioning a theorem
of alternatives).

5.5 Density

Recall from Sect. 5.2 that any axiomatic extension L of IUL− is complete both with
respect to a variety VL of involutive commutative residuated lattices and to the class
Vc
L of totally ordered members of VL. In this section, we show that if L has a theorem

of alternatives and �L 1 → 0, then L is also complete with respect to the class
Vd
L of dense totally ordered members of VL. From an algebraic perspective, such a

completeness result corresponds to VL being generated as a generalized quasivariety
by the class Vd

L (i.e., VL = ISP(Vd
L)) or, equivalently, the property that each member

of Vc
L embeds into a member of Vd

L (see Metcalfe and Tsinakis 2017 for details).
Let us say that an extension L of IUL− is dense chain complete if for any � ∪

{ϕ} ⊆ Fm�,
� �L ϕ ⇐⇒ � |=Vd

L
ϕ.

If L has a theorem of alternatives and is dense chain complete, then �L 1 → 0.
Just consider any A ∈ Vd

L and observe that �L (1 → x) ∨ (x → 0) by part (i) of
Lemma 5.3.1, so 1 ≤ x or x ≤ 0 for all x ∈ A, and, since A is dense, 1 = 0 and, by
dense chain completeness, �L 1 → 0. It follows, for example, that RMt is not dense
chain complete, although, as shown below (or see Metcalfe and Montagna 2007),
IUML− = RMt ⊕ 1 → 0 does have this property.

Onemethod for establishingdense chain completeness for a logic is to establish the
admissibility of a certain “density rule” (seeMetcalfe andMontagna 2007;Ciabattoni
and Metcalfe 2008). We say that an extension L of IUL− has the density property if
for any � ∪ {ϕ,ψ, χ} ⊆ Fm� and p /∈ Var(� ∪ {ϕ,ψ, χ}),

� �L (ϕ → p) ∨ (p → ψ) ∨ χ ⇐⇒ � �L (ϕ → ψ) ∨ χ.

We make use of the following result, proved in a more general setting in Metcalfe
and Montagna (2007) (see also Ciabattoni and Metcalfe 2008; Baldi and Terui 2016;
Metcalfe and Tsinakis 2017; Galatos and Horčik 2021).
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Theorem 5.5.1 (Metcalfe and Montagna 2007) Any extension of IUL− that has the
density property is dense chain complete.

Theorem 5.5.2 Any extension of IUL− ⊕ {1 → 0} that admits a theorem of alter-
natives is dense chain complete.

Proof Let L be an extension of IUL− ⊕ {1 → 0} that admits a theorem of alterna-
tives. By Theorem 5.5.1, it suffices to prove that L has the density property. Suppose
first that for some � ∪ {ϕ,ψ, χ} ⊆ Fmm and p /∈ Var(� ∪ {ϕ,ψ, χ}),

� �L (ϕ → p) ∨ (p → ψ) ∨ χ.

Since L admits a theorem of alternatives, there exist λ,μ, γ ∈ N not all 0 such that

� �L λ(ϕ → p) + μ(p → ψ) + γχ.

Substituting p with 0, and separately all other variables with 0, yields the conse-
quences

� �L λ(¬ϕ) + μψ + γχ and �L λp + μ(¬p).

Multiplying the conclusion in the first consequence by λ and substituting p with ϕλ

in the second consequence produce the consequences

� �L λ(ϕλ) → (λμψ + λγχ) and �L ϕλμ → λ(ϕλ).

By transitivity of implication, we obtain

� �L ϕλμ → (λμψ + λγχ),

which can be rewritten as

� �L λμ(ϕ → ψ) + λγχ.

By the theorem of alternatives again, � �L (ϕ → ψ) ∨ χ .
Now consider the more general case where � �L (ϕ → p) ∨ (p → ψ) ∨ χ for

some � ∪ {ϕ,ψ, χ} ⊆ Fm� and p /∈ Var(� ∪ {ϕ,ψ, χ}). If ϕ,ψ, χ ∈ Fmm , then
using the equivalences presented in Sect. 5.2 and the multiplicative case just estab-
lished, we obtain again � �L (ϕ → ψ) ∨ χ as required. Otherwise, for q, r, s /∈
{p} ∪ Var(� ∪ {ϕ,ψ, χ}), we obtain

� ∪ {q → ϕ,ψ → r, χ → s} �L (q → p) ∨ (p → r) ∨ s.

But then also using the equivalences presented in Sect. 5.2 and the multiplicative
case just established,

� ∪ {q → ϕ,ψ → r, χ → s} �L (q → r) ∨ s,
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and finally, substituting ϕ for q, ψ for r , and χ for s yields � �L (ϕ → ψ) ∨ χ . �
Corollary 5.5.3 Let A ⊆ Fmm and L = BIUL− ⊕ A. Then L is dense chain com-
plete.

Let us remark finally that dense chain completeness can be established for A
and IUML− via a direct semantic argument or proof theoretically using an analytic
hypersequent calculus as described in Metcalfe and Montagna (2007), but these
methods do not seem to be available for BIUL− or other logics admitting a theorem
of alternatives. It may be hoped also that this new approach provides a first step
toward addressing the open standard completeness problem for involutive uninorm
logic posed in Metcalfe and Montagna (2007), possibly by introducing a weaker
theorem of alternatives property.1
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Chapter 6
Degree-Preserving Gödel Logics with an
Involution: Intermediate Logics and
(Ideal) Paraconsistency

Marcelo E. Coniglio, Francesc Esteva, Joan Gispert, and Lluis Godo

Abstract In this paper, we study intermediate logics between the logic G≤∼, the
degree-preserving companion of Gödel fuzzy logic with involution G∼, and classical
propositional logic CPL, as well as the intermediate logics of their finite-valued
counterparts G≤

n∼. Although G≤∼ and G≤
n∼ are explosive w.r.t. Gödel negation ¬,

they are paraconsistent w.r.t. the involutive negation ∼. We introduce the notion of
saturated paraconsistency, a weaker notion than ideal paraconsistency, and we fully
characterize the ideal and the saturated paraconsistent logics between G≤

n∼ and CPL.
We also identify a large family of saturated paraconsistent logics in the family of
intermediate logics for degree-preserving finite-valued Łukasiewicz logics.

6.1 Introduction

Contradictions frequently arise in scientific theories, as well as in philosophical argu-
mentation. In computer science, techniques for dealing with contradictory informa-
tion need to be developed in areas such as logic programming, belief revision, the
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semantic web, and artificial intelligence in general. Since classical logic—as well as
many other nonclassical logics– trivialize in the presence of inconsistencies, it can
be useful to consider logical systems tolerant to contradictions in order to formalize
such situations.

A logic L is said to be paraconsistent with respect to a negation connective ¬
when it contains a¬-contradictory but not trivial theory. Assuming that L is (at least)
Tarskian, this is equivalent to say that the ¬-explosion rule

ϕ ¬ϕ

ψ

is not valid in L . The main challenge for paraconsistent logicians is defining logic
systems in which not only a contradiction does not necessarily trivialize, but also
allowing that useful conclusions can be derived from such inconsistent information.

Thefirst systematic studyof paraconsistency from the point of viewof formal logic
is due to da Costa, which introduces in 1963 a hierarchy of paraconsistent systems
called Cn . This is why da Costa is considered one of the founders of paraconsistency.
Under his perspective, propositions in a paraconsistent setting are “dubious” in the
sense that, in general, a sentence and its negation can be hold simultaneously without
trivialization. That is, it is possible to consider contradictory but non-trivial theories.
Moreover, it is possible to express (in every system Cn) the fact that a given sentence
ϕ has a classical behavior w.r.t. the explosion law. This approach to paraconsistency,
in which the explosion law is recovered in a controlled way, was generalized by
Carnielli and Marcos (2000) by means of the notion of Logics of Formal Inconsis-
tency (LFIs, in short). An LFI is a paraconsistent logic (w.r.t. a negation ¬) having,
in addition, an unary connective ◦ (a consistency operator), primitive or defined, such
that any theory of the form {ϕ,¬ϕ, ◦ϕ} is trivial, despite {ϕ,¬ϕ} not being neces-
sarily so. Of course, the main novelty with respect to da Costa’s systems Cn is that
the consistency operator (which corresponds to the well-behavior operator) can now
be a primitive connective, which allows to consider a more general and expressive
theory of paraconsistency. LFIs have been extensively studied since then (for gen-
eral references, consult (Carnielli and Marcos 2000; Carnielli et al. 2007; Carnielli
and Coniglio 2016)). Avron, together with his collaborators, has significantly con-
tributed to the development of LFIs by introducing several new systems, besides
the ones proposed in Carnielli and Marcos (2000), Carnielli et al. (2007), Carnielli
and Coniglio (2016), and by providing simple, effective, and modular semantics
based on non-deterministic matrices (N-matrices) as well as elegant Gentzen-style
proof methods for LFIs, see, for instance, (Arieli and Avron 2017; Arieli et al. 2010,
2011a, b; Avron et al. 2018; Avron 2005, 2007, 2009, 2017, 2019; Avron et al. 2010;
Avron and Lev 2001; Avron and Zamansky 2011).

According to da Costa, one of the main properties that a paraconsistent logic
should have is being as close as possible to classical logic. That is, a paraconsistent
logic should retain as much as possible the classical inferences, and still allowing to
have non-trivial, contradictory theories. A natural way to formalize this desideratum
is by means of the notion of maximality of a logic w.r.t. another one. A (Tarskian and
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structural) logic L1 is said to be maximal w.r.t. another logic L2 if both are defined
over the same signature, the consequence relation of L1 is contained in that of L2 (i.e.,
L2 is an extension of L1) and, if ϕ is a theorem of L2 which is not derivable in L1,
then the extension of L1 obtained by adding ϕ (and all of its instances under uniform
substitutions) as a theorem coincides with L2. Hence, a “good” paraconsistent logic
L should be maximal w.r.t. classical logic CPL (presented over the same signature as
L). As observed in Coniglio et al. (2019), the notion of maximality can be vacuously
satisfied when both logics (L1 and L2) have the same theorems.

In Arieli et al. (2010), Arieli, Avron, and Zamansky propose an interesting notion
of maximality w.r.t. paraconsistency: a paraconsistent logic is maximally paracon-
sistent if no proper extension of it is paraconsistent. Thus, they prove that several
well-known three-valued logics such as Sette’s P1 and da Costa and D’Ottaviano’s
J3 are maximally paraconsistent. Note that both P1 and J3 are also maximal w.r.t.
CPL.

These strong features satisfied by logics such as P1 and J3 led Arieli, Avron, and
Zamansky to introduce in Arieli et al. (2011b) the notion of ideal paraconsistent
logics. Briefly, a logic L is called ideal paraconsistent when it is maximally para-
consistent and maximal w.r.t. to classical logic CPL (the formal definition of ideal
paraconsistencywill we recalled in Sect. 6.5). One interesting problem is to find ideal
paraconsistent logics, and in this sense (Arieli et al. 2011b) provides a vast variety
of examples of ideal paraconsistent finite-valued logics, aside from P1 and J3.

Asmentioned above, one of da Costa’s requirements for defining reasonable para-
consistent logics is maximality w.r.t. CPL. Many paraconsistent logicians (probably
including Avron and his collaborators) would agree with the relevance of this fea-
ture. However, this position is by nomeans uncontroversial. InWansing andOdintsov
(2016), Wansing and Odintsov extensively criticized that requirement. According to
these authors, maximality w.r.t. classical logic is not a good choice. On the one hand,
the phenomenon of paraconsistency should be interpreted from an informational
perspective instead of considering epistemological or ontological terms. Indeed, the
authors claim that “logic should avoid as many ontological commitments as possi-
ble.”1 To this end, they argue that, by definition, logic “is committed to the existence
of languages but not necessarily to the existence of language users.”2 Thismeans that,
despite the models for logics cannot avoid linguistic entities, valid inferences should
not refer to notions such as “knowledge,” “belief states” of any other epistemic or
doxastic subjects. Thus, it would be preferable to motivate a system of paraconsistent
logic in terms of information, without appealing to epistemological or ontological
commitments such as language users, epistemic subjects possessing mental states,
etc. For instance, by considering that formulas in an inference process are pieces of
information, the fact that in a paraconsistent logic {A,¬A} does not entail B can be
read as “it is just not the case that {A,¬A} provides the information that B.” The
following are some excerpts from Wansing and Odintsov (2016):

1 Wansing and Odintsov (2016), p. 179.
2 Ibid., p. 180.
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“classical logic is not at all a natural reference logic for reasoning about information and
information structures. On the other hand, it is reasoning about information that suggests
paraconsistent reasoning.”3

“one may wonder why exactly a nonclassical paraconsistent logic, if correct, should have a
distinguished status in virtue of being faithful to classical logic “as much as possible”.”4

“Paraconsistency does deviate from logical orthodoxy, but it is not at all clear that classical
logic indeed is the logical orthodoxy from which paraconsistent logics ought to deviate only
minimally.”5

Although it could be argued against this emphatic perspective, it also seems that
being maximal w.r.t. CPL should not be a necessary requirement for being an “ideal”
(meaning “optimal”) paraconsistent logic.6 This is why we propose in this paper the
notion of saturated paraconsistent logic, which is just a weakening of the concept
of ideal paraconsistent logic, by dropping the requirement of maximality w.r.t. CPL.
As we shall see along this paper, there are several interesting examples of saturated
paraconsistent logics.

While paraconsistency deals with excessive or dubious information, fuzzy logics
were designed for reasoning with imprecise information, in particular, for reason-
ing with propositions containing vague predicates. Given that both paradigms are
able to deal with information—unreliable, in the case of paraconsistent logics, and
imprecise, in the case of fuzzy logics—it seems reasonable to consider logics which
combine both features, namely, paraconsistent fuzzy logic. The first steps along this
way were taken in Ertola et al. (2015), where a consistency operator ◦was defined in
terms of the other connectives (for instance, by using theMonteiro-Baaz�-operator)
in several fuzzy logics. In Coniglio et al. (2014), this approach was generalized to
fuzzy LFIs extending the logic MTL of pre-linear (integral, commutative, bounded)
residuated lattices, in which the consistency operator is primitive.

We have studied in different papers the paraconsistent logics arising from the
family of mathematical fuzzy logics, see, e.g., Ertola et al. (2015); Coniglio et al.
(2014, 2016, 2019). In particular, in Ertola et al. (2015), the authors observe that
even though all truth-preserving fuzzy logics L are explosive, their degree-preserving
companions L≤ (as introduced in Bou et al. (2009)) are paraconsistent in many cases.
This provides a large family of paraconsistent fuzzy logics. In Coniglio et al. (2016),
the authors studied the lattice of logics between the n-valued Łukasiewicz logics Łn

and their degree-preserving companions Ł≤
n . Although there are many paraconsistent

logics for each n, no one of them is ideal. However, in Coniglio et al. (2019), the
authors of this paper consider a wide class of logics between Ł≤

n and CPL, and in that

3 Ibid., p. 181.
4 Ibid., p. 181.
5 Ibid., p. 183.
6 It is worth noting that, more recently, the authors have changed the terminology “ideal paracon-
sistent logic” in Arieli et al. (2011b) to “fully maximal and normal paraconsistent logic,” e.g., in
Avron et al. (2018). According to them, they choose the latter “to use a more neutral terminology”
(see Avron et al. (2018, Footnote 9, p. 57)).
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case they indeed find and axiomatically characterize a family of ideal paraconsistent
logics.

In this paper, we study paraconsistent logics arising from Gödel fuzzy logic
expanded with an involutive negation G∼, introduced in Esteva et al. (2000), as well
as from its finite-valued extensions Gn∼. It is well known that Gödel logic G coin-
cides with its degree-preserving companion (since G has the deduction-detachment
theorem), but this is not the case for G∼. In fact, G∼ and G≤∼ are different logics, and
moreover, while G≤∼ is explosive w.r.t. Gödel negation ¬, it is paraconsistent w.r.t.
the involutive negation ∼.7 We also study the logics between G≤

n∼ (the finite-valued
Gödel logic with an involutive negation) and CPL, and we find that the ideal para-
consistent logics of this family are only the abovementioned three-valued logic J3
and its four-valued version J4, introduced in Coniglio et al. (2019). Moreover, we
fully characterize the ideal and the saturated paraconsistent logics between G≤

n∼ and
CPL.

The paper is structured as follows. After this introduction, some basic definitions
and known results to be used along the paper will be presented. In Sect. 6.3, we
show that the logics between G≤∼ and CPL are defined by matrices over a G∼-algebra
with lattice filters, and, in particular, we study the logics defined by matrices over
[0, 1]∼ with order filters. In Sect. 6.4, we study the case of finite-valued Gödel logics
with involution Gn∼, and we observe that G3∼ and G4∼ coincide with Ł3 and Ł4 (the
three- and four-valued Łukasiewicz logics) already studied in Coniglio et al. (2019).
We prove that, in the general case, each finite Gn∼-algebra is a direct product of
subalgebras of GVn∼, the Gödel chain of n elements with the unique involution ∼
one can define on it. This result allows us to characterize the logics between G≤

n∼
and CPL. In Sect. 6.5, the definition of saturated paraconsistent logic is formally
introduced, and it is proved that between G≤

n∼ and CPL there are only three saturated
paraconsistent logics: two of them (J3 and J4) are already known and are in fact ideal
paraconsistent, and there is only one that is saturated but not ideal paraconsistent,
which we call J3 × J4. Finally, in Sect. 6.6, we return to the study of finite-valued
Łukasiewicz logic and prove that in this framework there is a large family of saturated
paraconsistent logics that are not ideal paraconsistent. Some concluding remarks are
discussed in the final section.

7 In fact, G≤∼ is then a paradefinite logic (w.r.t. ∼) in the sense of Arieli and Avron (2017), as it
is both paraconsistent and paracomplete, since the law of excluded middle ϕ ∨ ∼ϕ fails, as in all
fuzzy logics. Logics with a negation which is both paraconsistent and paracomplete were already
considered in the literature under different names: non-alethic logics (da Costa) and paranormal
logics (Beziau).
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6.2 Preliminaries

6.2.1 Truth-Preserving Gödel Logics

This section is devoted to needed preliminaries on the Gödel fuzzy logic G, its
axiomatic extensions, as well as their expansions with an involutive negation. We
present their syntax and semantics, their main logical properties, and the notation we
use throughout the article.

The language of Gödel propositional logic is built as usual from a countable set
of propositional variables V , the constant ⊥, and the binary connectives ∧ and →.
Disjunction and negation are, respectively, defined as ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧
((ψ → ϕ) → ϕ) and ¬ϕ := ϕ → ⊥, equivalence is defined as ϕ ↔ ψ := (ϕ →
ψ) ∧ (ψ → ϕ), and the constant 
 is taken as ⊥ → ⊥.

The following are the axioms of G8:

(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

(A2) (ϕ ∧ ψ) → ϕ

(A3) (ϕ ∧ ψ) → (ψ ∧ ϕ)

(A4a) (ϕ → (ψ → χ)) → ((ϕ ∧ ψ) → χ)

(A4b) ((ϕ ∧ ψ) → χ) → (ϕ → (ψ → χ))

(A5) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(A6) ⊥ → ϕ

(A7) ϕ → (ϕ ∧ ϕ).

The deduction rule of G is modus ponens.
As a many-valued logic, Gödel logic is the axiomatic extension of Hájek’s basic

fuzzy logic BL (Hájek 1998) (which is the logic of continuous t-norms and their
residua) by means of the contraction axiom (A7).

Since the unique idempotent continuous t-norm is the minimum, this yields that
Gödel logic is strongly complete with respect to its standard fuzzy semantics that
interprets formulas over the structure [0, 1]G = ([0, 1],min,⇒G, 0, 1),9 i.e., seman-
tics defined by truth evaluations of formulas e on [0, 1], where 1 is the only designated
truth value, such that e(ϕ ∧ ψ) = min(e(ϕ), e(ψ)), e(ϕ → ψ) = e(ϕ) ⇒G e(ψ),
and e(⊥) = 0, where ⇒G is the binary operation on [0, 1] defined as

x ⇒G y =
{
1, if x ≤ y
y, otherwise.

8 This axiomatization comes from adding axiom (A7) to the axioms of Hájek’s BL logic (Hájek
1998). Later it was shown that axioms (A2) and (A3) were, in fact, redundant, see Běhounek (2011)
for a detailed exposition and the references therein.
9 Called standard Gödel algebra.
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As a consequence, e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)) and e(¬ϕ) = ¬Ge(ϕ) = e(ϕ) ⇒G

0. By definition, � |=G ϕ iff, for every evaluation e over [0, 1]G, if e(γ ) = 1 for
every γ ∈ � then e(ϕ) = 1.

Gödel logic can also be seen as the axiomatic extension of intuitionistic proposi-
tional logic by the pre-linearity axiom

(ϕ → ψ) ∨ (ψ → ϕ).

Its algebraic semantics is, therefore, given by the variety of pre-linear Heyting alge-
bras, also known as Gödel algebras. A Gödel algebra is thus a (bounded, integral,
commutative) residuated lattice A = (A,∧,∨, ∗,⇒, 0, 1) such that the monoidal
operation ∗ coincides with the lattice meet ∧, and such that the pre-linearity equa-
tion

(x ⇒ y) ∨ (y ⇒ x) = 1

is satisfied, where x ∨ y = ((x ⇒ y) ⇒ y) ∗ ((y ⇒ x) ⇒ x)). Gödel algebras are
locally finite, i.e., given a Gödel algebra A and a finite set F ⊆ A, the Gödel subal-
gebra generated by F is finite as well.

It is also well known that the axiomatic extensions of Gödel logic correspond to its
finite-valued counterparts. If we replace the unit interval [0, 1] by the truth-value set
GVn = {0, 1/(n − 1), . . . , (n − 2)/(n − 1), 1} in the standardGödel algebra [0, 1]G

then the structure GVn = (GVn,min,⇒G, 0, 1) becomes the “standard” algebra for
the n-valued Gödel logic Gn , that is, the axiomatic extension of G with the axiom

(AGn ) (ϕ1 → ϕ2) ∨ . . . ∨ (ϕn → ϕn+1).

By definition, � |=Gn ϕ iff, for every evaluation e over GVn , if e(γ ) = 1 for every
γ ∈ � then e(ϕ) = 1. In fact, the logics Gn are all the axiomatic extensions of G,
and for each n, Gn is an axiomatic extension of Gn+1, where G2 coincides with
CPL. Thus, the set of axiomatic extensions of G form a chain of logics (and of the
corresponding varieties of algebras) of strictly increasing strength:

G < . . . < Gn+1 < Gn < . . . < G3 < G2 = CPL,

where L < L ′ denotes that L ′ is an axiomatic extension of L .
Since the negation in Gödel logics is a pseudo-complementation and not an invo-

lution, in Esteva et al. (2000), the authors investigate the residuated fuzzy logics
arising from continuous t-norms without non-trivial zero divisors and extended with
an involutive negation. In particular, they consider the extension of Gödel logic G
with an involutive negation ∼, denoted as G∼, and axiomatize it.

The intended semantics of the ∼ connective on the real unit interval [0, 1] is an
arbitrary order-reversing involution n : [0, 1] → [0, 1], i.e., satisfying n(n(x)) = x
and n(x) ≤ n(y) whenever x ≥ y.

It turns out that inG∼, with both negations,¬ and∼, the projectionMonteiro-Baaz
connective � is definable as
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�ϕ := ¬ ∼ ϕ,

and whose semantics on [0, 1] is given by the mapping δ : [0, 1] → [0, 1] defined as
δ(1) = 1 and δ(x) = 0 for x < 1.

Axioms of G∼ are those of G plus10:

(∼1) ∼ ∼ϕ ↔ ϕ (Involution)
(∼ 2) ¬ϕ →∼ ϕ

(∼ 3) �(ϕ → ψ) → �(∼ ψ →∼ ϕ) (Order Reversing)
(�1) �ϕ ∨ ¬�ϕ

(�2) �(ϕ ∨ ψ) → (�ϕ ∨ �ψ)

(�5) �(ϕ → ψ) → (�ϕ → �ψ),

and inference rules of G∼ are modus ponens and necessitation for �:

ϕ, ϕ → ψ

ψ

ϕ

�ϕ
.

G∼ is an algebraizable logic, whose equivalent algebraic semantics is the quasi-
variety of G∼-algebras, defined in the natural way, and generated by the class of its
linearly orderedmembers. Among them, the so-called standardG∼-algebra, denoted
[0, 1]G∼ , is the algebra on the real interval [0, 1]with Gödel truth functions extended
by the involutive negation ∼x = 1 − x . This G∼-chain generates the whole quasi-
variety of G∼-algebras. In fact, we have a strong standard completeness result for
G∼, see Esteva et al. (2000, 2011): for any set � ∪ {ϕ} of G∼-formulas, � �G∼ ϕ iff
� |=G∼ ϕ, where the latter means: for every evaluation e over [0, 1]G∼ , if e(γ ) = 1
for every γ ∈ � then e(ϕ) = 1.

Finally, let us mention that, while G enjoys the usual deduction-detachment theo-
rem (i.e.,� ∪ {ϕ} �G ψ iff� �G ϕ → ψ), this is not the case for G∼, which has only
the following form of �-deduction theorem: � ∪ {ϕ} �G∼ ψ iff � �G∼ �ϕ → ψ .
See also the handbook chapter (Esteva et al. 2011) for further properties of G∼.

On the other hand, as in the case of Gödel logic, one can also consider the log-
ics Gn∼ for each n ≥ 2, the finite-valued counterparts of G∼. Namely, Gn∼ can be
obtained as the axiomatic extension of G∼ with the axiom (AGn ),

11 and can be shown
to be complete with respect to its intended algebraic semantics, the variety of alge-
bras generated by the linearly ordered algebra GVn∼ obtained in turn by expanding
GVn with the involutive negation ∼x = 1 − x , the only involutive order-reversing
mapping that can be defined on GVn . Thus, for any set � ∪ {ϕ} of Gn∼-formulas,
� �Gn∼ ϕ iff� |=Gn∼ ϕ, where the lattermeans: for every evaluation e over the expan-
sion of GVn by ∼, if e(γ ) = 1 for every γ ∈ � then e(ϕ) = 1. Clearly, G2∼ = CPL.
The graph of axiomatic extensions of Gn∼ is depicted in Fig. 6.1, where edges denote

10 These are the original axioms from Esteva et al. (2000), see again Běhounek (2011) and the
references therein for a shorter axiomatization.
11 Equivalently, as the expansion of Gn with∼ along with the axioms (∼ 1)-(∼ 3), (�1)-(�3), and
the necessitation rule for �.
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Fig. 6.1 Graph of axiomatic extensions of G∼

extensions. It can be observed that, if n is even then Gn∼ is an extension of Gm∼ for
any m > n, while if n is odd, Gn∼ is an extension of Gm∼ only for those m > n being
odd as well. Also, note that, in the figure, G−∼ denotes the extension of G∼ with the
axiom
(NFP) ∼�(ϕ ↔∼ ϕ)

that captures the condition that the involutive negation does not have a fixed point, a
condition satisfied by all the logics Gn∼ with n even.

6.2.2 Degree-Preserving Gödel Logics with Involution

Main logics studied in Mathematical Fuzzy Logic are (full) truth-preserving fuzzy
logics, like the Gödel logics introduced in the previous section. But we can also find
in the literature companion logics that preserve degrees of truth, see, e.g., Font et al.
(2006), Bou et al. (2009). It has been argued in Font (2009) that this approach is
more coherent with the commitment of many-valued logics to truth-degree seman-
tics because all values play an equally important role in the corresponding notion
of consequence. Namely, given a fuzzy logic L,12 one can introduce a variant of L
that is usually denoted L≤, whose associated deducibility relation has the following
semantics: for every set of formulas � ∪ {ϕ},

12 For practical purposes, we can assume in this paper that L is an axiomatic extension of Hájek’s
BL logic.
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� �L≤ ϕ iff for every L-chain A, every a ∈ A, and every A-evaluation e,
if a ≤ e(ψ) for every ψ ∈ �, then a ≤ e(ϕ).

For this reason, L≤ is known as a fuzzy logic preserving degrees of truth or the
degree-preserving companion of L. It is not difficult to show that L and L≤ have the
same theorems and also that for every finite set of formulas � ∪ {ϕ}:

� �L≤ ϕ iff �L �∧ → ϕ,

where�∧ means γ1 ∧ . . . ∧ γk for� = {γ1, . . . , γk} (when� is empty then�∧ is
).

Remark 6.1 It is worth noting that the idea of degree-preserving consequence rela-
tions is already present in the context of (classical) modal logic. As it is well known,
under the usual Kripke relational semantics one can consider in modal logic two
notions of consequence relation: a local and a global one.13 But modal logics
have also been given algebraic semantics by means of the so-called modal alge-
bras. Given such a modal algebra, one can define associated truth-preserving and
degree-preserving consequence relations, in an analogous way as done above for
a given linearly ordered L-algebra. It is immediate to see that, for modal logics,
local Kripke semantics corresponds to degree-preserving algebraic semantics, while
global semantics corresponds to truth-preserving semantics, see, e.g., Blackburn et al.
(2002, Defs. 1.35 and 1.37).

As regard to axiomatization, the logic L≤ admits a Hilbert-style axiomatization
having the same axioms as L and the following deduction rules (Bou et al. 2009):

(Adj-∧) from ϕ and ψ derive ϕ ∧ ψ ;
(MP-r ) if �L ϕ → ψ , then from ϕ and ϕ → ψ , derive ψ .

Note that (MP-r ) is a restricted formof theModus Ponens rule, it is only applicable
when ϕ → ψ is a theorem of L.

Since Gödel logic G enjoys the deduction-detachment theorem, a key observa-
tion is that G≤ = G. However, the case is different for the expansion of G with an
involutive negation, since G∼ does not satisfy the usual deduction-detachment the-
orem, and hence G∼ and G≤∼ are different logics. Moreover, while G≤∼ keeps being
¬-explosive, it is ∼-paraconsistent. Indeed, there are ϕ,ψ such that ϕ ∧ ∼ϕ �G≤∼ ψ .
Take, for instance, ϕ and ψ as being two different propositional variables, and e a
truth evaluation over [0, 1]G∼ such that e(ϕ) = 1

2 and e(ψ) < 1
2 .

As for the axiomatization of G≤∼, we need to consider an extra rule regarding �.
As shown in Ertola et al. (2015), a complete Hilbert-style axiomatization for G≤∼ can
be obtained by the axioms of G∼, the previous rules (Adj-∧) and (MP-r ),14 together
with the following restricted form of the usual necessitation rule for �:

13 Given a class of Kripke models, a formula ϕ follows locally from a set � of formulas if, for any
Kripke model M in the class and every world w in M , ϕ is true in 〈M, w〉 whenever every formula
in � is true in 〈M, w〉 as well. On the other hand, ϕ follows globally from � in the class if, for every
Kripke model M , ϕ is true in 〈M, w〉 for every w whenever every formula in � is true in 〈M, w〉
for every w.
14 For L = G∼.
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(�Nec-r ) if �G∼ ϕ, then from ϕ derive �ϕ.

Finally, let us consider the logics G≤
n∼, the degree-preserving companions of the

finite-valued logics G≤∼, defined in the obvious way as above for L = Gn∼. Similar to
G≤∼, G≤

n∼ also admits the following Hilbert-style axiomatization: G≤
n∼ has as axioms

those of Gn∼, and as rules, the rule (Adj-∧) and the following restricted rules:

(MP-r ) if �Gn∼ ϕ → ψ , then from ϕ and ϕ → ψ , derive ψ ;
(�Nec-r ) if �Gn∼ ϕ, then from ϕ derive �ϕ.

6.3 Logics Defined by Matrices Over [0, 1]G∼ by Means of
Order Filters

By a logical matrix we understand a pair 〈A, F〉 where A is an algebra and F is a
subset of the domain A of A. The logic L(M) defined by the matrix M = 〈A, F〉 is
obtained by stipulating, for any set of formulas � ∪ {ϕ},

� �L(M) ϕ if for every evaluation e on A,
if e(γ ) ∈ F for every γ ∈ �, then e(ϕ) ∈ F .

On the other hand, the logic L(M) determined by a class of matrices M is defined
as the intersection of the logics defined by all the matrices in the family. A logic is
said to be a matrix logic if it is of the form L(M) for some class of matrices M.

Notation: In the rest of the paper, without danger of confusion and for the sake of a
lighter notation, we will often identify a matrix M or a set of matrices M with their
corresponding logics L(M) and L(M).

As proved in Bou et al. (2009) for logics of residuated lattices, one can show that
G≤∼, the degree-preserving companion of G∼, is not algebraizable in the sense of
Block and Pigozzi and thus it has no algebraic semantics. But it has a semantics via
matrices. Indeed, G≤∼ is the logic defined by the set of matrices

MG∼ = {〈A, F〉 : A is a G∼-algebra and F is a lattice filter of A}.

Using similar arguments as in the proof of Bou et al. (2009, Theorem 2.12), in fact,
we can also prove that G≤∼ is complete with respect to a subset ofMG∼ , namely, the
set of matrices over the standard G∼-algebra

M[0,1] = {〈[0, 1]G∼ , F〉 : F is an order filter of [0, 1]}.

Next, we study the relationships among all the logics defined by matrices from
M[0,1], i.e., matrices over the algebra [0, 1]G∼ by order filters, identifying which
ones are paraconsistent. Actually, the order filters on [0, 1]G∼ are the following sets:
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F[a = {x ∈ [0, 1] : x ≥ a} for all a ∈ (0, 1] and F(a = {x ∈ [0, 1] : x > a} for all
a ∈ [0, 1). Abusing the notation, we will denote the corresponding logics as

G[a
∼ = 〈[0, 1]G∼ , F[a〉 and G(a

∼ = 〈[0, 1]G∼ , F(a〉.

The consequence relations corresponding to these logics will be, respectively,
denoted by �[a and �(a , while � f

[a and � f
(a will denote the finitary companions of �[a

and �(a , respectively.15 We will write �1 and � f
1 instead of �[1 and � f

[1, respectively.
Some of the logics �[a and �(a are, in fact, finitary. This is shown in the next

lemma.

Lemma 6.1 The logic �1 is finitary. Moreover, the logics �(1/2,�[1/2 and �(0 are
equivalent, as deductive systems, to �1 and hence they are finitary as well. Therefore,
all these logics coincide with their finitary companions � f

1 ,� f
(1/2,� f

[1/2, and � f
(0,

respectively.

Proof • Since G∼ has a finitary axiomatization (see previous Sect. 6.2.1) and it is
strongly standard complete w.r.t. to �1, then �1 is finitary and coincides with � f

1 .• We prove that, in fact, �(1/2,�[1/2, and �(0 are all of them equivalent to �1, in the
sense of Blok and Pigozzi (Blok and Pigozzi 2001). Indeed, for each formula ϕ,
define the following transformations:
- ϕ∗1 := (∼ ϕ → ϕ) ∧ ¬�(ϕ ↔∼ ϕ), ϕ∗2 :=∼ ϕ → ϕ, ϕ∗3 := ¬¬ϕ.
Further, if � is a set of formulas, define �∗ := {ψ∗ | ψ ∈ �} for ∗ ∈ {∗1, ∗2, ∗3}.
It is easy to check that for any G∼-evaluation e, we have
- e(ϕ) > 1/2 iff e(ϕ∗1) = 1,
- e(ϕ) ≥ 1/2 iff e(ϕ∗2) = 1,
- e(ϕ) > 0 iff e(ϕ∗3) = 1.
Then one can check that the following three conditions are satisfied:

(i) The logics �(1/2,�[1/2, and �(0 can be faithfully interpreted in �1 as the follow-
ing equivalences hold:
� �(1/2 ϕ iff �∗1 �1 ϕ∗1 , � �[1/2 ϕ iff �∗2 �1 ϕ∗2 , and
� �(0 ϕ iff �∗3 �1 ϕ∗3 .

(ii) We can also interpret �1 in any of the other consequence relations by using the
� operator, indeed, we have
� �1 ϕ iff �� �(1/2 �(ϕ) iff �� �[1/2 �(ϕ) iff �� �>0 �(ϕ),
where �� = {�(ψ) : ψ ∈ �}.

(iii) Finally, the following inter-derivabilities show that the � acts as a proper con-
verse transformation of each ∗i in the corresponding logic:
ψ ��(1/2 �(ψ∗1) and ϕ ��1 (�ϕ)∗1 ,
ψ ��[1/2 �(ψ∗2) and ϕ ��1 (�ϕ)∗2 ,
ψ ��(0 �(ψ∗3) and ϕ ��1 (�ϕ)∗3 .

15 Recall that thefinitary companion of a logic (L ,�) is given by (L ,� f )where, for every� ∪ {ϕ} ⊆
L , � � f ϕ iff there exists a finite �0 ⊆ � such that �0 � ϕ.
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As a consequence, the logics �1,�(1/2,�[1/2, and �(0 are equivalent, and since �1

is finitary, so are the other logics as well.
�

Therefore, as a consequence of previous lemma, the only cases left open are
whether the logics �[a and �(a are finitary for a ∈ (0, 1/2) ∪ (1/2, 1).

Next proposition shows the relationships among the remaining logics defined by
matrices over the algebra [0, 1]G∼ by order filters.

Proposition 6.1 The logics G[a∼ = 〈[0, 1]G∼ , F[a〉 for a ∈ (0, 1], G(a∼ = 〈[0, 1]G∼ ,

F(a〉 for a ∈ [0, 1), and their finitary companions, satisfy the following properties16:

P1. �[p = �[p′ and �(p = �(p′ , for all p, p′ ∈ (1/2, 1).
Moreover, �(p ⊆ �[p and � f

[p = � f
(p for all p ∈ (1/2, 1).

P2. �[n = �[n′ and �(n = �(n′ , for all n, n′ ∈ (0, 1/2).
Moreover, �(n ⊆ �[n and � f

[n = � f
(n for all n ∈ (0, 1/2).

P3. �[p � �1, for any p ∈ (1/2, 1).
P4. �1 and �[1/2 are not comparable.
P5. �[p and �[1/2, as well as � f

[p and �[1/2, are not comparable, for any p ∈
(1/2, 1).

P6. � f
[p � �(1/2, for any p ∈ (1/2, 1).

P7. �[p and �[n are not comparable, for any p ∈ (1/2, 1) and any n ∈ (0, 1/2).
The same holds for � f

[p and � f
[n.

P8. �[n � �[1/2, for any n ∈ (0, 1/2).
P9. �(0, �[1/2, and �(1/2 are not pairwise comparable.

P10. � f
[n � �(0, for any n ∈ (0, 1/2).

Proof P1. We divide the proof in four steps:
(i) That �[p = �[p′ and �(p = �(p′ is an easy consequence of the fact that for
every p, p′ ∈ (1/2, 1) it is possible to define an automorphism f of [0, 1]G∼
such that f (p) = p′. Let us then show that � f

[p = � f
(p for every p ∈ (1/2, 1).

(ii) Assume {ϕi : i ∈ I } � f
[p ψ , with I finite, for some p ∈ (1/2, 1). Let q

such that 1/2 < q < p, and let e be an evaluation such that e(ϕi ) > q for
all i ∈ I . Let p′ = mini∈I e(ϕi ). Obviously p′ > q. Then, by (i), we also
have {ϕi : i ∈ I } � f

[p′ ψ , and therefore we have e(ψ) ≥ p′ > q, and hence

{ϕi : i ∈ I } � f
(q ψ . Therefore, we have � f

[p ⊆ � f
(q for all 1/2 < q < p.

(iii) Recall from (i) that � �(p ϕ iff � �(p′ ϕ for all 1/2 < p′ < 1. Let
p1, p2, . . . , pn, . . . be an increasing sequence of values pi ∈ (1/2, p) such that
limn pn = p. Suppose � �(p ϕ, and further assume e(ψ) ≥ p for all ψ ∈ �.
Clearly, for each pi , e(ψ) > pi for all ψ ∈ �. Since � �(pi ϕ for each pi , we
have that e(ϕ) > pi for each pi . Hence e(ϕ) ≥ p.
(iv) Assume {ϕi : i ∈ I } � f

(q ψ , with I finite, for some q ∈ (1/2, 1). Let p
be such that q < p < 1, and let e be an evaluation such that e(ϕi ) ≥ p for

16 In the following we use p and n to denote positive and negative values in [0, 1] with respect to
the negation ∼ x = 1 − x ; in other words, p > 1/2 and n < 1/2.
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all i ∈ I . Let q ′ = mini∈I e(ϕi ). Obviously q ′ ≥ p. Then, by (i), we also
have {ϕi : i ∈ I } � f

(q ′ ψ , and therefore we have e(ψ) ≥ q ′ ≥ p, and hence

{ϕi : i ∈ I } � f
p ψ . Therefore, we have � f

(q ⊆ � f
[p for all 1/2 < q < p.

P2. The proofs are analogous to those of P1.
P3. Assume {ϕi : i ∈ I } �[p ψ for a given p ∈ (1/2, 1), and let e be an evaluation

such that e(ϕi ) = 1 for all i ∈ I . Since it is also true that e(ϕi ) ≥ p′ for all
p′ ∈ (1/2, 1), by P1 it follows that {ϕi : i ∈ I } �[p′ ψ for all p′ ∈ (1/2, 1),
and hence e(ψ) ≥ p′ for all p′ ∈ (1/2, 1), and thus e(ψ) = 1. Therefore {ϕi :
i ∈ I } �1 ψ .
The strict inclusion can be easily noticed since it holds that ϕ �1 �ϕ but
ϕ �[p �ϕ for any p < 1.

P4. It clearly holds that, on the one hand,�(ϕ ↔ ∼ϕ) �[1/2 ϕ but�(ϕ ↔ ∼ϕ) �1

ϕ, while, on the other hand, ϕ �1 �ϕ but ϕ �[1/2 �ϕ.
P5. It follows from noticing that �(ϕ ↔ ∼ϕ) ∧ ϕ �[p ⊥ and �(ϕ ↔ ∼ϕ) ∧

ϕ �[1/2 ⊥, while �(ϕ ↔ ∼ϕ) �[1/2 ϕ and �(ϕ ↔ ∼ϕ) �[p ϕ.
P6. Assume that, for a given p ∈ (1/2, 1), {ϕi : i ∈ I } �[p ψ , with I finite, and let

e be an evaluation such that e(ϕi ) > 1/2 for all i ∈ I . Let p′ = mini∈I e(ϕi ).
Obviously p′ > 1/2. Then, from P1 we also have {ϕi : i ∈ I } �[p′ ψ , and
therefore we have e(ψ) ≥ p′ > 1/2, and hence {ϕi : i ∈ I } �(1/2 ψ . There-
fore, we have �[p ⊆ �(1/2.
That the inclusion is strict follows from observing that∼�(ϕ → ∼ϕ) �(1/2 ϕ,
but ∼�(ϕ → ∼ϕ) �[p ϕ.

P7. It follows from observing (i) �(ϕ ↔ ∼ϕ) �[n ϕ and �(ϕ ↔ ∼ϕ) �[p ϕ, and
(ii) ϕ �[p ∼�(ϕ → ∼ϕ) and ϕ �[n ∼�(ϕ → ∼ϕ).

P8. That �[n ⊆ �[1/2 is proved in a similar way to P3. The strict inclusion is a
consequence of the following facts:
(i) ϕ ∧ ∼ϕ �[1/2 �(ϕ ↔ ∼ϕ);
(ii) ϕ ∧ ∼ϕ �[n �(ϕ ↔ ∼ϕ).
Notice that e(ϕ ∧ ∼ϕ) ≥ 1/2 iff e(ϕ) = 1/2 iff e(ϕ ↔ ∼ϕ) = 1, while if
e(ϕ) = n, then e(ϕ ∧ ∼ϕ) = e(ϕ ↔ ∼ϕ) = n, but e(�(ϕ ↔ ∼ϕ)) = 0.

P9. That �[1/2 and �(1/2 are not comparable results from noticing, e.g., (i)
�(ϕ ↔ ∼ϕ) �[1/2 ϕ but�(ϕ ↔ ∼ϕ) �(1/2 ϕ, and (ii) ϕ �(1/2 ∼�(ϕ → ∼ϕ)

but ϕ �[1/2 ∼�(ϕ → ∼ϕ).
On the other hand, it is easy to check that ⊥ follows from ϕ ∧ �(ϕ → ∼ϕ) ∧
¬�(∼ϕ → ϕ) in�(1/2 and�[1/2, but not in�(0. Conversely,¬¬ϕ ∧ ¬�ϕ �(0

ϕ ∧ ∼ϕ, but this is neither the case for �(1/2 nor for �[1/2.
P10. Assume {ϕi : i ∈ I } �[n ψ for a given n ∈ (0, 1/2) and a finite set I , and let

e be an evaluation such that e(ϕi ) > 0 for all i ∈ I . Let n′ = mini∈I e(ϕi ).
Obviously n′ > 0 and e(ϕi ) ≥ n′, for all i ∈ I . Then, from P1, we also have
that {ϕi : i ∈ I } �[n′ ψ , and hence we have e(ψ) ≥ n′ > 0. This means {ϕi :
i ∈ I } �(0 ψ . Therefore, we have � f

[n ⊆ �(0.
On the other hand, ¬¬ϕ �(0 ϕ but ¬¬ϕ �[n ϕ, hence we have proved that
� f

[n � �(0.
�
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Fig. 6.2 Graph of logics
over [0, 1]G∼ defined by
order filters, where
1/2 < p < 1 and
0 < n < 1/2, where edges
stand for inclusions (upward
sense). The dashed edges
denote that it is an open
problem whether the
connected logics are different

A graphical representation of the different logics (consequence relations) involved
in the above proposition can be seen in Fig. 6.2.

It is clear that a matrix logic G[a∼ = 〈[0, 1]G∼ , F[a〉 (resp. G(a∼ = 〈[0, 1]G∼ , F(a〉) is
paraconsistent only in the case that a ≤ 1/2 (resp. a < 1/2). As a consequence of
the above classification, it turns out that there are only three different paraconsistent
logics among them.

Corollary 6.1 Among the families of logics {G[a∼}a∈(0,1] and {G(a∼ }a∈[0,1):

• there are only three different paraconsistent logics:G[a∼ for any a ∈ (0, 1/2),G[1/2∼ ,
and G(0∼ .

• there are only three different explosive logics: G[a∼ for any a ∈ (1/2, 1), G(1/2∼ , and
G[1∼ .

In analogy to Coniglio et al. (2016, Theorem 2), it is easy to show that every
intermediate logic L between G≤∼ and CPL is, in fact, the logic L(M′) defined by a
subfamily of matrices M′ ⊆ MG∼ . However, note that the set of G∼-algebras and
their lattice filters is very large. Then, an exhaustive analysis of the set of intermediate
logics between G≤∼ and CPL actually seems to be a difficult task. Because of this, in
the next section, we will restrict ourselves to the case of finite-valued Gödel logics
with an involutive negation Gn∼.

Remark 6.2 In the last corollary, we have shown that G(0∼ , the matrix logic defined
by the standard G∼-algebra [0, 1]G∼ and the filter (0, 1] of designated values, is a
paraconsistent logic. In Avron (2016), Avron introduces a paraconsistent extension
of the logic T of Anderson and Belnap called FT. This logic, which intends to be
“a paraconsistent counterpart of Łukasiewicz Logic Ł∞” (Avron (2016, pp. 75)), is
firstly defined axiomatically over a propositional language with connectives ∧, ∨,
∼, →FT,17 and then it is proved that FT is semantically characterized by the logic

17 In Avron (2016), the symbols ¬ and → were used instead of ∼ and →FT. We adopt this notation
in order to keep the notation of the present paper uniform.
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matrix defined by the ordered algebra M[0,1] = ([0, 1],∧,∨,∼,→FT, 0, 1) and the
filter (0, 1] of designated values (this is why Avron considers FT as a logic that
preserves non-falsity). Here ∧, ∨, and ∼ are defined as in [0, 1]G∼ , while →FT is
defined as follows:

x →FT y =
{
max(1 − x, y), if x ≤ y
0, otherwise.

Now, observe that the implication →FT of M[0,1] is definable in [0, 1]G∼ as
x →FT y = �(x →G y) ∧ (∼x ∨ y). As a consequence of this, the logic FT is inter-
pretable inG(0∼ bymeans of amapping ∗ : FmFT → FmG∼ defined recursively as fol-
lows: p∗ = p if p is a propositional variable; (∼ϕ)∗ = ∼ϕ∗; (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗;
(ϕ ∨ ψ)∗ = ϕ∗ ∨ ψ∗; and (ϕ →FT ψ)∗ = �(ϕ∗ →G ψ∗) ∧ (∼ϕ∗ ∨ ψ∗). Then, for
every � ∪ {ϕ} ⊆ FmFT, we have

� �FT ϕ iff �∗ �(0 ϕ∗,

where �∗ denotes the set {ψ∗ : ψ ∈ �} and �(0 denotes the consequence relation
of G(0∼ . Moreover, in Avron (2016, Example 3.4), Avron considers, for every n > 1,
the finite subalgebraMn

[0,1] ofM[0,1] with domain GVn = {0, 1/(n − 1), . . . , (n − 2)
/(n − 1), 1}. Let FTn be the logic characterized by the logic matrix defined by the
algebra Mn

[0,1] and the filter F 1
n−1

= {a ∈ GVn : a > 0} = GVn ∩ (0, 1] of desig-
nated values. Then, the interpretation ∗ above also shows that FTn is interpretable in
〈GVn∼, F 1

n−1
〉, since we also have

� �FTn ϕ iff �∗ �{ 1
n−1 } ϕ∗,

where �{ 1
n−1 } is the consequence relation of the matrix logic 〈GVn∼, F 1

n−1
〉. This

notation will be also used in Sect. 6.4.1.
As a matter of fact, it can be observed that the � operator of [0, 1]G∼ is definable

in M[0,1] as �x = 1 →FT x and so the Gödel implication →G of [0, 1]G∼ is also
definable in M[0,1] as x →G y = ∼�∼(x →FT y) ∨ y. Observe, however, that the
logic FT has neither bottom nor top,18 hence there is no formula in FT which can
express the�operator. Let FT0 be the logic definedby the samematrix 〈M[0,1], (0, 1]〉
of FT, but now over an expanded language FmFT0 containing a constant ⊥ and
adding the requirement that e(⊥) = 0 for every evaluation e. Let us denote by �FT0

its corresponding consequence relation. Consider the mapping # : FmG∼ → FmFT0

defined recursively as follows: p# = p if p is a propositional variable; ⊥# = ⊥;
(∼ϕ)# = ∼ϕ#; (ϕ ∧ ψ)# = ϕ# ∧ ψ#; and (ϕ →G ψ)# = ∼�∼(ϕ# →FT ψ#) ∨ ψ#

(where �α = ∼⊥ →FT α for every α). Then, � �(0 ϕ iff �# �FT0 ϕ#, showing that
the logic G(0∼ is interpretable in FT0. Since ϕ is equivalent to ϕ∗# in FT0 for every
ϕ ∈ FmFT0 andψ is equivalent toψ#∗ inG(0∼ for everyψ ∈ FmG∼ (here,∗ is extended

18 Indeed, every formula ϕ ∈ FmFT gets the value 1/2 in any evaluation e over M[0,1] such that e
assigns the value 1/2 to any propositional variable occurring in ϕ.
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to FmFT0 by putting ⊥∗ = ⊥), the logics G(0∼ and FT0 are the same up to language.
The same relationship holds between 〈GVn∼, F 1

n−1
〉 and the logic FTn

0 obtained from
FTn by adding ⊥.

6.4 Logics Between G≤
n∼ and CPL

In this section, we will study the intermediate logics between G≤
n∼ and CPL, for a

natural n > 2. The cases n = 3 and n = 4 are easy to analyze since G3∼ and G4∼
coincide, respectively, with the three-valued and four-valued Łukasiewicz logics Ł3

and Ł4.

Proposition 6.2 G3∼ and G4∼ are logically equivalent to Ł3 and Ł4, respectively.

Proof The proof is algebraic, we prove that the standard algebras GV3∼ and GV4∼
are termwise equivalent to the standard Łukasiewicz algebras of Ł3 and Ł4, respec-
tively. First, in the algebra GV3∼, it is possible to define the binary connective
x →3Ł y = (x → y) ∨ (∼x ∨ y), that coincides with the three-valued Łukasiewicz
implication, i.e., we have x →3Ł y = min(1, 1 − x + y) for every x, y ∈ GV3.
Thus, in GV3∼, we can define all the Łukasiewicz connectives, in other words,
(GV3∼,→3Ł,∼, 0, 1) is, in fact, the

Second, also in the algebra GV4∼, we can define the binary connective

x →4Ł y = ∼x ∨ [�(∼x → x) ∧ (∼ �x) ∧ (¬¬y) ∧ x)] ∨ (x → y)

which coincides again with the four-valued Łukasiewicz implication, i.e.,
x →4Ł y = min(1, 1 − x + y) for every x, y ∈ GV4.

On the other hand, in any finite MV-algebra ŁVn we can always define Gödel
implication as x →G y = �(x →Ł y) ∨ y and Gödel negation as ¬Gx = �

(∼x).19 �
Remark 6.3 From the last result, it follows that the logics between G≤

3∼ (resp. G≤
4∼)

and CPL coincide with the logics between Ł≤
3 (resp. Ł≤

4 ) and CPL studied in Coniglio
et al. (2016, 2019). Among them, the well-known da Costa and D’Ottaviano’s three-
valued logicJ3, that is, equivalent (up to language) to thematrix logic 〈ŁV3, {1/2, 1}〉,
is a logic between Ł≤

3 and CPL. Analogously, its four-valued generalization J4,
defined as the matrix logic 〈ŁV4, {1/3, 2/3, 1}〉 in Coniglio et al. (2019), is a logic
between Ł≤

4 and CPL. Therefore, we can consider the logics J3 and J4 to be equiva-
lent as well to the intermediate logics 〈GV3∼, {1/2, 1}〉 and 〈GV4∼, {1/3, 2/3, 1}〉,
respectively.

Observe, however, that for any n > 4, Gn∼ is no longer equivalent to Łn . Thus,
we need to study the intermediate logics for G≤

n∼ for n > 4, and this is the goal of
the next subsection, while in Sect. 6.4.2 we will have a closer look to the case n = 5.

19 Recall that the � connective is definable in any algebra ŁVn .
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6.4.1 The Intermediate Logics of G≤
n∼ for n > 4

Throughout this section n will denote a natural number such that n > 4.
Following the same arguments as in previous sections, it is easy to check that G≤

n∼
is, in fact, the logic semantically defined by the class of matrices:

{〈A, F〉 : A is a Gn∼-algebra and F is a lattice filter of A}.

Therefore, in order to study the intermediate logics between G≤
n∼ and CPL, we need

to characterize the (finite) Gn∼-algebras.

Proposition 6.3 Every finite Gn∼-algebra is a finite direct product of finite Gn∼-
chains.

Proof Notice that for every Gn∼-chain the term t (x, y, z) := (�(x ↔ y) ∧ z) ∨
(¬�(x ↔ y) ∧ x) is a discriminator term,20 hence every Gn∼-variety is a discrimi-
nator variety. Then the result is a consequence of a result of universal algebra (see,
for instance, Burris and Sankappanavar (1981, Theorem 9.4, item (d))). �

In the following, we will need to consider products of logical matrices.

Definition 6.1 Let Li = 〈Ai , Di 〉 (for i ∈ I ) be a family of logical matrices, where
each Di is an order filter in Ai. The product of these matrices is the logical matrix
L = 
i∈I Li = 〈
i∈I Ai ,
i∈I Di 〉, where � �L ϕ iff, for every tuple of evaluations
(ei )i∈I , each ei over Ai, the following condition holds: if ei (ψ) ∈ Di for every i ∈ I
and every ψ ∈ �, then ei (ϕ) ∈ Di for every i ∈ I .

Remark 6.4 Obviously, a matrix logic L as above is paraconsistent iff all the com-
ponents Li are paraconsistent. For example, if one component is 〈GV2∼, F1〉, then
the matrix logic is not paraconsistent.

Since every G∼-algebra is locally finite, every intermediate logic L between G≤
n∼

and CPL is induced by a family of product matrices 〈A, F〉 where A is a finite direct
product of subalgebras of GVn∼ and F is a lattice filter of A compatible21 with L .

In Coniglio et al. (2016, 2019), products of logical matrices were considered for
Łukasiewicz finite-valued logics. For instance, Coniglio et al. (2016) contains a full
description of the set I nt
(Łn) of logics defined by (sets of) products of matrices
over the standard Łn-algebra. Additionally, it also contains an almost full description
of the set I nt (Łn) of logics defined by sets of products of matrices over subalgebras
of the standard Łn-algebra which are sublogics of Łn , when n − 1 is a prime number.

In the rest of this section, wewill consider families of intermediate logics between
G≤

n∼ and CPL of increasing generality.

20 In fact, this is a discriminator term in the whole variety of G∼-algebras. For a definition of
discriminator term and discriminator variety, see Burris and Sankappanavar (1981).
21 A filter F of an algebra A is compatible with a logic L if, whenever � �L ϕ, the following holds:
for every A-evaluation e, if e(γ ) ∈ F for every γ ∈ � then e(ϕ) ∈ F .
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First of all, we study thematrix logics 〈GVn, F〉where F is an order filter ofGVn.
In order to simplify the notation, for every nonempty subset T ⊆ GVn we denote by
L(MT ) the logic defined by the set of matricesMT = {〈GVn∼, Ft 〉 : t ∈ T }, where
Ft denotes the order filter in GVn generated by t ∈ GVn , namely, if t = i/(n − 1)
then Ft = {i/(n − 1), (i + 1)/(n − 1), . . . , (n − 2)/(n − 1), 1}.22 Note that F1 =
{1}. The set of all the logics L(MT ), for ∅ �= T ⊆ GVn \ {0}, will be denoted by
L(GVn∼).

Proposition 6.4 The logics L(M{t}), with t ∈ GVn \ {0}, are pairwise incompara-
ble. Moreover, L(MT ) is not comparable to L(MR) if ∅ �= T, R ⊆ GVn \ {0} such
that T �= R and T and R have the same cardinality. In addition, the set of logics
L(GVn∼) is a meet-semilattice where the logics L(M{t}), for t ∈ GVn \ {0}, are its
maximal elements.

Proof Let �{t} be the consequence relation of the logic L(M{t}) defined by the
matrix 〈GVn∼, Ft 〉, with t ∈ GVn \ {0}. Observe that in any of these logics, since
we have the � operator, it is possible to build a propositional formula on n variables
�(p0, p1, . . . , pn−1) such that, for every evaluation e of formulas on GVn∼,

e(�(p0, p1, . . . , pn)) =
{
1, if e(pi ) = i

n−1 for all i = 0, 1, . . . , n − 1
0, otherwise.

Let i, j ∈ {1, 2, . . . , n − 1} be such that i < j . Then,

• �(p0, p1, . . . , pn) ∧ pi �{ j
n−1 } ⊥ and �(p0, p1, . . . , pn) ∧ pi �{ i

n−1 } ⊥;
• �(p0, p1, . . . , pn) ∧ p j �{ j

n−1 } pi and �(p0, p1, . . . , pn) ∧ p j �{ i
n−1 } pi .

Therefore, �{t} and �{t ′} are not comparable if 0 < t < t ′ < 1. From this, it is
easy to prove that for any subsets ∅ �= T, R ⊆ GVn \ {0} with the same cardinal-
ity and such that T �= R, the logic L(MT ) is not comparable to L(MR). Finally, if
∅ �= T, R ⊆ GVn \ {0} then L(MT ) ∩ L(MR) = L(MT ∪R). Hence, L(GVn∼) is a
meet-semilattice such that the maximal elements are exactly the logics L(M{t}), for
t ∈ GVn \ {0}. �

On the other hand, as it was done in Coniglio et al. (2016, 2019) for Łukasiewicz
finite-valued logics, product matrices can be considered.

Definition 6.2 Given a nonempty set T ⊆ GVn \ {0}, T = {t1, . . . , tk} (where k ≥ 1
and ti < t j if i < j), we will denote by L(T ) the matrix logic 〈(GVn∼)k,
k

i=1Fti 〉
defined on a direct product of GVn∼ by means of order filters.

22 Strictly speaking, this notation becomes ambiguous if n is not clear from the context and we
identify rational numbers such as i/(n − 1) and i.k/(n − 1).k, for instance, 1/2, 2/4, 3/6, and so
on. In this case, the notation F 1

2
is problematic, since it could denote any of an infinite sequence

of different filters in GV3, GV5, GV7,… respectively. The right notation for order filters in GVn
should be Fn

t . However, the superscript n will be avoided when there is no risk of confusion.
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Proceeding as in Coniglio et al. (2016, Prop. 11), one can show that L(T ) can be
characterized as follows:

� �L(T ) ϕ iff either� �{tk } ⊥ or� �{t} ϕ for all t ∈ T .

Note that the first condition, � �{tk } ⊥, amounts to a sort of graded inconsistency
condition for � (it reads e(ψi ) < max T for any GVn-evaluation e and for any ψi ∈
�). On the other hand, the second condition,� �{t} ϕ for all t ∈ T , amounts to require
that ϕ follows from � in the logic defined by the set matricesMT = {〈GVn∼, Ft 〉 :
t ∈ T }. Hence, ϕ follows from � in L(T ) whenever, either � is inconsistent or
contradictory to a certain degree (the maximum of T ), or ϕ follows from � in the
logic of MT . This makes it clear that the latter is a sublogic of the product matrix
logic L(T ).

The results become different when studying the matrix logics that involve com-
ponents over finite subalgebras belonging to the variety generated by GVn∼ because
even though all of them are direct products of subalgebras of GVn∼, the number of
subalgebras of GVn∼ is significantly larger than in the Łukasiewicz case. Indeed:

• Subalgebras ofGVn∼ are those chains that can be obtained from GVn by removing
a set of pairs of elements {ai ,∼ai } with ai /∈ {0, 1}. In particular, if n is odd one
can remove just the fixed point.

• Therefore, the logics between G≤
n∼ and CPL are those logics defined by matrices

over direct products of subalgebras of GVn∼ and with products of order filters on
the corresponding components of the product algebra. Of course, we have to avoid
the repetition of components in these products.

Example 6.1 Recall the logics J3 and J4 from Remark 6.3. Since GV3 and GV4

are subalgebras of GV5, by the characterization of all extensions of G≤
n∼ we have

that J3 × J4 coincides (up to language) with 〈GV3∼ × GV4∼, F1
2
× F1

3
〉, hence it is

a paraconsistent extension of G≤
5∼ that is comparable neither to J3 nor to J4. Indeed,

it is immediate to see that �J3×J4 ϕ iff �J3 ϕ and �J4 ϕ for every formula ϕ. Thus,
since the theorems of J3 and those of J4 are not comparable, J3 × J4 is an extension
neither of J3 nor of J4.

On the other hand, it is also easy to check that ϕ �J3×J4 ⊥ iff ϕ �J3 ⊥ or ϕ �J4 ⊥.
Consider now the following formulas:

- α = �(p ↔ ∼p);
- β = ¬((p1 → p2) ∨ (p2 → p3) ∨ (p3 → p4)).

It is clear that α �J3 ⊥ while α �J4 ⊥, and hence α �J3×J4 ⊥ as well. Analogously,
we also have that β �J4 ⊥ while β �J3 ⊥, and hence β �J3×J4 ⊥. Thus, J3 × J4, J3
and J4 are mutually not comparable.

Finally, we can characterize the logics satisfying the explosion rule for ∼:

ϕ ∼ ϕ

⊥ .
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Indeed, we have

• Following the same reasoning as in Coniglio et al. (2016) for the n-valued
Łukasiewicz case, one can show that theminimalmatrix logic satisfying the explo-
sion rule, i.e., the expansion of G≤

n∼ with the above rule is the logic Lexp whose
consequence relation is defined as

� �Lexp ϕ iff either� �{ i
n−1 } ⊥, or� �G≤

n∼ ϕ,

where i is the first natural such that i
n−1 > 1/2. By manipulating the right-hand

side of the above condition, � �Lexp ϕ turns out to be equivalent to the two further
conditions:

� �Lexp ϕ iff either � �{ i
n−1 } ⊥ or (� �T1 ϕ and � �T2 ϕ)

iff [� �{ i
n−1 } ⊥ or � �T1 ϕ] and [� �{ i

n−1 } ⊥ or � �T2 ϕ)]

But, according to the paragraph after Definition 6.2, the condition [� �{ i
n−1 } ⊥ or

� �T1 ϕ] is just saying thatϕ follows from� in the logicL(T1), while the condition
[� �{ i

n−1 } ⊥ or � �T2 ϕ)] is clearly equivalent to only � �T2 ϕ. Therefore,

Lexp = L(T1) ∩ L(MT2),

or in other words, Lexp is the logic defined by the following set of matrices:

Mn = {〈(GVn∼)i ,
i
r=1F r

n−1
〉} ∪

{〈GVn∼, F1〉, 〈GVn∼, Fn−2
n−1

〉, . . . , 〈GVn∼, F i+1
n−1

〉}.
• Therefore, the explosion rule is valid in all the logics extending the logic Lexp.
Hence, all of them are explosive, while those not extending it are paraconsistent.

6.4.2 Example: the Case n = 5

As an example, we study the case of the set I nt (G≤
5∼) of matrix logics defining

intermediate logics between G≤
5∼ and CPL. Recall that GV5 denotes the ordered set

{0, 1/4, 1/2, 3/4, 1}. We start with some basic facts:

• Consider the subset L(GV5∼) ⊂ I nt (G≤
5∼) of logics defined by the set of matrices

MT = {〈GV5∼, Ft 〉 : t ∈ T } for∅ �= T ⊆ GV5 \ {0}, as it was done in Sect. 6.4.1.
According to Proposition 6.4, the logics of the matrices 〈GV5∼, Fi/4〉 for
i ∈ {1, 2, 3, 4} are pairwise incomparable, and in fact they are the maximal log-
ics in L(GV5∼), while

⋂
i∈{1,2,3,4}〈GV5∼, Fi/4〉 = G≤

5∼ is the minimum logic of
L(GV5∼) (and clearly of I nt (G≤

5∼) as well).
• Let L
(G5∼) ⊂ I nt (G≤

5∼) be the set of matrix logics of the form L(T ) defined on
direct products ofGV5∼ bymeans of products of order filters (recallDefinition6.2).
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Then, these logics satisfy the following conditions (like in the case of Łukasiewicz
logics):

– If ∅ �= T, R ⊆ GV5 \ {0} are such that max T = max R, then L(T ) ∩ L(R) =
L(T ∪ R).

– The maximal elements of L
(G5∼) are the matrix logics of the type 〈(GV5∼)2,

Fi/4 × Fj/4〉 with i, j ∈ {1, 2, 3, 4} and i < j .
– The matrix logic 〈(GV5∼)2, Fi × Fj 〉 for 0 < i < j contains 〈GV5∼, Fj 〉 and
it is not comparable with 〈GV5∼, Fk〉 for 0 < k �= j .

• Finally, let us consider the subset L
∗(G5∼) ⊂ I nt (G≤
5∼) of matrix logics defined

on direct products of GV5∼ and their subalgebras together with direct products
of order filters. The subalgebras of GV5∼ are (isomorphic to) GV2∼, GV3∼, and
GV4∼, and thus the number of matrix logics in L
∗(G5∼) proliferate in a large
number. Namely, to define matrix logics we have the following components to
combine: four algebras, GV5∼, GV4∼, GV3∼ and GV2∼, and ten order filters: four
over GV5∼, three over GV4∼, two over GV3∼, and one over GV2∼. Therefore, we
have all the possible products (without repetitions) of these ten components.

We can also characterize the minimal extension of G≤
5∼ with the explosion rule as

the logic L(M5) of the set of matrices

M5 = {〈(GV5∼)3, F3/4 × F2/4 × F1/4〉, 〈GV5∼, F1〉}.

Concerning axiomatization, as in case of Łukasiewicz logics, we can give an
axiomatic characterization of the logics of L
(G5∼). To see this, first of all, observe
that in G5∼, for every value i/4 ∈ GV5 \ {0} there exists a formula in one variable
ϕ(p) characterizing the value i/4, i.e., such that for any evaluation e, e(ϕ(p)) = 1
if e(p) = i/4, and 0 otherwise. For example, for the value 1/2, the formula can be
�(p ↔ ∼p). It is also possible to define a formula characterizing the sets of values
≥ i/4,> i/4,≤ i/4, and < i/4.

Using this observation, it is easy to see that everymatrix logic of type 〈GV5∼, Fi/4〉
or L(T ) ∈ L
(G5∼) can be axiomatized. For instance, here we give the following
example:

• The matrix logic (GV5∼, Fi/4) is axiomatized by adding to the axioms and rules
of G≤

5∼ the following restricted inference rule:

if �G5∼ (ϕ < i/4) ∨ ((ϕ ≥ i/4) ∧ (ψ ≥ i/4), from ϕ derive ψ .

Othermatrix logics of L
(G5∼) can be axiomatized in an analogousway. Notice that
these axiomatizations are possible since, in G5∼, for every element a ∈ GV5 there
exists a characterizing formula in one variable. This is not true in Gn∼ for n > 5, and
thus the previous axiomatization results are not generalizable to Gn∼ for n > 5.
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6.5 Ideal and Saturated Paraconsistent Extensions of G≤
n∼

As already noticed, matrix logics over direct products of subalgebras of GVn∼
with products of order filters are ∼-paraconsistent iff all the components are
∼-paraconsistent. In this section, using the results of the previous section, we study
the status of the logics between G≤

n∼ and CPL in relation to ideal
∼-paraconsistency.Namely,we show that there are only two extensions ofG≤

n∼ which
are ideal∼-paraconsistent.Moreover, we show that there is another∼-paraconsistent
extension ofG≤

n∼ which, although not being ideal∼-paraconsistent, it has the remark-
able property of not having any proper ∼-paraconsistent extension.

We have already briefly discussed in the Introduction, the concept of ideal para-
consistent logics, introduced by Arieli et al. (2011b).23 We recall here this notion.

Definition 6.3 (c.f. Arieli et al. (2011b)) Let L be a propositional logic defined over
a signature  (with consequence relation �L ) containing at least a unary connective
� and a binary connective → such that

(i) L is paraconsistent w.r.t. � (or simply �-paraconsistent), that is, there are for-
mulas ϕ,ψ ∈ L() such that ϕ, �ϕ, �L ψ .

(ii) → is an implication for which the deduction-detachment theorem holds in L ,
that is,� ∪ {ϕ} �L ψ iff� �L ϕ → ψ , for every set for formulas� ∪ {ϕ,ψ} ⊆
L().

(iii) There is a presentation ofCPL as amatrix logic L ′ = 〈A, {1}〉 over the signature
 such that the domain of A is {0, 1}, and � and → are interpreted as the usual
two-valued negation and implication of CPL, respectively.

(iv) L is a sublogic of CPL in the sense that �L ⊆ �L ′ , that is, � �L ϕ implies
� �L ′ ϕ, for every set for formulas � ∪ {ϕ} ⊆ L().

Then, L is said to be an ideal �-paraconsistent logic if it is maximal w.r.t. CPL, and
every proper extension of L over  is not �-paraconsistent.

An implication connective satisfying the above condition (ii) is usually called
deductive implication.

Remark 6.5 As it has been argued in Remark 6.3, J3 is equivalent to 〈GV3∼, F1
2
〉

and therefore for every odd number n ≥ 3, J3 is an extension of any G≤
n∼ (recall Fig.

2.1). Similarly, J4 is equivalent to 〈GV4∼, F1
3
〉. Thus, J4 is an extension of G≤

n∼ for
every n ≥ 4.

23 The authors, as it was mentioned in Sect. 6.1, have changed the terminology “ideal paraconsistent
logic” to “fully maximal and normal paraconsistent logic.” However, it should be noticed that being
normal, according to Avron et al. (2018, Definition 1.32), means that the logic L has, besides a
deductive implication, a conjunction and a disjunction satisfying the usual properties in terms of
consequence relations. Here we decide to keep the original definition of ideal paraconsistency. It is
worth noting that all the ideal (and saturated) logics considered in this paper and in Coniglio et al.
(2019) are normal in the sense of Avron et al. (2018).
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In Coniglio et al. (2019, Proposition 6.3), it is shown that J3 and J4 are ideal
∼-paraconsistent logics where the deductive implication in the signature of G∼ is
the term-defined implication x ⇒ y := ¬x ∨ y.24

As discussed in Sect. 6.1, requiring a paraconsistent logic to be maximal w.r.t.
CPL in order to be “ideal” (in the sense of being “optimal”) is a debatable issue
(see Wansing and Odintsov (2016)). On the other hand, the other requirements of
Definition 6.3 seem interesting, and a system enjoying such features could be con-
sidered as a remarkable paraconsistent logic. This motivates the following definition.

Definition 6.4 A logic L is saturated �-paraconsistent if it satisfies all the conditions
(i) to (iv) of the previous definition, and every proper extension of L over  is not
�-paraconsistent.25

Remark 6.6 In Ribeiro and Coniglio (2012, p. 273), it was introduced the notion
of maximality of a logic L w.r.t. an inference rule r . Namely, given a Tarskian and
structural propositional logic L over a signature , and given an inference rule r
over , L is r-maximal if r is not derivable in L , but any proper extension of L over
 derives r .26 Clearly, ideal and saturated paraconsistent logics are special cases of
r -maximal logics, where r is the explosion rule.27

Proposition 6.5 J3 × J4 := 〈GV3∼ × GV4∼, F1
2
× F1

3
〉 is saturated ∼-paraconsis-

tent, but not ideal ∼-paraconsistent.

Proof SinceGV3∼ and VG4∼ are subalgebras ofGV5∼, by the characterization of all
extensions of G≤

n∼ given in Sect. 6.4.1, 〈GV3∼ × GV4∼, F1
2
× F1

3
〉 is an extension of

G≤
5∼ satisfying conditions (i) to (iv) because every component is ∼-paraconsistent

and x ⇒ y := ¬x ∨ y is a term-defined deductive implication. We prove by con-
tradiction that J3 × J4 has no proper ∼-paraconsistent extensions. Assume there is
a proper ∼-paraconsistent extension L of J3 × J4. In this case, there is a matrix
〈A1 × · · · × Ak, Fi1 × · · · × Fik 〉 which is an extension of L such that each 〈Aj, Fi j 〉
is either J3, J4, 〈GV5∼, F1

2
〉 or 〈GV5∼, F1

4
〉. Since J3 is not comparable with J3 × J4

and J3 is a submatrix of 〈GV5, F1
2
〉 and also a submatrix of 〈GV5∼, F1

4
〉, there

is a component 〈Aj0, Fj0〉 = J4. Similarly, there should be a different component
〈Aj1, Fj1〉 �= J4, otherwise J4 would be an extension of J3 × J4. Finally, in the case
〈A1 × · · · × Ak, Fi1 × · · · × Fik 〉 has a component equal to J4 and another which

24 Observe that in Coniglio et al. (2019), ¬ denotes the Łukasiewicz negation, while the Gödel
negation for J3 and J4 is, respectively, denoted by ∼1

2 and ∼1
3.

25 Using the terminology of Avron et al. (2018), a saturated paraconsistent logic is a logic such that:
(i) it has an implication, (ii) it is F-contained in CPL, and (iii) it is strongly maximal.
26 This was denoted by L ∈ Triv⊥{r} in Ribeiro and Coniglio (2012), where Triv denotes the
trivial logic over the signature .
27 Indeed, bymeans of the notion of remainder set L⊥R of a logic L w.r.t. a set of rules R introduced
in Ribeiro and Coniglio (2012, Definition 7), several concepts relative to maximality proposed in
the literature can be easily represented, see Ribeiro and Coniglio (2012, p. 273).
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is different to J4, then J3 × J4 is a submatrix of 〈A1 × · · · × Ak, Fi1 × · · · × Fik 〉,
which contradicts the fact that L is a proper extension of J3 × J4.

Let ϕ be a theorem of J3 which is not a theorem of J4. Then, the matrix logic
J2 × J3 := 〈GV2∼ × GV3∼, F1 × F1

2
〉 is an extension of J3 × J4 different fromCPL

such that �J2×J3 ϕ. Thus, J3 × J4 is not maximal w.r.t. CPL. �

Theorem 6.1 Let n be an integer number such that n > 4 and let L be an extension
of G≤

n∼.

1. If n is an even number, the following are equivalent:

– L is saturated ∼-paraconsistent;
– L is ideal ∼-paraconsistent;
– L = J4.

2. If n is an odd number, the following are equivalent:

– L is saturated ∼-paraconsistent;
– L = J3, L = J4 or L = J3 × J4.

3. If n is an odd number, the following are equivalent:

– L is ideal ∼-paraconsistent;
– L = J3 or L = J4.

Proof 1. Assume that n is even. After Remark 6.5 and Proposition 6.5, we only
need to prove that if L is saturated ∼-paraconsistent then L = J4. Since n is even
then, as observed in Sect. 6.4.1, every extension L ′ of G≤

n∼ is induced by a family
of matrices of the form 〈A, F〉 = 〈GVn1∼ × · · · × GVnk∼, F i1

n1−1
× · · · × F ik

nk −1
〉

where each n j is also an even number. If L ′ is ∼-paraconsistent then there is a
member in that family, say 〈GVn1∼ × · · · × GVnk∼, F i1

n1−1
× · · · × F ik

nk −1
〉, such

that 2 < n j ≤ n and 0 <
i j

n j −1 ≤ 1
2 for every j such that 1 ≤ j ≤ k. Then, J4 is an

extension of every ∼-paraconsistent extension of G≤
n∼. In particular, J4 extends

L . Thus, L = J4, since L is maximal paraconsistent.
2. The right to left implication follows from Remark 6.5 and Proposition 6.5. To

prove the converse, let L be a saturated ∼-paraconsistent extension of G≤
n∼.

Since L is ∼-paraconsistent and it has no proper ∼-paraconsistent extension,
L is induced by a single ∼-paraconsistent matrix 〈A, F〉 such that 〈A, F〉 =
〈GVn1∼ × · · · × GVnk∼, F i1

n1−1
× · · · × F ik

nk −1
〉where2 < n j ≤ n and0 <

i j

n j −1 ≤
1
2 for every j such that 1 ≤ j ≤ k. If all n j ’s are even, as in previous item L = J4.
If all n j ’s are odd, then J3 is a ∼-paraconsistent extension of L , thus L = J3.
Assume n is odd and some n j ’s are even and some are odd, all of them bigger than
2. Then in that case J3 × J4 := 〈GV3∼ × GV4∼, F1

2
× F1

3
〉 is a ∼-paraconsistent

extension of L , thus L = J3 × J4.
3. Immediate after Proposition 6.5 and item 2.

�
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6.6 Saturated Paraconsistency and Finite-Valued
Łukasiewicz Logics

In Coniglio et al. (2019), we study maximality conditions for intermediate logics
between CPL and the degree-preserving finite-valued Łukasiewicz logics. In partic-
ular, we have characterized the ideal paraconsistent logics in this family. Since in the
last section we have introduced the weaker notion of saturated paraconsistency in
the setting of degree-preserving Gödel logics with involution, we deem interesting to
also explore this notion for the abovementioned setting of finite-valued Łukasiewicz
logics. This is done in this section, after briefly recalling some basic notions about
(degree-preserving) finite-valued Łukasiewicz logics.

The (n + 1)-valued Łukasiewicz logic can be semantically defined as the matrix
logic

Łn+1 = 〈ŁVn+1, {1}〉,

where ŁVn+1 = (ŁVn+1,¬,→) is the n + 1-elements MV-chain with ŁVn+1 ={
0, 1

n , . . . , n−1
n , 1

}
, and operations defined as follows: for every x, y ∈ ŁVn+1,

¬x = 1 − x (Łukasiewicz negation);
x → y = min{1, 1 − x + y} (Łukasiewicz implication).

In fact, Łn+1 is algebraizable and its generated quasivariety MVn+1 := Q(ŁVn+1) is
its equivalent algebraic semantics.

The (finitary) degree-preserving (n + 1)-valued Łukasiewicz logic, denoted Ł≤
n+1,

can be semantically defined the following way: For every finite set of formulas
� ∪ {ϕ}

� |=Ł≤
n+1

ϕ if for every evaluation e over ŁVn+1 and every a ∈ ŁVn+1,
if e(γ ) ≥ a for every γ ∈ �, then e(γ ) ≥ a.

Following Coniglio et al. (2019), we denote by Li
n the logic obtained by the matrix

〈ŁVn+1, F i
n
〉, where F i

n
is the order filter {x ∈ ŁVn+1 : x ≥ i/n}. Notice that with

this notation the n + 1-valued Łukasiewicz logic Łn+1 is also denoted by Ln
n .

As proved in Coniglio et al. (2019, Theorem 5.2), for every 1 ≤ i ≤ n, Li
n is

equivalent, as a deductive system, to Łn+1 (see Blok and Pigozzi (2001) and also
Blok and Pigozzi (1991)). Since algebraizability is preserved by equivalence, Li

n
is algebraizable and MVn+1 is also its equivalent algebraic semantics. Thus, the
lattice of finitary extensions of Li

n is isomorphic to the lattice of sub-quasivarieties
of MVn+1 = Q(ŁVn+1).

MVn+1 is a locally finite variety and, as proved in Gispert and Torrens (2014),
every sub-quasivariety is also locally finite and it is generated by a finite family
of critical28 MV-algebras. Using the correspondence among sub-quasivarieties of
MVn+1 and finitary extensions of Li

n , in Coniglio et al. (2019) we obtain that every

28 An algebra is said to be critical if it is a finite algebra not belonging to the quasivariety generated
by all its proper subalgebras.



6 Degree-Preserving Gödel Logics with an Involution: … 133

extension L of Li
n is induced by a finite family of matrices of type 〈A, F〉 where A is

a critical MVn+1-algebra and F is a lattice filter of A compatible with L . To be more
precise, in Gispert and Torrens (2014); Coniglio et al. (2019), it is proved that A is
isomorphic to a direct product of MVn+1-chains ŁVn0+1 × · · · × ŁVnl−1+1, where

1. For every j < l, n j |n.
2. For every j, k < l, k �= j implies nk �= n j .
3. If there exists n j , j < l such that nk |n j for some k �= j , then n j is unique.

And F = (F i
n
)l ∩ (ŁVn0+1 × · · · × ŁVnl−1+1).

Thus, in analogy to Coniglio et al. (2016, Theorem 3), every extension of Li
n is

induced by a finite family of matrices where each matrix is a product of submatrices
of 〈ŁVn+1, F i

n
〉.

As observed in Proposition 6.2, ŁV3 is termwise equivalent to GV3∼ and ŁV4 is
termwise equivalent toGV4∼, where the involutive negation∼ inGV3∼ andGV4∼ is,
in fact, the MV-negation¬. Then, as indicated in Remark 6.5, the matrix logics J3 =
〈ŁV3, F1

2
〉 and J4 = 〈ŁV4, F1

3
〉, expressed in the signature of Łukasiewicz logic, are

ideal ¬-paraconsistent. We recall here that this can be generalized in the following
way.

Proposition 6.6 (Coniglio et al. 2019, Proposition 6.2) Let q be a prime num-
ber, and let 1 ≤ i < q such that i/q ≤ 1/2. Then, Li

q is a (q + 1)-valued ideal
¬-paraconsistent logic.

In fact, we can also prove that the converse implication also holds under some
circumstances. This result is not present in Coniglio et al. (2019).

Theorem 6.2 Let 0 < i < n such that i
n ≤ 1

2 . If L is an extension of Li
n , then L is

ideal ¬-paraconsistent iff L = L j
q for some prime number q such that q|n and some

1 ≤ j such that j/q ≤ 1/2

Proof Let L be an ideal ¬-paraconsistent extension of Li
n . Since L is maximal, it

is induced by a single matrix 〈A, F〉, where A is critical and F is compatible with
L . In fact, as mentioned above, 〈A, F〉 is of type 〈ŁVn1+1 × · · · × ŁVnk+1, (F i

n
)k ∩

(ŁVn1+1 × · · · × ŁVnk+1)〉 where
1. For every 1 ≤ i ≤ k, ni |n.
2. For every 1 ≤ i, j ≤ k, i �= j implies ni �= n j .
3. If there exists n j , 1 ≤ j ≤ k such that ni |n j for some 1 ≤ i �= j , then n j is unique.

Since L is ¬-paraconsistent, none of the components ŁVni +1 can be ŁV2 (otherwise
L would be explosive), and hence 1 < ni for all 1 ≤ i ≤ k. If k > 1, then

• If there is n j , with 1 ≤ j ≤ k, such that ni |n j for some 1 ≤ i �= j , thenwithout loss
of generality assume that j = k. In that case, 〈ŁVn1+1 × · · · × ŁVnk−1+1, (F i

n
)k−1 ∩

(ŁVn1+1 × · · · × ŁVnk−1+1)〉 is a¬-paraconsistent extension of L which contradicts
the assumption of L being ideal ¬-paraconsistent.
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• If there is no n j , with 1 ≤ j ≤ k, such that ni |n j for some 1 ≤ i �= j , then nk �= n
and L is not maximal because 〈ŁV2 × ŁVnk+1, (F i

n
)2 ∩ (ŁV2 × ŁVnk+1)〉 is an

extension of L different from CPL and there is a formula ϕ valid in 〈ŁV2 ×
ŁVnk+1, (F i

n
)2 ∩ (ŁV2 × ŁVnk+1)〉 and not valid in L . A contradiction again.

Thus k = 1. In that case, n should be prime because otherwise for any prime number
p such that p|n, 〈ŁVp+1, F i

n
∩ ŁVp+1〉 would be an extension of L different from

CPL and there is a formula ϕ valid in 〈ŁVp+1, F i
n
∩ ŁVp+1〉 and not valid in L . �

As regard to saturated paraconsistency, we have the following results:

Theorem 6.3 Let 0 < i < n such that i
n ≤ 1

2 . Let

X = {
p : p prime, p|n, F i

n
∩ ŁVp+1 = {m

p
: m ≥ k

}
and

k

p
≤ 1

2

}
.

For every finite subset {p1, . . . , p j } ⊆ X, the logic defined by the matrix

〈ŁVp1+1 × · · · × ŁVp j +1, (F i
n
) j ∩ (ŁVp1+1 × · · · × ŁVp j +1)〉

is saturated ¬-paraconsistent.

Proof By the previous result,〈ŁVp1+1 × · · · × ŁVp j +1, (F i
n
) j ∩ (ŁVp1+1 × · · · ×

ŁVp j +1)〉 is an extension of Li
n . Moreover, it is¬-paraconsistent, because every com-

ponent is ¬-paraconsistent. Let ⇒i
n defined as ϕ ⇒i

n ψ :=∼i
n ϕ ∨ ψ where ∼i

n(x)

is the single variable McNaughton term such that for every a ∈ ŁVn+1,

∼i
n(a) =

{
0, if a ≥ i

n
1, otherwise.

Similar to the proof of Coniglio et al. (2019, Proposition 6.2), the logic 〈ŁVp1+1 ×
· · · × ŁVp j +1, (F i

n
) j ∩ (ŁVp1+1 × · · · × ŁVp j +1)〉 satisfies conditions (i) to (iv) in

Definition 6.3, the definition of ideal �-paraconsistency. Let L be a ¬-paraconsistent
extension of 〈ŁVp1+1 × · · · × ŁVp j +1, (F i

n
) j ∩ (ŁVp1+1 × · · · × ŁVp j +1)〉, then L

is induced by a finite family of matrices 〈A, F〉, where A is critical and F is
compatible with L . Since L is ¬-paraconsistent, there is at least one matrix
〈ŁVn0+1 × · · · × ŁVnl−1+1, (F i

n
)l ∩ (ŁVn0+1 × · · · × ŁVnl−1+1)〉 where

1. for every m < l, nm |n;
2. for every m, k < l, k �= m implies nk �= nm ;
3. if there exists nm with m < l such that nm |nk for some k �= m, then nk is unique;

which is ¬-paraconsistent. Thus, for every m < l, it is the case that 2 ≤ nm . Since
〈ŁVn0+1 × · · · × ŁVnl−1+1, (F i

n
)l ∩ (ŁVn0+1 × · · · × ŁVnl−1+1)〉 is an extension of

〈ŁVp1+1 × · · · × ŁVp j +1, (F i
n
) j ∩ (ŁVp1+1 × · · · × ŁVp j +1)〉, then 〈ŁVn0+1 × · · · ×

ŁVnl−1+1, (F i
n
)l ∩ (ŁVn0+1 × · · · × ŁVnl−1+1)〉 is a submatrix of 〈ŁVp1+1 × · · · ×
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ŁVp j +1, (F i
n
) j ∩ (ŁVp1+1 × · · · × ŁVp j +1)〉. Therefore, by Coniglio et al. (2019,

Lemma 5.6), for every m < l there is a 0 < k ≤ j such that nm |pk , since 2 ≤ nm and
pk is prime, then nm = pk . Moreover, for every 0 < k ≤ j , there is m < l such
that nm |pk . Thus, ŁVp1+1 × · · · × ŁVp j +1

∼= ŁVn0+1 × · · · × ŁVnl−1+1 and L =
〈ŁVp1+1 × · · · × ŁVp j +1, (F i

n
) j ∩ (ŁVp1+1 × · · · × ŁVp j +1)〉, proving that any

proper extension of 〈ŁVp1+1 × · · · × ŁVp j +1, (F i
n
) j ∩ (ŁVp1+1 × · · · × ŁVp j +1)〉 is

not ¬-paraconsistent. �

Remark 6.7 One may wonder whether the saturated ¬-paraconsistent logics iden-
tified in the above theorem are, in fact, ideal paraconsistent. However, it is easy to
see that this is not the case unless they are of the type described in Theorem 6.2.
Indeed, this is a consequence of the fact that the logics considered in Theorem 6.3
(and in Corollary 6.2) are extensions of logics of the type Li

n , and in Theorem 6.2 we
have exactly characterized which of these extensions are ideal paraconsistent.

Corollary 6.2 Let {p1, . . . , p j } be any finite set of prime numbers, then 〈ŁVp1+1 ×
· · · × ŁVp j +1, F 1

p1
× · · · × F 1

p j
〉 is saturated ¬-paraconsistent.

Contrary to the case of G≤
n∼ in Theorem 6.1, not every saturated ¬-paracon-

sistent extension of Li
n is of the type of the above corollary. For instance, L7

15 is
saturated ¬-paraconsistent. Indeed, it is a ¬-paraconsistent logic where ⇒7

15 is a
deductive implication and L1

1 = CPL is a submatrix logic of L7
15. Moreover, every

proper extension L of L7
15 is induced by a family of proper submatrices of L7

15, of type〈ŁVn0+1 × · · · × ŁVnl−1+1, (F 7
15

)l ∩ (ŁVn0+1 × · · · × ŁVnl−1+1)〉where at least there
is some j < l such that n j |15 and n j �= 15. Hence, n j is either 1, 3, or 5, in which
case the j-th component 〈ŁVn j +1, F 7

15
∩ ŁVn j +1〉 is not ¬-paraconsistent. Thus, L

is not ¬-paraconsistent and, therefore, L7
15 is saturated ¬-paraconsistent.

6.7 A Final Remark: Relationship to Logics of Formal
Inconsistency

To conclude this section, we provide an additional analysis—from the point of view
of paraconsistency—of the logics discussed in this paper. Recall from Sect. 6.1 the
class of paraconsistent logics known as logics of formal inconsistency (LFIs). It is
easy to see that all the paraconsistent logics considered in the present paper are, in
fact, LFIs.

Indeed, in Ertola et al. (2015), it is shown that, if L∼ is the expansion of a core
fuzzy logic L with an involutive negation ∼ where � is definable in L∼,29 then L≤∼
is an LFI w.r.t. ∼, and the consistency operator is given by ◦ϕ = �(¬ϕ ∨ ϕ). This
shows the following.

29 This is the case of any pseudo-complemented logic L where � is definable as �ϕ := ¬∼ϕ, in
particular, the case of Gödel fuzzy logic G.
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Proposition 6.7 All the paraconsistent logics based on Gödel fuzzy logic with invo-
lution G∼ and its finite-valued extensions Gn∼ considered in this paper are LFIs
w.r.t. ∼.

As for the paraconsistent logics based on finite-valued Łukasiewicz logics ana-
lyzed in this section, they are also LFIs, as the following result states.

Proposition 6.8 Let L be one of the matrix logics in Proposition 6.6, or one of the
products of matrix logics in Theorem 6.3. Then, L is an LFI w.r.t. ¬.

Proof Concerning the logics of Proposition 6.6, by Coniglio et al. (2019, Proposi-
tion 6.3) we know that each logic Li

n for i/n ≤ 1/2 is an LFI w.r.t. ¬, where the
consistency operator is given by ◦i

nα := ∼i
n(α ∧ ¬α). Here,∼i

n is the unary connec-
tive defined as in the proof of Theorem 6.3. Now, let

L = 〈ŁVp1+1 × · · · × ŁVp j +1, (F i
n
) j ∩ (ŁVp1+1 × · · · × ŁVp j +1)〉

be one of the logics in Theorem 6.3 given by a product of matrix logics, for some
{p1, . . . , p j } ⊆ X . By definition of X , for every 1 ≤ s ≤ j there exists 1 ≤ ks <

ps such that ks/ps ≤ 1/2 and 〈ŁVps+1, F i
n
∩ ŁVps+1〉 = Lks

ps
. This means that L =

Lk1
p1 × · · · × Lk j

p j . Using again Coniglio et al. (2019, Proposition 6.3) it follows that
each Lks

ps
is an LFI w.r.t. ¬, with consistency operator ◦ks

ps
defined as above. It is

immediate to see that∼i
n restricted to ŁVps+1 coincides with∼ks

ps
, and so ◦i

n restricted
to ŁVps+1 coincides with ◦ks

ps
, for every 1 ≤ s ≤ j . Therefore, L is an LFI w.r.t. ¬,

with consistency operator given by ◦α := ◦i
nα.

Indeed, it is clear that ϕ,¬ϕ, ◦ϕ �L ψ for every formulas ϕ,ψ . Let q and r be two
different propositional variables, and let e be an evaluation over L such that e(q) = 1
and e(r) = 0. This ensures that q, ◦q �L r . On the other hand, any evaluation e′ over
L such that e′(q) = e′(r) = 0 guarantees that¬q, ◦q �L r . Hence, L is an LFI w.r.t.
¬ and ◦ (recall the definition of LFIs in Carnielli and Marcos (2000); Carnielli et al.
(2007); Carnielli and Coniglio (2016)). �

6.8 Conclusions

In this paper, the Gödel fuzzy logic G expanded with an involutive negation ∼,
denoted G∼, together with its finite-valued extensions Gn∼, was studied from the
point of view of paraconsistency. In order to do this, the respective degree-preserving
companions G≤∼ and G≤

n∼ were analyzed given that, in contrast to G∼ and Gn∼, these
logics are ∼-paraconsistent. Observe that G coincides with G≤, since G satisfies
the deduction-detachment theorem; hence, the addition of an involutive negation ∼
to G allows to develop such kind of study. The question of determining the lattice
of intermediate logics between G≤∼ and CPL, as well as the logics between G≤

n∼
and CPL, was addressed. After introducing the concept of saturated paraconsistent
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logic, which is weaker than the notion of ideal paraconsistency, it was shown that
there are only three saturated paraconsistent logics between G≤

n∼ and CPL, two of
them (J3 and J4) being, in fact, ideal paraconsistent and the other (namely, J3 × J4)
being saturated but not ideal. Finally, the study of finite-valued Łukasiewicz logic we
started in Coniglio et al. (2019) has been taken up again, in order to find additional
interesting examples of saturated but not ideal paraconsistent logics.

As for future work, we aim at performing similar studies for other locally finite
fuzzy logics, in particular, for theNilpotentMinimum logic (NM) (Esteva et al. 2001)
that combines and shares many features of both Gödel and Łukasiewicz logics. It
is indeed logically equivalent to Gödel logic with involution when NM is expanded
with the Baaz-Monteiro operator �.
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Chapter 7
R-Mingle is Nice, and so is Arnon Avron

J. Michael Dunn

Abstract Arnon Avron has written: “Dunn-McCall logic RM is by far the best
understood and the most well-behaved in the family of logics developed by the
school of Anderson and Belnap.” I agree. There is the famous saying: “Do not let the
perfect become the enemy of the good.” I might say: “good enough.” In this spirit, I
will examine the logic R-Mingle, exploring how (in the terminology of Avron) it is
only a “semi-relevant logic” but still a paraconsistent logic. I shall discuss the history
of RM, and compare RM to Anderson and Belnap’s systemR of relevant implication
and to classical two-valued logic. There is a “consumer’s guide,” evaluating these
logics as “tools,” in the light of my recent work on “Humans as Rational Toolmaking
Animals.”

Keywords Arnon Avron · R-Mingle · RM · Relevant · Semi-relevant ·
Paraconsistent · Logics as tools · Consumer’s guide

7.1 Introduction

Arnon Avron was nice to write a nice paper “RM and its Nice Properties” (Avron
2016) as a nice chapter of the nice Springer Outstanding Contributions to Logic
volume about (nice) me. (OK, so I am moi.) In return—there was no collusion—I
have titled this chapter, “R-Mingle Has Nice Properties, and So Does Arnon Avron.”

I was trying to think when I first met Arnon Avron. I can’t be sure when that
was, but I know that we corresponded in the mid-1980s when he was working on his
Ph.D. dissertation The Semantics and Proof Theory of Relevance Logics and Nontriv-
ial Theories Containing Contradictions (1985). We have continued to correspond
since then, and also spent some time together on a number of different occasions
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(conferences, workshops, short visits to each other’s universities, etc.). It is always
enjoyable to talk to Arnon Avron about logic, and other things.

Arnon Avron has a long and strong connection to the logic R-Mingle (RM for
short), and to relevance logics (and paraconsistent logics) more generally. Since his
dissertation, I estimate that he has written over 100 articles and approximately 40 of
these are directly or indirectly on relevance logic, and at least 8 are about R-Mingle.
I do not know of a single researcher, including myself, who has done so much work
on RM. Storrs McCall and I may be the “parents” of RM, but then Arnon Avron is
one of its favorite uncles (Bob Meyer would certainly be another).

In the nice Abstract of his nice paper (Avron 2016), Arnon Avron says: “Dunn-
McCall logic RM is by far the best understood and the most well-behaved in the
family of logics developed by the school of Anderson and Belnap.” RM has a simple
axiomatization, simply add the “mingle” axiom A → (A → A) to the Anderson
and Belnap (1975) system R of relevant implication, but as we shall see there are
complications in this that need to be unraveled.

I surely do not disagree with Arnon Avron’s characterization of RM. Indeed I
shall argue here that RM deserves more respect than it has gotten. I shall base my
appraisal from the perspective of “logics as tools” as I discussed in Dunn (2018),
usingmy list of considerations for choosing tools listed there. There does not seem to
be the one perfect tool, and similarly I think that there is not one perfect logic. Some
logics have a desirable feature, say meeting the strong Variable Sharing criterion of
relevance of Anderson and Belnap, but they achieve this bymissing another desirable
feature, say decidability of their propositional fragment.

Arnon Avron and I are not the first to defend the “niceness” ofRM. Robert K.
Meyer, who first proved RM complete with respect to the class of Sugihara matrices,
says in one of his contributions to Anderson and Belnap (1975), p. 393:

I likeMingle, as the reader will discover, for two reasons. (There is a tension between them.)
First, its theory of deduction, due to Dunn and McCall both in motivation and formulation,
simplifies the Church theory, set out in sec. 3, in a reasonable way. Second, it is useful for
many of the things that R might be good for, while being much more easily visualized. On
the other hand, as noted in sec. 8, this involves the breakdown of the relevance principle,
undermining the raison d’ etre of the enterprise.

As I argue, sometimes one doesn’t need the whole relevance principle, and, on these occa-
sions, RM is good enough, when some relevance is desirable. Indeed, it has proved very
useful by illuminating in a context that is technically simple some of the relevance features
shared among RM, R, and E. Nevertheless, one must confess that the system happened by
accident; nobody thought that a mild modification of R would produce a system this strong.

What Meyer is referring to is that the simple addition of the seemingly relevant
implication A → (A → A) to the system R leads to irrelevant implications such
as (A ∧ � A) → (B ∨ � B). It turns out that these are limited, since, as Meyer
showed, the following holds:

Proposition 7.1 Weak Variable Sharing Property (WVSP): A → B is a theorem of
RM only if either (i) A and B share a sentential variable, or (ii) � A and B are
theorems of RM.
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This is to be contrasted with the stronger Variable Sharing Property of the Ander-
son and Belnap relevance logics R and E.

Proposition 7.2 Variable Sharing Property (VSP): A → B is a theorem of R (or E)
only if A and B share a sentential variable.

Meyer goes on to say after the passages quoted above:

Accordingly, it now seems to me that the two poles of motivation must be viewed as con-
flicting. Despite my affection for RM (I like its initials, especially), I agree in the end with
the principle authors; all things considered R is the superior system.

I shall be arguing below that RM might instead be the superior system when
all things are considered, and might especially be so in light of certain important
considerations. I shall be doing this after first reviewing some of the “relevant” (pun
intended) work on RM, including some of Arnon Avron’s nice results. The history
of RM is a bit scattered so I thought I would be doing a service by pulling some of
it together. I refer the reader who would like to learn more to Anderson and Belnap
(1975), Anderson et al. (1992), Dunn (1986) (and/or its updated version Dunn and
Restall (2002). In particular Anderson and Belnap (1975) includes contributions by
Robert Meyer and myself that are important to RM. Many technical details can be
found in these publications, including proofs of theorems of RM and related systems
that may only be sketched here.

7.2 Background. The Systems R of Relevant Implication
and E of Entailment

SinceRM is an extension of theAnderson–Belnap system R ofRelevant Implication,
wewill start there. For its implicational fragment R→, we take the rulemodus ponens
(A, A → B � B) and the following axiom schemes:

A → A Self-Implication, (7.1)

(A → B) → [(C → A) → (C → B)] Prefixing, (7.2)

[A → (A → B)] → (A → B) Contraction, (7.3)

[A → (B → C)] → [B → (A → C)] Permutation. (7.4)

This formulation is due to Church (1951), who called it “Theweak implication calcu-
lus.” Church formulated this before Anderson and Belnap even thought of relevance
logic, but it is equivalent to the implicational fragment of their system R of Relevant
Implication. He remarks that the axioms are the same as those of Hilbert’s positive
implicational calculus (the implicational fragment of the intuitionistic propositional
calculus ) except that (1) is replaced with

A → (B → A) Positive Paradox.
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There are a variety of alternative ways to axiomatize the system. Thus, (2) Pre-
fixing may be replaced by

(A → B) → [(B → C) → (A → C)] Suffixing.

Note that from either Suffixing or Prefixing the following rule is derivable:
A → B, B → C � A → C Transitivity.
(3) Contraction may be replaced by

[A → (B → C)] → [(A → B) → (A → C)] Self-Distribution,

and (4) Permutation may be replaced by

A → [(A → B) → B] Assertion.

These choices of implicational axioms are nicely compartmentalized in that one
choice does not affect another.

The implicational fragment E→ of the Anderson–Belnap system E of Entailment
combines necessity with relevant implication to get a strict, relevant implication. It
may also be axiomatized in a number of equivalent ways. Let us start with the first
axioms that were given above for R→ and simply replace Permutation with

[A → (
−→
B → C)] → [−→B → (A → C)] Restricted Permutation,

where the arrow on top of the B indicates it must be of the form B1 → B2. This is
in analogy to a standard axiom for the Lewis system S4 of strict implication (See
Hacking (1963)). Similarly, Assertion can be replaced with

−→
A → [(−→A → B) → B] Restricted Assertion.

As for negation, the implication–negation fragments of R and E, named R�→ and
E�→, may be obtained by adding to their axioms the following:

(A → � A) → � A Reductio, (7.5)

(A → � B) → (B → � A) Contraposition, (7.6)

�� A → A Classical Double Negation. (7.7)

The axioms of Reductio and Contraposition are intuitionistically acceptable nega-
tion principles, but of course Classical Double Negation is not. Its converse though
is intuitionistically acceptable and is proven as follows:

1. (� A →� A) → (A →�� A) Contraposition (� A/A, A /B)
2. � A →� A Instance of Identity
3. (A →�� A) 1, 2, modus ponens
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Using Classical Double Negation one can derive forms of reductio and contrapo-
sition that are intuitionistically unacceptable:

( � A → A) → A Classical Reductio,

( � A → � B) → (B → A) Classical Contraposition.

In the presence of both forms of Double Negation, all of the contraposition prin-
ciples are equivalent.

Next, we add the positive extensional connectives ∧ and ∨, in order to obtain
R and E, with the following axioms:

(A ∧ B) → A, (A ∧ B) → B Conjunction Elimination, (7.8)

[(A → B) ∧ (A → C)] → [A → (B ∧ C)] Conjunction Introduction, (7.9)

A → (A ∨ B), B → (A ∨ B) Disjunction Introduction, (7.10)

[(A → C) ∧ (B → C)] → [(A ∨ B) → C] Disjunction Elimination, (7.11)

[A ∧ (B ∨ C)] → [(A ∧ B) ∨ C] Distribution. (7.12)

plus the rule of Adjunction: A, B � A ∧ B.
Axioms (7.8)–(7.11) can readily be seen to be encoding the usual elimination and

introduction rules for conjunction and disjunction into axioms, giving ∧ and ∨ what
might be called “the lattice properties.”

Distribution (Axiom 12) is continually problematic. It causes inelegancies in the
natural deduction systems and is an obstacle to finding decision procedures.1

7.3 The Creation of R-Mingle

We must begin with a quick explanation of “multi-sets” versus sets, and their use in
understanding the premises� in a deduction� � A. Consider the seemingly obvious
deduction A � A. This seems to clearly state that the sentence A is a consequence
of itself. But how many occurrences of itself? How does it compare to A, A � A?
Normally, this would not seem tomake a difference, because� is often taken as a set.
This is in effect what is said by the usual structural rules: Permutation, Contraction,
and Expansion—a special case of Weakening where an already existing premise is
duplicated:

�, A � B (Expansion).

1 Dunn (1986) contains a natural amendment to the Anderson and Belnap natural deductions system
allowing subproofs to have finite sequences of formulas as their lines. These are interpreted as
extensional conjunctions of formulas. This is in sympathy with the amendments to Gentzen-
systems made independently in Mints (1976) and Dunn (1973), where commas are replaced by
two different kinds of punctuation (commas and semicolons in Dunn 1973), one interpreted as
ordinary extensional conjunction and the other interpreted as “intensional conjunction” (often called
“fusion”).
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�, A, A � B
But what if we don’t have all of these? So-called “Substructural Logics” are based

on the idea that one might not have all of these structural rules. Relevance logics
indeed lack Thinning, but do all of them have the special case Expansion? Well, it
is clear that LR→ does not, for otherwise, we would have a proof of Mingle:

A � A Identity
A, A � A Expansion

A � A → A (�→)
� A → (A → A) (�→)

I hope I have said enough that the reader can make sense of what Arnon Avron
says in his nice paper (Avron 2016, p. 16):

It somewhat looks strange to take relevant entailment as a relation between multi-sets of
formulas and formulas, rather than between sets of formulas and formulas (as consequence
relations are usually and most naturally taken to be). This observation motivated J. M. Dunn
and S. McCall in investigating the results of adding to R and its fragments the mingle axiom
ϕ → (ϕ → ϕ) considered above. In the case of R→, this addition yields RM0→, which is
the minimal system in which the above criterion for relevant entailment is met, with the latter
taken as a relation between sets of formulas and formulas. In the case of the full system R,
it yields a very interesting system called RM (“R-mingle”).

I actually appreciate Arnon Avron’s description of how RM came to be invented,
and it resonates with me. There is just one small problem with it, namely, it is not
true. The system RM has achieved enough fame that I think it would be useful to give
a short history of how it came to be studied. Themain point is that it was accidentally
discovered/created like the Microwave Oven, the Post-It Note, Penicillin, etc.

It is often called, as Arnon Avron does, the “Dunn-McCall system R-Mingle.”
That is true enough. I took StorrsMcCall’s logic seminar inmyfirst year as a graduate
student at the University of Pittsburgh and I was in writing a paper for this course
where I was trying to show that the implicational fragment E→ of E was equivalent
to the intersections of that of R→ and that of some other logic. Saul Kripke had
already communicated to Nuel Belnap that the other logic was not S4. This was
a natural choice given that the natural deduction system for the system E→ is the
result of combining the restrictions on the rule of →-introduction of R→ with those
of S4. This encouraged the thought that the system E could be regarded as “the best
of both,” combining in its implication both the relevant implication of R with the
strict implication of S4.

The counterexample thatKripke providedwas A → [(A → (A → B)) → (A →
B)]. Belnap went on to show that the system S3 does not work either, giving the
counterexample [((A → B) → B) → A] → (A → A).

My description above relies heavily on Anderson and Belnap (1975), p. 94, where
you can find more details. There they also state the following:

PROBLEM. There is along these lines one unsettled conjecture, raised by Storrs McCall: is
E→ the intersection of R→ with the system obtained by adding “restricted mingle” (A →
B) → [(A → B) → (A → B)] ... to E→?
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There clearly is a system such as Anderson and Belnap describe, and they (and
others) often call it “E-Mingle,” or “EM.” However, I recall that the system that
McCall actually suggested to me was to add to E the unrestricted Mingle axiom
A → (A → A) (cf.McCall 1963), and out of respect for Storrs I shall call this system

E-Mingle, or EM. I will call the system E plus Restricted Mingle E-
−→
Mingle, or

E
−→
M. I will not bother to make a similar distinction between RM and R

−→
M , because

they are equivalent.2 Indeed, I will continue to use RM because of its currency in the
literature. Storrs toldme about the non-strict “mingle rule” of Onishi andMatsumoto
and suggested that I add this to E. This ultimately led to my exploring the system
obtained by adding this rule to the relevance logic R and ultimately to my paper
(Dunn 1970) showing that every normal extension of the resulting logic “R-Mingle”
has a finite characteristic matrix.3

So R-Mingle came to be, for me anyway, as a non-modal relative of E-Mingle,
whose implicational fragment EM→ is a possible solution to the equation R→
∩ X =E→. Curiously, I ended up not pursuing that question in my term paper
but instead focused on proving Cut Elimination for the Gentzen system that is the
result of adding the mingle rule to the Gentzen system for E→ So 57 years or so after
I wrote the paper for Storrs McCall’s class in 1963, I publish now a description of
that paper, and also say some more things about “mingle.” I am sorry to say though
that after all these years the problem about whether E is the intersection of R and
E-Mingle still remains open.

7.4 Ohnishi and Matsumoto’s System S of “Strict
Implication”

I begin by summarizing (Ohnishi andMatsumoto1962).AsThomas (1970) points out
in his review, “The system is designed to avoid paradoxes of irrelevance in the sense
of Anderson–Belnap.” I find this ironic sinceOhnishi andMatsumoto title their paper
“A System for Strict Implication.” and yet the Lewis and Langford modal systems of
strict (necessary) implication have been a nemesis of Anderson and Belnap’s system
E of entailment. Despite the name, Ohnishi and Matsumoto were seeking a system
that avoided various paradoxes of relevance as well as paradoxes of necessity. This is
very much in the spirit of the system E. They list some of these in their first sentence.
Using the standard notation from Anderson and Belnap, these include:

A → (B → B), A → (B∨ � B), (A∧ � A) → B,A → (B → A).

2 Thus, clearly, (A → B) → [(A → B) → (A → B)] is a special case of A → (A → A). For the
other direction, note that it is straightforward to prove in R→, and hence in RM→, A ↔ [(A →
A) → A]. Thus, if we replace B with (A → A) → A, it is easy to get the unrestrictedmingle axiom
from the restricted Mingle axiom.
3 Thus, it is “pretabular” to use the term (Scroggs 1951) used when he showed the modal logic S5
to have this property. Often it has since been known as the “Scroggs Property.”
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Ohnishi and Matsumoto formulate their system S in a way based on Gentzen’s
sequent formulation ofLK.4 A sequent is a triple � � �, where � and � are finite
sequences of formulas. The axioms are just all formulas of the form A � A.

There are Gentzen’s “structural rules”: Exchange (we will call it Permutation)
that allows adjacent formulas in the sequences to be permuted, Contraction that
allows one of two adjacent duplicate formulas to be removed, and Weakening that
allows additional formulas to be added. There are also natural “operational rules”
for the connectives of negation �, conjunction ∧, and disjunction ∨. We also have
the following rules for strict implication:

� � �, A B,� � � (→ �)
A → B, �,� � �,�

A,
−→
� � B (�→)−→

� � A → B.

Finally, there is of course the namesake rule:
� � � � � � (Mingle)

�,� � �,�

The first rule (→ �) is the same as the corresponding rule for LK. The last of
these, Mingle, might seem curious since one could obtain the conclusion from either
premise alone by repeated Weakenings on both sides, together with some Permuta-
tions. However, there are two restrictions on the rule (�→): (i)

−→
� is either empty

or consists only of formulas of the form A → B; (ii) the use of the rule Weakening
(sometimes called Thinning) may not occur in the proof above the premise.5 (i) is
perfectly natural for a Gentzen system for strict (necessary) implication. But the way
the systemS handles (ii) is what gives Mingle its power. The way that the standard
Gentzen systems for substructural logics handle restrictions on the structural rules is
to just drop them, or maybe uniformly modify them. Ohnishi and Matsumoto do not
just drop Weakening; they rather limit its use in proving implications on the right.

4 Weuse� in place ofGentzen’s→becauseweuse→ as the connective thatOhnishi andMatsumoto
denote using the Lewis “fishhook.”
5 Ohnishi and Matsumoto seem to state one exception to (2) in their footnote 4, which may not be
immediately clear. “The rules of mingle which are of weakened form of weakening may appear.”
All this means is that special cases of the rule Mingle which might be taken as weakenings are still
allowed since they are licensed by the rule Mingle. Consider:

A � A A � A (Mingle).
A, A � A, A
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This allows curious proofs such as
A � A Identity

� A, A � (��)
A, A∧ � A � (∧ �)

A∧ � A, A∧ � A � Permutation, (∧ �)
A∧ � A � Contraction
A∧ � A � B Weakening

Note that we are just one step away from writing
� (A∧ � A) → B),

but we are prevented from doing so because of the use of Weakening.
Let’s mention one more rule, Gentzen’s famous:

� � A,� �, A � � (Cut).
�,� � �,�

This rule is extremely important because it contains a special case:
� A A � B (“Modus ponens”).
� B

The quotes are there to indicate that this is not literally modus ponens because it
has� between A and B instead of→,with� in front of A. But it is easy to show that
� A → B and A � B are interderivable. This is critical to showing that S contains
the classical propositional calculus TV.

But Cut could be an obstacle to decidability. To prove � B, let’s try to find a
formula A that entails B and is such that � A is provable.

Hmm, but to prove � A, let’s try to find an A′ such that A′ entails A and such that
� A′ is provable. Etc. Gentzen’s brilliant insight was to show that the Cut rule was
redundant—the so-called Cut Elimination Theorem—Gentzen called it “Hauptzatz,”
(Chief Proposition). All of the other rules have the Subformula Property, any formula
that appears in a premise also occurs in the conclusion (though perhaps embedded in
another formula). All of Ohnishi andMatsumoto’s rules have this property, including
their rule Mingle. This contains proof searches in a good way, though there are still
a few more needed tricks which we shall not get into here.

Ohnishi and Matsumoto state (correctly) that the implicational fragment E→ of
Anderson and Belnap’s system E of entailment is contained within S, but they do
not say anything about the whole system E itself. The restriction on Weakening
prevents the proof of the Distribution axiom, which could otherwise go like this:

A � A

A, B � A Weakening (with Permutation)

B � B

A, B � B
A, B � A ∧ B

A, B � (A ∧ B) ∨ C

C � C (� ∧) Identity

C � (A ∧ B) ∨ C (� ∨) twice
A, (B ∨ C) � ((A ∧ B) ∨ C) (∨ �)

(A ∧ (B ∨ C)), (A ∧ (B ∨ C)) � ((A ∧ B) ∨ C) (∧ �) twice
(A ∧ (B ∨ C)) � ((A ∧ B) ∨ C) Contraction

� (A ∧ (B ∨ C)) → ((A ∧ B) ∨ C) (�→) ???
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I have put the “???” is there to indicate that the restriction (ii) on (�→) has been
violated by the Weakenings in the second steps, and so the rule (�→) cannot apply.

I wonder how to give aHilbert-style axiomatization forS. The problem is theway
it is formulated, which is kind of a cross-over between classical logic and relevance
logic. The restrictions on the ( �→) seem to raise problems. I leave this as an open
problem.

Thomas (1970), in his review of Ohnishi and Matsumoto, says:

It is asserted, and easily checked, that the Anderson-Belnap E is contained here. It seems to
the reviewer that sinceLE, aGentzen-type version of E used byBelnap andWallace, contains
(i) but not (ii), the latter restriction must be superfluous, and the systems are equivalent.

The (i) and (ii) refer to the two restrictions on the rule (�→).
Thomas is wrong about the equivalence on two counts. First, he seems to overlook

the fact thatS has the rule Mingle, which easily leads to the proof of � (A → B) →
[(A → B) → (A → B)], which is not a theorem of E.

Second, he seems to overlook the subscript I on the Belnap and Wallace Gentzen
system LEI . While there are Gentzen systems for the implication (and even the
implication–negation) fragments of E and R, it has been notoriously difficult to give
a Gentzen system for the whole of E (and R), and in particular to prove Distribu-
tion. And as we saw above Distribution is not provable in S. The best attempts to
provide a Gentzen system for R are due independently to Mints (1976) and Dunn
(1973), and involve the idea of two different ways of combining sentences, the usual
“extensional conjunctive” way where the comma is interpreted on the left as exten-
sional conjunction, and a new “intensional conjunctive” way where a semi-colon is
added in addition to the comma and is interpreted as intensional conjunction (the
right-hand sides are singular, i.e., consist of a single sentence). This provides a
Gentzen system that is both sound and complete for the positive fragment of R, but
no one has succeeded in adding just the usual De Morgan negation.6 Belnap (1982)
“Display Logic” might be seen as doing this, but it does so at the price of having
classical (Boolean) negation as well.

Naively onemight have thought that the implicational fragment of RMwas simply
the result of adding A → (A → A) to the implicational fragment of R, R→. But it
turns out to be much more complicated than that.

One of my favorite sayings (attributed to Voltaire, and others) is “Do not let the
perfect become the enemy of the good.” If the purpose is to have an Anderson-
Belnap type relevance logic, then RM is far from perfect. It has the following “bad”
theorems:

Safety: (A∧ � A) → (B∨ � B)

Ex Falso Verum7: � A → (B → (A → B))

Weak Chain axiom: (A → B) ∨ (B → A).

6 Bimbó (2009) provides a corresponding result for the positive fragment of E . See Bimbó (2014)
for a a good exposition of this result and similar results for related systems.
7 This name “FromFalsity, Truth” ismy invention and is an obvious play onwords of thewell-known
Ex Falso Quodlibet, “From a Falsity Everything Follows.”
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None of these look like the sort of theorem that should result from adding the
Mingle axiom A → (A → A) to R, but Robert K. Meyer showed they did.

First, he showed: (*) A → (� A → A)

Proof:
1. � A → (� A → � A) Mingle axiom
2. � A → (A → A) 1, Contraposition and Double Negation.
3. A → (� A → A) 2, Permutation
And then Meyer proved Safety:
1. [(A∨ � A) ∧ (B∨ � B)] → {� [(A∨ � A) ∧ (B∨ � B)] →

[(A∨ � A) ∧ (B∨ � B)]} Substitution in (*) above
2. (A∨ � A) ∧ (B∨ � B) Excluded Middle and Adjunction
3. � [(A∨ � A) ∧ (B∨ � B)] → [(A∨ � A) ∧ (B∨ � B)] 1, 2 modus ponens
4. [(A∧ � A) ∨ (B∧ � B)] → [(A∨ � A) ∧ (B∨ � B)] 3, DeMorgan’s Laws
5. (A∧ � A) → (B∨ � B) 4, ∨-introduction and ∧-elimination
Any other two theorems A and B can be plugged in instead of the two excluded-

middles, and so we have generally
(**) If A and B are theorems then � A → B is a theorem.
This is interesting because although its proof involves conjunction/disjunction,

a special instance of it can involve only implication and negation. A particularly
interesting case of this is:

Implication/Negation Safety : � (A → A) → (B → B).
From this, we can prove Ex Falso Verum as follows:
1. � (B → B) → (A → A) Implication/Negation Safety
2. A → (� (B → B) → A) 1, Permutation
3. A → (� A → (B → B)) 2, Contraposition and Double Negation
4. � A → (A → (B → B)) 3, Permutation
5. � A → (B → (A → B)) 4, Permutation
We next prove the:
Strong Chain axiom: � (A → B) → (B → A).

1. � A → (B → (A → B) Ex Falso Verum.
2. � A → (� (A → B) → � B)

3. � (A → B) → (� A →� B)

4. � (A → B) → (B → A)

Given that (� C → D) → (C ∨ D) is a well-know theorem of R (and E), and
hence of RM, the Weak Chain axiom follows from the Strong Chain axiom. The
question then arises as to whether theorems such as Implication/Negation Safety, Ex
Falso Verum, and the Strong Chain axiom have proofs in the implication-negation
fragment of RM, but just what is this fragment? And for that matter, what is the
implicational fragment? We discuss these, and some other questions concerning
fragments, in the next section.
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7.5 Various Fragments of R-Mingle—What a Nightmare!

Actually, it begins as a pleasant dream and becomes a nightmare as the splendid
bubbles of that dream begin to burst. But in the end, it is only a nightmare until
we finally sort through the confusion of the dream and finally wake up. Then it is
pleasant again. I will do my best to explain.

We begin not with a pleasant bubble but rather a firm mattress foundation for
our sleep, the implicational fragment R→ of the logic of relevant implication R. As
we saw R→ can be very nicely axiomatized. It is pleasant then to think that the
implicational fragment RM→ of R-Mingle could be axiomatized by just adding the
Mingle axiom A → (A → A). In fact, it is easy to show that this resulting system
RM0 satisfies the Variable Sharing Property, as we shall show. But wait a minute!
What is the “0” doing there? Let’s not spoil the pleasant dreamyet. Let us go on to say
that we shall show that if the R axioms for extensional conjunction and disjunction
∧ and ∨ are added, together with the rule of Adjunction, the VSP still holds. Still
very pleasant. We get the system RM0+. But darn, there is that troubling “0” again.
Let’s go back and try adding negation to RM0→, to obtain the implication–negation
system RM0�→. Again this can straightforwardly be shown to satisfy VSP. So where
is the unhappy ending? Well of course it is when you put everything together into
one system, namely RM. This lacks the VSP (though it does have a Weak VSP).
Note well that we do not say RM0, though I guess we could. But we are talking
about the original RM, the system that results from adding the Mingle axiom to R.

The implicational system RM0→ can be axiomatized in several different (equiv-
alent) ways:

A → (A → A) Mingle (7.13)

(A → B) → [A → (A → B)]Expansion (7.14)

(A → C) → [(B → C) → (A → (B → C))] O-M Mingle (7.15)

The first axiom is the one I played with in my graduate term paper, the second
of these corresponds to the Gentzen structural rule Expansion that is the dual of
Contraction (and a special case of Weakening), and the third one corresponds to
Ohnishi and Matsumoto’s rule “Mingle.” This is why it as the label “O-MMingle.”

Meyer and Parks (1972) observes that the theorems of RM always take designated
values in the following matrix due to Sobociński.

→ 0 1 2 �
0 2 2 2 2
*1 0 1 2 1
*2 0 0 2 0

∧ 0 1 2
0 0 0 0
*1 0 1 1
*2 0 1 2

∨ 0 1 2
0 0 1 2
*1 1 1 2
*2 2 2 2

Notice that there is a natural way of seeing the elements of the matrix as being
ordered. Defining x ≤ y iff x → y is designated,” we obtain the following chain:
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A Sugihara matrix more generally is any chain with a 1-1 order inverting mapping
� of it onto itself. The designateds are those elements x such that � x ≤ x . The
negation operation is of course just�, and the other operations are defined as follows:

a ∧ b = min(a, b); a ∨ b = max(a, b); a → b =� a ∨ b if a ≤ b, and� a ∧ b
otherwise. An important example is the set of integers Z with the non-negative
integers designated. Also, there is a natural sequence of finite examples:

S1 = {+1,−1}, S1 + 0 = {+1, 0,−1}, S2 = {+2,+1,−1,−2}, · · · .
Sugihara matrices were introduced by Sugihara (1955) andMeyer (1968) showed

that RM is sound and complete with respect to the class of Sugihara matrices.
Parks’ matrix is isomorphic to the Sugihara matrix S1 + 0:
→ +1 0 −1 �
*+1 +1 −1 −1 −1
*0 +1 0 −1 0
−1 +1 +1 +1 +1

∧ +1 0 −1
*+1 +1 0 −1
*0 0 0 −1
−1 −1 −1 −1

∨ +1 0 −1
*+1 +1 +1 +1
*0 +1 0 0
−1 −1 0 −1

Anderson and Belnap (1962) use the four-valued Sugihara matrix S2 to show the
VSP for E→. They do not say so, but it works just as well for R→, and so does the
three-valued Sugihara matrix S1 + 0.

It is well known since Meyer (1968) that Sugihara matrices are sound for RM.
It is easy to check that the axioms of RM are always designated (the designated
values +1 and 0 are marked by *), and that modus ponens preserves designation.
So in particular, all the theorems of RM0 receive a designated value (either +1 or
0) for every assignment to their propositional variables. And for two sentences A
and B that do not share a propositional variable, we may assign all the propositional
variables in A the value +1 and all those in B the value 0. It is straightforward to
see that A must take the value +1 and that B must take the value 0, and since +1→0
= 0, then A → B is undesignated and so cannot be a theorem of RM→. So RM0→
satisfies the VSP.

Let us next add conjunction and disjunction to RM0→, to obtain the positive
system RM0+. It is easy to see that if all the variables in A are assigned +1, then
A receives the value +1, and if all the variables in B are assigned 0, then B receives
the value 0, so the same argument as just above shows that RM0+ satisfies the VSP.

Now what about adding negation to RM0→, say Reductio, Contraposition, and
Classical Double Negation? Because negation “flips and flops,” it is not so easy to
falsify A → B, even when A and B do not share a propositional variable. But as
Meyer and Parks (1972) showed, we can do so if we have a negation with two fixed
points (not just one as with the 0 in a Sugihara matrix). Here is Parks’ matrix from
Parks (1972) (note that � 1 = 1, and � 2 = 2).8

8 The reader with some knowledge of relevance logic might think that Parks’ matrix is built upon
the Belnap–Dunn four-valued logic (cf. Dunn 1976d), so that if one defines a ≤ b iff a → b is
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→ 0 1 2 3 �
0 3 3 3 3 3
*1 0 1 0 3 1
*2 0 0 3 2 2
*3 0 0 0 3 0
If A and B share no propositional variables, every variable in A can be assigned 1,

while every variable in B is assigned 2. It is easy to see then that A will then end up
with the value 1 while B will have the value 2. And since 1→2 = 0 (undesignated),
A → B will be undesignated and hence not a theorem of RM0�→.

So you can add negation to RM0→ and still retain VSP, and we already saw that
you can add conjunction/disjunction to RM0→ and still retain VSP. But what about
doing both? “The third time is a charm,” as the saying goes, but in this case, it is a
bad charm, not a good one. Adding both gives us the axioms for RM and we already
saw, or Meyer already saw, that this leads to Safety. We have only the weak VSP, not
the full one.

Theremust be theorems of RM in just implication that are not provable inRM0→,
and again there must be theorems of RM in just implication and negation that are
not provable in RM0�

→ .
Meyer and Parks (1972) showed that the following axiom when added to RM0→

gives the full implicational fragment of RM:

((((A → B) → B) → A) → C) → (((((B → A) → A) → B) → C) → C)

This is clearly related to the Chain Property.
Meyer and Parks (1972) observed that the axioms of Sobociński (1952) charac-

terize the implication-negation fragment of RM. It is easy to see that these axioms
can be taken to be the axioms for R�→ plus Ex Falso Verum.

S1 (A → B) → [(B → C) → (A → C)] Suffixing
S2 A → [(A → B) → B] Assertion
S3 [A → (A → B)] → (A → B) Contraction
S4 A → (B → (� B → A)) Variant of Ex Falso Verum
S5 (� A → � B) → (B → A) Classical Contraposition
S4 is a variant of Ex Falso Verum � A → (B → (A → B))—a little relettering

along with with Permutation and Double Negation will get you from one to the
other. It is an example of an implication-negation formula that is provable in RM�→
but not provable in RM0�→.

Note that A → A (Identity) ismissing as an axiom. That isOK ifwe can somehow
derive the Mingle axiom A → (A → A), since it follows then by Contraction.

Proof of Mingle axiom A → (A → A) from Ex Falso Verum:

1. � A → (� A → (A →� A)) Instance of Ex Falso Verum
2. � A → (A →� A) 2, Contraction

designated one gets the familiar diamond De Morgan lattice (3 at the top, 0 on the bottom, 1 and 2
each on a different side). But the Belnap–Dunn lattice has no operation for → (just a relation) and
more importantly only two of its elements are designated.
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3. A → (� A →� A)

4. (� A →� A) → (A → A) Classical Contraposition
5. A → (A → A) 3, 4 Transitivity

Parks’ observation has an amazing consequence, namely, that the Implication–
negation fragment of RM is characterized by the three-element Sugihara matrix
S1 + 0. So, all the extra work of the Sugihara matrix on the integers has to do with
conjunction/disjunction. An algebraic view on the fragments of RM is expounded in
Blok and Raftery (2004).

Let us now mention extensions of the system E with mingle-type axioms. Of
course one can simply add the mingle axiom above. As we said above we shall
simply call this EM. Adding any of the following to E gives the usual restricted

E-Mingle, which we have chosen to name as E-
−→
Mingle, or E

−→
M .

−→
A → (

−→
A → −→

A ) Restricted Mingle, (7.16)

(
−→
A → B) → [−→A → (

−→
A → B)] Restricted Expansion, (7.17)

(
−→
A → C) → [(−→B → C) → (

−→
A → (

−→
B → C))] Restricted O-M Mingle.

(7.18)

7.6 Some of Arnon Avron’s Contributions to the Study of
R-Mingle

Arnon Avron has made a number of substantial contributions to the study of RM and
we cannot begin to discuss all of them here. Perhaps principle among those we shall
neglect are “bilattices.” Dana Scott observed that the four-valued De Morgan lattice
DM4 is a lattice no matter whether its diagram is seen from top to bottom (the usual)
or side to side (unusual), and he communicated this to Nuel Belnap. This lattice plays
a fundamental role in the semantics of First-Degree Relevant Entailments (FDE).
Arnon Avron (with Ofer Arieli) has made fundamental contributions to extending
this observation, but we shall skip this to discuss some of his contributions more
relevant to our discussions in this chapter.

7.6.1 Arnon Avron and Hypersequents

As I have already stated, and as Arnon Avron clearly agrees, Distribution is a major
problem for axiomatizing relevance logic. Hypersequents were his solution to this
problem. Hypersequents were not his creation though. Hypersequents seem to
have been first introduced by Mints (1971) and Pottinger (1983). Put quickly a
hypersequent is a finite sequence of sequents. We will not go through any details
here but do want to mention that Avron (1987) contains a hypersequent formulation



156 J. M. Dunn

of RM that allows (as it must since it really gives RM) a proof of the Distribution
axiom. See Avron (1996) for further hypersequent systems.

7.6.2 Arnon Avron’s Characterization of Semi-relevant
Logics

As Arnon Avron points out, the system RM has been called a semi-relevant logic by
many authors. This is because it satisfies the Weak Variable Sharing Property even
though it fails to satisfy the Variable Sharing Property itself. Arnon Avron wants to
give a deeper definition of “semi-relevance.” Before he can do so with generality he
has to give some abstract definitions characterizing the notion of propositional logic.
These preliminary definitions are quite standard and I shall describe them somewhat
informally and refer the reader to Avron (2016) if there are any questions.

Arnon Avron starts with the notion of a propositional language L , which is just
a set of well-formed formulas (wffs) built up from a set of atomic formulas using
finitary connectives. He calls any set of wffs a theory.9 He next defines a Tarskian
consequence relation (tcr) T � ψ as a binary relation between a theory T and a single
formula ψ . A tcr � is structural just when it is closed under uniform substitution.
A tcr is non-trivial (or consistent) just when for any two distinct atomic formulas p
and q, p � q. A (propositional) logic L is then defined as a pair (L �) where L is a
propositional language and � is a structural and non-trivial tcr for L .

Definition 7.3 (Basic relevance criterion) A logic L = (L �) satisfies the basic
relevance criterion if for every two theories T1, T2 and formula ψ , we have that
T1 � ψ whenever

T1 ∪ T2 � ψ and T2 has no atomic formulas in common with T1 ∪ {ψ}.

Definition 7.4 (Minimal semantic relevance criterion) A logic L satisfies the min-
imal semantic relevance criterion if it does not have a finite weakly characteristic
matrix.

Definition 7.5 A logic L which satisfies both the basic relevance criterion and the
minimal semantic relevance criterion is called semi-relevant.

Arnon Avron shows that RM is a semi-relevant logic in this sense.

9 I find this terminology non-standard since typically the word “theory” is reserved for a set of wffs
closed under some given consequence relation. But this is Arnon Avron’s word and so it means
just what he says it means.
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7.6.3 Arnon Avron’s Characterization of Relevance Logics

Strictly speaking, this contribution is more about R and E than RM, but it helps
clarify in what ways RM is not a “relevance logic.” See also Avron (1992). Avron
(2014) gives two characterizations of a “relevance logic,” and also of a “strong
relevance logic.” The details are complicated and we shall not pursue them here.
Put quickly the relevance logic R of Anderson and Belnap is not a strong relevance
logic, but it is a relevance logic using Arnon Avron’s weaker criterion. Arnon Avron
seems to favor the stronger notion, but he realizes that the reason that R fails to
satisfy the stronger notion is Anderson and Belnap’s desire to add conjunction to
the implication–negation fragment R�→. Arnon Avron briefly flirts with the idea
that the stronger notion would be appropriate to a purely intensionalist approach to
relevance logic (no extensional connectives such as ∧ and ∨). I would suggest that
in that context the intensional logic RM0 might also be a good candidate for “the”
relevance logic.

7.7 A Consumer Report Style Checklist

Now let us consider a Consumer Report style checklist for you to use to judge the
desirability of various logics. We consider just three logics, the semi-relevance logic
RM, the relevance logic R, and the standard two-valued classical logic TV. There
are of course many other logics, and as a referee pointed out, just as there is no car
that is the best in every respect, there is no logic that is best for every use. We shall
be focusing on how these logics handle issues of relevance, as well as some other
basic properties, e.g., decidability.

Relevance Consumer Checklist RM R TV
1. Decidable

√
X

√
2. Low complexity

√
na

√
3. Simple, easy to interpret semantics

√
X

√
4. Constant domain semantics for quantifiers

√
X

√
5. Variable Sharing Property X

√
X

6. Relevant in sense of Avron X
√

X
7 Semi-relevant in sense of Avron

√ √
X

8. Paraconsistent
√ √

X
9. No finite characteristic matrix

√ √
X

10. No Chain Property X
√

X
I have to admit in honesty that this list has somewhat of a science fiction quality

to it. Logics are not yet being bought by the same number of customers as say cell
phones. But maybe someday they will be. The last property will be particularly
important to the consumer interested in safety and who does not want everything to
explode if there is the smallest conflict in the logic she is using to build her theory
T (cf. Priest 1998). Of course RM is barely paraconsistent. Because of its theorem
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Safety one small contradiction A∧ � A will lead to a lot of irrelevant consequences,
e.g., anything of the form B∨ � B, and more generally any theorem C of the theory
T . I have been trying to think of an analogy and the best I have been able to come up
with goes something like this. Suppose I am building an electrical circuit and I want
to protect against faults. Normally, a small fault will turn all the switches on. But
what if I somehow insert a clever circuit that allows a switch to be turned on only if
it is already on? Something like that.

Let’s now go through the Checklist row by row.
1. Decidability. Avron (2016) presents a number of “nice properties” of RM,

the first of which is decidability. Decidability was shown by Robert Meyer in an
unpublished manuscript in 1968 and finally published as a contribution to Anderson
and Belnap (1975). His proof was based on a completeness theorem he proved
for RM with respect to a class of matrices created by Sugihara. He showed that a
formula A containing n propositional variables is a theorem of RM iff A is valid in
the Sugihara matrix Sn (or equivalently Sn + 0).

2. Complexity. This is to be contrasted strongly with Urquhart’s stunning result
that RM’s older cousin R is undecidable (see Urquhart 1984). So of course RM
has lower complexity in the sense that it has a finite complexity, whereas R can
be said to be of “infinite complexity.” But in fact, its complexity is not just finite
but very, very low. Recently, Urquhart, the master of complexity, has provided me
with a proof that the complexity of the decidability of RM is co-NP-Complete, and
with his permission and encouragement, I include a sketch of his proof here. We
shall prove that the family of unprovable formulas of RM is NP-complete, from
which the result showing that RM has essentially the same complexity as classical
propositional calculus.

Formulate classical propositional logic with ¬, ∧, and ∨. A sequent has the
form � � �, where � and � are finite sets of classical propositional formulas. If
the sequent contains no negation signs, then we say that it is monotone. A sequent
� � � is valid if for any Boolean assignment to the variables in it, provided all of the
formulas in � are true, then at least one formula in � is true. The family of invalid
sequents is NP-complete.

Lemma 7.6 The family of invalid monotone sequents is NP-complete.

Proof Given a classical Boolean sequent � � �, we show how to construct a mono-
tone sequent from it that is valid if and only the classical sequent is valid.

First, by using the DeMorgan laws, convert the sequent � � � to the form where
negations apply only to variables. If {p1, . . . , pk} are the variables in the sequent,
let {q1, . . . , qk} be a fresh set of k variables. Second, let �∗ and �∗ be the result of
replacing all literals¬pi by qi in � and�. Let (� � �)m be the following monotone
sequent:

{pi ∨ qi : 1 ≤ i ≤ k}, �∗ � �∗, {pi ∧ qi : 1 ≤ i ≤ k}.

If � � � is invalid under the assignment ϕ, then (� � �)m is also invalid, extending
the assignment ϕ so that qi has the opposite value to pi . Conversely, if (� � �)m is
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invalid, then� � � is also invalid, because any assignment invalidating themonotone
sequent (� � �)m gives the variables qi the same value as that of ¬pi . �

Theorem 7.7 The family of unprovable formulas of RM is NP-complete.

Proof If a formula with n variables is unprovable in RM, then it can be refuted
in the finite Sugihara matrix Sn . This matrix is clearly constructible in polynomial
time, given n. Hence, we can define a nondeterministic procedure as follows: Given
a formula with n variables, first construct the matrix Sn , then guess an assignment to
the variables in the formula that invalidates it. This procedure succeeds if the formula
is unprovable in RM, showing that the unprovable formulas of RM are in NP.

Conversely, the monotone sequent calculus can be embedded in RM, using the
translation

� � � =⇒ (∧� → ∨�).

The implication is provable in RM if and only if the monotone sequent is valid.
Hence, the NP-completeness claim follows by Lemma 7.6.

3. Simple, easy-to-understand semantics. The algebraic semantics given by the
Sugihara matrix is easy to grasp. But better yet, from a philosophical and intuitive
point of view is the “Kripke-style semantics” in Dunn (1976a). This is a modi-
fication of Kripke (1965) semantics for intuitionistic logic (which semantics was
independently discovered by Grzegorczyk 1964).

The basic idea of this semantics is to have “evidential situations” in place of
the “possible worlds” in Kripke’s semantics for modal logic and to understand the
binary relation not as “relative possibility” but something like one evidential situation
is included in another. It is required that if an atomic sentence is true in an evidential
situation that is included in a second, then that sentence stays true in the second. This
“hereditary condition” can be proven by induction to hold for compound sentences as
well. The basic modification that I made was to allow a sentence to be both true and
false (but not neither) and to require falsity preservation as well as truth preservation.
Dunn (2000) presents a comprehensive overview of some variations on these ideas.
This is much easier to understand that the Routley–Meyer semantics which uses a
ternary accessibility relation.

One negative of the semantics for RM, as we will see below, is that it satisfied
the Chain axiom. This reflects that its Sugihara matrices are all chains, and also
that in its Kripke semantics the accessibility relation is a chain. It was shown in
Dunn (1976c) that one can give a Kripke-style semantics for E

−→
M by dropping both

requirement that the accessibility relation be a chain and the Hereditary Condition.
4. Constant domain semantics. The binary accessibility relation is not the only

thing that makes for a simple semantics. When we add first-order quantifiers to R
and RM to obtain their first-order versions RQ and RMQ the question arises as
to how to treat their domains. A real deficit of R (shared by E), at least in my
opinion, is the lack of a constant domain semantics for the system RQ. Routley and
Meyer had proposed an extension of the semantics for R with a constant domain of
individuals (the same domain for each of their “setups”—a term they use in place
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of Kripke’s “possible worlds,” since they can be incomplete and/or inconsistent).
This is not unlike the constant domain semantics in various Kripke-style semantics
for modal logic (Kripke 1963). But unfortunately, Fine (1989) showed that this
semantics is incomplete. Fine (1988) came up with an ingenious complete semantics
that involved expanding domains of “arbitrary objects.” but of course this was not a
constant-domain semantics. For Fine, each setup has its own domain, which can be
expanded in an arbitrary way.
This gets complicated and we refer to Fine (1988) for details.

Mares and Goldblatt (2006) have come up with a completeness result with a
different semantics. I have talked to at least one person who views it as a kind
of constant-domain semantics, but I do not believe that Mares and Goldblatt (2006)
refers to it that way.While their semantics is certainly interesting, it is to mymind not
a “constant domain” semantics. It is true that it might give that appearance since for
Mares and Goldblatt a model adds just one domain I to a Routley–Meyer frame for a
relevant proposition logic, say R. But their frames also have a set of propositions and
propositional functions, where a prop is a set of setups satisfying certain conditions,
and a propositional function is a function (satisfying other conditions of course) from
the denumerable sequences of individuals in I that takes propositions as its values.
It gets complicated. The reason I do not see their semantics as “constant domain”
is that they use the propositions to in effect restrict the domain. In their own words
(note they use the word “world” in place of “set-up” but they mean the same):

A proposition is a set of worlds. As we shall see soon, not every set of worlds is a proposition.
A proposition X entails a proposition Y if X is a subset of Y and a proposition X obtains at
a world a if a is in X . Thus, our truth condition says that ∀x A is true at a if and only if there
is some proposition X that is a subset of any proposition expressed by A on any assignment
of x and a ∈ X . Mares and Goldblatt (2006, p. 164).

However, Mares and Goldblatt’s semantics is construed, Dunn (1976b) produced
a constant domain semantics for RM based on his Kripke-style relational semantics,
which is very analogous to constant domain semantics for quantified modal logics.
∀x A is true at a iff A is true at all b in the domain. And ∀x A is false at a iff A is
false at some b in the domain. Remember, we allow a sentence to be both true and
false (but not neither). This is directly in parallel with the treatment of conjunction,
wherein a conjunction is true iff both conjuncts are true, and false if at least once
conjunct is false.

The next three (5, 6, 7) all have to do with various degrees of relevance required
by the implications.

5–7. The Variable Sharing Criterion is the classic Anderson and Belnap way of
characterizing relevance, and their classic systems R and E satisfy it, while as we

have seen, the systems RM, EM, and E
−→
M do not. 6 is Arnon Avron’s strengthening

of 5, and while it is philosophically interesting it does not change the ranking of the
systems I just mentioned. 7 gives some points to the mingle systems but does not
take anything away from the relevance scores R and E achieved.

8. All of the logics R, E, RM, EM, and E
−→
M are paraconsistent in the sense that

contradiction does not imply every sentence whatsoever (“Explosion”). However the
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mingle systems do all have the irrelevant implication “Safety,” which I have already
argued is safe in that, unlike Explosion leads to nothing new.

9. Is it desirable or undesirable that a logic does not have a finite characteristic
matrix. Well clearly when the issues are decidability and complexity and finite
characteristic matrix is good, and the smaller, the better. That is why the classical
two-valued logic has a leg up here. But it, and all logics with finite characteristic
matrices and sufficient expressive power, have also a serious liability. Where ↔
is the classical material equivalence, the following “Dugundji sentence” is valid in
2-valued truth tables: (p ↔ q) ∨ (p ↔ r) ∨ (q ↔ r).10 In general, if there is an
n-valued characteristic matrix, the following Dugundji sentence is valid just because
there are not enough values to make enough distinctions (see Dugundji 1940):

Proposition 7.8 (p1 ↔ p2) ∨ · · · ∨ (p1 ↔ pn) ∨ (p1 ↔ pn+1) ∨ · · · ∨ (pn ↔ pn+1).

All that is needed to make this work is for pi ↔ p j to be designated whenever pi

and p j are assigned the same value, and for a disjunction to be designated just when
at least one disjunct is designated. Dugundji sentences are quite counter-intuitive, in
effect saying that once you have enough sentences, two of them must be equivalent.

10 No Chain Property. The Chain Property is (p → q) ∨ (q → p). I am sorry
to say that this is quite counter-intuitive. It says that given two possibly very distinct
sentences, say p =. “The moon is made of green cheese,” and q = “The cat is on the
mat,” one or the two will imply the other. I am feeling qualms here. RM satisfies
the Chain Property, and so does the classical propositional calculus TV. The Chain
Property has problems similar to those caused by a Dugundji sentence. It is a serious
weakness for RM. It is worth pointing out that EM does not share this weakness.
No chain requirement is put upon the accessibility relation R in its Kripke-style
semantics. I have thought about removing the chain requirement from the Kripke
semantics for RM, but so far, no good.

In Dunn (2018), I took a pragmatist approach to logic and defended the idea that
the foundation for logic is to view logics (note the plural) as tools. I said “Once
we think of logics as tools, issues become clearer I think as to how to choose among
logics. We use the same general considerations as we use for choosing tools.” I then
went on to give what I called “my amateur list” for choosing tools, including logics:

(1) importance of task(s) the tool is designed to perform,
(2) usability,
(3) direct costs and indirect costs (including environmental costs),
(4) compatibility and integration with other tools,
(5) longevity,
(6) ease of maintenance,
(7) elegance.

I did say that this is likely not a complete list, and also that the items on the list
are not completely independent. Thus, for example, ease of maintenance very likely

10 We do not write the parentheses needed for disjunction to be a binary connective. Think of a
long disjunction without parentheses as associated to the left.
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lowers indirect costs and also increases longevity, which then again lowers indirect
costs. The reader can think of more interdependencies, but the main point of my list
is to see that logic might be evaluated using some such list of considerations.

For the fun of it, let us evaluate RM versus R using this list. I will skip a few
items when I do not see how they might apply.

(1) I do not think I have to argue for the importance of logic, particularly as we
move into an age when our machines will do much of our reasoning for us.

(2) RM is relatively easy to use. TV is even easier, and R is more difficult.
(3) Clearly, the lower complexity of both TV and RM make them more environ-

mentally friendly, particularly in the environment of automated theorem proving.
(7) I think that all of R, RM, and TV are elegant in their own ways.
Arieli et al. (2011a, b) have their own evaluation criteria, focusing just on logics for

reasoning with inconsistency. I only discovered this list while writing this chapter. I
shall list here the criteria as stated in their first paper (they are similar in both papers):

1. Paraconsistency. The rejection of the principle of explosion, according to which any
proposition can be inferred from an inconsistent set of assumptions, is a primary condition
for properly handling contradictory data.

2. Sufficient expressive power. Clearly, a logical system is useless unless it can express non-
trivial, meaningful assertions. In our framework, a corresponding language how to choose
one for a specific application. This should contain at least a negation connective, which is
needed for defining paraconsistency, and an implication connective admitting the deduction
theorem.

3. Faithfulness to classical logic. As observed by Newton da Costa, one of the founders of
paraconsistent reasoning, a useful paraconsistent logic should be faithful to classical logic
as much as possible. This implies, in particular, that entailments of a paraconsistent logic
should also be valid in classical logic.

4. Maximality. The aspiration to “retain as much of classical logic as possible, while still
allowing non-trivial inconsistent theories” is reflected by the property of maximal paracon-
sistency, according to which any extension of the underlying consequence relation yields a
logic that is not paraconsistent anymore

RM meets the first three of these requirements, but not the fourth. Of course, it
barely meets the first, but as I have explained, Safety is “safe” even though it is of
the form (A∧ � A) → ___. The blank is filled in with something already known to
be provable, (B∨ � B). I think that RM satisfies the second and the third are clear
enough. For the fourth, I offer some explanation.

It is easy to see that all of the logic corresponding to the Sugihara matrices Si (+0)
are paraconsistent, except for S1,whichof course gives the truth tables for the classical
propositional calculus TV. This means that only the three-valued logic RM3 is
maximally paraconsistent among these. Thus, given a Sugihara matrix Si (+0) with
4 or more elements, we can falsify (p∧ � p) → q by assigning +1 to p and −2 to
q. But RM3 has other undesirable features. For example, to “quote” Arnon Avron
(see above), it has a finite characteristic matrix. So when we talk about an “ideal”
paraconsistent logic as being maximal, we should not mean simply maximal as a
paraconsistent logic, but maximal among paraconsistent logic with other pleasant
characteristics. In this sense RM seems to fit the bill, especially given Meyer (1968)
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result that every proper extension of it has a characteristic finite Sugihara matrix. But
I wish it did not have the Chain property. However, to quote from a famous song by
the Rolling Stones, “You can’t always get what you want.” Another of my favorite
sayings is: “If at first you don’t succeed, try, try again.” I think I will finish this paper
and start to think more about dropping the Chain requirement from the Kripke-style
semantics. :)
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Chapter 8
The Strict/Tolerant Idea and Bilattices

Melvin Fitting

Abstract Strict/tolerant logic is a formally defined logic that has the same conse-
quence relation as classical logic, though it differs from classical logic at the meta-
consequence level. Specifically, it does not satisfy a cut rule. It has been proposed
for use in work on theories of truth because it avoids some objectionable features
arising from the use of classical logic. Here we are not interested in applications,
but in the formal details themselves. We show that a wide range of logics have
strict/tolerant counterparts, with the same consequence relations but differing at the
metaconsequence level. Among these logics are Kleene’s K3, Priest’s LP, and first-
degree entailment, FDE. The primary tool we use is the bilattice. But it is more than
a tool, it seems to be the natural home for this kind of investigation.

Keywords Strict/tolerant · Bilattice ·Many-valued logic · Kleene logic · Logic of
paradox · First-degree entailment

8.1 Introduction

A natural companion to the question “What is a logic?” (which won’t be asked here)
is the question “When are logics the same?” It is common to say that sameness for
logics means they have the same consequence relations. But then there is the curious
example of ST, which stands for strict/tolerant for reasons that will become clear
later. The idea of holding premises and conclusions of a consequence relation to dif-
ferent standards comes fromMalinowski (1990, 2002, 2007),where the standards for
premises were weaker. Today it corresponds to what is called TS, for tolerant/strict.
Holding premises to stronger standards was introduced in Frankowski (2004a, b) and
today is called ST. It turns out that the ST consequence relation coincides with that
of classical logic, but a good case has been made that ST is not identical with clas-
sical logic because the two differ at the metaconsequence level. In fact, Barrio et al.

M. Fitting (B)
The Graduate School and University Center, City University of New York, New York, NY, USA
e-mail: melvin.fitting@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
O. Arieli and A. Zamansky (eds.), Arnon Avron on Semantics and Proof Theory
of Non-Classical Logics, Outstanding Contributions to Logic 21,
https://doi.org/10.1007/978-3-030-71258-7_8

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71258-7_8&domain=pdf
mailto:melvin.fitting@gmail.com
https://doi.org/10.1007/978-3-030-71258-7_8


168 M. Fitting

(2021) shows there is a hierarchy of logical pairs, with ST and classical logic at the
bottom, where each pair agrees at the consequence level, the metaconsequence level,
the metametaconsequence level, and so on up to some arbitrary finite level, and then
they differ at the next level. Very curious indeed, and very interesting.

In this paper, we examine a different sort of generalization of theST phenomenon:
wide instead of high. We show there is a family of logic pairs consisting of an
ST-like logic and a corresponding classical-like logic, where each pair agrees on
consequences but differs on metaconsequences. We do not examine working our
way up the meta, meta2, meta3, …hierarchy as in Barrio et al. (2021). Instead we
complicate the structure of the truth value space itself, of course going to three values
and beyond. We set up the basics for study, but we leave the meta-levels to another
time or to other people.

The machinery we use comes from bilattice theory, with the original ST/classical
example as the simplest case. We sketch the necessary bilattice background, to keep
this paper relatively self-contained.

8.2 ST, Classical Logic, and One New Example

Logics can be specified proof theoretically, or semantically. In this paper, we make
no use of proof-theoretic methods. The work is entirely semantic.

Many-valued logics are specified by giving a set of truth values, an interpretation
for propositional connectives, and a specification of what counts as “true.” A bit more
precisely, let T be a non-empty set of truth values, and for each logical connective (in
this paper conjunction, disjunction, and negation) assume we have a corresponding
operation on T . We will overload the use of the symbols ∧, ∨, and ¬ to serve as
logical connectives and also as operations on T , with context determining which is
intended.Andfinally a non-empty proper subsetD of the truth value space is specified
as the designated truth values, often with some structural properties imposed.

With respect to amany-valued logic, a valuation v is amapping frompropositional
variables to truth values, that is, to T . A valuation extends to all formulas in the
usual way, for instance, setting v(X ∧ Y ) = v(X) ∧ v(Y ), where on the left ∧ is an
operation symbol, and on the right∧ is the corresponding operation on T . A sequent
is an expression of the form � ⇒ � where � and � are finite sets of formulas. For
a valuation v, we write v � � ⇒ � provided, if v(X) ∈ D for every X ∈ � then
v(Y ) ∈ D for some Y ∈ �. More informally, v � � ⇒ � provided that if every
member of � is designated under v then some member of � also is. A sequent
� ⇒ � is valid in a many-valued logic provided, for every valuation v in that logic,
v |= � ⇒ �. We take this notion of validity as determining the consequence relation
of the many-valued logic.

Among the best-known three-valued logics are Kleene’s strong, K3, from Kleene
(1938, 1950), and Priest’s logic of paradox, LP, from Priest (1979) but with truth
tables originating in Asenjo (1966). We can take the truth values of both to be 0, 1

2 ,
and 1. (Other names for these values will also be used from time to time in this paper.)
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The intended intuition is that in K3 the value 1
2 represents a truth value gap while in

LP it represents a glut. Either way, the truth tables for propositional operators turn
out to be the same. Assume we have an ordering so that 0 ≤ 1

2 ≤ 1. Conjunction, ∧,
is greatest lower bound (equivalently minimum in this case); disjunction, ∨, is least
upper bound (or maximum); and negation, ¬, is an order reversal so that ¬0 = 1,
¬1 = 0, and ¬ 1

2 = 1
2 . The two logics differ in their choice of designated values. For

K3, the designated value set is {1} while for LP it is { 12 , 1}. We do not go into the
motivation for these choices; discussions are available in many places—see Priest
(2008), for instance.

The logic known as ST combines aspects of both K3 and LP through a mixed
definition of consequence. Note that since the space of truth values is the same
for K3 and for LP, and the behavior of logical connectives is the same, these two
standard logics have the same valuation behavior. � ⇒ � is taken to be valid in
ST provided, for every valuation, if every member of � is designated in the K3

sense, then some member of � is designated in the LP sense. Now the reason for the
name strict/tolerant becomes a bit clearer: members of the antecedent � are held to
stricter standards, only 1 is acceptable, while we are more tolerant with members of
� accepting both 1 and 1

2 .
Of course classical logic also fits the many-valued paradigm. Truth values are

0 and 1, with ∧ and ∨ defined as greatest lower bound and least upper bound,
respectively, and negation as order reversal. {1} is the set of designated truth values.
And � ⇒ � is defined in the expected way: every valuation mapping all members
of � to a designated value must map some member of � to a designated value.

The important connection between ST and classical logic is very simply stated:
they have the same consequence relation, see Cobreros (2012), Barrio et al. (2021)
among other places.

But it has been argued that they still are not the same logics because they differ at
themetainference level. In particular, classical logic validates the cut rule butST does
not, and there are other metainferences on which they differ as well. Current work
in Barrio et al. (2021) generalizes this result upward, as we discussed in Sect. 8.1.
We will generalize it laterally. We will show there is an abundance of pairs of many-
valued logics where one logic is analogous to ST, the other to classical logic, such
that both agree on consequence but differ on metaconsequence. Indeed, there are
strict/tolerant analogs for strong Kleene logic itself, for the logic of paradox of
Priest, and for first-degree entailment. We present one example now, to give an idea
of things. It will, perhaps, seem a bit mysterious, but motivations and proofs for our
assertions will come later on.

In Fig. 8.1, two lattices are shown. The lattice nameswill be explained in Sect. 8.7.
The truth value names trace back to Ginsberg, d is supposed to represent default,
for instance. Here the truth value names play no role other than letting us specify
what node we are talking about. Think of both lattices as having an ordering relation,
≤, represented graphically as upward (with reflexivity tacitly assumed). For both
lattices,∧ and∨ are interpreted as greatest lower and least upper bound, respectively.
Negation is order reversal for both, so ¬d� = d� in each, for instance. For the
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(a) ST〈NINE , {t, ot,�}〉 (b) C〈NINE , {t, ot,�}〉, or Kleene’s
K3

Fig. 8.1 A strict/tolerant pair

lattice in Fig. 8.1b, the only designated truth value is t, shown circled, thus this is
a presentation of strong Kleene logic, K3. For the lattice in Fig. 8.1a, we introduce
both a strict and a tolerant designated set, analogous to what is done with the logic
ST. In the present example, the strict set of truth values is {t}, shown heavily circled,
and the tolerant set is {t, ot,�}, shown lightly circled. We say � ⇒ � is valid in
the resulting strict/tolerant logic provided that for every valuation, if every member
of � is strictly designated then some member of � is tolerantly designated. It will
be shown later on that the logics corresponding to these two lattices have the same
consequence relation, but differ at themetaconsequence level, and are thus connected
in the same way that ST and classical logic are. As we said earlier, we do not analyze
higher level differences in this paper.

8.3 ST and FOUR

Our unifying machinery will be bilattices. Before discussing the general machinery
we begin with the paradigm example, the Belnap-Dunn system, called FOUR.
This was presented in a very influential paper, Belnap (1977). Its truth values were
intended to represent sets of ordinary truth values, only true (t), only false (f), neither
(⊥), both (�). It has two partial orderings, one on degree of truth, one on degree of
information. All of this is shown in Fig. 8.2, in which the information ordering is
vertical, and is denoted ≤k . This has become customary in bilattice literature, with
k standing for knowledge, though i for information would probably be better. The
truth ordering is denoted ≤t and is shown horizontally.

Each of the two orderings gives us the structure of a bounded, distributive lattice.
For the truth ordering, greatest lower bound is symbolized using ∧ and least upper
bound by ∨. A negation operation, denoted ¬, is a horizontal symmetry, ¬t = f ,
¬f = t,¬� = �, and¬⊥ = ⊥. The DeMorgan laws hold, so with respect to≤t we
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Fig. 8.2 The bilattice
FOUR

have a DeMorgan algebra. The≤k ordering plays an important role, but we postpone
discussion until we have introduced the full notion of bilattice, for which FOUR is
the simplest non-trivial example.

In order to turn FOUR into a many-valued logic, a set of designated truth values
must be specified. This is taken to be {t,�}, which one can think of as at least true.
The values we would naturally think of as consistent are f , ⊥, t, and the ≤t ordering,
restricted to them, gives us the operations of the strong Kleene logic, K3. Likewise
the set of designated truth values of FOUR, restricted to {f,⊥, t}, gives us {t},
appropriate for K3. Similarly, ≤t restricted to f , �, t gives us the operations of LP,
and the set of designated truth values ofFOUR, similarly restricted, gives us {t,�},
appropriate for LP.

WhenworkingwithSTwe need both three-valued logicsK3 andLP and, although
their representation in FOUR as described above is quite natural, it has the conse-
quence of giving us different carrier sets for the two logics, with one containing ⊥
and the other �. To avoid this, we do not work with the representation of K3 just
described. Instead we work with the set {f,�, t}, and we refer to {t,�} as tolerantly
designated, and {t} as strictly designated. That is, we have one space of truth val-
ues, and two versions of designated value. We will do something similar for other
bilattices, when we come to them.

Much more can be said about FOUR, but this is enough for the time being. It
is better to continue our discussion after the general family of bilattices has been
introduced.
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8.4 Bilattices

A bilattice is an algebraic structure with two lattice orderings. Various conditions
can be imposed, connecting the orderings. We start at the simplest level.

A pre-bilattice is a structure B = 〈B,≤t ,≤k〉 where each of ≤t and ≤k are
bounded partial orderings on B. (Notice that we overload B to stand for both the
structure with its orderings, and for its domain. This should cause no confusion since
context can sort things out. We do similar things with other structures as well.) Think
of the members of domain B as generalized truth values. The relation ≤t is intended
to order degree of truth in some sense (though it was noted in Shramko and Wansing
2005 that the ordering is really about truth-and-falsity, and that to separate the two
something more complex than a bilattice is needed, namely, a trilattice. We do not
pursue this point here). Meet and join operations with respect to this ordering are
denoted ∧ and ∨, and the least and greatest elements are denoted f and t. The other
relation, ≤k , is intended to order degree of information, again in some sense. The
meet operation with respect to this ordering is denoted ⊗ and is called consensus;
the join operation is denoted ⊕ and is called gullability, or sometimes accept all.
The least and greatest elements with respect to this ordering are denoted ⊥ and �.
The Belnap-Dunn structure FOUR from Fig. 8.2 is the simplest pre-bilattice.

If a pre-bilattice has an operation ¬ that reverses ≤t , preserves ≤k , and is an
involution, such an operation is simply called negation. Formally, the conditions are
as follows:

(Neg-1) a ≤t b implies ¬b ≤t ¬a;
(Neg-2) a ≤k b implies ¬a ≤k ¬b;
(Neg-3) ¬¬a = a.

Bilattices were introduced byGinsberg (1988, 1990), who defined a bilattice to be
a pre-bilattice with negation (though without using the terminology “pre-bilattice”).
FOUR is the simplest bilattice in Ginsberg’s sense. In any such bilattice, ¬t = f ,
¬f = t, ¬� = �, ¬⊥ = ⊥. It is not hard to show that we also have De Morgan’s
laws for the t operations and something akin to them for the k operations.

(NDeM-1) ¬(a ∧ b) = (¬a ∨ ¬b);
(NDeM-2) ¬(a ∨ b) = (¬a ∧ ¬b);
(NDeM-3) ¬(a ⊗ b) = (¬a ⊗ ¬b);
(NDeM-4) ¬(a ⊕ b) = (¬a ⊕ ¬b).

A pre-bilattice may have a negation-like operation with respect to ≤k as well. If
one exists it is denoted − and is called conflation, with the following conditions:

(Con-1) a ≤k b implies −b ≤k −a;
(Con-2) a ≤t b implies −a ≤t −b;
(Con-3) − − a = a;
(Con-4) −¬a = ¬ − a.
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Fig. 8.3 The bilattice
DEFAULT

The last condition, that negation and conflation commute, is occasionally not
assumed, but will be here. FOUR is an example of a bilattice with conflation,
where −� = ⊥, −⊥ = �, −t = t, −f = f . When conflation is present, we have
dual versions of the De Morgan laws given earlier.

(CDeM-1) −(a ∧ b) = (−a ∧ −b);
(CDeM-2) −(a ∨ b) = (−a ∨ −b);
(CDeM-3) −(a ⊗ b) = (−a ⊕ −b);
(CDeM-4) −(a ⊕ b) = (−a ⊗ −b).

Monotonicity conditions for the operations with respect to the ordering defining
it are standard, because we have lattice structures. Thus, for instance, a ≤t b implies
a ∧ c ≤t b ∧ c. A bilattice is called interlaced if such conditions hold across the two
orderings. More precisely, we have interlacing if the following hold:

(Int-1) a ≤t b implies a ⊗ c ≤t b ⊗ c;
(Int-2) a ≤t b implies a ⊕ c ≤t b ⊕ c;
(Int-3) a ≤k b implies a ∧ c ≤k b ∧ c;
(Int-4) a ≤k b implies a ∨ c ≤k b ∨ c.

In any interlaced bilattice, f ∧ t = ⊥, f ∨ t = �, ⊥ ⊗ � = f , and ⊥ ⊕ � = t. Once
again FOUR is an example, this time of an interlaced bilattice. There are bilattices
that are not interlaced. DEFAULT , shown in Fig. 8.3, is an example of one. In it
f ≤t df but f ⊗ d� = d� �t df = df ⊗ d�. DEFAULT goes back to Ginsberg
(1988), but will play no further role here.

The following plays an important role in Avron (1996) when establishing repre-
sentation theorems for interlaced bilattices. Representation theorems are discussed
in Sect. 8.8.
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Fig. 8.4 The bilattice
NINE

Proposition 8.4.1 In an interlaced bilattice:

(1) if a ≤k b then a ≤k x ≤k b if and only if a ∧ b ≤t x ≤t a ∨ b;
(2) if a ≤t b then a ≤t x ≤t b if and only if a ⊗ b ≤k x ≤k a ⊕ b.

Proof We give the proof of the first, taken from Avron (1996), to give an idea of
the uses of interlacing. The second part is similar. Throughout, assume a ≤k b (it is
actually needed in only one part).

Suppose a ≤k x ≤k b. Using interlacing, a ∨ a ∨ b ≤k x ∨ a ∨ b ≤k b ∨ a ∨ b,
and hencea ∨ b ≤k x ∨ a ∨ b ≤k a ∨ b. Then x ∨ a ∨ b = a ∨ b and so x ≤t a ∨ b.
By a dual argument, a ∧ b ≤t x , and so a ∧ b ≤t x ≤t a ∨ b.

Now suppose a ∧ b ≤t x ≤t a ∨ b. Using interlacing, a ⊗ (a ∧ b) ≤t a ⊗ x ≤t

a ⊗ (a ∨ b). We have a ≤k b so by interlacing again, a = a ∧ a ≤k a ∧ b and hence
a ⊗ (a ∧ b) = a. Similarly a ⊗ (a ∨ b) = a. Then a ≤t a ⊗ x ≤t a, so a ⊗ x = a,
and so a ≤k x . By a dual argument, x ≤k b. �

A bilattice is distributive if all possible distributive laws hold. For instance, not
only should∧ and∨distribute over each other, as ina ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
but over⊗ and⊕ as well, for example, a ∧ (b ⊗ c) = (a ∧ b) ⊗ (a ∧ c). Altogether
there are 12 such distributive laws combining ∧, ∨, ⊗, and ⊕.

FOUR is a distributive bilattice. Figure 8.4 shows a distributive bilattice,NINE ,
a bit more complex than FOUR. This time the node names come from Arieli and
Avron (1998). It is rather easy to show that every distributive bilattice is interlaced.
The converse is not true.

In Sect. 8.8, we will discuss bilattice representation theorems, which will help
account for where our examples are coming from.
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8.5 Consistent, Anticonsistent, Exact

The bilattice FOUR from Fig. 8.2 is already complex enough to contain a subset
consisting of classical truth values, a subset of consistent truth values appropriate
for Kleene’s strong three-valued logic K3, and a subset of what we might call anti-
consistent truth values, appropriate for Priest’s logic of paradox, LP. We next give
structural conditions that single these sets out, and we suggest that the analogous
sets in other bilattices should play analogous roles. For the rest of this section, B is
an interlaced bilattice with a negation and a conflation.

Definition 8.5.1 a ∈ B is consistent if a ≤k −a, anticonsistent if −a ≤k a, and
exact if a = −a.

In FOUR, as desired, the consistent values are {f,⊥, t}, those of Kleene’s logic,
the anticonsistent values are {f,�, t}, those of Priest’s logic, and the exact values are
the familiar classical {f, t}. InNINE the exact values are {f, d�, t}, the consistent
values are the exact ones together with {df,⊥, dt}, and the anticonsistent values are
the exact ones plus {of,�, ot}. The following says certain features ofFOUR extend
quite generally to interlaced bilattices with negation and conflation.

Proposition 8.5.2 InB, the sets of exact values, consistent values, and anticonsistent
values each contain f and t, and are closed under ∧, ∨, and ¬, while ⊥ is consistent
and � is anticonsistent.

Proof Suppose a, b are both consistent. Then a ≤k −a and b ≤k −b. Using (Int-3)
and (CDeM-1), a ∧ b ≤k −a ∧ −b = −(a ∧ b). Hence a ∧ b is consistent. All the
other claims have similar proofs. �

The following says that every consistent value is below an exact value, and every
anticonsistent value is above an exact value.

Proposition 8.5.3 For a ∈ B:
1. if a is consistent then a ≤k b for some exact b,
2. if a is anticonsistent then b ≤k a for some exact b.

Proof We show part 2; part 1 is similar. Suppose a is anticonsistent, so that−a ≤k a.
Using interlacing, a ∧ −a ≤k a ∧ a = a. Let b = a ∧ −a. Then b ≤k a, and b is
exact because −b = −(a ∧ −a) = −a ∧ − − a = −a ∧ a = a ∧ −a = b. �

Proposition 8.5.4 For a, b ∈ B, if a ≤k b and both a and b are exact, then a = b.

Proof If a ≤k b then −b ≤k −a, and if also a and b are both exact, b ≤k a. �

It is not the case that exact, consistent, and anticonsistent are always an exhaustive
classification. Figure 8.6, discussed in Sect. 8.9, shows a bilattice that is distributive,
hence is interlaced, and has a conflation. But in it neither 〈⊥,⊥〉 nor 〈�,�〉 is exact,
consistent, or anticonsistent.
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8.6 Logical Bilattices

For this section, as in the previous one, B is an interlaced bilattice with negation and
conflation.

Definition 8.6.1 The set of logical formulas is built up from a set of propositional
letters, typically P , Q, …, using the binary symbols ∧, ∨, and ¬.

Note that there is no implication. A discussion of implication in the bilattice
context can be found in Arieli and Avron (1998), also see Shramko and Wansing
(2011).

Definition 8.6.2 A valuation in bilattice B = 〈B,≤t ,≤k〉 is a mapping v from the
set of propositional letters to members of B. Valuations extend uniquely to the set of
all logical formulas in the familiar way

v(X ∧ Y ) = v(X) ∧ v(Y )

v(X ∨ Y ) = v(X) ∨ v(Y )

v(¬X) = ¬v(X)

and we will use the same symbol v for this extension too.

Proposition 8.6.3 If a valuation v in a bilattice maps every propositional letter to
a consistent truth value, it maps every formula to a consistent truth value. Similarly
for the exact truth values, and for the anticonsistent truth values.

Proof Immediately, by Proposition 8.5.2. �

Valuations have an importantmonotonicity property that is fundamental toKripke-
style theories of truth, (Fitting 1989, 1997, 2006). Though formal work on self-
reference and truth does not concern us here, monotonicity retains its importance.

Proposition 8.6.4 Let v and w be valuations in bilattice B. If v(P) ≤k w(P) for
every propositional letter P then v(X) ≤k w(X) for every logical formula X.

Proof This is an immediate consequence of (Neg-2) for negation and the interlacing
conditions (Int-3) and (Int-4). �

As noted earlier, inFOUR a particular set of designated truth values is standard,
{t,�}. Its properties were nicely generalized in Arieli and Avron (1998).

Definition 8.6.5 A prime bifilter on B is a non-empty subset F of B that is not the
entire of B and that meets the following conditions:

(PBif-1) (a ∧ b) ∈ F if and only if a ∈ F and b ∈ F ;
(PBif-2) (a ⊗ b) ∈ F if and only if a ∈ F and b ∈ F ;
(PBif-3) (a ∨ b) ∈ F if and only if a ∈ F or b ∈ F ;
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(PBif-4) (a ⊕ b) ∈ F if and only if a ∈ F or b ∈ F .

A logical bilattice is a pair 〈B,F〉 where F is a prime bifilter on B.
FOUR has exactly one prime bifilter, {t,�}. NINE has two prime bifilters,

{t, ot,�} and {t, ot,�, dt, d�, of}.
Proposition 8.6.6 A prime bifilter is upward closed in both bilattice orderings.

Proof Suppose F is a prime bifilter, a ∈ F , and a ≤k b. Then b = a ⊕ b so b ∈ F
by (PBif-4) of Definition 8.6.5. The case of the t ordering is similar. �

In Sect. 8.2, a definition of validity for a sequent in a many-valued logic was
given. That definition includes the case of a logical bilattice 〈B,F〉 once we specify
that the prime bifilter F is the set of designated values.

In Arieli and Avron (1996, 1998), a very nice result is shown: the valid sequents
of any logical bilattice are the same as they are for FOUR using the prime bifilter
{t,�}.

8.7 A Family of Strict/Tolerant Logics

In Sect. 8.3, we reformulated ST so that it was incorporated into the structure of
FOUR. The role of the three-member space of truth values common to LP and to
K3 was played by the “upper” part of FOUR, which amounts to the anticonsistent
part. The set of what we called the tolerantly designated truth values was {t,�}, the
only prime bifilter forFOUR. The set of strictly designated truth values was {t}, the
subset of the prime bifilter consisting of the exact values. This now is the paradigm
for our generalization.We begin by setting up themachinery we need, and then prove
our general theorems on the existence of a family of ST-like logics. Given all the
work that has gone into the development of bilattices over the years, this theorem is
quite easy to establish. It is the family of logics, and the bilattice setting in which
they appear that is significant.

Definition 8.7.1 Let B be an interlaced bilattice with negation and conflation, and
let F be a prime bifilter on B, so that 〈B,F〉 is a logical bilattice. Throughout this
definition we write A for the set of anticonsistent members of B, and E for the set
of exact members.

(1) Dt 〈B,F〉 = F ∩ A, the subset of F consisting of anticonsistent members of B.
This is our tolerant set of designated values.

(2) Ds〈B,F〉 = F ∩ E , the subset of F consisting of exact members of B. This is
our strict set of designated values.

(3) ST〈B,F〉 is the analog of strict/tolerant logic associatedwith the logical bilattice
〈B,F〉. Its set of truth values is A. A sequent � ⇒ � is valid in this logic
provided, for every valuation v mapping propositional letters to A, if v maps
every formula in � to Ds〈B,F〉 then v maps some formula in � to Dt 〈B,F〉.
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(4) C〈B,F〉 is the analog of classical logic associated with the logical bilattice
〈B,F〉. Its set of truth values is E , with Ds〈B,F〉 as the set of designated truth
values. A sequent � ⇒ � is valid in this logic provided, for every valuation v

mapping propositional letters to E , if v maps every formula in � to Ds〈B,F〉
then v maps some formula in � to Ds〈B,F〉.

A few remarks before moving to a central result. Since our logical formulas only
contain ∧, ∨, and ¬, in evaluating formulas in the various structures above only the
≤t ordering comes into play. As we noted in Proposition 8.5.2, both A and E are
closed under ∧, ∨, and ¬.

In C〈B,F〉, the set Ds〈B,F〉 = F ∩ E is a prime filter. For instance, suppose
a, b ∈ E , the set of truth values of C〈B,F〉, and a ∨ b ∈ F ∩ E . Then a ∨ b ∈ F
and so one of a or b is in F since it is a prime bifilter in B. So one of a or b is in
F ∩ E . Similarly for the other prime filter conditions.

Similar remarks apply partially to ST〈B,F〉. Here the set Dt 〈B,F〉 = F ∩ A
of tolerant truth values will constitute a prime filter within the set of anticonsistent
truth values, which is the domain used for ST〈B,F〉. This does not extend to the
set Ds〈B,F〉 = F ∩ E of strict truth values. For instance, in the strict/tolerant FDE
example shown much later in Fig. 8.7, 〈t,⊥〉 ∨ 〈t,�〉 = 〈t, f〉, which is in the set
Ds〈B,F〉, but neither 〈t,⊥〉 nor 〈t,�〉 is in this set.
Proposition 8.7.2 Let 〈B,F〉 be a logical bilattice, whereB is an interlaced bilattice
with negation and conflation. The logics ST〈B,F〉 and C〈B,F〉 validate the same
sequents.

Proof

Left to Right: Assume � ⇒ � is valid in ST〈B,F〉; we show � ⇒ � is valid in
C〈B,F〉.

Let v be a valuation mapping propositional letters to E , and suppose v maps every
formula in � to Ds〈B,F〉; we show v maps some formula in � to Ds〈B,F〉.
Since � ⇒ � is valid in ST〈B,F〉 and v maps all of � to Ds〈B,F〉, then for
some Y ∈ �, v(Y ) ∈ Dt 〈B,F〉. But by Proposition 8.6.3, v(Y ) must be exact,
and so in Ds〈B,F〉.

Right to Left: Assume � ⇒ � is not valid in ST〈B,F〉. We show � ⇒ � is not
valid in C〈B,F〉.

By our assumption there is a valuation v mapping propositional letters to A, the
anticonsistent members of B, mapping every formula in � to Ds〈B,F〉, but for
some Y ∈ �, v(Y ) is not in Dt 〈B,F〉.

Define a new valuation v′ as follows. For each propositional letter P , if v(P)

is exact, let v′(P) = v(P). If v(P) is anticonsistent but not exact, by Proposi-
tion 8.5.3, there is some exact a ≤k v(P); choose one such a and set v′(P) = a.
By its definition v′ maps all propositional letters to exact members ofB, and hence
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by Proposition 8.6.3, v′ maps every logical formula to an exact member of B. We
show v′ �|= � ⇒ � in C〈B,F〉.

Since v′(P) ≤k v(P) for each propositional letter then for every logical formula
X , v′(X) ≤k v(X) by Proposition 8.6.4. Since both v and v′ map all members of
� to exact members of B then, by Proposition 8.5.4, v and v′ agree on members
of �. So v′ maps every member of � to Ds〈B,F〉.

We have a logical formula Y ∈ � such that v(Y ) /∈ Dt 〈B,F〉. We show v′(Y ) /∈
Ds〈B,F〉, which will finish the proof. Well, otherwise v′(Y ) would be exact
(which it is) and in the prime bifilterF . But v′(Y ) ≤k v(Y ) and prime bifilters are
upward closed in both bilattice orderings, Proposition 8.6.6, so v(Y ) would be in
F (which it is not).

�

It has been vehemently argued whether or not, despite validating the same
sequents, classical logic and strict/tolerant logic are the same logic. See Barrio et al.
(2021) for a good summary of this, as well as further references to the issue. Their
difference is that they do not agree at the metaconsequence level, something that
has been generalized upward as we noted at the beginning of this paper. A similar
phenomenon applies to the bilattice-based generalizations considered in this paper,
and with the same examples.

A metaconsequence is represented by the following general form:

�1 ⇒ �1, . . . , �n ⇒ �n

�0 ⇒ �0.

Here the members of �i and �i are taken to be schemata. Validity is understood to
mean each instance of such a scheme is valid. Validity for an instance, with respect
to a logic, actually has two versions, local and global. The global version is: if each
sequent above the line is valid in the logic, so is the sequent below. The local version
is: for each valuation, if that valuation validates each sequent above the line then
that valuation validates the sequent below. Local is easily seen to imply global. It is
the local version that is appropriate here. The particular metaconsequence scheme
of interest is the familiar one of cut.

Proposition 8.7.3 Let 〈B,F〉 be a logical bilattice, whereB is an interlaced bilattice
with negation and conflation. The metaconsequence scheme

�, A ⇒ � � ⇒ �, A
� ⇒ �

is locally valid in C〈B,F〉 but not in ST〈B,F〉.
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Proof

Local Validity in C〈B,F〉: Assume we have a specific instance of the cut scheme,
and let v be a mapping from propositional letters to exact members of B. Rea-
soning in C〈B,F〉 we show that if v �|= � ⇒ � then either v �|= �, A ⇒ � or
v �|= � ⇒ �, A.

Assume v �|= � ⇒ �. Then v(X) ∈ F for every X ∈ � and v(Y ) /∈ F for every
Y ∈ �. Either v(A) ∈ F or v(A) /∈ F . If we have the first, then v(X) ∈ F for
every X in �, A, so v �|= �, A ⇒ �. If we have the second, then v(Y ) /∈ F for
every Y ∈ �, A, so v �|= � ⇒ �, A.

Local Non-Validity in ST〈B,F〉: Let � ⇒ � be any specific sequent that is not
valid in ST〈B,F〉, and let P be a propositional letter that does not occur in � or
in �. Let us say v is a valuation such that v �|= � ⇒ � in ST〈B,F〉. That is, v
maps propositional letters to anticonsistent members of B, maps every member
of � to Ds〈B,F〉, and maps no member of � to Dt 〈B,F〉.

Since P does not occur in � or � we are free to reassign a value to P with-
out affecting the behavior of v on � or �. The bilattice value � must be in F
because F is non-empty and we have Proposition 8.6.6. Set v(P) = �. Then
v |= �, P ⇒ � because v does not map every member of �, P to Ds〈B,F〉,
since � is anticonsistent but not exact. But also v |= � ⇒ �, P because v maps
some member of �, P toDt 〈B,F〉 since v(P) = � is anticonsistent and is inF .
Thus, v is a counterexample to the local validity, in ST〈B,F〉, of the following
metainference:

�, P ⇒ � � ⇒ �, P
� ⇒ �

.

�

We conclude this section with a few examples. Starting in Sect. 8.10 we discuss
where such examples “really” come from.

Example 8.7.4 In Fig. 8.2, we gave the ur-bilattice, FOUR. For it the exact values
are just f and t, the classical ones, and the anticonsistent ones are these together with
�. The only prime bifilter is {t,�} which, if taken as designated in the set of anti-
consistent values, gives us LP. Then ST〈FOUR, {t,�}〉 is the usual strict/tolerant
logicST whileC〈FOUR, {t,�}〉 is just classical logic, and the two theorems above
specialize to what are, in effect, the beginnings of the subject.

Example 8.7.5 Figure 8.4 shows a bilattice, NINE , having two prime bifilters.
We, quite arbitrarily, choose to work with the smaller one, {t, ot,�}. The exact
members of NINE are {f, d�, t} and the overlap with the prime bilfilter contains
just t. Thus, the analog of classical logic from the original ST example turns out to
be K3. There are six anticonsistent values, and these, displayed a bit differently, are
shown in Fig. 8.1.
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8.8 Bilattice Representation Theorems

Where do bilattices come from? There is an intuitively appealing way of constructing
them that is completely representative, in the sense that every bilattice with “reason-
able” properties is isomorphic to a bilattice constructed in this way. In bilattice
history, this construction dates from Ginsberg (1988), with subsequent extensions
by others. In fact, many of the ideas predate bilattices as such, though that was not
generally known until later. See Gargov (1999) for an interesting prehistory. In this
section, we sketch the ideas, without the proofs, and then add an extension that will
be applied to the present investigation in Sect. 8.9.

A central intuition for truth values in a bilattice is that they encode evidence for and
evidence against an assertion, treating positive and negative evidence independently.
An interesting family of examples is based on groups of experts. Supposewe have one
group whose members announce their opinions for something, or don’t, and another
group similarly announcing opinions against, or keeping silent. The two groups could
be distinct, overlap, or be identical. We can identify the opinions in favor with the
set of experts declaring for, and similarly for the set of experts against. In this way, a
generalized truth value becomes a pair of sets of experts, the set of those for, and the
set of those against.We have an increase in knowledge, ormore properly information,
if additional experts declare their opinions. We have an increase in degree of truth
(understood loosely) if additional experts declare in favor while somewithdraw from
declaring against. This is a good model to have in mind while reading the following,
but it is not fully general. The collection of all sets of experts, drawn from some fixed
group, is a lattice under the subset ordering, but not all lattices are of this kind, hence
the move to general lattice structures, L1 intuitively representing evidence for, and
L2 intuitively representing evidence against.

Definition 8.8.1 (Bilattice Product) Let L1 = 〈L1,≤1〉, and L2 = 〈L2,≤2〉 be
bounded lattices. Their bilattice product is defined as follows:

L1 � L2 = 〈L1 × L2,≤t ,≤k〉
〈a, b〉 ≤k 〈c, d〉 iff a ≤1 c and b ≤2 d

〈a, b〉 ≤t 〈c, d〉 iff a ≤1 c and d ≤2 b.

Note the reversal of the ≤2 ordering in the definition of ≤t . The following items
are now rather straightforward to check. In stating the results, we assume that 01
and 02 are the least members of L1 and L2, and 11 and 12 are the greatest. We write
�1 and �2 for the respective joins, and �1 and �2 for the meets. If the two lattices
are identical, we omit subscripts. Also recall that a De Morgan algebra is a bounded
distributive lattice with a DeMorgan involution, written here as an overbar, such that
a � b = a � b and a = a. (The other De Morgan law follows.) It is often the case in
what follows that the distributivity laws of De Morgan algebras are not needed. By
a non-distributive De Morgan algebra we mean something meeting the conditions
for a De Morgan algebra except, possibly, satisfaction of the distributive laws.
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(BP-1) L1 � L2 is always a pre-bilattice that is interlaced. In L1 � L2, the extreme
elements are⊥ = 〈01, 02〉,� = 〈11, 12〉, f = 〈01, 12〉, and t = 〈11, 02〉. The bilat-
tice operations evaluate to the following:

〈a, b〉 ∧ 〈c, d〉 = 〈a �1 c, b �2 d〉
〈a, b〉 ∨ 〈c, d〉 = 〈a �1 c, b �2 d〉
〈a, b〉 ⊗ 〈c, d〉 = 〈a �1 c, b �2 d〉
〈a, b〉 ⊕ 〈c, d〉 = 〈a �1 c, b �2 d〉.

(BP-2) If L1 and L2 are distributive lattices then L1 � L2 is a distributive bilattice.
(BP-3) If L1 = L2 = L then L � L is an bilattice with negation, where¬〈a, b〉 =

〈b, a〉.
(BP-4) If L1 = L2 = L is a non-distributive De Morgan algebra then L � L is a

bilattice with a conflation that commutes with negation, where −〈a, b〉 = 〈b, a〉.
Combining several of the items above, if L is aDeMorgan algebra (which assumes

distributivity), then L � L is a distributive bilattice with a negation and a conflation
that commute.

What is more difficult to establish is that these conditions reverse. For instance,
if we have an interlaced bilattice, it is isomorphic to L1 � L2, where L1 and L2 are
bounded lattices, and L1 and L2 are unique up to isomorphism. And so on. Thus we
have very general representation theorems. These results were proved over time, and
various parts can be found in Ginsberg (1988), Fitting (1990, 1991), Avron (1996).

We will not need a detailed proof of these representation theorems but a few basic
items from the proof will be of importance to us, since we will be adding one more
piece. For an interlaced bilattice B, L1 can be taken to be {x ∨ ⊥ | x ∈ B} and L2

to be {x ∧ ⊥ | x ∈ B}, each with the ordering resulting when ≤t is restricted to L1

or L2, respectively. If we have a bilattice with negation the lattices L1 and L2 just
described are isomorphic and we can simply use L consisting of {x ∨ ⊥ | x ∈ B}
with the ordering induced by ≤t . In Proposition 8.8.3, we make use of these pieces
of the proof to add one new part to the representation theorem collection.

Suppose B is a bilattice with negation, L = {x ∨ ⊥ | x ∈ B}, and f : B → L
is defined by f (x) = x ∨ ⊥. This mapping is always many-one. For instance, if
B = NINE from Fig. 8.4, f (�) = f (ot) = f (t) = t. Even in the paradigm case
ofFOUR from Fig. 8.2, f (�) = f (t) = t. Thus, eachmember of the lattice L , gen-
erated by the proof of the representation theorem, always has multiple pre-images in
the bilatticeB that we are representing.Wewill show that there are special and unique
pre-images of particular significance in our current strict/tolerant investigation. These
are simply the exact members (provided we have the conflation machinery to define
them).

The following lemma provides everythingwe need for our proof of the central role
of exact bilattice members. Using the bilattice representation results above, much of
it could be left as an exercise in computation. Instead we give direct proofs, which
provide some insights of their own.
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Lemma 8.8.2 Assume B is an interlaced bilattice with a negation and a conflation.
For every x, y ∈ B:
(1) (x ∨ ⊥) ∧ −(x ∨ ⊥) is exact;
(2) x = (x ∨ ⊥) ∧ (x ∨ �);
(3) (x ∧ y) ∨ ⊥ = (x ∨ ⊥) ∧ (y ∨ ⊥);
(4) [(x ∨ ⊥) ∧ −(x ∨ ⊥)] ∨ ⊥ = x ∨ ⊥;
(5) if x and y are exact then x ∨ ⊥ ≤t y ∨ ⊥ if and only if x ≤t y;
(6) if x and y are exact and x ∨ ⊥ = y ∨ ⊥ then x = y.

Proof

(1) Exactness is simple.

−[(x ∨ ⊥) ∧ −(x ∨ ⊥)] = [−(x ∨ ⊥) ∧ − − (x ∨ ⊥)]
= [−(x ∨ ⊥) ∧ (x ∨ ⊥)].

(2) (This is Corollary 2.8 part 4 in Avron (1996).) Since ⊥ ≤k x ≤k �, using
interlacing, x ∨ ⊥ ≤k x ∨ x ≤k x ∨ �, and so x ∨ ⊥ ≤k x ≤k x ∨ �. Then by
Proposition 8.4.1, (x ∨ ⊥) ∧ (x ∨ �) ≤t x ≤t (x ∨ ⊥) ∨ (x ∨ �) so in par-
ticular, (x ∨ ⊥) ∧ (x ∨ �) ≤t x . Also x ≤t x ∨ ⊥ and x ≤t x ∨ �, so x ≤t

(x ∨ ⊥) ∧ (x ∨ �).
(3) From ⊥ ≤k x by interlacing, x ∨ ⊥ ≤k x ∨ x = x . Similarly y ∨ ⊥ ≤k y. Then

⊥ ≤k (x ∨ ⊥) ∧ (y ∨ ⊥) ≤k x ∧ y. Then by Proposition 8.4.1, (x ∧ y) ∧ ⊥ ≤t

(x ∨ ⊥) ∧ (y ∨ ⊥) ≤t (x ∧ y) ∨ ⊥, so in particular (x ∨ ⊥) ∧ (y ∨ ⊥) ≤t (x ∧
y) ∨ ⊥. Also x ∧ y ≤t x so (x ∧ y) ∨ ⊥ ≤t (x ∨ ⊥), and similarly (x ∧ y) ∨
⊥ ≤t (y ∨ ⊥). Then (x ∧ y) ∨ ⊥ ≤t (x ∨ ⊥) ∧ (y ∨ ⊥).

(4) Using item (3),

[(x ∨ ⊥) ∧ −(x ∨ ⊥)] ∨ ⊥ = [(x ∨ ⊥ ∨ ⊥) ∧ (−(x ∨ ⊥) ∨ ⊥)]
= [(x ∨ ⊥) ∧ (−x ∨ � ∨ ⊥)]
= [(x ∨ ⊥) ∧ (−x ∨ t)]
= [(x ∨ ⊥) ∧ t]
= x ∨ ⊥.

(5) If x ≤t y then x ∨ ⊥ ≤t y ∨ ⊥, using the interlacing conditions. In the other
direction, suppose x ∨ ⊥ ≤t y ∨ ⊥ and both x and y are exact. Then
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x = (x ∨ ⊥) ∧ (x ∨ �) part (2)

= (x ∨ ⊥) ∧ (−x ∨ �) exactness

= (x ∨ ⊥) ∧ −(x ∨ ⊥)

≤t (y ∨ ⊥) ∧ −(y ∨ ⊥) interlacing

= (y ∨ ⊥) ∧ (−y ∨ �)

= (y ∨ ⊥) ∧ (y ∨ �) exactness

= y part (2).

(6) This follows from part (5).

�

Proposition 8.8.3 Suppose L is a non-distributive De Morgan algebra, and B =
L � L. The set of exact members of B, under the ordering ≤t , is isomorphic to L.

Proof The proofs of the usual bilattice representation theorems discussed earlier
say that B is isomorphic to L ′ � L ′ where L ′ = {x ∨ ⊥ | x ∈ B} with ordering ≤t

restricted to L ′. They also say this is unique up to isomorphism, so L and L ′ are
isomorphic. It is enough, then, to show that L ′ and E are isomorphic, where E is the
set of exact members of B.

Let f : E → L ′ be defined by f (x) = x ∨ ⊥. We show that f is 1 − 1, onto,
and an order isomorphism. We begin with onto. An arbitrary member of L ′ must be
x ∨ ⊥ for some x ∈ B. Let y be (x ∨ ⊥) ∧ −(x ∨ ⊥). By Lemma 8.8.2 part 1, y is
exact and by part 4, f (y) = x ∨ ⊥. Hence f is onto. It is 1 − 1 by Lemma 8.8.2
part 6. Finally, we have an order isomorphism by Lemma 8.8.2 part 5. �

8.9 Logical De Morgan Algebras

Quite a few common many-valued logics validate De Morgan’s laws. An extensive
investigation of these can be found inLeitgeb (1999), where applications to the theory
of truth were examined. In that paper, being a prime filter was one of the conditions
considered for the set of designated truth values. We will take it as central here, and
we investigate the resulting family with respect to its relation to bilattices. Actually,
since the distributive laws assumed in De Morgan algebras play little role here, we
use the more general family of non-distributive De Morgan algebras. Everything we
say applies, of course, if we also have distributivity.

Definition 8.9.1 (Non-Distributive Logical De Morgan Algebras) Let L be a non-
distributive De Morgan algebra (writing � and � for meet and join, and overbar for
De Morgan complement). A subset D of L is a prime filter in L if it meets the
following two conditions:

1. a � b ∈ D if and only if a ∈ D and b ∈ D;
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2. a � b ∈ D if and only if a ∈ D or b ∈ D.

We call the pair 〈L , D〉 a non-distributive logical De Morgan algebra, thinking of it
as a many-valued logic with D as the set of designated truth values.

We will show that each member of the family of logics determined by non-
distributive logical De Morgan algebras has a strict/tolerant version. Classical logic
is determined by the best-known DeMorgan example, and so is part of a large family
with strict/tolerant logics.

Using the bilattice construction sketched in Sect. 8.8, if L is a non-distributive De
Morgan algebra then L � L is an interlaced bilattice with negation and conflation.
This can be extended from algebras to logics, as we will now show.

Lemma 8.9.2 Let 〈L , D〉be anon-distributiveDeMorgan logic. Then 〈L � L , D ×
L〉 is a logical bilattice (interlaced, with negation and conflation).

Proof Given earlier items, all that needs to be shown is that D × L is a prime bifilter
in L � L , Definition 8.6.5. In the following, 〈x, y〉 and 〈z, w〉 are any two members
of L � L . Since we are working with L throughout, membership in L is automatic
and can be mentioned or dropped whenever useful. We show one prime bifilter case
as sufficiently representative:

〈x, y〉 ∨ 〈z, w〉 ∈ D × L iff 〈x � z, y � w〉 ∈ D × L

iff x � z ∈ D

iff x ∈ D or z ∈ D

iff (x ∈ D and y ∈ L) or (z ∈ D and w ∈ L)

iff 〈x, y〉 ∈ D × L or 〈z, w〉 ∈ D × L .

�

Proposition 8.9.3 Let 〈L , D〉 be a non-distributive logical De Morgan algebra.
〈L , D〉 is isomorphic to the bilattice-based logic structure C(〈L � L , D × L〉) from
Definition 8.7.1. To state this more precisely, first recall that C(〈L � L , D × L〉)
is the many-valued logic 〈E, (D × L) ∩ E〉, where E is the set of exact members of
L � L. Then, there is an isomorphism between E and L that pairs the members of
(D × L) ∩ E with those of D.

Proof Beginwith a non-distributive logicalDeMorgan algebra 〈L , D〉, and construct
the interlaced bilattice L � L . Proposition 8.8.3 says the set of exact members of
L � L is isomorphic to L . We can extract more information from the proof of that
proposition. We know the mapping f (x) = x ∨ ⊥ maps the exact members of the
bilattice isomorphically to a non-distributive De Morgan algebra L ′ = {x ∨ ⊥ | x ∈
L � L} = {x ∨ ⊥ | x ∈ L � L and x exact}. And further, L ′ must be isomorphic to
L . We now examine the details of the mapping f .

Let 〈a, b〉 be an arbitrary member of L � L . Then f (〈a, b〉) = 〈a, b〉 ∨ ⊥ =
〈a, b〉 ∨ 〈0, 0〉 = 〈a � 0, b � 0〉 = 〈a, 0〉. Now the isomorphism from L ′ to L is
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obvious: 〈a, 0〉 �→ a. Then further, the mapping from L � L to L is, in fact, just
〈a, b〉 �→ a, and so it was this that was shown in the proof of Proposition 8.8.3 to be
an order-preserving isomorphism when restricted to the exact members of L � L .
So to finish the present proof, we must show this mapping is 1 − 1 and onto between
(D × L) ∩ E and D.

We first show the mapping 〈a, b〉 �→ a, restricted to (D × L) ∩ E , is onto D.
Suppose a ∈ D. Of course 〈a, a〉 ∈ D × L and −〈a, a〉 = 〈a, a〉 = 〈a, a〉, so 〈a, a〉
is exact. Thus, 〈a, a〉 ∈ (D × L) ∩ E , and of course 〈a, a〉 �→ a.

Finally, we show the mapping 〈a, b〉 �→ a, restricted to the exact members of
L � L , is 1 − 1. To show this it is enough to show that if 〈a, b〉 and 〈a, c〉 are both
exact, then 〈a, b〉 = 〈a, c〉. If 〈a, b〉 is exact, 〈a, b〉 = −〈a, b〉 = 〈b, a〉, so a = b.
Similarly, a = c, and it follows that b = c and hence b = c. �

8.10 Generating Strict/Tolerant Examples

We now have everything we need for the central result of this paper.

Proposition 8.10.1 For each non-distributive logical De Morgan algebra, there is
a strict/tolerant logic having the same consequence relation but differing from it at
the metaconsequence level. There is an algorithm for constructing the strict/tolerant
logic from the logical De Morgan algebra.

Proof We present the algorithm and cite the various earlier results proven earlier
that establish what we need.

Gen-1 Start with a (non-distributive) logical De Morgan algebra, 〈L , D〉.
Gen-2 〈L � L , D × L〉 is an interlaced logical bilattice with negation and con-

flation.
Gen-3 Usingnotation fromDefinition8.7.1,ST〈L � L , D × L〉 is a strict/tolerant

logic analog and C〈L � L , D × L〉 is a classical logic analog.
Gen-4 By Proposition 8.7.2, ST〈L � L , D × L〉 and C〈L � L , D × L〉 validate

the same sequents.
Gen-5 By Proposition 8.7.3, ST〈L � L , D × L〉 and C〈L � L , D × L〉 differ at

the metaconsequence level.
Gen-6 Finally, the structure C〈L � L , D × L〉 is isomorphic to the logical De

Morgan algebra 〈L , D〉 with which we began, by Proposition 8.9.3.

�

Example 8.10.2 Continuing Example 8.7.4. Let L be the lattice {0, 1} with the
ordering 0 ≤ 1, and let D be {1}. 〈L , D〉 is not just some logical De Morgan algebra
but is that of classical logic, the most basic of all. The bilattice product L � L is
isomorphic to FOUR from Fig. 8.2, with ⊥ corresponding to 〈0, 0〉, f to 〈0, 1〉, t
to 〈1, 0〉, and � to 〈1, 1〉. The logical bilattice 〈L � L , D × L〉 is then isomorphic
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to FOUR with {t,�} as designated values. It follows that C(〈L � L , D × L〉) is
classical logic and ST(〈L � L , D × L〉) is the usual version of strict/tolerant logic,
ST.

Example 8.10.3 Continuing Example 8.7.5. We start with the Kleene strong three-
valued logic, {0, 1

2 , 1},with {1} as designated truth value.These give us a (distributive)
logical DeMorgan algebra,K3 = 〈{0, 1

2 , 1}, {1}〉, Kleene’s strong three-valued logic.
We use this to create the logical bilattice, 〈K3 � K3, {1} × K3〉, which is isomorphic
to NINE , from Fig. 8.4. Then, as discussed in Example 8.7.5, this generates the
strict/tolerant logic pair from Fig. 8.1.

Example 8.10.4 This time we do something like Example 8.10.3 but modify the
work so that we produce a strict/tolerant counterpart of LP, the logic of paradox,
instead of K3. Formally, the only difference between LP and K3 is the choice of des-
ignated truth values. For LP, from {0, 1

2 , 1} we take { 12 , 1} as designated, so we have
the (again distributive) logical De Morgan algebra 〈{0, 1

2 , 1}, { 12 , 1}〉. The bilattice
NINE , from Fig. 8.4, is still the bilattice we must work with (isomorphically). The
prime bifilter we now want from NINE is {dt, t, d�, ot, of,�} (though note that
dt is not anticonsistent) and the intersection of this with the exactmembers is {d�, t}.
The details are much like those of Example 8.10.3 and we wind up with the diagrams
shown in Fig. 8.5, which can be compared with the earlier ones. The strictly desig-
nated values are {d�, t} and the tolerantly designated values are {t, d�, ot, of,�}.

As a simple instance, it is well known that P,¬P ⇒ Q is not valid in LP, as the
valuation v(P) = d�, v(Q) = f shows. The same valuation, in the strict/tolerant
version, also works as a counterexample.

Example 8.10.5 We start with the bilattice FOUR, shown in Fig. 8.2. As is stan-
dard, we take {t,�} as designated truth values. Using the ≤t ordering, the resulting
logic is the well-known first-degree entailment, FDE. Thus, we have a logical De
Morgan algebra, 〈〈FOUR,≤t 〉, {t,�}〉, completing Gen-1 of the construction out-
lined earlier.

Fig. 8.5 A strict/tolerant
counterpart of LP

(a) Strict/Tolerant LP (b) Standard LP
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Fig. 8.6 The bilattice
SIXT EEN

For Gen-2 of the construction, we form the bilattice product 〈〈FOUR,≤t 〉 �
〈FOUR,≤t 〉, which is shown in Fig. 8.6 and given the name SIXT EEN . It may
be best to think of the construction simply as formal, without trying to attach intuitive
significance to possible meanings for node labels. SIXT EEN becomes a logical
bilattice when we take as designated values {t,�} × {t,�, f,⊥}. That is,
Designated Values: 〈t, t〉, 〈t,�〉, 〈t, f〉, 〈t,⊥〉, 〈�, t〉, 〈�,�〉, 〈�, f〉, 〈�,⊥〉.

We began withFOUR, using the ordering≤t , and so our DeMorgan operation is
the negation of FOUR. Then conflation in SIXT EEN is: −〈a, b〉 = 〈¬b,¬a〉. It
is now easy to check that the truth values of SIXT EEN divide up as shown below.
What might be a bit surprising, after the previous examples, is that not everything
falls into the exact, consistent, and anticonsistent categories.

Exact Values: 〈f, t〉, 〈⊥,⊥〉, 〈�,�〉, 〈t, f〉.
Consistent Values: Exact together with 〈f, f〉, 〈f,⊥〉, 〈f,�〉, 〈⊥, f〉, 〈�, f〉.
Anticonsistent Values: Exact together with 〈⊥, t〉, 〈�, t〉, 〈t,⊥〉, 〈t,�〉, 〈t, t〉.
None of the above: 〈⊥,�〉, 〈�,⊥〉.

We now move on to Gen-3 of the construction. By Proposition 8.9.3 the classi-
cal logic analog,C〈SIXT EEN , {t,�} × {t,�, f,⊥}〉, is isomorphic to the bilattice
FOUR under the≤t ordering,with {t,�} designated. As toST〈SIXT EEN , {t,�}
× {t,�, f,⊥}〉, it has as members the anticonsistent values from SIXT EEN , with
the ordering induced by ≤t . The set of strictly designated values is the intersection
of the set of Designated Values for SIXT EEN with the set of Exact Values, and
this is {〈�,�〉, 〈t, f〉}. Finally, the set of tolerantly designated values is the inter-
section of the set of Designated Values with the set of Anticonsistent Values, and
this is {〈�,�〉, 〈t, f〉, 〈�, t〉, 〈t,⊥〉, 〈t,�〉, 〈t, t〉}. All this is shown schematically
in Fig. 8.7a. The standard formulation of FDE is shown as part Fig. 8.7b. Our gen-
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(a) Strict/Tolerant FDE (b) Standard FDE

Fig. 8.7 A strict/tolerant counterpart of FDE

eral results show that these validate the same consequence relation, but differ on the
metaconsequence level.

8.11 And More?

The family of what we called logical De Morgan algebras (distributive or not) is
mostly made up of examples of purely technical interest. But the fact that K3, LP,
and FDE have strict/tolerant counterparts may have useful consequences, or at least
consequences that someone might argue are useful. I leave this to others. But there
are some more technical items that I plan to develop further in subsequent work.

Here we looked at K3, strong Kleene logic. There is also weak Kleene logic.
This was generalized to the bilattice context, in Fitting (2006), using what I called
“cut down operations.” Such operations have been further investigated in Ferguson
(2015), and dualized in Szmuc (2018). It is likely that strict/tolerant analogs based
on cut down (or track down) operations can be developed, similar to what has been
done here.

Analogous to strict/tolerant logic, but with things reversed, there is also toler-
ant/strict logic, see Frankowski (2004a, b) for background. This is a more compli-
cated family than that of strict/tolerant logic, and will be investigated in a separate
paper.

In a private communication, Eduardo Alejandro Barrio raised the question of
what is the minimum size of a strict/tolerant counterpart. It may be the case that the
algorithm given as proof of Proposition 8.10.1 produces minimal sized counterparts,
but perhaps not. This is open.
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Finally, Barrio et al. (2021) generalizes the original strict/tolerant phenomenon
in an “upward” direction, as we discussed in Section 8.1. Their work examines the
structure of consequence, metaconsequence, metametaconsequence, and so on. It is
likely that this work also generalizes to the present setting, but it is deferred to a later
paper.
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Chapter 9
What Is Negation in a System 2020?

Dov M. Gabbay

Abstract The notion of negation is basic to any formal or informal logical system.
When any such system is presented to us, it is presented either as a system without
negation or as a system with some form of negation. In both cases, we are supposed
to know intuitively whether there is no negation in the system or whether the form of
negation presented in the system is indeed as claimed. To be more specific, suppose
Robinson Crusoe writes a logical system with Hilbert-type axioms and rules, which
includes a unary connective ∗A. He puts the document in a bottle and lets it lose
at sea. We find it and take a look. We ask: is the connective “∗” a negation in the
system? Yet the notion of what is negation in a formal system is not clear. When
we see a unary connective ∗A, (A a wff) together with some other axioms for some
additional connectives, how can we tell whether ∗A is indeed a form of negation of
A? Are there some axioms which the connective “∗” must satisfy in order to qualify
∗ as a negation?

9.1 Negation in Deductive (Monotonic or Non-monotonic)
Systems with Cut

We need to start with a definition of what kind of deductive systems we are going
to work with. To choose a definition of a deductive system, we first consider which
candidates for known accepted negations we want to address and how these are
presented to us. The main candidates for known negation we consider are classical
negation, intuitionistic negation, relevance logic negation, linear Logic negation,
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Łukasiewicz many-valued negation and, last but not least, negation as failure in
Logic Programming. Some of these logics are presented as Hilbert systems (such
as relevance implication). Some have many representations including Tarski-type
consequence systems. The best representation from the point of view of answering
the question of “What is negation in a deductive system” is for us to look at Tarski
systems based on multi-sets.1

Definition 9.1.2 Let L be any propositional logical system and let �L be its prov-
ability/consequence relation. We do not specify how L is presented to us, it can be
as a Hilbert style system with axioms and rules, or as a natural deduction system or
by semantics, etc. The main point is that we have a faithful Tarski style formulation
of the provability/consequence relation of L:

A1, . . . , Ak �L B

between a finite multi-set � containing the formulas A j , j = 1, . . . , k and a single
B satisfying the following three conditions:

1. � � A for A ∈ �. (reflexivity).
2. If � � A and �′ ⊇ � then �′ � A. (monotonicity).
3. If �′ � A and � ∪ {A} � B then � ∪ �′ � B. (Transitivity, or cut).

In fact any relation � on wffs satisfying (1), (2) and (3), can be regarded as a
monotonic logical system for sets or multi-sets of data. Note the repetition in rule
(3) above for the multi-set case.

Note that in the non-monotonic case (Gabbay 1985a), condition (2.) above is
replaced by condition (2non) (Gabbay called it “Restricted Monotonicity”):

2non. If � � A and � � B then � ∪ {A} � B

Also note that for resource logics, wheremulti-sets are used (for example, monotonic
affine linear logic), we may also wish to investigate the question of what is negation
for a consequence relation with condition (3res) instead of condition (3), where we
have:

1 The perceptive reader might ask why is it that we are considering “what is negation” in a deductive
consequence system, why not present a consequence system semantically?. The answer is not
technical but psychological. When the question was considered in 1986 (see Gabbay 1986), the
author had an image of Robinson Crusoe stranded on an island writing a Hilbert System on a sheet
of paper, putting it in a bottle, and throwing it into the water. We find it years later and we see a
unary connective ∗ in the system and we ask ourselves “Is ∗ a negation in this system?”.

Of course, a logic can be presented semantically, but then we can see the intended meaning
of the system from the semantics and the challenge is smaller. Consider, for example, classical
logic with the connectives {∧,∨,→} defined semantically via the traditional truth tables for these
connectives. We add a unary symbol “¬” giving it the non-deterministic truth table of Arnon Avron
(see Olivetti and Terracini 1992), namely:

¬t = {f} and ¬f = {t, f}.
The consequence relation can be defined semantically.
Question 1.1 Is this ¬ (Avron “negation”) a negation? (We think it is not a negation).
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3res. If � � A and � ∪ {A} � B then � ∪ � � B.

(3res) does not imply (2) for these logics. But note that (3res) implies (3), but the
converse is true only if the consequence relation is monotonic, and it is between
“sets” and formulas (not multisets).

The fact that we allow � or � to be a multi-set presents no technical difficulties.2

Our strategy is to give several candidate definitions of what should constitute a
negation in a system and test them against our intuitions and against known examples.
The examples we look at are as follows:

Example 9.1.3 1. Let us consider the following system in a language with ¬
and →.

(a) A → (B → A)

(b) [A → (B → C)] → [(A → B) → (A → C)]
(c) ¬¬A → A
(d) A → ¬¬A

Rules
(e) Modus Ponens

A, A → B

B

Question 9.1.4 Is ¬ a form of negation in this system (i.e. in item 1 of Example
9.1.3)?

2. Let us make life more difficult by adding more axioms to our system. To get the
idea of what to add, first we need disjunctions and conjunctions (the system has
only ¬ and →). So let us see what can be taken as disjunction.

In classical logic (with the connectives →,¬,∨,∧, and equivalence ↔) we
have:

2 Note that really all we need is to understand, by any precise mathematical-technical means nec-
essary, (proof theoretic, algorithmic, semantic, via translation into another system, via an explicit
list/table) the question of when the expression

� � A

holds.
For Example for the case of relevance implication, in item 2 of Example 9.1.20, we use a

translation into a Hilbert system. I do not know at this stage what axiomatic properties to impose
on a Tarski consequence relation in order to make it correspond to the relation obtained from the
translation in item 2 of Example 9.1.20. More future research is required here.

So Definition 9.1.2 given above is just a very common sample axiomatic definition of a conse-
quence relation. Further note that the author has been claiming for the past 40 years that a logical
system should be taken as the declarative set of its theorems as well as an algorithm for demon-
strating said theorems. So for example classical logic (perceived as a set of theorems) presented as
a Gentzen system is NOT THE SAME LOGIC as classical logic presented via Resolution, which
in turn IS NOT THE SAME LOGIC as classical logic presented semantically via Tableaux or truth
tables.
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(a → b) → b) ↔ ¬(a → b) ∨ b ↔ (a ∧ ¬b) ∨ b ↔ a ∨ b.

This is in fact a well known definition of ∨ in terms of →.

Also let a ∧ b = def.¬(¬a ∨ ¬b) = ¬((¬a → ¬b) → ¬b).

Take the following rule:

(f)
� A → B

� ¬B → ¬A

and the further axioms:

(g) ¬(A ∨ B) ↔ (¬A ∧ ¬B)

(h) ¬(A ∧ B) ↔ (¬A ∨ ¬B)

(i) ((A → ¬¬B) → A) → A. (This axiom says (A → B) ∨ A.)

Question 9.1.5 Is¬ a negation in this system (i.e. in the system of item 2 of Example
9.1.3)?3

3. We can ask further: If we also add the axiom

(j) A → (¬A → B).

Question 9.1.6 Does the addition of axiom (j) make ¬ a negation in the system (of
item 3 of Example 9.1.3)?

(We shall see that answer is no for cases (1) and (2) and yes for case (3).)
It seems from the above Example 9.1.3 that this question does not have an imme-

diate simple answer. Remember that we cannot just write a set of axioms for negation
and say that anything satisfying these axioms is a negation. If we write too many
axioms we may get only classical negation, and even that is not guaranteed because
maybe we do not know how the negation axioms are supposed to interact with other
connectives e.g. with →.
Let us look at more examples.

3 Note that axioms (a) and (b), taken together with modus ponens define positive intuitionistic
implication. to get positive classical implication we need to add peirce’s rule

(P)((A → B) → A) → A.

Arnon Avron proposed that a better and clearer presentation of the system presented in this item 2 of
Example 9.1.3 would be in a language in which disjunction and conjunction are taken as primitive.
the system can then be axiomatised by taking some axiomatisation of positive classical logic which
has modus ponens as the sole rule of inference, and add to it the axioms (c) and (d), and the rule (f).
(Note that if the rule (f) is turned into an axiom, then we get by this a sound and complete system
for classical logic.) The other items in Example 9.1.3 can be changed similarly. (that is: in item 1
we take positive intuitionistic logic together with axioms (c) and (d), in item 2 we add (f) and (i),
where the latter is taken in a purely positive form, and in item 3 we add (j).

The author prefers the implication based formulation becausewe need to discuss adding negation
as failure to the system.
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Example 9.1.7 Consider the system L3 below of Wajsberg (1931). It axiomatises
the 3 valued logic of Łukasiewicz with → and ¬.
Axioms:

(W1) A → (B → A)

(W2) (A → B) → ((B → C) → (A → C))

(W3) (¬B → ¬A) → (A → B)

(W4) ((A → ¬A) → A) → A

The inference rule is modus ponens.

Question 9.1.8 Can one determine on the basis of �L3 whether ¬A is a negation in
L3?

Example 9.1.9 Consider a third system denoted by LS3. Its language contains an
additional connective � besides ¬ and →. It is obtained from L3 by adding the
axioms:

(�1) �A → ¬�A
(�2) ¬�A → �A

Question 9.1.10 1. Is ¬ a negation in this system? Is � a negation?
2. If ¬ is considered a negation in L3, does it have to be considered a negation in

the extension LS3?

Armed with this stock of examples we now move to a formulation and some
possible solutions of our problem.

Problem 9.1.11 Given a relation � (satisfying (1), (2), (3)) of Definition 9.1.2 and
a connective ∗A in the language of �, are there any criteria on the relationship
between � and ∗ which will agree with our intuitions regarding the question of when
∗ is to be considered a form of negation? Carnap and Church discussed whether a
syntactical characterisation of negation was possible. Carnap thought it was possi-
ble and Church thought not. A basic intuition regarding the meaning of ¬A is that
A does not hold or A is not wanted or A is excluded or even A is not confirmed.
Thus if L is a system with a candidate ∗A for negation, we cannot hope to have
A, and its negation ∗A consistent together (understand “consistent together” intu-
itively, or maybe “‘both provable”). This leads us to our first attempt in answering
Problem 9.1.11.

We must specify a set� of unwanted wffs. The wffs of� are not allowed to be true
(understand “true” intuitively, or maybe “provable”). This is normal and natural
for any database. For example we do not want two lecturers to be assigned to the
same classroom at the same time. In a formal system L, one can take � to be the set
containing ⊥, i.e. falsity or one can take � to be certain conjunctions of atoms, etc.

So to get negation into a system we must have a set of unwanted wffs �. This
set may be different for different negations. The connective (*1) may be a negation
because of �1 and (*2) may be a negation because of �2, and so on.
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We are thus led to the following definition:

Definition 9.1.12 (Negation as syntactical inconsistency for the monotonic case)
Let � be the provability/consequence relation of a system and ∗A be a connective.
We say that ∗ is a form of negation if there is a fixed non-empty set of wffs�∗ which
is not provably equivalent to the set/multi-set of all wffs, such that for any set or
multi-set of wffs � and any A the following holds:

� � ∗A iff ∃y ∈ �∗(�, A � y).

i.e. A is negated by � because A leads to some unwanted y in �∗.4

Lemma 9.1.13 Let ∗ be a negation in the logical system �, as defined in Definition
9.1.12. Then the set {x : ∅ �∗ x} is is non-empty.
Proof Since ∗ is a negation, let q ∈ �∗, then ∅ � ∗q, since q � q.

The above is a purely syntactic (in terms of �) definition. So to check whether
∗A of an axiom system is a negation, look for a �∗ and try to prove the above
equivalence.

Note that the equivalence must hold for any � and A. �

We may ask ourselves, how do we find a �∗? The answer is that if such a �∗
exists, (i.e. ∗ is a negation according to the above Definition 9.1.12) then it follows
from Lemma 9.1.13 that �∗ can be taken as

�∗ = {C |∅ � ∗C}

where ∅ is the empty set.

Lemma 9.1.14 Assume ∗ is a negation with a �∗ according to Definition 9.1.12,
then for any � and any A, (1) is equivalent to (2):

1. �, A � C for some C such that ∅ � ∗C.
2. �, A � B for some B ∈ �∗.

Proof Let B ∈ �∗ then since B � B we get by Definition 9.1.12 that ∅ � ∗B. This
shows that (2) implies (1).

Assume that for some C such that ∅ � ∗C , we have �, A � C . Since ∅ � ∗C , we
have that for some B ∈ �∗,

4 If there is disjunction ∨ in the language, then note that (for technical reasons) � will be closed
under disjunctions. We need to check what happens when we are dealing with multi-sets. We expect
the differences would be technical, the idea of what is negation would be the same.

Furthermore if we are dealing with multi-sets we may need more copies of �, I think we might
try

� � ∗A iff for some y ∈ � ∗ and some k, (� ∪ . . . (k times) . . . ∪ �, A � y).

This is in the spirit of enhancing the data (via the connective C) introduced later in this paper.
Note that we can also negate a set/multi-set �, namely � � ∗� iff for some y ∈ �∗ and some

k; �∪, ...k times, ... ∪ � ∪ � � ∗y.
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C � B.

then by cut-res (item (3res in Definition 9.1.2) using C � B, we get

�, A � B.

This proves that (1) implies (2) and we have proved the lemma for the monotonic
case. �

We can thus modify Definition 9.1.12 as follows:

Definition 9.1.15 (Definition9.1.12 (modified)) Let�be amonotonic logical system
and let ∗A be a connective. We say that ∗ is a form of negation in � iff for any �

and any A the following holds.

� � ∗A iff for some C such that ∅ � ∗C we have �, A � C .

The above Definition 9.1.15 seems theoretically sound and acceptable. All we
have to see now is whether it takes care of all the currently known and agreed upon
negations.

We will see later that further modifications are necessary. For this reason, we con-
tinue to use �∗ itself and not {C |∅ �∗ C}. Note that �∗ may contain wffs containing
∗ itself (this means that it is built up also by using the negation connective ∗).

We do not need to exclude this possibility. In fact, for classical logic, we can take
�∗ to be the set {q0 ∧ ¬q0} for some atom q0 and we all know that in classical logic
� � ¬A iff �, A � q0 ∧ ¬q0 holds, and so classical negation is a negation. So is an
intuitionistic negation because the same equivalence holds.

According to Definition 9.1.12, the ¬ defined in Example 9.1.3 axioms (a) to and
including axiom (i), i.e. Question 9.1.6 is not a negation. One can see this by taking
the following interpretation and verifying that all axioms (a) to and including axiom
(i) of Example 9.1.3 are valid. In this interpretation, there are two worlds h and e
(heaven for h and earth for e). ¬A is true in one if A is false in the other. → is the
usual truth-functional implication. All axioms and rules are valid; i.e. we have

� A iff A is true in e and h under any assignment to the atoms.5

5 Additional axiomsmay be needed for this assertion. If we just add the connective¬ to the language
of intuitionistic implication we are simply generating repeatedly/recursively new atoms of the form
¬A for any already generated A, using all the wffs of intuitionistic implication as a basis.

• The axiom ¬¬A = A, says the generating is idempotent.
• The axiom ¬(A ⇒ B) = (A ⇒ ¬B), if added , takes us in the direction of ¬ being negation as

failure.
• Adding Peirce’s rule, i.e. basing the addition of ¬ above on classical implications, takes us to

the semantics with e and h.

Let me quote Arnon Avron’s comment to me, as follows:

I can easily see the “only if” part (i.e. soundness). The converse is not obvious. Have you
proved it somewhere? If so, you should add a reference. If not, you should give a proof here.
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Now we can see that ¬A is not a negation of A, since it just says that A is false
in the other world. A ∧¬A can be consistent, as A could be true in this world (e.g.
e) and false in the other world (e.g. h).

The rule ofDefinition 9.1.12 for negation does not apply here. If¬were a negation,
then for some �, and for all �, A we would have:

� � ¬A ⇔ �, A � y, for some y ∈ �.

In particular for any y ∈ � we get � ¬y. Let p be atomic then since

¬p � ¬p

we get ¬p, p � y for some y ∈ � and therefore we get that

¬p ∧ p � y for some y ∈ �, and hence by definition � ¬(p ∧ ¬p).
This means that p ∧ ¬p is false in every model.

Since p is an atomwe cannot have the above since p ∧ ¬p is consistent, meaning
that it has a model, for example, if p is true at (e) and false at (h) (we can give this
assignment since p is atomic), then p ∧ ¬p holds at (e). Thus the ¬ above is not a
negation according to Definition 9.1.15.

Turning now to Question 9.1.6, we add axiom (j), (of Example 9.1.3), i.e.
A → (¬A → B) we get e = h and ¬ becomes classical negation. We can take
� = {(¬q0 ∧ q0)} and derive from the axioms that

� ¬A ↔ (A → (¬q0 ∧ q0)).

In fact, the above additional axiom says simply � ¬(A ∧ ¬A).
Let us check now whether Question 9.1.8, namely whether ¬ in the system L3 of

Example 9.1.7 is indeed a form of negation. This system axiomatises Łukasiewicz
3 valued logic. There are three truth values, 1 (truth), 1

2 , and 0 (falsity). The truth
tables for ¬ and → are as follows:

¬x = 1 − x and x → y = min(1, 1 + y − x).

The idea of the definition for x → y is that if x ≤ y then x → y is true. (Like 0 → 1
in classical logic.) If x > y then x − y is the measure of falsity of x → y and so

This point is very important, since your argument for the claim that ¬ becomes classical
negation depends (so it seems to me) on the completeness part of the above “iff”!

I believe that you can avoid the above problem if you give a direct, syntactic derivation of
¬A ∨ A (i.e. excluded middle) in the system given in item 2 of Example 9.1.3. (This is very
easy if you follow my suggestion in Footnote 3) The reason is that it is well known that
a complete axiomatization of Classical Logic is obtained by adding to CL+ both (j) and
excluded middle. (See P. 27 of our book Avron et al. 2018.)
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the value of x → y is 1 − (x − y). ¬x = 1 − x is just the mirror image of the truth
value.

Conjunction x ∧ y and disjunction x ∨ y have the definition below. They are
definable from → by

x ∨ y = def.(x → y) → y = min(x, y).
x ∧ y = def.¬(¬x ∨ ¬y) = max(x, y).

Intuitively, there is no doubt that ¬x is a form of negation in this system because
¬x = 1 − x . The farther x is from the truth the nearer ¬x is to the truth.

Remark 9.1.16 The consequence relation for this logic can be defined in two ways,
for multi-sets � = {A1, ..., An} � B:

Option 1. We can write A1, . . . , An �1 B in this system to mean that under any
assignment: Min (value A j ) ≤ val B, and � B to mean that under any assignment
val B = 1.

Notice that the relation �1, defined semantically above, fulfils the criteria for a
logical system. The deduction theorem, however, is not valid for �.

The Wajsberg axiom system is complete in the sense that the following holds:

A1, . . . , An � B iff �
∧

A j → B.

If we define A1, . . . , An � B to mean that � ∧
A j → B it then follows that � B iff

val B = 1 under all assignment.

Option 2. There is another possibility of deriving /attaching a consequence relation
to the axioms of L3. We can let databases be multi-sets and let A1, . . . , An �2 B to
mean that

Max(0, 1 − �(1 − Value(Ai )) ≤ Value(B).

We can choose an appropriate C for each case.
Formulti-setswe can take the formulaC(x, y) = def.¬(x → ¬y), which satisfies

the equation:

Value(C(x, y)) = max(0, Value(x) + Value(y) − 1).

This is an enhancement over conjunction x ∧ y, which has the value min(x, y).6

6 Arnon Avron commented as follows:

What you callC(x, y) is known as the t-norm that underlies Łukasiewicz logic, and is usually
denoted by &. (See Hajek’s book on fuzzy logics Hájek 2013). Your second Consequence
Relation can be characterized as follows:

A1, ..., An � B iff v(A1)&v(A2)&...&v(An) ≤ v(B)

for every valuation v.
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Our Definition 9.1.12 of what a negation is should give us that ¬ is a negation.
Suppose ¬ is indeed a negation according to Definition 9.1.12. Then there exists a
fixed � such that for any � and any A of the logic L3 we have:

� � ¬A iff �, A � B (for some B ∈ �). Necessarily � �= ∅.

Take any B ∈ � and � = ∅ then � ¬B iff B � y for some y ∈ �; but since y =
B ∈ � and B � B we get � ¬B for all B ∈ �.

One can verify by looking at the axioms the following lemma:

Lemma 9.1.17 If � A then value (A) = 1 under all assignments.

Proof The above is true for the axioms and is preserved under modus ponens and
substitution. �

Thus, we conclude that for any B ∈ �, value B = 0 under all assignments.
Now consider an atom q, certainly

¬q � ¬q

hence for some B ∈ �,
¬q ∧ q � B

hence under all assignments Min (value ¬q, value q) ≤ value B. In particular for
any assignment h with h(q) = 1

2 . This contradicts the previous conclusion that value
B = 0 always.

We therefore need to improve our Definition 9.1.12 of negation.
Our basic idea in defining negation was that A � ¬B holds if A, B together lead

to some undesirable result �.
i.e. A, B � �.

However, the way the above is written is that A and B are “combined” together
via conjunction, i.e. A ∧ B. It is quite possible that A, B can be combined together
via a different connective, e.g. some connective C(A, B). Thus A � ¬B holds iff
C(A, B) � �. C is a connective which “brings out” the effect A and B can have
together. Of course,C(x, y) is not an arbitrary connective. It must be monotonic and
satisfy some obvious properties. C(x, y) must say more than just x ∧ y and satisfy
the conditions listed in Definition 9.1.18 for it.

Definition 9.1.18 (Negation as a potential syntactic inconsistency) Let L be a sys-
tem with a provability relation � and let ∗ be a unary connective of L . We say ∗ is a
form of negation in L iff there exist a non empty set of wffs � which is not provably

A remark: an option you have not mentioned here is the standard one: A1, ..., An � B iff
v(B) = 1 for every valuation v s.t. v(Ai ) = 1 for every i . This option is closely related, of
course, to Lemma 9.1.17.
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equivalent to the set of all wffs, and a binary connective C(x, y) s.t. the following
holds for any D and A:

D �∗ A iff C(D, A) � y for some y ∈ �.

C must satisfy the following: (truth is any provable formula; such formulae exist if
∗ is a negation. See Lemma 9.1.13).

1. C(x, y) � x
2. C(x, y) � y
3. C(truth, y) = C(y,truth) = y
4. x�x ′

C(x,y)�C(x ′,y)
y�y′

C(x,y)�C(x,y′)

where A = B abbreviates A � B and B � A.
Think of C are enhanced conjunction.

Remark 9.1.19 1. We get from the above that (in case that a falsity can be defined
in the logic, with falsity � A, for any A):
C(falsity, y) = C(x, falsity) = falsity.

2. Definition 9.1.18 was given for D a single formula, if L has conjunction then we
can take � �∗ A as

∧
� �∗ A. See, however, Option 2 of Remark 9.1.16.

For our negation in the system L3, let C(x, y) = ¬(x → ¬y), and let � =
{falsity} = {¬(y0 → y0)}. Clearly, by the definition of �, x � ¬y iff � x → ¬y
iff value (x → ¬y) = 1 in all assignments, iff value ¬(x → ¬y) = 0 in all assign-
ments, iff ¬(x → ¬y) � falsity.

The truth table for C(x, y) = ¬(x → ¬y) is Max (0, value x+ value y − 1).
As can be seen, since the truth function of C(x, y) is Max (0, x + y − 1).
We get

1. C(x, y) ≤ x
2. C(x, y) ≤ y
3. C(1, y) = y = C(y, 1)
4. (a) x ≤ x ′ ⇒ C(x, y) ≤ C(x ′, y)

(b) y ≤ y′ ⇒ C(x, y) ≤ C(x, y′)

These correspond to the conditions of Definition 9.1.18, and hence ¬ in the 3 valued
logic is a negation. In fact the above definitions of¬,→ andC(x, y) as¬(x → ¬y)
show that ¬ is a negation in all Łukasiewicz many valued logics.

Now that we have changed the definition of negation in a formal system, we have
to check whether the ¬ of Question 9.1.6, i.e. of item 2 of Example 9.1.3 is still
not considered a negation. So assume that ¬ is a negation in the system of Example
9.1.3, the system with axioms (a) to (i). Then for some � and C the condition of
Definition 9.1.18 holds, namely for all D, A

D � ¬A iff C(D, A) � B for some B ∈ �.

We shall show that
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(†) A → ¬(x → x) � ¬A

using C and �, and this is impossible because in our two world model (†) says that
if A is false in one world, A is false in the other world also. Thus, if we prove (†),
then this shows that no C, � can exist and ¬ is not a form of negation.

We now proceed to prove (†):
Since C(y, z) � y ∧ z, we get

C(A → ¬(x → x), A) � ¬(x → x).

Hence, by definition of ¬,

C(C(A → ¬(x → x), A), x → x) � B, for some B ∈ �.

Since x → x is truth and C(y, truth) = y we get:

C(A → ¬(x → x), A) � B, for some B in �

and hence by definition of ¬ we get:

(†) A → ¬(x → x) � ¬A.

Example 9.1.20 (the system of relevant logic R) Consider a language with → only
and the following set of axioms and rules, defining the system R →.

Rule. modus ponens
� A,� A → B

� B

Axioms.

R1: A → A
R2: (A → B) → ((C → A) → (C → B))

R3: (A → (B → C)) → (B → (A → C))

R4: (A → (A → B)) → (A → B)

The above system was introduced by Church (1951) and Moh (1950) respectively.
Church called it “weak positive implicational calculus”. They proved the following
deduction theorem for the system.

1. Deduction theorem for R →: If there exists a proof of R from A1, ..., An in which
all A1, . . . , An are used in arriving at B then there exists a proof of An → B from
A1, ..., An−1 satisfying the same conditions.7

The above calls for the following definition of �R→

7 Here we need to take the databases � as multi-sets. In the Hilbert type formulation this is hidden.
When we say that (A → B) → (A → (A → B)) is not a theorem of R →, and use the deduction
theorem we get that {A → B, A, A} does not prove B.
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2. Definition of �R→

A1, . . . , An �R→ B iff
�R→ A1 → (A2 → . . . → (An → B) . . .)

One can see by axiomR3 that the above is independent of the order of {A j }. The above
system is identical with the implicational relevance logic of Anderson and Belnap.
It does not satisfy the conditions of a logical system, but see however, Footnote 2.
Negation¬ is introduced into R → to obtain R(→,¬), via the Ackermann negation
axioms. These axioms are used to introduce negation not only into R → but also
into all neighbouring systems.

Ackermann axioms for negation

AN1: (A → ¬B) → (B → ¬A)

AN2: (A → ¬A) → ¬A
AN3: ¬¬A → A

The following can be proved

AN4: A → ¬¬A
AN5: (A → B) → (¬B → ¬A)

See Anderson and Belnap (1975, pp. 20–21, 107–109) for details. The above defi-
nition of negation is indeed negation according to our Definition 9.1.18 of negation.
Meyer (1966) has shown that if we add to R → a symbol f (falsity) with the addi-
tional axiom

R5: ((A → f ) → f ) → A

we get a system equivalent to R(→,¬), with ¬ via the interpretation

1. ¬A = def.A → f .
The following must be proved.

2. D � ¬A iff D, A � f
i.e. D � A → f iff D, A � f

or equivalently by definition of �R→

� D → (A → f ) iff �R→ D → (A → f ), which is correct.8

8 Arnon Avron commented as follows:

It is not difficult to show that in item 2 above, we can substitute ¬¬[(D → D) → ¬(A →
A)] for f . Since ¬[(D → D) → ¬(A → A)].
This is is provable in R → for every A, D, you may take � as {C |∅ � ¬C}, and there is no
need to extend the language in this case.

On the other hand, it is not clear what isC(x, y) in this example, even if you add f ! It should
satisfy 1–4 of Definition 9.1.18. However, since in Definition 9.1.18 we took “truth” to be
any provable formula, none of the obvious candidates seems to work.
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Remark 9.1.21 Technically, if the system R(→,¬) of Example 9.1.20 is formu-
lated with ¬ and without f , can we find an f such that ¬A = A → f ? In classi-
cal logic one can take f = q0 ∧ ¬q0 or if conjunction is not available, one takes
f = ¬(q0 → q0) for some fixed q. We cannot do the same for R(→,¬), because if
we take f = ¬(q0 → q0) for some fixed atom q0, we will not have enough axioms
on → to be able to use f as needed. We will have to add axiom R4 for this new
f = ¬(q0 → q0) and then show that no new theorems can be proved for any wffs not
containing q0. Thus we see that Definition 9.1.18 is not quite right in the sense that
the system considered may be too weak to show that it has a negation. In other words
a connective ∗ may indeed be a negation in the system �, but � may be too weak
to prove the Definition 9.1.18. In fact, a connective C(x, y) required by Definition
9.1.18 may not be definable in the language of the system, but only in an extension.
Intuitively if ∗ is a negation in a conservative extension, then we can and should
regard it a negation in the system itself. We are thus led to the following definition:

Definition 9.1.22 (An improved version of Definition 9.1.18)

1. Let L1 and L2 be logical systems such that the language of L2 extends the
language of L1.
We say L2 is a conservative extension of L1 iff the following holds for any �, A
in the language of L1

� �L1 A iff � �L2 A.

2. We say that ∗ is a negation in L1 iff for some conservative extension L2 and
some � and C in L2 satisfying the conditions of Definition 9.1.18, we have that
for any D, A of L1 the following holds:

D �∗ A iff C(D, A) �L1 B, for some B ∈ �.

Wehave now to checkwhether this new definition of negation turns the connective
¬ of Question 9.1.6, i.e. item 2 of Example 9.1.3 axioms (a) to (i) inclusive into a
negation. (Recall that we found that ¬ is not a negation). The answer is no: ¬ is still
not a negation. The reason is that it can be proved that (think of the consequence
semantically) for any conservative extension of the system in Example 9.1.3 the two
world interpretation (with the e world and the h world) is still valid. So the argument
for showing that no C and � can make ¬ into a negation still goes through.

Example 9.1.23 We now give another example illustrating the need for Definition
9.1.22. Consider the language of classical propositional logic and its consequence
relation �.

Let �1 be defined as

� �1 A iff � �= ∅ and � � A.

�1 is a consequence relation

However, ¬ is not a negation in �, according to Definition 9.1.12, since for any
non-empty � that we choose we would have to have for B ∈ � that ∅ �1 ¬B since
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certainly B �1 B contrary to definition of �1. But this is counter-intuitive since
certainly � = {q ∧ ¬q} should be acceptable.

The example (which was suggested by the referee) is certainly pathological and
Definition 9.1.22 handles it nicely. However in our view a more satisfactory solution
to this particular problem is to require the following additional property to be fulfilled
by a consequence relation.

4. � � A iff ∀x(�, x � A). (Coherence).

We now investigate the possibility that there might be negations for which �

depends on D. This is quite intuitive since it says that what we do not want, �,
depends on the data, D, which we have. This is the case for the negation as failure
in Logic programming, as shown by Gabbay (Gabbay and Sergot 1986, Sect. 4). Of
course, logic programming does not satisfy coherence. In fact, it turns out that we
cannot have a notion of� dependent on D, for a coherent consequence relation. (See
Example 9.1.23 above).

Proposition 9.1.24 Let � be a monotonic logical system with conjunction ∧ and a
negation ¬ characterised by the following clauses:

1. For any D there exists �(D), dependent on D, such that for any A the following
hold:

2. D � ¬A iff ∃y ∈ �(D)(D, A � y)
3. � � A iff ∀x(�, x � A).

Then there exists an N (independent of D) such that (1) holds, (i.e. N = �(D).)

Proof We prove Proposition 9.1.24 by means of two Lemmas.

Proof of Proposition 9.1.24 Part 1: Two Lemmas

Lemma 9.1.25 Let �,¬ and �(D) be as in Proposition 9.1.24. Let N (D) be the
set

N (D) = {y|D � ¬y}

then ¬ is a negation satisfying equation (2) of Lemma 9.1.24 with N (D) as a set of
unwanted sentences.

Proof Very much as in Lemma 9.1.14, we show that, for any D and A:

• ∃y ∈ �(D)(D, A � y) iff ∃z ∈ N (D)(D, A � z)

1. Assume D, A � y, for some y ∈ �(D).

By (2) of Proposition 9.1.24 we get that D � ¬A and hence A ∈ N (D) and therefore
there exists a z ∈ N (D), namely z = A such that D, A � z.

2. Assume D, A � z, for some z ∈ N (D).
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Since z ∈ N (D), we therefore have that D � ¬z. Hence by (2) of Lemma 9.1.24
again, there exists a y ∈ �(D) such that D, z � y. We now have:

D, A � z and D, z � y

and by the cut rule (3res) we get

D, D, A � y.

This completes the proof of Lemma 9.1.25.
Note that the proof in part (2) above can be modified to show that D, A � B and

D, A � ¬B implies D, D � ¬A. �

Remark 9.1.26 We draw several conclusions from Lemma 9.1.25:

1. First that if ¬ is indeed a negation dependent on D (via �(D)) then equation
(2) of Lemma 9.1.24 is really an uninformative tautology. By Lemma 9.1.24,
�(D) can be taken as N (D) = {y|D � ¬y} and equation (2) of Lemma 9.1.24
becomes:

D � ¬A iff ∃y(D � ¬y and D, A � y)

which is trivially true for y = A.
Note that for the case where�was fixed (independent of D) we got that D � ¬A
iff ∃y(� ¬y and D, A � y) which is more informative.

2. The second conclusion is that � is dependent on D in a special way.

As D gets stronger, � increases. This is not intuitive! Why should (a priori) what
we do not want increase with the database?

This property follows since we have:

D′ � D, D � ¬A

D′ � ¬A

3. The third conclusion follows from the proof of Lemma 9.1.25 and the assumption
(3) of Lemma 9.1.24 .

We get the following for ¬:

(c1) D,A�B;D,A�¬B
D,D�¬A{A,A}

Furthermore, since we saw in (2) that D′ � D ⇒ N (D′) ⊇ N (D) we can
get that (see Footnote 4, and read A ∧ B as {A, B}. Thus adding ∧ is always
conservative):

(c2) D�¬A
D�¬(A∧B)

The reason is that if D, A � y, y ∈ N (D), then certainly D, B, A � y and since
D, B � D, we have y ∈ N (D, B) and hence D � ¬(A ∧ B).
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We now proceed to use Lemma 9.1.25 to prove Proposition 9.1.24 namely that ¬
can be taken to be a negation with a fixed � (independent of D). We assumed that
the language contains conjunction ∧. ∧ satisfies the three axioms:

A ∧ B � A
A ∧ B � B
A, B � A ∧ B.

We proceed now to the second Lemma:

Lemma 9.1.27 Let � be a system with negation ¬. satisfying the rule:

1. D,A�B;D,A�¬B
D�¬A

Then for N = {B ∧ C |B � ¬C} we have for any D, A
2. D � ¬A iff ∃y ∈ N (D, A � y).

Proof 1. Assume D � ¬A. We are looking for a y such that y ∈ N and D, A � y.
Let y = D ∧ A. Certainly D, A � D ∧ A and D ∧ A ∈ N since D � ¬A.

2. Assume that for some y ∈ N , we have D, A � y. y is then equal to some B ∧ C
with B � ¬C . Since D, A � B ∧ C we get D, A � C . Since B � ¬C we get
D, A � ¬C and hence by rule 1, D � ¬A.

�

Part 2 of the proof of Proposition 9.1.24: Having proved our two Lemmas (9.1.25
and 9.1.27) we can proceed. Assume the conditions of Proposition 9.1.24 for � and
¬ hold. By conclusion (c1) of item 3 of Remark 9.1.26 the conditions of Lemma
9.1.27 hold and hence ¬ is a negation with a fixed � = N . �

The above considerations show that there is no hope for a formulation of a negation
¬ with a � dependent on the database, within the framework of monotonic logics.
The assumption that ∧ is available does not restrict generality since ∧ can always be
added to the language and Definition 9.1.22 for negation be used. �

9.2 Calculus of Failure

We give examples from other papers to show that negation as failure is negation in
our sense. We give no proofs. It is too complicated for our current paper which is
essentially a position paper, see Gabbay (1985b), Gabbay and Horne (2020).

Example 9.2.1 This example illustrates the idea of why we think negation as failure
is a proper negation.

Consider a logic program without loops (where every atom either succeeds or
fails):

� = {¬b ⇒ a}.

From this program, a succeeds and b fails. Let �(�) = {y|y fails}.
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Add the axioms for a new negation symbol n� to be

�n = {y ⇒ n�|y ∈ ��}.

In � translate any ¬x as x ⇒ n�. This translation gives a new theory �′.
We get �1 = �′ ∪ �n to be {(b ⇒ n�) ⇒ a, b ⇒ n�}.
This is an intuitionistic theory for intuitionistic ⇒. We have

�1 � x iff x succeeds from �

�1 � (x ⇒ n�) iff x fails from �.

This was done in my paper Gabbay and Sergot (1986).9

Example 9.2.2 When we have loops, we can use answer set programming (Gelfond
2008).

Consider �:
� = {¬a ⇒ b,¬b ⇒ a}.

Answer set 1. a = in, b = out. We get �1.

�1 = {b ⇒ n1, (b ⇒ n1) ⇒ a, (a ⇒ n1) ⇒ b}.

�1 � a but �1 � b.

Similarly
Answer set 2. a = out, b = in.

We get
�2 = {a ⇒ n2, (b ⇒ n2) ⇒ a, (a ⇒ n2) ⇒ b}.

We get �2 � b, �2 � a.

Example 9.2.3 This covers a general loop. Consider the loop

{¬a ⇒ a}.

9 This is Theorem B on p. 29 of Gabbay and Sergot (1986). It says and we quote:

Theorem B. Let P be any database. Let L be L = {yP(?F)y = 0}. Assume that P is such
that every goal either succeeds or fails. Then for any G P(?F)G = 1 iff (P, L)(?I )G = 1.

Note the assumption that every goal either succeeds or fails (i.e. no loops). This is noted on the
same page of the paper, we Quote further:

Theorem B is important. It says that if our mechanical theorem proving is compete (i.e.
P?A = 0 or P?A = 1), then negation as failure is the truly sound classical negation. This
holds because it is equal to negation as inconsistency, which is complete. However, in the
case that the theorem prover P?G is not complete, e.g. when we have loops, negation as
failure may not behave logically.
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Answer set programming does not help here, but we can add a historical loop checker.
Let us try. We use the notation “?a = 1” means ?a = success. “?a = 0;; means ?a =
failure.

Part 1: We start the computation with the query ?a = 1.

¬a ⇒ a ?a = 1

iff
¬a ⇒ a?a = 0

iff
¬a ⇒ a ?¬a = 0

iff
¬a ⇒ a ?a = 1.

We loop. So the query ?a = 1 fails, so ?a = 0 succeeds.

Part 2: We start the computation with the query ?a = 0. We implement this by
continuing the computation beyond the loop point of Part 1:

?¬a = 1

iff
?a = 0

we get another looping point where we loop again.
This means that if we start with ?a = 0 then ?a = 0 also loops, so the query fails

an we get answer a = 1.
So we get two possibilities.
We thus get no agreement using the loop checker. If we ask ?a = 1 we loop and

therefore we get that a fails and if we start with the query ?a = 0 we also loop and
get that a succeeds.

In case we consider that a fails, we get we get {a} for the fail set and we have:

�1 = {a ⇒ n1, (a ⇒ n1) ⇒ a}
�1 � a

In case a fails and in case a succeeds we get ∅⊥ for the fail set. We use ⊥

�2 = {⊥ ⇒ n2, (a ⇒ n2) ⇒ a}

we have �2 � a.

For the sake of comparison, let us re-do Example 9.2.2 using a loop checker and
see whether we get the same two possibilities or not. In other words independently
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of whether we ask ?a = 1 or if we ask ?a = 0, we get the same result for a, namely
either a succeeds or a fails.10

Example 9.2.4 Example 9.2.2 using a loop checker.
Let

� = {¬a ⇒ b,¬b ⇒ a}.

1. Start with ?a = 1. We get:
?a = 1

if
?¬b = 1

if
?b = 0

if
¬a = 0

if
?a = 1.

We loop.
Therefore ?a = 1 fails, so ?a = 0 succeeds.
If we continue after the loop we get
if

?¬b = 1

if
?b = 0

We see that we get ?b = 0 looping if we were starting with b = 0.
So in this case b = 0 fails, so b = 1 succeeds. So the answer success set is b = 1
and a = 0.

2. Note that if we start with “?a = 1” or with “?b = 0” we never get the query
“?a = 0” or the query “?b = 1”.

3. Let us start and ask ?b = 1.
?b = 1

if
?¬a = 1

if

10 In view of the restriction of Theorem B, (the restriction of no loops, see Footnote 9), we want to
eliminate loops by a loop checker, and ask will the theorem go through?
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?a = 0

if
?¬b = 0

if
?b = 1

if
?¬a = 1

if
?a = 0

The looping elements are “?b = 1” and “?a = 0”. If the looping elements are
failures then the answers are consistent a = 1 and b = 0 are the successes.

4. We see that (1) and (3) completely agreewith the answer set programming answer.

We now want to add negation as failure to full implicational intuitionistic logic.11

This negation, when added to intuitionistic implication, is very difficult to handle
mainly because themeaning of “¬” keeps on changing depending onwhere¬ appears
in the formulas. This is different from answer sets where theremay be several options
for the meaning of “¬”, but once we choose an option, the meaning of ¬ gets fixed
for all occurrences of “¬”.

The next Example 9.2.5 will illustrate the problem.

Example 9.2.5 Let �1 be {(1)−(4)}
1. (d ⇒ (c ⇒ ¬a)) ⇒ c
2. c ⇒ a
3. ¬d ⇒ x
4. ¬x ⇒ a

and let �2 be {(1)−(6)}, where
5. d
6. c

Note that in the logic of intuitionistic implication, we have, for any X,Y, Z and �,

� � X ⇒ (Y ⇒ Z)

iff (by definition, or by the deduction theorem)

11 This means that we take implication with Axioms (a) and (b) of Item 1 of Example 9.1.3, and
add the negation as failure symbol and define the computation as in N-Prolog, see Gabbay (1985b).
The reader need not reference (Gabbay 1985b), but follow the computation in the examples which
follow. It is very intuitive.
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� ∪ {X} ∪ {Y } � Z

So if we add ¬ to ⇒, then for Z = ¬a we get that “¬” says that in our computation,
?a is a failure from the database � ∪ {X,Y }.

So looking at clause (1), we can see that “¬a”would need to fail from the database
�1 with clauses (5) and (6) added i.e. from �2).

While “¬” in clauses (2) and (3) do not add anything to the database, so ¬ needs
to fail from �1 above.

Let us now do some specific computations to illustrate the problems involved.
Computation, part 1.We ask “?a = 1” from database�1 = {(1), (2), (3), (4)} and
use clause (4) first. So

�1 �?a = 1

using (4), if
�1?¬x = 1

if
�1?x = 0

using (3), if
�1?¬d = 0

if
�1?d = 1.

We get that the query ?d = 1 fails from the database�1, because this database has no
clause with head d. Therefore the original query, namely ?a = 1, fails for the choice
of the above initial clause (4) with head a. However, we also have clause (2) with
head a and so let us backtrack and ask ?a = 1 again and this time choose clause (2).

Computation, part 2. Let us backtrack, and ask �1 �?a = 1 using clause (2).

�1 �?a = 1

using (2), if
�1?c = 1

using (1), if
?(d ⇒ (c ⇒ ¬a)) = 1

and we ask, if
�2?¬a = 1

Since
�2 = �1 ∪ {d, c}
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if
�2?a = 0

from (4), if
�2?¬x = 0

Computation, part 3.Note that “¬x” is now asked from�2 and not from the original
�1! The meaning of “¬” has changed for its same occurrence in “¬x”.

We have two options:

Option 1. Continue and ask ¬x from �1.
Option 2. Continue and ask ¬x from �2.

Let us do them in parallel

Option 1 Option 2
from (4) ?¬x = 0 from (4), if ?¬x = 0
if ?x = 1 if ?x = 1
from (3), if ?¬d = 1 from (3) if ?¬d = 1
if ?d = 0 if ?d = 0
Success. Fail.
Clause (5) not available Because clause (5) is available.
because we are using �1

Question. Which option do we adopt?
Answer. Option 1 is better from the point of view of “what is negation” because we
want the meaning of each occurrence of negation to become fixed. We write clause
1 as

1*. (d ⇒ (c ⇒ ¬�2a)) ⇒ c .

and clauses (3) and (4) as

3*. ¬�1d ⇒ x
4*. ¬�1x ⇒ a.

Option 2 is known in the literature asN = Prolog (Gabbay 1985b) and its negation as
failure was extensively investigated and has complex semantics (Gabbay and Horne
2020; Gelfond 2008).

Example 9.2.6 Let us revisit Example 9.2.5 and be very simple minded about it. We
saw in Examples 9.2.1 and 9.2.2. The very simple approach that for a logic program
� without loops or with semantics where every atom (or literal) x appearing in the
program x either succeeds of fails, we can take as �� for negation the set of all y
which fail.

So let us apply the same procedures to the program �1 of Example 9.2.5.
The clauses are:

1. (d ⇒ (c ⇒ ¬a) ⇒ c
2. c ⇒ a
3. ¬d ⇒ x
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4. ¬x ⇒ a.

The atoms appearing in this program are {a, c, d, x}. So let us check first whether
every atom either succeeds or fails. We get

a succeeds
c succeeds
x succeeds
d fails.

Here we use the N -Prolog computation, namely Example 9.2.5 computation Parts
1, 2 and Part 3, option 2.

Second, let �1 be {d} (as our recipe dictates) and rewrite the program as (with n1
as negation)

1*. (d ⇒ (c ⇒ (a ⇒ n1))) ⇒ c
2*. c ⇒ a
3*. (d ⇒ n1) ⇒ x
4*. (x ⇒ n1) ⇒ a

and the additional clause for d

7*. d ⇒ n1

We now expect the same results of success or failure for {a, c, x, d} and of course
failure for n.

Let us check.
Case n1:

?n1 = 1

using (7), if
?d = 1

fail.
Case a. Using 4*

?a = 1

?x ⇒ n1

add x
?n1

using (7), if
?d = 1

fail.
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We backtrack and use clause 2*.
using 2*

?a = 1

if
?c = 1

using 1*,
add d
add c
add a, if

?n1 = 1

using (7)
?d

Success for ?a = 1.
Case c. Success. Follows from case a that ?c = 1.
Case d.

?d = 1

fails.

The big question we ask is:

Big Question BQ Is this very simple minded approach an indication of a possible a
general truth (big theorem) or does it only work sometimes? See Gabbay and Horne
(2020).
Answer to BQ: It is an accident, as the next Example 9.2.7 shows. However, there
might be a general theorem which is inductive on the structure of nested negations
and its proof would certainly be quite complicated.

Example 9.2.7 Part 1: The problem.Consider the following program�1 = {(1)}:
1. ((a ∧ (¬a ∧ ¬b ⇒ x)) ⇒ x) ⇒ z.

Let us query
�1?z = 1

We use clause (1) and ask if �2?x = 1 where �2 = �1 ∪ {(2), (3)} where
2. a
3. ¬a ∧ ¬b ⇒ x .

We continue the computation using clause (3) ad ask a conjunction if�2?¬a ∧ b = 1
which splits to two queries.
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if
Two queries

Δ2? a 1 Δ2? b 1
liaf deeccus

Thus overall we get that �1?z fails.
Therefore we have that�1?z fails as well as�2?a,�2?b and�1?x all fail because

they are not heads of any clauses. So all atoms fail from �1. So

��1 = {a, b, x, z}.

We therefore translate �1 to �′
1, namely �′

1 includes the following clauses

1*. ((a ∧ ((a ⇒ n) ∧ (b ⇒ n) ⇒ x)) ⇒ x) ⇒ z
4*. a ⇒ n
5*. b ⇒ n
6*. x ⇒ n
7*. z ⇒ n.

Let us ask
�′

1?z = 1

if
�′

2?x = 1,

where �′
2 = �′

1 ∪ {(2∗), (3∗)}, where
2*. a
3*. ((a ⇒ n) ∧ (b ⇒ n)) ⇒ x

We continue:
if

�′
2?((a ⇒ n) ∧ (b ⇒ n)) = 1
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Success from (5*)
Δ2? 1 Δ2? 1

if

and

Success from (4*)

This result does not match.

z should fail from �1.

Part 2: The remedy. The remedy is that we need to eliminate the negations induc-
tively on their nestings. Suppose we ask as in Part 1, the query ?¬z. The ‘neg” in
“¬z” is from�1, but the “¬” in “¬a” and in “¬b” is from�2. So from�2 a succeeds.
What fails from �2 are b and x and z. So the proper translation of �′

2 is

�′′
2 = {(1∗), (2∗), (3∗), (5∗), ∗6∗), (7∗)}

= �′
2 − {(4∗)}

Let us now follow the computation of Part 1, up to the pointwherewe have�′′
2?a ⇒ n

This will fail as we want.
We need to define mathematically the induction. If we manage that, then we will

get that nested negation as failure is a negation in our sense.
It seems that we need to follow the idea of defining/introducing several nega-

tions at once and characterise them together in terms of each other, and they
will be negations in our sense. This is a new ball game and is the subject of active
research.

9.3 Conclusion and Future Research

Let us summarise what we have learnt in this position paper about the question of
what is negation in a system.

1. Assume a logical language with well-formed formulas and a relation � between
multisets � of wffs and a single wff A of the form

� � A.

We need not assume any properties of “�” nor do we need to know how � is
defined.
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2. We put forward the basic intuition that a unary connective ∗ in the language, is
a negation in � if for every � there exists a multiset of wffs �∗(�) such that
� � ∗A iff for some y ∈ �∗(�)

� ∪ {A} � y.

3. This intuitive definition works in one form or another also for non-monotonic
consequence systems, such as negation as failure (that is why we have that �∗
depends on �). For a monotonic consequence relation, we would expect that �∗
would be the same for any �.

We did observe, however, that we might introduce a negation ∗(�) for each �

and write some axioms connecting all the ∗(�) negations. We gave some hints
in Sect. 2, on how this can be done, for the case of negation as failure added to
intuitionistic implication.

4. There are systems � with ∗ where ∗ is not a negation.
5. Most of the well-known systems with ∗, which are considered as a negation, are

also negations according to our definition, but not all of them.
6. There are systems such as paraconsistency systems,where the question ofwhether

their negation candidate is indeed a negation is debated in the literature (seeBeziau
2020). Our approach might be able to offer a verdict.

7. There is a need for a systematic examination of all candidates for negation in the
literature with a view to improve our definition of what is negation and possibly
also refute some community misconceptions.
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Chapter 10
Relevance Domains and the Philosophy
of Science

Edwin Mares

Abstract This paper uses Avron’s algebraic semantics for the logic RMI to model
some ideas in the philosophy of science. Avron’s relevant disjunctive structures
(RDS) are each partitioned into relevance domains. Each relevance domain is a
boolean algebra. I employ this semantics to act as a formal framework to represent
what Nancy Cartwright calls the “dappled world”. On the dappled world hypothesis,
local scientific theories each represent restricted aspects and regions of the universe.
I use relevance domains to represent the domains of each of these local theories and
I provide a formalisation of the salient relationships between so-called fundamental
theories and local theories. I also examine ways in which the paraconsistent nature of
RMI can be used to deal with inconsistencies within and between theories adopted by
scientists. The paper ends with some suggestions about updating RDS given changes
in the theories that science adopts.

10.1 Introduction

In a trio of articles in the early 1990s (Avron 1990a, b, 1991), Arnon Avron develops
an approach to paraconsistency and relevance that uses a strong relevant logic as its
base. This logic, called “RMI” is closely related to Dunn and McCall’s system R-
Mingle (Anderson andBelnap 1975, §8.15).My interest is not in the complete system
RMI, but only in its negation and implication fragment, RMI→,¬. Avron shows that
RMI→,¬ is an extremely interesting logic. He gives it an algebraic semantics. Its
models are “relevant disjunction structures”. One of the very elegant properties of
relevant disjunction structures is that each can be partitioned into a set of boolean
algebras. Avron calls these boolean algebras “relevance domains”. An application of
relevance domains in the philosophy of science is my topic here.

My idea is to use RDS tomodel what Nancy Cartwright calls the “dappled world”.
On her view, the most successful scientific theories are not very general theories, but
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rather specialised ones, which treat only a limited range of phenomena. I model a
limited range of phenomena of this sort by a relevance domain – that is, I model it
in terms of the propositions about it. In this way, the various specialised (or “local”)
theories are separated from one another semantically, represented as being in differ-
ent relevance domains. Within this formal framework, I also formalise two different
ways in which more general (or “fundamental”) theories are related to local theo-
ries. These two relationships correspond to what Cartwright calls “pluralism” and
“fundamentalism” in the philosophy of science.

My understanding of relevance domains is epistemological. The fundamentalist
thinks that once perfect general theories are found, there will be no need for local
theories, and hence in terms of the present framework that there should only be one
big relevance domain. Even the pluralist, who thinks that only local theories can
be exact, does not necessarily think that domains really match natural boundaries.
She may think that dividing the world up into domains is just the best we can do.
In contrast to this epistemological view of domains, Avron adopts an ontological
interpretation of them. He says that they represent different “levels of reality”:

The idea behind it is not new. Gentzen, for example, divided ... the world of mathematics
into three grades, representing three “levels of reality”. The elementary theory of numbers
has the highest degree or level of reality; set theory has the smallest degree and mathematical
analysis occupies the intermediate level. In the theory of types, or in the accumulative von
Neumann universe for set theory, we can find indication of a richer hierarchy (Avron 1990a,
p. 707).

Another version of the levels of reality view can be found in Plato’s Republic, in his
simile of the divided line. On Plato’s view, the concrete world has less reality than
mathematical objects, which in turn have less reality than Ideas, such as the idea of
the good or the idea of beauty (see Cresswell 2012). More modern views concerning
levels of reality can be found inMeinong (in his distinction between entities that exist
and those that subsist as well as those that merely have “Aussersein” but not “Sein”
(i.e. those that have “Nichtsein”)) and early Russell (in his distinction between being
and existence Russell 1903, §427).

I employ relevance domains to understand scientific theories, but the use of
domains also raises an important problem. Various sorts of inconsistency appear
when studying science. But the logic of each individual domain is classical. Classi-
cal logic makes valid the principle of explosion – that every proposition is entailed
by a contradiction. When using two theories that are about the same domain, but
inconsistent with one another, we may encounter local explosions – every proposi-
tion in the domain is derivable. In Sect. 10.7, I suggest a method to limit the number
and severity of explosions that arise in the simultaneous employment of conflicting
theories.

The plan of the paper is as follows. In Sects. 10.2 and 10.3, I introduce relevant
disjunction structures and relevance domains. In the following sections, I treat the
theories that scientists use as filters on a relevant disjunction structure or on domains
within that relevant disjunction structure. In Sect. 10.4, I set out Cartwright’s the-
sis that scientific theories divide the world into domains and suggest that relevance
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domains can be used formally to represent this thesis. I also formalise the oppos-
ing theories of fundamentalism and pluralism, which concern the relation between
general theories (theories about an entire relevant disjunction structure) and local
theories (theories about individual domains). In Sects. 10.5–10.7, I turn to the use of
the logic RMI to deal with inconsistency in science. In the final section before the
conclusion, I suggest using a semantic analog to the AGM theory of belief revision
to deal with updating and otherwise revising relevant disjunction structures as a way
of understanding changes in the views of scientists or scientific communities.

10.2 Relevant Disjunction Structures

At the heart of Avron’s semantic theory is his employment of an intensional dis-
junction operator, ⊕. He defends his use of an intensional, rather than extensional,
disjunction in a brief discussion of C.I. Lewis’s argument for the principle of exposi-
tion – that every proposition can be derived from a contradiction. Recall that Lewis’s
argument starts with the premise A ∧ ¬A, then from this he infers by simplification
that A and then that A ∨ B by the principle of weakening. By simplification again
from the premise he infers that¬A and from¬A and A ∨ B by disjunctive syllogism
he derives B. Avron says:

It follows that no paraconsistent logic can have an operation of disjunction for which both
weakening and disjunctive syllogism are always valid. The validity of at least one must be
given up.

Which of these two rules should be rejected? It seems obvious to me that if Lewis’s argument
does not apply to concrete situations it is because nobodywill try to infer A ∨ B from A unless
he sees a connection between A and B. In contrast, applications of disjunctive syllogism are
frequent and indispensable. Accordingly, it seems preferable to retain disjunctive syllogism
while limiting the validity of weakening (Avron 1990a, p. 170).1

The intensional disjunction that Avron adopts does just this: it makes valid every
instance of disjunctive syllogism but does not allow weakening except in certain
circumstances.2

Avron’s semantics is built around this intensional disjunction. A relevant dis-
junction structure (RDS) is a quintuple D =< D,≤,′ ,⊕, TD > that satisfies the
following conditions:

1. ≤ is a partial order on D;
2. ′ is a unary operation and an involution on< D,≤>; that is, for all a ∈ D, a′′ = a;
3. ⊕ is a binary operation on D; it is associative, commutative, and order preserving

on < D,≤>;
4. a = a ⊕ a;

1 Avron’s relevance relation (Avron 1990a, p. 713ff) is his formalisation of this notion of connection
between propositions.
2 For a similar but more protracted defence of intensional disjunction, see Read (1988).
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5. For all a, b, c ∈ D, if a ≤ b ⊕ c, then b′ ≤ a′ ⊕ c;
6. For all a, b ∈ D, a ⊕ (b′ ⊕ b)′ ≤ a;
7. TD is a truth set on D.

A truth set TD on D is a subset of D that is closed upward under ≤ and satisfies the
following semantic entailment condition:

(SE) a ≤ b iff a ⇒ b ∈ TD.

I think of the elements of RDS as propositions, and call them such throughout
this paper. The partial order on propositions is an entailment ordering. a ≤ b if
and only if a entails b according to the RDS. The operator ⊕ is an intensional
disjunction, often called “fission” in the relevant logic literature. The operator ′ is
an intensional complement and is used to represent the negation of the language.
Postulate 4 (henceforth called ‘RDS4’) states that ⊕ is idempotent. This postulate
is essential for the proof that every RDS is partitioned into relevance domains, as is
RDS6. RDS5 states that a form of antilogism holds for RDS.

I use the following defined operators on RDS:

a ⊗ b =d f (a′ ⊕ b′)′

a ⇒ b =d f a′ ⊕ b

The “fusion” operator, ⊗, represents what is usually thought of as an intensional
conjunction. It is easily shown that fusion is idempotent, commutative, and order
preserving.Avron (1990a, p. 712) thinks that this operator is not a formof conjunction
because a proposition a ⊗ b can be true while neither a nor b is true. For this reason,
Avron also adds another intensional conjunction to his logic. I do not follow him
in this, not because of any ideological dispute with Avron, but because my present
purposes do not require a conjunction in this sense. The implication operator, ⇒, is
a relevant implication.

It is useful to know that the standard “contraposition” form of RDS5 also holds:

Lemma 10.1 If D is an RDS, then if a ≤ b, b′ ≤ a′.

Proof Suppose thata ≤ b. Then,a ⇒ b ∈ TD . That is,a′ ⊕ b ∈ TD . Thus,b′′ ⊕ a′ ∈
TD , and so b′ ⇒ a′ ∈ TD . Therefore, b′ ≤ a′. �

The following lemma is useful, and it also shows in part that fission is a form of
disjunction.

Lemma 10.2 If a ≤ c and b ≤ c, then a ⊕ b ≤ c.

Proof Suppose that a ≤ c and b ≤ c. By RDS3 (⊕ is order preserving), a ⊕ b ≤
c ⊕ c. By idempotence, a ⊕ b ≤ c. �
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Here are two lemmas relating fusion, fission, and implication that will come in
handy later:

Lemma 10.3 a ≤ b ⇒ (a ⊗ b)

Proof

1. a′ ⊕ b′ ≤ a′ ⊕ b′ RDS1
2. a′′ ≤ (a′ ⊕ b′)′ ⊕ b′ 1, RDS5
3. a ≤ b′ ⊕ (a ⊗ b) 2, commutativity, RDS2, definition of ⊗
4. a ≤ b ⇒ (a ⊗ b) 3, definition of ⇒

�
Lemma 10.4 If a ⊗ b ≤ c then a ≤ b′ ⊕ c.

Proof
1. a ⊗ b ≤ c hypothesis
2. (a′ ⊕ b′)′ ≤ c 1, definition of ⊗
3. c′ ≤ a′ ⊕ b′ 2, lema1 , RDS2
4. a′′ ≤ c′′ ⊕ b′ 3, RDS5
5. a ≤ b′ ⊕ c 4, RDS2, commutativity

�

An RDS is said to be residuated if and only if the following biconditional holds
for all propositions a, b, and c:

a ≤ b ⇒ c if and only if a ⊗ b ≤ c

Theorem 10.5 Every RDS is residuated.

Proof Suppose that a ⊗ b ≤ c. By Lemma 10.4, a ≤ b′ ⊕ c. By the definition of⇒,
a ≤ b ⇒ c.

Now suppose that a ≤ b ⇒ c. By the definition of ⇒, a ≤ b′ ⊕ c. By the
commutativity of fission, a ≤ c ⊕ b. By RDS5, c′ ≤ a′ ⊕ b′. By Lemma 10.1,
(a′ ⊕ b′)′ ≤ c′′. By RDS2 and the definition of fusion, a ⊗ b ≤ c. �

The notion of a fusion filter plays a large role in this paper. It is defined as follows.
A set of propositions F is a fusion filter on an RDS D if and only if (1) F is closed
upwards under ≤, that is, if a ∈ F and a ≤ b, then b ∈ F and (2) if a and b are both
in F , then a ⊗ b is also in F .

Lemma 10.6 If < D, TD > is a RDS, then TD is a fusion filter.

Proof By the definition of a truth set, TD is closed upward under ≤.
Assume that a and b are in TD . By Lemma 10.3, a ≤ b ⇒ (a ⊗ b). Since TD

is closed upwards under ≤, b ⇒ (a ⊗ b) ∈ TD . By the definition of a truth set,
b ≤ a ⊗ b, hence a ⊗ b ∈ TD . �
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It is easy, furthermore, to show that every fusion filter is closed under detachment
for ⇒, that is, if a ⇒ b and a are both in a fusion filterF , then b is also inF . Here’s
a little proof:

1. a ⇒ b ≤ a ⇒ b RDS1
2. (a ⇒ b) ⊗ a ≤ b 1, lemma 10.5

So, suppose that a ⇒ b and a are both in F . F is closed under fusion so (a ⇒
b) ⊗ a ∈ F . By the above argument and the fact that F is closed upwards under ≤,
b ∈ F .

I prove one final lemma before moving on to discuss relevance domains. This
lemma connects fusion and implication again in an interesting and (for the present
project) important manner.

Lemma 10.7 (a ⇒ c) ⊗ (b ⇒ d) ≤ (a ⊗ b) ⇒ (c ⊗ d).

Proof Proof is in the style of a sequent proof, since this proof has a tree structure
that is easier to present in this form.

(a ⇒ c) ⊗ a ≤ c (b ⇒ d) ⊗ b ≤ d
(a ⇒ c) ⊗ a ⊗ (b ⇒ d) ⊗ b ≤ c ⊗ d

((a ⇒ c) ⊗ (b ⇒ d)) ⊗ (a ⊗ b) ≤ c ⊗ d
(a ⇒ c) ⊗ (b ⇒ d) ≤ (a ⊗ b) ⇒ (c ⊗ d)

�

10.3 Relevance Domains

If D is an RDS, for each proposition a ∈ D there is a relevance domain, |a|, which
is the set of b in D such that b ⊕ b′ = a ⊕ a′. Clearly no two distinct relevance
domains overlap, and since there is a relevance domain for each proposition, every
RDS is partitioned into relevance domains. It so happens that every relevance domain
is a boolean algebra, < |a|, 1a, 0a,⊕a,⊗a, ′a >, where 1a = a ⊕ a′, 0a = a ⊗ a′,
⊕a is just ⊕ restricted to |a|, and similarly for the other two operators. In what
follows, I drop the subscripts, since the restriction is obvious.

What is especially interesting about the fact that relevance domains are boolean
algebras is that within domains ⊕ and ⊗ act like the join and meet respectively of a
lattice. In logical (as opposed to algebraic) terms, they act like extensional disjunction
and conjunction when restricted to a domain.

Here is a proof of the algebraic correlate of the logical principle of addition.
Assume that b ∈ |a|, so b′ ⊕ b = a′ ⊕ a.
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a′ ≤ a′ ⊕ a′

(a′ ⊕ a′)′ ≤ a′′
a ⊗ a ≤ a
a ≤ a ⇒ a
a ≤ a′ ⊕ a a′ ⊕ a = b′ ⊕ b

a ≤ b′ ⊕ b
b ≤ a′ ⊕ b

Substituting a′ for a throughout gives us the usual b ≤ a ⊕ b. The principle of sim-
plification – a ⊗ b ≤ b, where b ∈ |a| – follows from addition in the usual way.

The proof that fusion distributes over fission is rather more involved. Here is a
proof of one direction of the principle of distribution:

a ⊗ b ≤ a ⊗ b
b ≤ a′ ⊕ (a ⊗ b)

a ⊗ c ≤ a ⊗ c
c ≤ a′ ⊕ (a ⊗ c)

b ⊕ c ≤ (a′ ⊕ (a ⊗ b)) ⊕ (a′ ⊕ (a ⊗ c))
b ⊕ c ≤ a′ ⊕ a′ ⊕ (a ⊗ b) ⊕ (a ⊗ c)

b ⊕ c ≤ a′ ⊕ (a ⊗ b) ⊕ (a ⊗ c)
a ⊗ (b ⊕ c) ≤ (a ⊗ b) ⊕ (a ⊗ c)

And here is a proof of the converse. Assume that b, c ∈ |a|:

a ⊗ b ≤ a
a ⊗ b ≤ b

a ⊗ b ≤ b ⊕ c

a ⊗ b ≤ a ⊗ (b ⊕ c)

a ⊗ b ≤ a
a ⊗ c ≤ c

a ⊗ c ≤ b ⊕ c

a ⊗ c ≤ a ⊗ (b ⊕ c)
(a ⊗ b) ⊕ (a ⊗ c) ≤ a ⊗ (b ⊕ c)

Note that this proof appeals not only to addition and simplification, but to Lemma
10.2 as well.

For each relevance domain, |a|, there is a partial order, ≤a , defined as follows.
Where b, c ∈ |a|,

b ≤a c iff b ⊗ c = b

A fusion filter on |a| is a set of propositions of |a| closed upwards under ≤a and
closed under fusion. Extracting |a| from the RDS in which it resides, fusion filters
on |a| are just filters in the standard algebraic sense, since ⊕ is just a greatest lower
bound on |a|. I use fusion filters on domains to represent certain scientific theories
in Sect. 10.4 below.

The proposition below shows that when restricted to a relevance domain, |a|, the
partial order ≤ is a subset of ≤a .

Proposition 10.8 If a ≤ b and |a| = |b|, then a ≤a b.

Proof Suppose that |a| = |b| and that a ≤ b.
I first show that a ≤ b ⊗ a. By assumption a ≤ b. Then, since fusion is order

preserving, a ⊗ a ≤ b ⊗ a. By the idempotence of fusion, a ≤ b ⊗ a.
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Now I show that b ⊗ a ≤ a. By idempotence, b ⊗ b ≤ b. By Lemma 10.5 and the
definition of⇒, b ≤ b′ ⊕ b. Since |a| = |b|, b′ ⊕ b = a′ ⊕ a, and so b ≤ a′ ⊕ a. By
commutativity,b ≤ a ⊕ a′. ByRDS5,a′ ≤ b′ ⊕ a′. ByLemma10.1, (b′ ⊕ a′)′ ≤ a′′.
By the definition of fusion and RDS2, b ⊗ a ≤ a, as required.

Putting this altogether, if a ≤ b and |a| = |b|, then a ≤a b. �

Suppose that f is a fusion filter on |a| and F is a fusion filter on the entire RDS
such that every proposition b in f such that b �= a ⊕ a′ and b �= a ⊗ a′ is also in F .
The following lemma entails that f ⊆ F :

Lemma 10.9 If F is a fusion filter on D and a is in F , then a ⊕ a′ ∈ F .

Proof Suppose that a ∈ F .

1. a ⊗ a ≤ a idempotence
2. a ≤ a ⊕ a′ 1, lemma 10.1, definition of ⊗

Since F is closed upwards under ≤, b ∈ F . �

Lemma 10.10 Suppose that b ∈ F and b ≤a c. Then c ∈ F .

Proof Assume that b ≤a c. Thus, b, c ∈ |a|. By the definition of a relevance domain,

b ⊕ b′ = c ⊕ c′ = a ⊕ a′.

First, I show that (a ⊗ b) ⇒ b = a ⊕ a′:

1. a ⊕ a′ = a ⊕ a′
2. a′ ⊕ a′ ⊕ a = a ⊕ a′ 1, idempotence, associativity
3. a′ ⊕ b′ ⊕ b = a ⊕ a′ 2, b ⊕ b′ = a ⊕ a′, associativity
4. (a ⊗ b)′ ⊕ b = a ⊕ a′ 4, associativity, defintion of ⊗
5. (a ⊗ b) ⇒ b = a ⊕ a′ 4, definition of ⇒

By Lemma 10.9, we know that a ⊕ a′ ∈ F . So, by the above, (a ⊗ b) ⇒ b ∈ F .
Since fusion filters are closed under detachment for ⇒, b ∈ F . �

10.4 A Dappled World?

I employ RDS to represent a particular view of scientific theories and their relation-
ship to reality. On this picture of science, scientists employ various theories that deal
only with local phenomena but also they accept more fundamental theories that con-
tain laws that are supposed to underly the various local laws contained in the other
theories. The fundamental theories unify the local theories. This sort of unification
is often thought by philosophers of science to be a form of explanation (see, e.g.,
Kitcher 1981).
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Nancy Cartwright, however, has raised serious questions about the nature of fun-
damental laws and their relationship to local laws. She outlines two views concerning
this relationship that she calls “nomological pluralism” and “fundamentalism”. She
supports pluralism over fundamentalism:

Metaphysical nomological pluralism is the doctrine that nature is governed in different
domains by different systems of laws not necessarily related to each other in any system-
atic or uniform way; by a patchwork of laws. Nomological pluralism opposes any kind of
fundamentalism. I am here concerned with the attempts of physics to gather all phenomena
into its own abstract theories. In How the Laws of Physics Lie I argued that most situations
are brought under physics only by distortion, whereas they can often be described fairly
correctly by concepts from more phenomenological laws (Cartwright 1999, p. 31).

Local theories, on Cartwright’s terminology, have their own “domains”. In what
follows, I formalise this view using relevance domains in RDS. But before I get to
that, let us look more closely at the dispute between fundamentalism and pluralism,
as Cartwright sees it.

In order to understand better the dispute between fundamentalism and nomo-
logical pluralism, let’s look at an example from Cartwright (1983) and Cartwright
(1999). Kepler’s laws of planetary motion covered just that range of phenomena:
the motions of the (then known) planets in our solar system around the sun. On the
fundamentalist view, Newton’s laws of gravity and force explained Kepler’s laws by
being much more general and allowing the derivation of those more specific laws.3

On Cartwright’s pluralism, however, the fundamentalist view is wrong. Kepler’s
laws are of a different character than the supposedly more general laws. Kepler’s
laws have no exceptions. On Cartwright’s reading, Newton’s laws are to be under-
stood as ceteris paribus conditionals. Consider Newton’s second law of motion,
Force = mass × acceleration. My pen sits on my desk in front of me. The earth
acts on it in terms of a force of gravity. Yet the pen does not accelerate towards the
earth. On the fundamentalist understanding of Newton’s theory, the pen may have no
net acceleration, but it does have a component of acceleration towards the earth that is
counteracted by the force exerted on it by the desk. Cartwright interprets components
of force, acceleration, and so on, as usefulmathematical fictions, but not as being real.
She takes Newton’s second law to say, in effect, that if ideal circumstances obtain
(where there are no counterbalancing forces), Force = mass × acceleration. The
fundamentalist, on the other hand, takes the components of force and acceleration to
be real entities underlying the phenomena that we perceive.

It is notmy aim here to adjudicate between pluralism and fundamentalism. Rather,
I suggest how to use the theory of RDS to formalise both theories. I begin with
fundamentalism.

3 In fact, Newton’s laws allow the derivation of laws that are approximately the same as Kepler’s
laws. I can adjust my view to claim that Newton’s laws allow the derivation of a theory that
is approximately the same as Kelper’s, but this will require the use of a relation of approximate
similarity, and thiswill add rather a lot of complexity to the formalism. So I justmake the simplifying
assumption that on the fundamentalist theory local theories are straightforwardly derivable from
general ones.
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I assume for the purposes of the present section that all the scientific theories I am
treating are consistent. In Sect. 10.5 below and those that follow, I treat inconsistent
theories as well.

A local theory is a fusion filter on a relevance domain. The domain of a theory
is the set of propositions about the things and circumstances to which it applies and
does not include any other propositions. A fundamental theory, on the other hand, is
a fusion filter on the entire RDS.

According to fundamentalism, a fundamental theory T supersedes a local theory
t if and only if the laws of t can be derived from T . It may be that the laws of t do
not exhaust all of t , that t contains some propositions that are not laws and hence not
derivable from T . This possibility only complicates matters; it does not change the
view in any substantial way, and so I will ignore it.

Let us look briefly at an example of what the fundamentalist means when he says
that T supersedes t . Suppose that t just contains Galileo’s claim that all bodies in
free fall fall with the same acceleration (and is also closed upwards under ≤a , where
|a| is the domain of t). And let T be Newton’s theory of force and gravity. Let F and
α be the force of gravity on and acceleration on a body i andm and M be the masses
of i and the earth respectively. Then we have:

F = mα = GMm

r2
.

Dividing through by m we get:

α = GM

r2
.

So, no matter what mass i has, its acceleration will be GM/r2. In this example
we can see both that the laws of t are straightforwardly contained in T and that T
contains more information than t . I generalise this rather straightforward example to
represent the entire fundamentalist position on the relationship between general and
local theories. I claim that a local theory t is derived from a general one T (in the
sense used by scientists and historians of science) if and only if t ⊆ T .

Turning to the pluralist position, I have a very different view of the relationship
between general and local theories. The pluralist says that fundamental theories
generate the laws of local theories in ideal contexts. So, I need to include the notion of
an ideal context inmy representation. Let I (T, t) pick out a set of sets of propositions
(i.e. I (T, t) ⊆ ℘(D)). If C ∈ I (T, t), then C describes an ideal context from the
perspectives of T and t . For example, where t is Galileo’s theory of terrestrial motion
and T is Newton’s dynamics, C might describe a context in which a thing is acted
upon by only a single external force. I require that all contexts are closed under
fusion. That is to say, if a, b ∈ C , for a C ∈ I (T, t), then a ⊗ b ∈ C .

The idea is to formalise the claim that, where c is an ideal circumstance from
the perspectives of T and t , that the laws of t are generated by T in C . In order to
represent this claim, I first define a fusion operator on sets of propositions in the
manner of Fine (1974):
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Definition 10.11 (Set Fusion) Where X and Y are sets of propositions, X ⊗ Y is the
set of propositions b for which there is some proposition a ∈ Y such that a ⇒ b ∈ X .

Suppose that a theory T says that under some condition d, the law that a ⇒ b holds.
In the present framework, I represent this by d ⇒ (a ⇒ b). Suppose, for example,
that d says that there is only force acting on an object i . Then a might say that this
force has magnitude m and then b could be ‘the force on i is m × α where α is i’s
acceleration’.

A theory T generates t in context C is characterised in the formal framework as
follows:

T ⊗ C ⊇ t

To say that T is a general theory for t in the pluralist sense is to say that for all C in
I (T, t), T ⊗ c ⊇ t .

The reason that I require C to be closed under fusion is to satisfy the condition of
the following theorem:

Theorem 10.12 If T is a fusion filter on D and C is a set of propositions closed
under fusion, then T ⊗ C is fusion filter on D.

Proof Suppose that T is a fusion filter on D and C is a set of propositions closed
under fusion.

(1) Assume that b1 and b2 are both in T ⊗ C . Then there are a1 and a2 in C
such that (a1 ⇒ b1) and (a2 ⇒ b2) are both in T . Since T is closed under fusion,
(a1 ⇒ b1) ⊗ (a2 ⇒ b2) ∈ T . By Lemma 10.7, (a1 ⊗ a2) ⇒ (b1 ⊗ b2) ∈ T . Since
c is also closed under fusion, a1 ⊗ a2 ∈ c. Hence, by the definition of set fusion,
b1 ⊗ b2 ∈ T ⊗ C .

(2) Assume that b ∈ T ⊗ C and that b ≤ d. Then there is some a ∈ C such that
a ⇒ b ∈ T . By the definition of ⇒, a′ ⊕ b ∈ T . From the fact that b ≤ d and the
fact that ⊕ is order preserving (RDS3), a′ ⊕ b ≤ a′ ⊕ d. T is closed upwards under
≤, so a′ ⊕ b ∈ T , hence a ⊕ d ∈ T . Thus, by the definition of set fusion, d ∈ T . �

The treatment of laws using relevant implication does have the virtue that it
makes conditions non-monotonic. The conditions on laws, at least on Cartwright’s
view, are understood as ceteris paribus conditions. They imply the consequents of
the laws only if certain background conditions obtain or others fail to occur. The
addition of new information to the antecedent of a law does not necessarily yield a
law in T . But one might worry that the conditional of an RDS is nevertheless too
monotonic. Consider a case in which |a| = |b| = |d|. If there is a condition e ∈ |a|,
then if d ⇒ (a ⇒ b) ∈ T then (d ⊗ e) ⇒ (a ⇒ b) ∈ T . But this is rather harmless,
at least in the way that I think of conditions like d. These conditions exclude other
conditions. For example, d tells us that there is only one force acting on i . Suppose
that another condition e tells us that there is more than one force acting on i . Then
e ⊗ d is inconsistent and quite useless as a condition on a ceteris paribus law.

Note that I am not claiming that the implication of RMI or any other standard
relevant logic is perfectly adequate to represent ceteris paribus laws. Rather I do think
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that a form of counterfactual relevant conditional is right for this task. In particular I
believe that the theory of conditionals that André Fuhrmann and I develop in Mares
and Fuhrmann (1995) can be used to produce relevant ceteris paribus conditionals of
the right sort. One feature that I would build into such conditionals is that they imply
the corresponding relevant implications. That is to say, where� is the ceteris paribus
conditional and → is the corresponding relevant implication, A � B � A → B.

Similarly, I am not claiming that relevant implication is by itself adequate to repre-
sent laws of science. Laws are, in my opinion, strict relevant implications. But these
strict implications are alethic (again, A � B � A → B). In order to include strict
relevant implication and counterfactual relevant implication in the present theory,
however, is rather complicated. There are semantical theories for both, but they are
worlds-based, not algebraic semantics. From the point of view of the present project,
the advantages of replicating these semantics in the present algebraic framework are
unclear. So, I use only the implication of RMI here.

Before I leave the topic I need to address an important point that one of the referees
raised. This is whether RMI is too weak to represent actual scientific reasoning.
It is difficult to answer this question without extensive empirical examination of
actual scientific reasoning, and painstaking analysis of whether that reasoning can
be recast in terms of RMI. My conjecture is that even when scientists are dealing
with global theories, they generally treat only parts of them, which can be understood
as representing particular relevance domains. If this is the case, then much of the
classical inference that goes on in science can be understood and justified in the
present framework.

10.5 The Problems of Inconsistency

In Sect. 10.4, I assume that all the theories that are employed by scientists are con-
sistent. This is a useful assumption but not one that is borne out completely by the
history of science. There are at least three types of inconsistency that are important
here. The first is what is sometimes called internal inconsistency. A theory is inter-
nally inconsistent if and only if contradictory propositions can be derived directly
from it. The second is what is called external inconsistency. This is an inconsistency
between two or more theories that are adopted by a scientist or by a scientific com-
munity. The third is less often discussed. It is conceptual inadequacy. This is an
inconsistency that appears when a theory can be shown to be inconsistent with an
imagined counterexample that appeals only to uncontroversially possible situations.

Internally inconsistent theories in the natural sciences are quite rare, if they exist
at all. Newton’s cosmological theory (his physics together with the propositions that
space is infinite and that matter is relatively homogeneously distributed throughout
space) is one theory that is sometimes said to contain a contradiction (Norton 1999).

There are some uncontroversially inconsistent theories in mathematics, such as
Cantor’s naïve set theory and Frege’s theory of arithmetic. Ross Brady, Richard
Sylvan, Graham Priest, Zach Weber, and others have used weak relevant logics to
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formulate naïve set theories. The logic RMI is too strong for this purpose. In a naïve
version of set theory based on RMI, one can prove Curry’s paradox. There is a fairly
limited range of internal inconsistencies that RMI is capable of treating.

One mathematical theory that is sometimes claimed to be inconsistent but has
been used in natural science is Newton’s version of the calculus.4 Vickers (2013,
Chap. 6) has recently claimed that Newton’s calculus is consistent. I do not want to
become involved in this debate.

The second sort of inconsistency, one which plays a greater role in this paper, is
that of external inconsistency. A theory is said to be externally inconsistent when
it contradicts some other theory that is accepted by the scientific community. A
standard example of an external inconsistency concerns Neils Bohr’s 1913 model of
the hydrogen atom. On this model, the sole electron in the atom is in a stable orbit
at 0.53 × 10−10m around the nucleus. But the only view of electrodynamics that
was available at the time was the classical theory (with its classical understanding
of Maxwell’s equations). According to Maxwell’s equations, the orbiting electron
should radiate energy and loose charge (see Brown and Priest 2015).

The third sort of inconsistency is conceptual inadequacy. Here are two examples.
The first is reported by van Fraassen (1989, p. 217). The following three statements
seem appropriate to include in a theory of shadows:

1. If X casts a shadow, then there is light falling directly on X ;
2. No object can cast a shadow through an opaque object;
3. Every shadow is a shadow of something.

Nowconsider the case inwhich a very large building dwarfs a small building. Suppose
the sun is in a place such that no light falls directly on the small building.Nowconsider
the shadow on the ground to the side of the small building opposite to the side on
which the large building is. There is a region on the ground that is in shadow, but this
shadow, by statement 2, cannot be of the large building and by statement 1 cannot
be of the small building. By 3, it must be of something, but there are no reasonable
candidates for the owner of the shadow.

Van Fraassen states that this theory of shadows is not empirically adequate. That
is, it does not satisfy all the empirical evidence. Van Fraassen says:

This theory is not inconsistent. Taken by itself, it is logically impeccable. But there are
phenomena that do not fit the theory – and our little experiment points to a large class of
these. So herewe have two distinct concepts of inadequacy: inconsistency andwhat I propose
to call empirical inadequacy (van Fraassen 1989, p. 218).

A theory is empirically inadequate (on Van Fraassen’s use of the term) if and only
if it does not fit the empirical phenomena. It is true that the theory of shadows given
here does not fit with all existing empirical phenomena. But there is more to it than
that. What is given as a refutation is not a physical experiment, but a simple thought
experiment. This thought experiment is such that even if therewere no actual physical
circumstances that are as described in the statement of the experiment, it would still

4 The claim stems, perhaps, from Berkeley’s criticism of Newton’s calculus (see Boyer 1959, pp.
225–226). This interpretation has been adopted by Brown and Priest (2004).
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refute the theory. We know that there could be such circumstances and this is enough
to show that there are conceptual problems with the theory, even if these problems do
not amount to an internal inconsistency. A theory that has a clash with (even merely)
physically possible features of the world that are discernible in a conceptual fashion
I call conceptually inadequate.

A historically more important example of a theory that is inconsistent in applica-
tion is Aristotle’s theory of gravity. On Aristotle’s theory, heavy things fall towards
the earth with greater acceleration than lighter things. Wanting to refute Aristotle’s
view,Galileo imagines tying two stones together, a heavier one and a lighter one.5 The
stones are released from a structure taller than the length of the stones tied together.
Using Aristotle’s theory, we get two very different answers when we try to calculate
how quickly the stones accelerate when tied together. First, if we consider the stones
separately and then their effect on one another, the lighter stone should slow down
the heavier stone (and the heavier stone speed up the lighter one) by pulling on it. If
we think of the new object – stones tied together – as a single thing, it should fall
faster than the heavier one on its own (Galilei 1933, pp. 59–64) (and see Brown 1993,
pp. 1–2). Galileo concludes that the theory is absurd because it gives two conflicting
answers to the same question about a given situation. Once again, this a conceptual
problem with the theory, but one that falls short of internal inconsistency. It could be
that no such situation would ever arise in which this inconsistency emerges. I claim
that Aristotle’s theory is another case of a conceptual inadequate theory.

I treat conceptual inadequacy, but not empirical inadequacy, as a form of incon-
sistency, at least in some cases. A conceptually inadequate theory can contradict
features that we put in place a priori in the semantical frameworks that we use in
order to interpret a class of theories or an area of science. For example, in order to
interpret a theory of gravity of a class of physical theories, we might employ a set
of possible worlds, in which bodies can vary with regard to their physical proper-
ties, including whether or not any of them are tied with rope to any others. In this
case we can determine a priori that there is an inconsistency between the semantical
framework adopted and Aristotle’s theory of gravity. I represent this sort of incon-
sistency in terms of RDS by placing propositions in the truth set which represent the
semantical setup which the theory contradicts.

The foregoing discussion suggests that we should not merely think of scientific
theories as believed or rejected by the scientific community. Two theories that are
inconsistent with one another, for example, should not both be believed, but may both
be used. Similarly, as we shall see, a theory that contradicts the belief set becomes
trivial. Thus, a more complicated taxonomy of attitudes towards theories is required.

Van Fraassen distinguishes belief in a theory from the acceptance of a theory:
“acceptance of a theory involves as belief only that it is empirically adequate” (van
Fraassen 1980, p. 12). A theory is empirically adequate, moreover, if and only if all
of its empirical predictions are true. Van Fraassen characterises his own position,
which he calls “constructive empiricism”, as holding that science aims only to give

5 At some places in Galileo’s text, the bodies described are stones, and at others they are a musket
ball and a cannon ball.
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us empirically adequate, or acceptable, theories. I neither agree nor disagree with
constructive empiricism in the present essay, but I do think that at times scientists
use theories that they do not believe but merely accept in van Fraassen’s sense.6

In order to characterise theories that are used by scientists but (perhaps because of
their conceptual inadequacy or conflict with other theories) are neither believed nor
accepted, I also need a notion of a positive attitude towards theories that is weaker
than either belief or acceptance. I call it adoption. A scientist (or anyone else) can
be said to adopt a theory if and only if he or she thinks that the theory is useful
in deriving empirically testable predictions. He or she need not believe that every
prediction derived from the theory will fit with the empirical evidence, only that
some of its results will do so. Thus, I propose a three-tiered understanding of the
positive attitudes that scientists may hold to theories. In terms of their extensions,
the relationships between the three positive attitudes towards theories are as follows:

Belief ⊆ Acceptance ⊆ Adoption

I treat a theory that is believed in terms of RDS as a subset of the truth set of the
RDS. The truth set is the set of propositions that a scientist or scientific community
believes. A theory that is merely accepted is a fusion filter on a domain (if it is a
local theory) or on the RDS as a whole (if it is a general theory). A theory that is
merely adopted (and neither believed nor accepted) is not represented in terms of
RDS. These are discussed in the following two sections.

10.6 RDS and the Limits of Paraconsistency

Although RMI is a paraconsistent logic and some RDS incorporate elements of this
paraconsistency, I argue in this section that the straightforward use of RDS to model
theories that are inconsistent in the senses discussed above is inadequate as a means
to understanding inconsistency in science.

The topic here concerns theories’ being applied to one another. Scientists often use
one theory to interpret another. They use mathematical theories to interpret physical
theories. They use more fundamental theories to interpret less fundamental theories,
and so on. I think of this in terms of an algebraic operation on theories. I represent a
theory t1 being applied to another theory t2 by

t1 ⊗ t2.

6 For example, I have heard some physicists say that they like to use the elegant mathematics of
string theory, and that it gives the right results, but that they do not believe it. As my student Tim
Irwin pointed out to me, in the social sciences it is a platitude that “all theories are false, but some
are useful”.
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In other words, the application of one theory to another is just the set fusion of the
two theories. Note that in RMI, set fusion (like fusion) is commutative.

I start by examining externally inconsistent theories. That is, theories that con-
tradict one another. such theories are not problematic if they are internally constant,
and are never applied to one another. Suppose that t1 contains a proposition a and t2
contains a′. We shall see that t1 ⊗ t2 contains all of |a|. If |a| itself contains a lot of
propositions, and there is good reason to apply t1 to t2, then this can cause a serious
problem.

To show that this problem really exists, I begin by proving the following lemma:

Lemma 10.13 Suppose that t1 and t2 are both fusion filters on |a|. Then t1 ⊗ t2 is a
fusion filter on |a|.
Proof Suppose first that b ∈ t1 ⊗ t2 and that b ≤a c. Then b = b ⊗ c. By the def-
inition of set fusion, there is some proposition d ∈ t2 such that d ⇒ b ∈ t1. Since
b = b ⊗ c, d ⇒ (b ⊗ c) ∈ t1. By the definition of ⇒,

d ′ ⊕ (b ⊗ c) ∈ t1.

⊕ and ⊗, when restricted to |a|, are just the join and meet of a distributive lattice
(i.e. here, a boolean algebra), hence by the distributive law,

(d ′ ⊕ b) ⊗ (d ′ ⊕ c) ∈ t1.

Moreover, (d ′ ⊕ b) ⊗ (d ′ ⊕ c) ≤a d ′ ⊕ c. Therefore,

d ′ ⊕ c ∈ t1,

that is,
d ⇒ c ∈ t1

and so,
c ∈ t1 ⊗ t2.

It suffices now to show that t1 ⊗ t2 is closed under fusion. Suppose that b and c
are both in t1 ⊗ t2. Then, there is some d and e both in t2 such that both d ⇒ b and
e ⇒ c are in t1. Since t1 is closed under fusion,

(d ⇒ b) ⊗ (e ⇒ c) ∈ t1.

By Lemma 10.7,
(d ⊗ e) ⇒ (b ⊗ c) ∈ t1.

t2 is also closed under fusion, so d ⇒ e ∈ t2. Therefore, b ⊗ c ∈ t1 ⊗ t2. �
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Now note that it follows from a ≤ a ⊕ a and Lemma 10.4 that a ⊗ a′ ≤ a. From
this, the following theorem can be proven easily:

Theorem 10.14 If |a| = |b|, then a ⊗ a′ ≤ b.

Proof Suppose that |a| = |b|. By the definitions of fusion and relevance domains
and Lemma 10.1, b ⊗ b′ = a ⊗ a′. Since b ⊗ b′ ≤ b, then a ⊗ a′ ≤ b. �

Theorem 10.14 together with Proposition 10.8 entails the following corollary:

Corollary 10.15 If there is some proposition a ∈ t1 such that a′ ∈ t2 and both t1
and t2 are fusion filters on |a|, then t1 ⊗ t2 = |a|.

This means that if we apply two local theories on the same domain that are
inconsistent with one another, the resulting theory will be trivial in the sense that it
will contain all the propositions of that domain. This makes RDS problematic for
studying the application of local theories that are inconsistent with one another (as
in the case of classical dynamics and the old quantum theory).

There is more bad news. Consider a theory that is conceptually inadequate. It
seems that a reasonable way of understanding this in terms of RDS is to say that the
theory contains a proposition that is the negation of some proposition in the truth set
TD . But this leads to another form of explosion, as is shown by Corollary 10.16.

Corollary 10.16 If a ∈ TD and |b| = |a|, then a′ ≤ b.

Proof Suppose that a ∈ TD and |b| = |a|. By Theorem 10.14, a ⊗ a′ ≤ b. Since all
RDS are residuated, a ≤ a′ ⇒ b. But a ∈ TD , so a′ ⇒ b ∈ TD . By the definition of
a truth set, a′ ≤ b. �

Now suppose that t is a local theory on |a| that contradicts TD . By Proposition 10.8
and Corollary 10.16, t contains every proposition in |a|. This shows that RDS are
problematic in treating conceptually inadequate theories.

What about internally inconsistent theories?A local theory that is internally incon-
sistent, as represented on an RDS contains all the propositions in its domain, and
hence is quite useless. But a general theory that is internally inconsistent may not be
made unusable by that inconsistency. Let’s say that T contains both a and a′. Then
it contains all of |a|. But if |a| is not very large or is not of much interest with regard
to the reasons that a scientist is using T , then the contradiction may be ignored.

10.7 A Syntactic Turn

The previous section may have made the situation with regard to the treatment of
inconsistency in science seem rather bleak. But things are not that bad. There are now
many different logical approaches to inconsistency in science, and they have all had
some measure of success. For example, there are the adaptive logics of Batens and
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his Ghent school (Batens 2017), Carnielli’s logics of formal inconsistency (Carnielli
and Coniglio 2015), Schotch, Jennings, and Brown’s logic of forcing (Brown 1992),
the partial models of Da Costa and French (2003), and the chunking and permeating
of Brown and Priest (2004, 2015), among others. I have adopted a purely heuristic
method of dealing with inconsistencies. I use RMI→,¬ to formulate the theories in
question, apply them to one another, and then extract the desired propositions from
the resulting theory.

I am here giving proof theory an important role to play in treating inconsistent
theories, but overall my approach remains semantic. The idea is to treat theories
that are inconsistent or inconsistent with one another as syntactic entities (sets of
formulas) and use the logic RMI to apply them to one another. Taking theories to be
sets of formulas, rather than subsets of an RDS, is that in the logic itself there are rel-
atively few theorems that construct the syntactic counterparts of relevance domains.
Relevance domains, for all their virtues in reconstructing ideas in the philosophy of
science, cause problems in dealing with inconsistencies. So, I move to proof theory
in order to avoid them when dealing with inconsistent theories. The move to proof
theory is not the final move in the interpretation of inconsistent theories and their use.
After applying theories in the syntactic sense to one another, one must extract the
useful results. These results, in order to be integrated into one or one’s community’s
beliefs or acceptances, needs (on the present view) to be interpreted in terms of the
RDS of the community, but updating or revising it.

In terms of metaphysics, I treat the RDS as representing the contents of scientific
world views, but I treat theories, qua purely syntactic entities, heuristically. That
is, I take RDS to represent the actual world, or at least an approximation to it. The
RDS are to be updated with new discoveries and to be thus made more adequate as
representations of the world. In contrast, theories are treated here as mere means to
an end. They help us determine sets of sentences that we want to represent in terms
of propositions in RDS. The goal of theorising and testing (in this framework) is
always to produce an RDS, as the semantic representation of the world as science
sees it.

In order to see how to use the proof theory for RMI in this project, I need first to
present it.

The propositional language ismade up of a countable set of propositional variables
(p, q, r, ...), a unary negation connective (¬), the binary implication connective (→),
and parentheses. The usual formation rules apply. Fusion, fission, and the bicondi-
tional are also useful connectives and are defined as follows:7

A ◦ B =d f ¬(A → ¬B)

A + B =d f ¬A → B

A ↔ B =d f (A → B) ◦ (B → A)

7 In R and stronger systems, (A → B) ◦ (B → A) is equivalent to (A → B) ∧ (B → A), where ∧
is extensional conjunction.
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In order to connect theories in the syntactic sense with their semantics, I assume
a valuation function V such that for all propositional variables, p in the language,
V (p) ∈ D, and for all formulas A, V (A) is determined in the usual recursivemanner:

• V (¬A) = V (A)′;
• V (A → B) = V (A) → V (B).

I also define a function V−1 from propositions in D to sets of formulas such that
A ∈ V−1(a) if and only if V (A) = a. Let X be a subset of D, then

⋃
a∈X V−1(a) is

the set of formulas that express propositions in X . Where X is a fusion filter, I will
show that V−1(X) is a theory, although the converse does not always hold.

Here is an axiomatisation of RMI→,¬:

1. A → A
2. A → (A → A)

3. (B → C) → ((A → B) → (A → C))

4. (A → (B → C)) → (B → (A → C))

5. (A → (A → B)) → (A → B)

6. (A → ¬B) → (B → ¬A)

7. ¬¬A → A
8. (A → ¬A) → ¬A

RMI→,¬ needs only one rule – modus ponens:

A → B A
B

I use Avron’s Gentzen system, GMRI→,¬ from Avron (1991). This system allows
both multiple premises and conclusions.

Axioms:
A, A, ..., A
︸ ︷︷ ︸

m times

� A, A, ..., A
︸ ︷︷ ︸

n times

where A is an atomic formula and m, n > 0.

Structural Rules:
Exchange

�, A, B � �

�, B, A � �

� � �, A, B
� � �, B, A

Contraction
�, A, A � �

�, A � �

� � �, A, A
� � �, A

Meaning Rules:

Implication
�, A � B,�

� � A → B,�

�, B � � �∗ � A,�∗
�,�∗, A → B � �,�∗
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Negation

�, A � �

� � ¬A,�

� � �, A
¬A, � � �

Derived Rules:

Fusion
�(A, B) � �

�(A ◦ B) � �

� � A,� �∗ � B,�∗
�,�′ � A ◦ B,�,�∗

Fission
�, A � � �∗, B � �∗
�,�∗, A + B � �,�∗

� � A, B,�

� � A + B,�

I generalise the consequence relation such that, where � is a set of sentences
(which is either finite or infinite), � � A if and only if there is a finite subset �∗ of
� such that �∗ � A. And, where � is a set of formulas,

Cn(�) =d f {A : � � A}.

Cn(�) is the consequence set of � and Cn is a consequence operator. This conse-
quence operator has the following useful Tarskian properties:

• � ⊆ Cn(�)

• Cn(Cn(�)) ⊆ Cn(�)

• If � ⊆ � then Cn(�) ⊆ Cn(�)

An RMI→¬ theory (henceforth ‘syntactic theory’) is a set of formulas � such that
� = Cn(�). The fusion rules (together with the structural rules) entail that every
syntactic theory is closed under fusion.

Now I return to the treatment of inconsistent scientific theories. One problem
concerns the application of two theories to one another that are inconsistent with one
another. As I have said, the natural way in relevant logic to represent the application
of theories to one another is by fusion. The syntactic notion of set fusion is very
much like the semantic notion. Where T1 and T2 are theories,

T1 ◦ T2 =d f {B : ∃A(A ∈ T2 ∧ A → B ∈ T1)}.

It is easy to show that T1 ◦ T2 is a syntactic theory.
There is still an apparent problem here with inconsistent syntactic theories. This

problem is closely related to the problem with inconsistencies in semantic theories
in an RDS. Let T be a syntactic theory. Let us call the a set of formulas B such that
(B ◦ ¬B) ↔ (A ◦ ¬A) ∈ T the A-domain of T . The following proofs show that if
A and ¬A are both in T , then all the formulas in the A-domain of T are also in T .

I first show that a biconditional entails the corresponding implications:
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B � B
A � A

B � B A � B
A → B, A � B

B → A, A → B, A � A
A → B, B → A, A → B, A � B

A → B, B → A, A � B
(A → B) ◦ (B → A), A � B

A ↔ B, A � B
A ↔ B � A → B

Now I show that (A ◦ ¬A) → (B ◦ ¬B) together with A ◦ ¬A entails B:

B � B, B
B,¬B � B
B ◦ ¬B � B

...

A ◦ ¬A � A ◦ ¬A
(A ◦ ¬A) → (B ◦ ¬B), A ◦ ¬A � B

(A ◦ ¬A) → (B ◦ ¬B) � (A ◦ ¬A) → B

Let’s say that B is in the A-domain of T . This means that (B ◦ ¬B) ↔ (A ◦ ¬A) ∈
T . From this and the first derivation, (A ◦ ¬A) → (B ◦ ¬B) ∈ T . Then the second
derivation shows that (A ◦ ¬A) → B ∈ T . Suppose then that the the contradictory
formulas A and ¬A are both in T . T is closed under fusion, so A ◦ ¬A ∈ T and so
B ∈ T as well.

Suppose that T1 and T2 are syntactic theories and that B is in the A-domain of
T1. Then (A ◦ ¬A) → B ∈ T1. It is easy to show that A → (¬A → B) ∈ T1. Now
suppose that A ∈ T1 and ¬A ∈ T2. Then B ∈ T2. This shows that if T1 and T2 are
inconsistent with one another with regard to A, every formula in the A-domain of T1
is in T1 ◦ T2.

The saving feature of the move to proof theory, though, is that in order to giv-
ing syntactic representations of actual scientific theories, we rarely have cause to
add formulas that entail substantive statements of the form (A ◦ ¬A) ↔ (B ◦ ¬B),
especially where A and B have intuitively different content. This means that domains
in theories are for the most part relatively small and harmless from a practical stand-
point.

I represent both local and general theories syntactically by theories of the logic.
The difference between them is that local theories might be formulated in more
restricted languages. Let T be a theory that is supposed to be about a domain |a|.
Then the language of T will include only formulas in V−1(|a|). Note that just because
T is a theory and is formulated over |a|, the set of propositions represented by T
may not be a fusion filter over |a|. It is for this reason that I turn to theories in the
syntactic sense. For consider two theories T1 and T2 that are inconsistent with one
another. There is some formula A ∈ T1 such that ¬A ∈ T2. T1 ◦ T2 need not contain
all of V−1(|V (A)|). It does contain all of the formulas B such that it is provable in the
logic that (A ◦ ¬A) ↔ (B ◦ ¬B), but, as I have said, in general there are relatively
few such formulas B that are substantively different in content from A or ¬A.

After applying one syntactic theory to another, scientists need to extract those
results in which they are interested. The collection of those results can then be given
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an interpretation in terms of fusion filter on a domain |a| of D (or perhaps on D as
a whole), if this collection is consistent from the perspective of |a| (and does not
contradict TD).

In some cases, however, the inconsistency between T1 and T2 will make straight-
forward application of them to one another useless. To use again an example men-
tion briefly earlier, if T1 contains a value n for a particular parameter α and T2
contains a different value m (and the logic is extended to include as a theorem,
α = n → (α = m → n = m)), then T1 ◦ T2 contains n = m, which is bad enough,
but if the logic also contains the laws of subtraction and addition, then T1 ◦ T2 will
contain p = q for all numbers p and q. What needs to be done in such circumstances
is to “chunk” T1, T2, or both of them (Brown and Priest 2004, 2015). This means that
one or both of the theories need to broken down into subtheories before application
can usefully take place such that the application of a salient subtheory of T1 to a
subtheory of T2 produces a useful result.

The movement back and forth between the consideration of theories syntactically
and semantics, together with heuristics governing the choice of results to extract
from the application of theories to one another allows the productive use of theories
that are adopted but neither believed nor accepted.8

10.8 Towards a Theory of RDS Revision

One of the virtues of having a algebraic structure like an RDS in which theories
are interpreted is that this structure can be updated or otherwise revised in response
to the belief or acceptance of new theories. Revising an RDS, D is to revise TD .
The integration of a new belief, on the view that I have presented here, amounts to
adding a new proposition to TD . But to add any new proposition to TD is to add a
new implication to TD (since every proposition in RMI entails an implication). Thus,
adding a new proposition to TD alters the partial order on D and the whole RDS is
changed.

Formulating an update (the addition of a proposition to TD) is quite easy. If
we start with an RDS, D =<< D,⊕,≤,′ >, TD >, we can construct a new RDS,
D∗ =<< D∗,⊕∗,≤∗,′ >, TD∗ >, where TD∗ contains the new belief, a. I begin by
taking the smallest fusion filter extending TD and containing a. Let’s call this filter,
T ∗. Then, for each b ∈ D, I define [b] as the set of propositions c such that b ⇒ c
and c ⇒ b are both in T ∗. Now we can define the revised RDS:

• D∗ = {[a] : a ∈ D};
• ≤∗ = {< [a], [b] >: a ⇒ b ∈ T ∗};

8 As one referee helpfully pointed out, in real life theories quantifiers are used. I would be interesting
to see what effect the addition of quantifiers has to the theory of relevance domains. My idea is this:
extend RDS using Halmos’s theory of polyadic algebras (Halmos 1962). I think relevance domains
would remain and would look like little classical polyadic algebras. But I do not have a proof of
this yet.
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• [a]′ = [a′];
• [a] ⊕∗ [b] = [a ⊕ b];
• TD∗ = {[a] : a ∈ T ∗}.
It is easy (but rather tedious) to show that D∗ is an RDS.

Updates of this kind need to be done with care. Adding a proposition to TD can
make accepted theories inconsistent with TD , which we have seen can cause serious
difficulties. Perhaps adding anAGM-style entrenchment relationon accepted theories
would help one judge whether adding new beliefs is worthwhile.

Defining belief contraction on an RDS can be much more difficult than defining
updates. Suppose that new scientific theories that communitywants to accept requires
that there be two distinct propositions that are conflated on the existing semantics.
Two statements, in this case, say the same thing on the existing RDS, but the new
theories require that they be distinguished from one another.9 In such cases, the old
RDS has to be replaced with a new one that contains more propositions in its carrier
set.

Let’s say that the proposition a needs to be replaced by b and c. Then we first
construct an RDS-like structure in which ≤ is weakened to a reflexive and transitive
relation, �. The definition of a relevance domain, and other definitions, use a ≈ b
(i.e. d � e ∧ e � d) instead of a = b. Now TD can be contracted, using some form
of AGM-style contraction, to remove either b ⇒ c or c ⇒ b and then a new RDS
can be constructed using the definitions given above for updating RDS.

A revision operator could be defined in terms of sequences of contractions and
updates. An idealising assumption that we could add is to restrict TD to be consistent.
If that is so, then we could ban all updates that result in an inconsistent truth set and
treat revision in terms of the so-called Levi identity according to which the revision
of TD by a is the same as the contraction of TD by a′ and the update of the result by
a.

10.9 Summing Up

In this paper I have suggested that relevant disjunction structures (RDS) can be used
formally to represent the dappled world – a world in which precise scientific theories
characterise distinct domains of the world. Each domain – a relevance domain in
the RDS used as a framework – is a boolean algebra and each local theory is a
filter on one such algebra. General scientific theories cover all domains. I give a
formal characterisation of the two positions that Nancy Cartwright outlines with
regard to general and local theories. Foundationalists think that local theories are
straightforwardly derivable fromgeneral theories. I represent this relation by a simple

9 The opposite has occurred several times in science. For example, whereas Newton’s theory distin-
guishes conceptually between gravitational and inertial mass, Einstein’s theory takes them to be the
same. One could imagine, however, a future physical theory that once again distinguishes between
them.
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subset relation. Pluarlists, on the other hand, thinks that general theories contain only
ceteris paribus laws, which I characterise using the fusion of general theories and
ideal circumstances.

I then turn to problems concerning the use of theories that either contain incon-
sistencies or the application of theories to one another that are inconsistent with each
other. It is shown that a straightforward semantic approach is inadequate. The fact
that RDS are partitioned into boolean algebras entails that various forms of explosion
are possible when dealing with inconsistencies. Instead, I suggest that inconsistent
theories be dealt with syntactically in order to derive the desired results and that
when these results are obtained the results (not the theories as a whole) be integrated
somehow into RDS.
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Chapter 11
Consequence Relations with Real Truth
Values

Daniele Mundici

Abstract Syntax and semantics in Łukasiewicz infinite-valued sentential logic Ł are
harmonized by revising the Bolzano-Tarski paradigm of “semantic consequence,”
according to which, θ follows from � iff every valuation v that satisfies all for-
mulas in � also satisfies θ. For θ to be a consequence of �, we also require that
any infinitesimal perturbation of v that preserves the truth of all formulas of � also
preserves the truth of θ. An elementary characterization of Łukasiewicz implication
shows that the Łukasiewicz axiom ((X → Y ) → Y ) → ((Y → X) → X) guaran-
tees the continuity and the piecewise linearity of the implication operation →, an
appropriate fault-tolerance property of any logic of [0, 1]-valued observables. The
directional derivability of the functions coded by all ψ ∈ � and by θ then provides
a quantitative formulation of our refinement of Bolzano-Tarski consequence, which
turns out to coincide with the time-honored syntactic Ł-consequence.

Keywords Łukasiewicz logic · Łukasiewicz calculus · Wajsberg algebra ·
MV-algebra · Łukasiewicz axioms · Łukasiewicz implication · [0, 1]-valued
logic · [0, 1]-valued observable · Modus Ponens · Consequentia Mirabilis ·
Differential semantics · Stable semantics
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11.1 Introduction

In his paper (Avron 2015), A. Avron investigates a general notion of implication that
does not assume the availability of any proof system and thus does not depend on the
notion of “use” of a formula in a given proof—a notion typically occurring in sys-
tems of relevance logic. Avron’s generalized implication, called “semi-implication,”
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Fig. 11.1 The functions
pn : [0, 1] → [0, 1], n =
0, 1, 2, . . . , where
p0(x) = 1 − x , and pn(x) =
min(1,max(0,−n(n +
1)x + n + 1)) for every
n = 1, 2, 3, . . . . Each pn is
continuous, piecewise linear,
and each linear piece of pn
agrees with a polynomial
with integer coefficients. For
short, pn is a one-variable
McNaughton function

hinges on a weak form of the classical-intuitionistic deduction theorem, called the
“relevant deduction property” (RDP). A binary connective → of a logic L is a semi-
implication for L if it has the RDP and there are formulas φ,ψ in L such that φ → ψ
is provable in L but ψ → φ is not. It is shown that a finitary logic L has a semi-
implication iff L has a strongly sound and complete Hilbert-type system which is
an extension by axiom schemas of the standard Hilbert-type system for the implica-
tional fragment of relevance logic R. Minimal logics with RDP are characterized in
Avron (2015).

The notions of “(always sentential) logic,” “implication,” “consequence,” “proof”
stem from the Polish tradition (Tarski 1936; Rasiowa 1974; Wójcicki 1988) and its
developments. In particular, the Bolzano-Tarski paradigm of semantic consequence
|=L , (see Tarski 1936, footnote on p. 417), states that for any formula θ and set � of
formulas in a logic L ,

� |=L θ iff every model of� is also a model of θ. (11.1)

While the notion of a (tarskian) model is perfectly clear in first-order logic, for
sentential logics we may reformulate (11.1) as follows:

� |=L θ iff v(θ) = 1 for every valuation v such that v(φ) = 1 for allφ ∈ �.

(11.2)
In the present paper, the methodological approach of Avron (2015) to implication

and consequence in relevance logics is taken as a template to our approach to impli-
cation and consequence in [0, 1]-valued Łukasiewicz logic Ł. The logic Ł, of course,
falls outside the scope of Avron (2015). Suffice to say that Łukasiewicz implication
is not an implication in the sense of Avron (2015), if only because the usual deduction
theorem fails in Ł, (Mundici 2011, Corollary 1.9).
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As an illustration of the inadequacy of definition (11.2) in Ł, for each n =
0, 1, 2, . . . let pn be the function in Fig. 11.1. Since pn is continuous and piecewise
linear with integer coefficients, McNaughton’s representation theorem (Cignoli et al.
2000, Corollary 3.2.8) yields a formula ψn coding pn in Ł. In particular, the function
p0(x) = 1 − x is coded by the formula ¬X . Let � = {ψ1,ψ2, . . . }. According to
formulation (11.2) of the Bolzano-Tarski paradigm, ¬X is a semantic consequence
of � but is not a semantic consequence of any finite subset of �. Thus, if one sticks
to this formulation, Ł fails to be a finitary logic, despite its syntactic consequence
relation is finitary, (Cignoli et al. 2000, §4; Mundici 2011, Definition 1.8, Corollary
1.9).

To overcome this incompleteness phenomenon, definition (11.2) must be tailored
to Łukasiewicz logic. To this purpose, we first observe that valuations in the tradi-
tional sense amount to taking quotients by maximal ideals (in the sense of Lemma
11.3.5), ormaximal implicative filters (defined in Cignoli et al. 2000, 4.2.6 as the dual
counterparts of maximal ideals). Building on Mundici (2015), in Definition 11.4.1
and Construction 11.4.2, we will construct a semantics for Ł in terms of quotients by
prime ideals (or their dually defined prime implicative filters). By Proposition 11.4.3,
the resulting “prime” valuations have a geometric counterpart, hinging on the dif-
ferentiability properties of the McNaughton function φ̂ coded by any formula φ in
Łukasiewicz logic.1

Specifically, let � be a set of formulas and θ a formula. Using the directional
derivability of ψ̂, (ψ ∈ �) and θ̂ as [0, 1]-valued functions defined on the valuation
space [0, 1]κ, we say that θ is a stable consequence of� if whenever an infinitesimal
perturbation dv preserves the truth of all formulas ψ in �, (in the sense that (v +
dv)(ψ) = 1), then dv also preserves the truth of θ.

Turning to our example, for each i = 1, 2, . . . , the McNaughton function pi has
the constant value 1 on an open right neighborhoodNi � 0. Since

⋂
j N j = {0} and

p0 attains value 1 only at 0, then ¬X a consequence of � according to (11.2), but
not a stable consequence of �, because

0 = ∂ p1

∂x+ (0) = ∂ p2

∂x+ (0) = ∂ p3

∂x+ (0) . . . , but
∂ p0

∂x+ (0) = −1.

Remarkably, ¬X also fails to be a syntactic consequence of �, i.e., ¬X cannot be
obtained from finitely many applications of Modus Ponens to formulas in � and
substitution instances of the Łukasiewicz axioms.

Theorem 11.4.4 shows that in Łukasiewicz logic stable consequence coincides
with syntactic consequence. Our valuations as quotients by prime ideals (equiva-
lently, quotients by prime implicative filters) have a quantitative content, given by
the directional derivatives of theMcNaughton functions coded by formulas in Ł. The
usual valuations in (11.2) are just valuations of order 0.

1 McNaughton functions stand to Łukasiewicz logic as boolean functions stand to boolean propo-
sitional logic.
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As a warm-up to consequence relations in general [0, 1]-valued logics, we conclude
this section with the following logic-free result, essentially pertaining to college
mathematics.

Theorem 11.1.1 Suppose → is a continuous [0, 1]-valued function defined on the
unit real square [0, 1]2, having the following properties:

x → (y → z) = y → (x → z), and
x → y = 1 iff x ≤ y.

(i) Then upon setting ¬x = x → 0, the algebra W = ([0, 1], 1,¬,→) satisfies the
following equations:

1 → x = x

(x → y) → ((y → z) → (x → z)) = 1

((x → y) → y) = ((y → x) → x)

(¬x → ¬y) → (y → x) = 1.

(ii) As a consequence, there is a unique one-one order-preserving bijection
φ : [0, 1] → [0, 1] such that for all x, y ∈ [0, 1]

x → y = φ−1(min(1, 1 − φ(x) + φ(y))). (11.3)

Proof (i) has a tedious but straightforward proof. See the present author’s paper:
https://doi.org/10.1017/jsl.2020.74. Then (ii) follows from (i) as an exercise in first
year calculus, using the continuity andmonotonicity properties of→ .An alternative
proof of (ii) independent of (i) can be found in Baczyński and Balasubramaniam
(2008, p. 65, Theorem 2.4.20, and references therein) using t-norm theory and other
less elementary tools. �

11.2 Syntax and Semantics of Sentential Logics

A reformulation of Theorem 11.1.1 will be given in Theorem 11.3.2. To fit Theorem
11.1.1 into the framework of non-classical logics, let us briefly consider the hendiadys
syntax/semantics in the time-honored (Polish style) approach to a logic L .

Syntax. One is given an unlimited supply of sentential variables X1, X2, . . . and a set
of connectives and constant symbols. The set FORMn of formulas ψ(X1, . . . , Xn)

is then defined by induction on the number of connectives in a formula. A cer-
tain (usually, Turing computable) set of formulas is called the set of syntactic L-
tautologies. Next, for� a set of formulas and θ a formula, one says that θ is a syntactic
L-consequence of �, in symbols, � �L θ, if θ is obtainable from the syntactic L-
tautologies and the formulas of � by some specific algorithmic manipulation, typ-
ically ensuring that �L is closed under substitutions. A main nontrivial feature of

https://doi.org/10.1017/jsl.2020.74
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syntax is the “unique readability” of each formula φ, in the sense that φ is uniquely
decomposable into its immediate subformulas. This allows one to define and argue
by induction on the number of connectives of φ.

Semantics. One is given a matrix, i.e., an algebraM over a universe whose elements
are called “truth values,” containing a subsetD of truth values designated to stand for
“true.” For simplicity, let us assume that D is a singleton. It is, of course, assumed
that formulas have connectives and constant symbols in correspondence with the
operations and the distinguished elements in M. The semantics of the logic L =
LM begins with the definition of a “(truth) valuation” over n variables X1, . . . , Xn ,
i.e., an arbitrary map v : {X1, . . . , Xn} → M. The “absolute freeness” of FORMn ,
together with the unique readability of each formula, ensures that v uniquely extends
to a homomorphism, also denoted v, from FORMn into M. This is the “truth-
functionality” property of the logic L that distinguishes logic from probability, where
syntax hardly has any role. A semantic tautology τ (X1, . . . , Xn) of L is a formula
whose value is “true” for all homomorphisms v : FORMn → M. The semantics
of L culminates with the definition of semantic L-consequence, usually following
formulation (11.2).

Completeness. One now hopes to prove that semantic and syntactic L-tautologies
coincide. A more challenging, no less important task is to prove that syntactic and
semantic L-consequence coincide, in agreement with the perception of L as a cal-
culus ratiocinator-cum-semantica.

Motivation.Given themushrooming plethora of logics on themarket, it helps if some
motivation is given for the newcomer L .

Example 11.2.1 Let us consider boolean logic Lboole.

Syntax.A formula φ is a syntactic tautology of Lboole if can be derived by substitution
andModusPonens from the following axioms (called thebasic syntactic tautologies):

A → (B → A)

(A → B) → ((B → C) → (A → C))

((A → B) → B) → ((B → A) → A)

(¬B → ¬A) → (A → B)

(¬A → A) → A (Consequentia Mirabilis).

A formula θ is a syntactic consequence of a set � of formulas iff θ is derivable from
the syntactic tautologies and � by a finite number of applications of Modus Ponens.

Semantics. The algebra M = Mboole in boolean logic is the two-element set {0, 1}
equipped with the operation ¬x = 1 − x and the natural lattice operations ∧,∨.
Implication turns out to be the derived operation x → y = ¬x ∨ y. The set of oper-
ations {¬,→}, as well as {¬,∨}, can express any function from Mm to M: this
is the “functional completeness” of boolean logic based on these operations. So the
actual choice of a functionally complete basis of connectives is essentially a matter
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of aesthetics. That’s why, e.g., in the theory of boolean algebras, implication plays
second fiddle. By the deduction theorem, “semantic consequence” is definable in
terms of “semantic tautology.” The resulting notion of consequence agrees with the
Bolzano-Tarski paradigm (11.2).

Completeness. The completeness theorem of boolean logic states that syntactic con-
sequence coincides with semantic consequence. In particular, syntactic and semantic
tautologies coincide.

Motivation. Boolean logic provides a calculus ratiocinator-cum-semantica comply-
ing with the “bivalence principle,” according to which every sentence/assessment
is either true or false, but not both. There are no other “truth values.” This is the
quite exceptional status of statements in complete theories in first-order logic. The
power of boolean formulas to code yes-no observables is so strong that relatively few
basic observations on the state, position, and scanned symbol in a configuration of a
nondeterministic Turing machine T over an input x are efficiently coded by Cook’s
celebrated formula, φ = φT ,x,t, in such a way that for any input x and deadline t , φ
states

“T on input x accepts x in t steps.” (11.4)

More precisely, some homomorphism v satisfies v(φ) = 1 iff (11.4) is actually
observed. Thus, the tautology problem of boolean sentential logic is coNP-complete.

11.3 Dropping the “Consequentia Mirabilis” Axiom

Syntax. The set FORMn of n-variable formulas coincides with the set of boolean
n-variable formulas. By dropping the last item in Example 11.2.1, we are left with
the following list of basic tautologies of a new (almost centennial) logic Ł, known
as infinite-valued Łukasiewicz sentential logic (Borkowski and Łukasiewicz 1970,
p. 144):

A → (B → A)

(A → B) → ((B → C) → (A → C))

((A → B) → B) → ((B → A) → A)

(¬B → ¬A) → (A → B).

The additional axiom

((A → B) → (B → A)) → (B → A)

occurring in Łukasiewicz’s original list was proved to follow from these four, by
Chang and Meredith, (see Cignoli et al. 2000, p. 102 for bibliographical details).
The definition of a syntactic Ł-tautology τ is the same as for syntactic tautologies in
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boolean logic: τ must be obtainable from the above basic syntactic tautologies via
substitution and Modus Ponens. This (nontrivially) makes the tautology problem in
Ł coNP-complete, just as its boolean fragment, (Cignoli et al. 2000, Theorem 9.3.4).
Given a set � of formulas and a formula θ, syntactic Ł-consequence �Ł is defined
(as in boolean logic) by

� �Ł θ iff θ is obtainable from a subset of � and the syntactic tautologies of
Ł by finitely many applications of Modus Ponens.

Semantics: Tautologies. The semantics of Ł is more delicate than the semantics of
boolean logic. We start from the matrix MŁ whose universe of truth values is the
unit real interval [0, 1], equipped with the operations x → y = min(1, 1 − x + y)

and ¬x = 1 − x = x → 0. Upon restriction to {0, 1} we recover boolean negation
and implication. Then, as in the case of boolean logic, the semantic Ł-tautologies
are those formulas φ(X1, . . . , Xn)which are evaluated to 1 by every homomorphism
v : FORMn → MŁ.

Completeness (first part): the Rose-Rosser theorem for tautologies. The following
nontrivial result shows that the semantical and the syntactical notion of a tautology
agree in Łukasiewicz logic.

Theorem 11.3.1 (Rose-Rosser completeness theorem for tautologies, Rose and
Rosser 1958; Cignoli et al. 2000, §4) semantic Ł-tautologies coincide with syn-
tactic Ł-tautologies.

Henceforth, we will use the term “tautology” for both syntactic and semantic Ł-
tautologies.

Semantics: Consequence. The construction of a semantic Ł-consequence relation
beyond the paradigm (11.2) will take the rest of this paper. We first provide some
motivation.

Motivation Most observables and random variables in everyday life (as well as in
physics) are real-valued. For every bounded observable O, by taking the distance
from the maximum and the minimum value as the unit of measure, O becomes
[0, 1]-valued and adimensional, like angular amplitude. Thus, no measurement unit
is needed. Needless to say, the change of the max/min bounds results in a different
observable. (Fahrenheit temperature differs from Celsius temperature.)

Continuity is assumed at the outset, to ensure that the inevitable imprecision of our
assessments of the basic observables does not have fatal effects on the assessment
of composite (derived) observables. Continuity in physics has the same function,
allowing physical laws to be expressed by formulas, notwithstanding that: (i) the
result of every measurement is a real number together with an error estimate, and
(ii) already units of measurement are imprecisely defined: think of the sequence of
more andmore precise “definitions” of the fundamental physical unit named “meter.”
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Our study of [0, 1]-observables is not aimed at discovering new physical laws.
Rather, generalizing what boolean logic does for {0, 1}-valued observables/state-
ments, we will give a semantic method to draw consequences concerning [0, 1]-
observables from premises concerning [0, 1]-observables. This will turn out to coin-
cide with the algorithmic-syntactic method based on Modus Ponens.

Variables in [0, 1]-logic transform into a truth value y ∈ [0, 1] our assessments
of the bounded basic observables of the problem we are considering. As for the
coding of nondeterministic computations, the choice of the basic variables is a matter
of convenience. Truth functionality then allows one to code by formulas certain
composite [0, 1]-valued observables. A brute force counting shows that functional
completeness fails, whence the choice of the operations in M is no longer a matter
of aesthetics.

While addition and multiplication have a basic role in algebra and analysis, in
logic the central status of “consequence” is mostly reflected by an “implication”
operation →M : [0, 1]2 → [0, 1]. If formulas are to code [0, 1]-observables (just as
formulas in boolean logic code {0, 1}-observables), then →M must be continuous.
Since the continuity assumption merely takes care of the fault-tolerance property of
observables, in order to capture the bare minimum essentials of implication, let us
put forward the following two conditions:

Order Property x →M y = 1 iff x ≤ y,

in accordance with the natural order structure of [0, 1].
Exchange Property x →M (y →M z) iff y →M (x →M z),

making the order of appearance of x and y irrelevant for the conclusion z.

The following restatement of Theorem 11.1.1 shows that the four equations therein
are an algebraic counterpart of the basic tautologies of Łukasiewicz logic Ł.

Theorem 11.3.2 Suppose the continuous function →: [0, 1]2 → [0, 1] has the
order and the exchange properties. Let ¬x = x → 0. Then there is a unique iso-
morphism of the algebra W = ([0, 1], 1,¬,→) onto the standardWajsberg algebra,
WŁ = ([0, 1], 1,¬xŁ,→Ł), where ¬Łx = 1 − x and x →Ł y = min(1, 1 − x + y)

is Łukasiewicz implication.

We refer to Borkowski and Łukasiewicz (1970, pp.129–130) for historical infor-
mation on Łukasiewicz implication →Ł. Wajsberg algebras are the algebras satisfy-
ing the four equations in Theorem 11.1.1(i). Equivalently, they are the Lindenbaum
algebras of Łukasiewicz logic based on the implication connective, (Cignoli et al.
2000, §4.4).

Theorem 11.3.2 sheds new light on the meaning of the Łukasiewicz basic tau-
tologies listed at the outset of this section, notably the intriguing tautology

((A → B) → B) → ((B → A) → A).
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As a matter of fact, given a [0, 1]-valued function → on [0, 1]2 having the order
and the exchange property, failure of this tautology entails failure of the continuity
property of the implication operation → .

The main properties of Wajsberg algebras needed in the sequel are summarized
in the following result.

Lemma 11.3.3 Let card(X ) denote the cardinality of a set X 	= ∅ of variables. The
set V(FORM(X )) of valuations of FORM(X ) into the standard Wajsberg algebra
WŁ can be identified with its homeomorphic copy V(X ), consisting of all valuations
of the variables in X . In symbols,

V(FORM(X )) = V(X ) = [0, 1]card(X ) . (11.5)

In this way, V(FORM(X )) inherits the connected compact Hausdorff topology of
the Tychonoff cube [0, 1]card(X ). In view of (11.5), we have the following:

(i) Every formula φ ∈ FORM(X ) belongs to FORMn for some n = 1, 2, . . . and
codes the piecewise linear continuous function φ̂ : [0, 1]n → [0, 1] with integer
coefficients by the stipulation

φ̂(v) = v(φ), v ∈ V(FORMn). (11.6)

As φ ranges over FORMn, φ̂ ranges over the set of McNaughton functions on
[0, 1]n .

(ii) For every ψ ∈ FORMn, point v ∈ [0, 1]n, and nonzero vector u ∈ R
n such that

the segment [v, v + εu] is contained in [0, 1]n for some ε > 0, the directional
derivative ∂ψ̂(v)/∂u exists and varies continuously with u, once v is kept fixed.

(iii) Let Wcard(X ) denote the free Wajsberg algebra on card(X ) many genera-
tors. Up to variable renaming, Wcard(X ) consists of all functions f : [0, 1]n ⊆
[0, 1]card(X ) → [0, 1], (n = 1, 2, . . . , with n finite and ≤ card(X )) obtained
from the coordinate functions πi (z1, . . . , zn) = zi by pointwise application of
the operations of negation ¬Łx = 1 − x and Łukasiewicz implication x →Ł

y = min(1, 1 − x + y). Thus, Wcard(X ) coincides with the set of McNaughton
functions f (Y1, . . . , Yr ) with {Y1, . . . , Yr } ⊆ X .

Proof (i) A routine exercise in Łukasiewicz logic (Mundici 2011, 1.2, 1.5, 4.1). (ii)
Immediate from (i). (iii) follows combining Chang’s completeness theorem (Chang
1959; Cignoli et al. 2000, 3.1.4, 3.6.7) with McNaughton’s representation theorem
(McNaughton 1951; Cignoli et al. 2000, Theorem 9.1.5). �

Remark 11.3.4 By (11.5) the valuation space of n-variable formulas in Łukasie-
wicz logic is naturally endowed with the topological-differential structure of the
cube [0, 1]n . This allows us to infinitesimally perturb a valuation v �→ v + dv and
see the effect of this perturbation on any formula ψ = ψ(X1, . . . , Xn). As proved
in the next section, a complete quantitative account of this effect is given by the
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value v(ψ) together with suitable directional derivatives at v of the McNaughton
function ψ̂ coded by ψ. Given a set � of formulas, the differential analysis of �

and ψ under perturbations v �→ v + dv provides a refinement of the Bolzano-Tarski
semantic consequence which turns out to coincide with syntactic consequence.

The following elementary lemma rephrases in algebraic terms for Ł the standard
formulation (11.2) of Bolzano-Tarski semantic consequence, only depending on the
evaluation of � and ψ at v.

Lemma 11.3.5 For � a set of formulas and θ a formula, let W be a free Wajsberg
algebra containing θ̂ as well as the McNaughton function ψ̂ for each ψ ∈ �. (See
Lemma 11.3.3(i) for this notation.) Then the following conditions are equivalent:

(1) For every maximal implicative filter f of W , if ψ̂ ∈ f for all ψ ∈ � then θ̂ ∈ f.

(2) Every maximal ideal m of W with ψ̂/m = 1 for all ψ ∈ � satisfies θ̂/m = 1.

(3) θ is a Bolzano-Tarski semantic consequence of � in Ł in the sense of (11.2).

Proof Routine. See, e.g., Mundici (2011, Theorem 4.16), which uses the equivalent
language of MV-algebras and their ideals.2 �

11.4 The Differential Semantics of Łukasiewicz
Infinite-Valued Logic

In any ring R with unit 1R , one has two equivalent definitions of the ideal I (S)

generated by a subset S of R:

Internal I (S) = {r1x1s1 + · · · + rk xksk | k ∈ N; ri , si ∈ R; xi ∈ S}.
External t ∈ I (S) iff t belongs to every ideal of R containing S.

The external definition of t ∈ I (S) has the following equivalent reformulation:

t/J = 0 for every ideal J of R such that x/J = 0 for all x ∈ S.

Every ideal of R is the intersection of the irreducible ideals containing it. Thus

t ∈ I (S) iff any irreducible ideal J that gives value 0 each x ∈ S (taking quotients by J ),
also gives value 0 to t .

Modulo the inessential transformation x �→ 1R − x , this definition of I (S) is rem-
iniscent the notion of “θ belongs to the set D(�) of semantic consequences of a set

2 For implicative filters of Wajsberg algebras, we refer to Cignoli et al. (2000, §4.2). By an “ideal”
of a Wajsberg algebra we mean an ideal of its corresponding MV-algebra, as defined in Cignoli
et al. (2000, §1.2).
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� of formulas” arising from definition (11.2). On the other hand, the internal defini-
tion parallels the traditional method of deriving θ by suitable syntactic-algorithmic
manipulations on �∪ the tautologies.

In boolean rings, maximal and irreducible ideals coincide. Further, everymaximal
quotient of a boolean ring B is just the two-element boolean ring {0, 1}, whence the
quotient operation amounts to assigning either value 0 or 1 to elements of B—as
befits the simplest possible non-constant evaluation of the elements of B.

Differently from maximal ideals, prime ideals of the algebras of Łukasiewicz
logic have the irreducibility property, (Cignoli et al. 2000, Corollary 1.2.14). A
natural notion of semantic consequence will be obtained in this section by realizing
“valuations” as prime quotients of these algebras: Indeed all these quotients have a
quantitative description in terms of directional derivatives.

Our construction is inspired by the following quotation from C.C. Chang, (Chang
1998, pp. 5–6):

My failure to prove the completeness in Chang (1958) using MV-algebras was a disappoint-
ment to me at that time. I tried that year and even after I left Cornell, but with no success.
My mistake was in trying to pound the thing out by sticking to maximal ideals. [. . . ] But
a lucky break occurred when Dana Scott realized, with far-reaching insight, that there is a
notion of prime ideals in MV-algebras (a notion I had not considered until then).

Mimicking what Chang did to obtain his celebrated proof in Chang (1959) that the
equational class of MV-algebras is generated by the standard MV-algebra, let us first
replace maximal ideals by prime ideals in Lemma 11.3.5(1).

Definition 11.4.1 For�, a set of formulas and θ a formula, letW be a freeWajsberg
algebra containing θ̂ as well as the McNaughton function ψ̂ for each ψ ∈ �. We say
that θ is a stable consequence of� if for every prime ideal p ofW such that ψ̂/p = 1
(i.e., ¬ψ̂ ∈ p) for all ψ ∈ �, we also have θ̂/p = 1 (i.e., ¬θ̂ ∈ p).

Stated otherwise, for every prime implicative filter f ofW such that ψ̂ ∈ f for all
ψ ∈ �, we also have θ̂ ∈ f.

While, by Lemma 11.3.5, taking the quotient of f ∈ W by a maximal ideal m
amounts to evaluating f at the only point xm ∈ ⋂{g−1(0) | g ∈ m}, taking quotients
by prime non-maximal ideals prima facie does not have a similarly appealing quan-
titative counterpart. However, as will be seen in Proposition 11.4.3, every prime
non-maximal valuation u actually computes suitable directional derivatives of f at
xm. This quantitative and differential geometric content of u makes the quotient
operation φ �→ φ̂/pu a genuine semantic notion, no less significant than the usual
pointwise valuation φ �→ φ̂/m.

Construction 11.4.2 (Mundici 2015) For n = 1, 2, . . . and 0 ≤ t ≤ n let u =
(u0, u1, . . . , ut ) be a (t + 1)-tuple of elements of Rn where u1, . . . , ut are linearly
independent vectors, and u0 ∈ [0, 1]n . For each m = 1, 2, . . . , denoting by conv(Z)

the convex hull of Z ⊆ R
n , let
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Tu,m = conv(u0, u0 + u1/m, u0 + u1/m + u2/m2, . . . , u0 + u1/m + · · · + ut/mt ).

Any such u is said to be a differential (or “prime”) valuation of order t , in R
n if there

is an integer k > 0 such that for all m ≥ k the n-cube [0, 1]n contains Tu,m . When
this is the case, the subset pu of the free n-generator Wajsberg algebraWn is defined
by

pu = { f ∈ Wn | f −1(0) ⊇ Tu,m for somem = 1, 2, . . . }.

Then pu is a prime ideal of Wn.

For any formula ψ(X1, . . . , Xn) and differential valuation u = (u0, u1, . . . , ut )

in Rn , we then make the following stipulation:

u satisfies ψ means ¬ψ̂ ∈ pu (equivalently, ψ̂/pu = 1).

Further, for any � ⊆ FORMn and θ ∈ FORMn , we write

� |=∂ θ if θ is satisfied by every differential valuation that satisfies eachψ ∈ �.

By (11.5) andLemma11.3.5, valuations in the usual pointwise sense coincidewith
differential valuations of order 0. Readers familiar with ring theory will recognize
the order of a differential valuation as (the counterpart for Wajsberg algebras of) the
Krull depth of the prime ideal corresponding to it.

In view of Definition 11.4.1, the deep connection between the geometric and the
algebraic content of differential (= prime) valuations is the subject matter of the
following result.

Proposition 11.4.3 Let u = (u0, u1, . . . , ut ) be a differential valuation inRn. Then
p(u0) ⊇ p(u0,u1) ⊇ · · · ⊇ p(u0,u1,...,ut−1) ⊇ p(u0,u1,...,ut ). Further:

p(u0) coincides with the maximal ideal of Wn given by all functions of Wn that vanish
at u0, (Wn being the free n-generator Wajsberg algebra).

p(u0,u1) coincides with the prime ideal of Wn given by all functions vanishing over
some interval of the form conv(u0, u0 + u1/m) for some integer m > 0. Equivalently,
by Lemma 11.3.3(ii), f (u0) = 0 and ∂ f (u0)/∂u1 = 0.

p(u0,u1,u2) coincides with the prime ideal of Wn given by those f such that for some
integer m > 0, f vanishes on the segment conv(u0, u0 + u1/m), and ∂ f (y)/∂u2 =
0 for every y in the relative interior of the segment conv(u0, u0 + u1/m).

Inductively, p(u0,u1,...,ut ) equals the prime ideal of Wn consisting of all f such that
for some integer m > 0, f vanishes on the (t − 1)-simplex S defined by

S = conv
(
u0, u0 + u1/m, u0 + u1/m + u2/m2, . . . , u0 + u1/m + · · · + ut−1/mt−1) ,

and ∂ f (y)/∂ut = 0 for every y in the relative interior of S.
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Proof See Mundici (2015). �

Completeness (second part): syntactic Ł-consequence = stable consequence. The
following completeness theorem highlights the finitary character of the stable con-
sequence relation |=∂ for Łukasiewicz logic.

Theorem 11.4.4 Fix n = 1, 2, . . . , � ⊆ FORMn and θ ∈ FORMn. Then � |=∂ θ
iff θ is a syntactic Ł-consequence of � iff θ is a stable consequence of �. It follows
that � |=∂ θ iff {θ1, . . . , θk} |=∂ θ for some finite subset {θ1, . . . , θk} of �.

Proof The proof rests on the following two main facts:

Irreducibility Every ideal of a Wajsberg algebra coincides with the intersection
of all prime ideals containing it. This follows from the Subdirect Representation
Theorem, (Cignoli et al. 2000, Corollary 1.2.14).

Differential geometric interpretation Ideals of the form pu exhaust all possible
prime ideals of the free Wajsberg algebra Wn , (Busaniche and Mundici 2007,
Corollary 2.18).

See Mundici (2015) for details. �

The generalization of stable consequence to sets � ⊆ FORM(X ) for arbitrary
sets X of variables is straightforward, (Mundici 2015).

The case of semisimple algebras. AWajsberg algebra is said to be semisimple if the
intersection of its maximal ideals is the zero ideal. By Cignoli et al. (2000, Theorem
4.6.6), the Bolzano-Tarski semantic consequences (11.2) of a set � ⊆ FORM(X )

coincide with the stable consequences of � iff the Lindenbaum algebra of � is
semisimple. Since free Wajsberg algebras are semisimple, in the particular case
when� is the empty set, its stable consequences coincide with semantic tautologies.
Thus Theorem 11.4.4 extends Theorem 11.3.1.

By Cignoli et al. (2000, Theorem 6.3.2), boolean algebras (i.e., idempotent MV-
algebras) are hyperarchimedeanMV-algebras, whence they are semisimple. So in the
fragment of Łukasiewicz logic given by boolean logic, stable semantics coincides with
Bolzano-Tarski semantics. We also have the following.

Corollary 11.4.5 For any finite set � of formulas, the set of stable consequences of
� coincides with the set of Bolzano-Tarski consequences of �.

Proof By Hay’s theorem (Hay 1963; Mundici 2011, Theorem 3.4.9), the Linden-
baum algebra of � is semisimple. �
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11.5 Concluding Remarks

As remarked by one of the referees of this paper, the usual algebraic notion associated
to consequence in Łukasiewicz logic is in terms of implicative filters. Accordingly,
most results on implication and consequence in this paper are stated in the framework
of Wajsberg algebras.

This said, just as boolean algebras provide the standard algebraic counterpart
of classical propositional logic rather than idempotent Wajsberg algebras, similarly
MV-algebras and their ideals are a key tool in the study of Łukasiewicz logic. Thus,
in Proposition 11.4.3, building on the analogy between the internal and the external
definition of ideals in rings, we have highlighted the role of irreducibility and the
differential properties of prime ideals in MV-algebras. As an extra bonus of Elliott’s
classification, (Effros 1981; Elliott 1976), the associative-commutative structure of
MV-algebras provides a direct application of the natural deductive machinery of
Łukasiewicz logic to the algorithmic theory of approximately finite-dimensional
(AF) C*-algebras whose Murray-von Neumann order of projections is a lattice. See
Mundici (1986), Mundici (2018), and Mundici and Panti (1993).

Historically, after the syntactic proof of the completeness theorem for tautologies
byRose andRosser (1958), Changwas able to give a neat algebraic proof of Theorem
11.3.1 focusing on prime, rather than maximal ideals of MV-algebras. The former,
and not the latter, satisfy the subdirect representation theorem ensuring their irre-
ducibility. In the same way, the completeness theorem for stable consequence rests
on the wealth of geometric properties of prime ideals in MV-algebras, rather than
on the pointwise valuations provided by maximal quotients. Indeed, the Bolzano-
Tarski paradigm (11.2) of semantic consequence based on pointwise valuations is
insensitive of the stability properties of truth under infinitesimal perturbations in the
valuation spaces [0, 1]κ of Łukasiewicz logic Ł.

Refining paradigm (11.2), stable consequence stipulates that for a formula θ to
be an Ł-consequence of � one must also guarantee that the truth of θ be preserved
under any infinitesimal perturbation that preserves the truth of each formula ψ in �.
Semantically, stability under perturbations amounts to the vanishing of all directional
derivatives of the piecewise linear functions θ̂ and ψ̂ associated to the prime ideals
pu introduced in Proposition 11.4.3.

In the same way, as the dynamics of a material point depends on its initial position
and its initial speed, the deductive closure of a set� of formulas in Łukasiewicz logic
depends on the pointwise valuations satisfying � and on the differential valuations
of order 1,2, . . . satisfying every formula in �.

Acknowledgements The author is grateful to both referees of this paper for their competent reading
and valuable suggestions for improvement.
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Chapter 12
Geometric Rules in Infinitary Logic

Sara Negri

Abstract Large portions of mathematics such as algebra and geometry can be for-
malized using first-order axiomatizations. In many cases it is even possible to use
a very well-behaved class of first-order axioms, namely, what are called coherent
or geometric implications. Such class of axioms can be translated to inference rules
that can be added to a sequent calculus while preserving its structural properties. In
this work, this fundamental result is extended to their infinitary generalizations as
extensions of sequent calculi for both classical and intuitionistic infinitary logic. As
an application, a simple proof of the infinitary Barr’s theorem without the axioms of
choice is shown.

Keywords Geometric axioms · Axioms-as-rules · Infinitary logic · G3 calculi ·
Barr’s theorem

12.1 Introduction

Large portions of mathematics such as algebra and geometry can be formalized using
first-order axiomatizations. In some cases it is even possible to use just a very well-
behaved class of first-order axioms, namely, what are called coherent1 implications.
A coherent implication (also known in the literature as a “geometric implication”, a
“geometric axiom”, a “geometric sentence”, a “coherent axiom”, a “basic geometric
sequent”, or a “coherent formula”) is a first-order sentence that is the universal
closure of an implication D1⊃D2, where both D1 and D2 are positive formulas,
i.e., formulas built up from atoms using conjunction, disjunction, and existential

1We adopt here the use of coherent to replace the use of “geometric”, reserving the latter for the
infinitary version.
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quantification. Coherent theories are important for many reasons; to start with, there
is a methodological rationale for focusing on coherent theories.

Gentzen’s systems of deduction, sequent calculus, and natural deduction, have
been recognized as an answer to Hilbert’s 24th problem (as emphasized, among
others, in Negri and von Plato 2011, 2019). They provide the basis for a general
theory of proof methods in mathematics that overcomes the limitations of Hilbert-
style axiomatic systems.

Natural deduction and sequent calculus give a transparent analysis of the structure
of proofs that works to perfection for pure logic, but once they are augmented with
axioms for mathematical theories, much of their strong structural properties, such
as eliminability of cut, is lost. Transformation of axioms into rules of inference of a
suitable form, however, is by now an established method to regain such properties
(see, e.g., Negri and von Plato 1998, 2001, 2011, 2019). Coherent theories are very
well suited to this methodology, in fact, they can be translated to inference rules in
a natural fashion: In the context of a sequent calculus such as G3c (Negri and von
Plato 2001; Troelstra and Schwichtenberg 2000), special coherent implications as
axioms can be converted directly (Negri 2003) to inference rules without affecting
the admissibility of the structural rules.2 Convertibility of coherent axioms into rules
thus has the great advantage of importing tomathematical theoriesmany of the results
that typically hold only for calculi for pure logic, i.e., unextended calculi.

Coherent theories are rather ubiquitous. As emphasized by Johnstone (2002a, b),
Negri and von Plato (2011), there are many examples of coherent theories in math-
ematics: all algebraic theories, such as group theory and ring theory, all essentially
algebraic theories, such as category theory (Freyd 1972), the theory of fields, the
theory of local rings, lattice theory (Skolem 1920), projective and affine geometry
(Bezem and Hendriks 2008; Skolem 1920; Negri and von Plato 2011),3 the theory of
separably closed local rings (also known as “strictly Henselian local rings”) (Wraith
1979).

Occurrence of coherent theories is not limited to mathematics: special coherent
implications ∀x.C⊃D generalize the Horn clauses from logic programming, where
D is required to be an atomic formula; in fact, they generalize the “clauses” of
disjunctive logic programs (Minker 1994), where D is allowed to be a disjunction
of atoms. In the context of modal and non-classical logics, coherent implications
are used to characterize semantically, through properties of accessibility relations in
Kripke frames, a wealth of systems (Negri 2005; Dyckhoff and Negri 2012; Negri
2014).

Last but not least, every first-order theory has a conservative coherent extension.
Starting with a modification of Skolem’s argument from 1920 for his “normal form”
theorem, various approaches to the result have been presented and discussed in detail

2 Coherent theories can be fruitfully internalized also in the context of natural deduction (Simpson
1994) and in the formalization of algebraic reasoning through the method of dynamical algebra
(Coste et al. 2001; Yengui 2015).
3 Indirectly, through a suitable treatment of negation, alsoEuclideangeometry is covered by coherent
theories, cf. Avigad et al. (2009).
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in Dyckhoff and Negri (2015) together with applications to intermediate and modal
logics. A serious shortcoming of the standard “Morleyisation” technique is the fact
that coherent implications are generated using conjunctive or disjunctive normal form
that typically destroys the structure of formulas, whereas a “conservative” algorithm
has been presented in Dyckhoff and Negri (2015).

Many fundamental notions in mathematics, however, escape first-order logic.
Examples are arithmetical induction, certain axioms in algebra such as the axioms
of torsion abelian groups or of Archimedean ordered fields, or in the theory of
connected graphs, as well as in the modeling of epistemic social notions such as
common knowledge. The insufficiency of first-order logic in expressing fundamental
notions and constructions in mathematics led Arnon Avron to the problem of finding
the right logical framework for the formalization and mechanization of mathematics.
InAvron (2003), he gave evidence that ancestral logic, first-order logic extendedwith
transitive closure of binary relations, is a viable answer. A proof-theoretic study of
ancestral logic is offered in Cohen and Avron (2014) via a suitable extension of the
sequent system LK= with an induction-like rule for a transitive closure operator. A
more detailed analysis of ancestral logic is given in Cohen and Avron (2019).

A different, but related route toward the goal of a logical framework for for-
malizing mathematics, is taken in this work. All the examples mentioned above
can be axiomatized by means of geometric axioms, which are extensions of coher-
ent axioms that allow infinitary disjunctions. We therefore take, as a ground logic,
infinitary logic,4 for which we provide both a classical and an intuitionistic G3-style5

sequent system.
It was shown in Negri (2003) how to extend the standard classical cut-free first-

order sequent calculus G3c with rules that capture the meaning of coherent axioms
without losing admissibility of structural rules such as Contraction and Cut. The
results and proofs therein, however, are only for finitary languages and calculi, and
the question arises of what happens if we allow, more generally, rules to capture the
meaning of geometric formulas, i.e., those using arbitrary (rather than just finite)
disjunctions. We shall stick to countable disjunctions, arising in axioms such as
∀x .∨n>0 nx = 0. The appropriate inference rule for this axiom would appear to be
the infinitary rule

{nx = 0, � ⇒ � | n > 0}
� ⇒ �

(this has countablymany premisses—one for each n > 0—andwithout loss of gener-
ality has x instantiable by any term in the conclusion). With the addition of this rule,
derivations are infinitely branching trees, and proofs of standard cut-admissibility
results from, e.g., Troelstra and Schwichtenberg (2000), Negri and von Plato (2011)
no longer apply.

4 For a useful background on infinitary logic see Sundholm (1983).
5 By G3-style, we mean a calculus with a formulation of the rules obtained upon the model of the
calculus G3c and that enjoys the same structural properties (Negri and von Plato 2001).
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There is however a rich theory of cut admissibility for infinitary logics, of which
Feferman (1968) and Takeuti (1987, Ch. 4) offer useful early surveys; we men-
tion especially Problem 22.21 of the latter, based on López-Escobar Lopez-Escobar
(1965). The main cut-admissibility result in Feferman (1968) (theorem 3.3), how-
ever, uses a rule (S) that identifies sequents modulo multiplicity of formulas—a form
of contraction—and eliminates multicut rather than cut.6 On the other hand, that of
López-Escobar and Takeuti use a Schütte-style argument, and we prefer to offer a
more traditional argument.7

We study the version of infinitary logic with finite sequents rather than the one
with countably infinite sequents. If sequents are finite, the analysis of a succedent
infinitary disjunction

∨
n>0 An needs a rule such as (for k > 0)

� ⇒ Ak,
∨

n>0 An,�

� ⇒ ∨
n>0 An,�

R
∨

k

rather than (if sequents can be countably infinite)

� ⇒ A1, A2, . . . , An, . . . ,�

� ⇒ ∨
n>0 An,�

R
∨

with the premiss having an infinite succedent. Observe however that using infinitary
sequents would not dispense from the need of rules with infinitely many premisses
for L

∨
and R

∧
.

We prove the structural results for geometric extensions of both the classical and
the intuitionistic calculus (see Sections 4 and 5 below). The problems of root-first
proof-search in analytic calculi with infinite branching are not considered, other than
to remark that once cut admissibility is established and, by other means, finite model
property results are established, then finitization techniques illustrated by Jäger et al.
(2007) for the logic of common knowledge may be useful in constraining the search.

Perhaps the most important property of coherent theories to the constructively
minded is that coherent implications I form sequents that give a Glivenko class
(Orevkov 1968). In this case, the result (Negri 2003; Dyckhoff and Negri 2017),

6 Warning: the notation for infinitary disjunction in Feferman (1968) is � (where we use
∨
), and

that for (finitary) existential quantification is
∨

(where we use ∃).
7 Tait (2006) presents a cut-elimination result for infinitary classical logicwith quantification defined
in terms of infinitary conjunction and disjunction; the calculus uses single-sided sequents with
signed formulas and adheres to the sequents-as-sets paradigm. Lopez-Escobar (1965) is interested
in interpolation for Lω1ω, which is proved through a cut-free sequent calculus. The calculus has
sequents-as-sets, infinitary sequents as well as infinitary rules. Also Takeuti (1987) has infinitary
sequents and infinitary rules, but sequents are sequences rather than sets; there is an explicit weak-
ening rule, and contraction is in-built in the rules. Rathjen (2016) has both a classical and an
intuitionistic calculus Lω1ω without invertible rules nor admissible contraction. The intuitionistic
calculus is obtained through the usual single-succedent projection from the classical one, which
takes to a perhaps less direct proof of Barr’s theorem; the full form of Barr’s theorem, with the
Axiom of Choice, is investigated.
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known as the first-order Barr Theorem,8 states that if each Ii : 0 ≤ i ≤ n is a coher-
ent implication and the sequent I1, . . . , In ⇒ I0 is classically provable, then it is
intuitionistically provable. By these results, the proof-theoretic study of coherent
theories gives a general twist to the problem of extracting the constructive content
of mathematical proofs because a classical proof is already an intuitionistic one,
without the need of being modified.

As an application of the availability of a cut-free system with uniform behavior
for classical and intuitionistic background logic, we obtain a very simple proof of
Barr’s theorem that extends to the infinitary case the approach presented in Negri
(2003): If a finitary or infinitary geometric implication is derivable in the classical
sequent system for geometric theoriesG3cωT, it is derivable also in its intuitionistic
counterpart G3iωT.

12.2 Syntax

“Countable” means finite or countably infinite. Atomic formulas are indicated by
the letters P, Q, ... as usual; there may be countably many predicate and function
symbols, and equality. Formulas A are built up using the extension of the usual
first-order syntax with countable disjunctions

∨
n>0 An and conjunctions

∧
n>0 An;

quantifiers are as usual, subject to the constraint that no formula may have infinitely
many free variables. Sentences are closed formulas.

By induction on the definition, each formula A has a countable ordinal d(A) as its
depth (the successor of the supremum of the depths of its immediate subformulas).
For example,⊥ and atoms P have depth 1, since they have no immediate subformulas
and the supremum of an empty family of ordinals is 0. It follows that, if A′ is a proper
subformula of A, then d(A′) < d(A).

Sequents � ⇒ � have a finite multiset of formulas on each side. The inference
rules for

∨
are thus:

{�, An ⇒ � | n > 0}
�,

∨
n>0 An ⇒ �

L
∨ � ⇒ �,

∨
n>0 An, Ak

� ⇒ �,
∨

n>0 An
R

∨
k .

Observe that L
∨

has countably many premisses, one for each n > 0. The rules for∧
are dual to the above ones.
Derivations built using these rules are thus (in general) infinite trees, with count-

able branching but where (as may be proved by induction on the definition of deriva-
tion) each branch has finite length. The leaves of the trees are those where the two
sides have an atomic formula in common, and also instances of L

∨
where the dis-

junction is empty, i.e. is ⊥. To make this precise, we give a formal definition of

8 The general form of Barr’s theorem (Barr 1974; Wraith 1980; Rathjen 2016) is higher order and
includes the axiom of choice.
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the notion of derivation D and the associated notions of its height ht (D) and its
end-sequent.

1. Any sequent � ⇒ �, where some atomic formula occurs in both � and �, is a
derivation, of height 0 and with end-sequent � ⇒ �.

2. If each Dn is a derivation, of height αn , with end-sequent �n ⇒ �n and

. . . �n ⇒ �n . . .

� ⇒ �
R

is an inference (i.e., an instance of a rule), then

. . .

dn
�n ⇒ �n . . .

� ⇒ �
R

is a derivation, of height the countable ordinal supn(αn) + 1 andwith end-sequent
� ⇒ �.

Thus, each derivation has a countable ordinal height (the successor of the supre-
mum of the heights of its immediate subderivations). Thus, if � and � have an
atomic formula in common, then � ⇒ � has a derivation D of height ht (D) = 0.
The sequent ⊥, � ⇒ � (regarded as a zero-premiss rule) has a derivation of height
1. Observe that the definitions of depth and height differ from those in Feferman
(1968): we use the successor of a supremum rather than the supremum of the suc-
cessors: note that supn>0(n + 1) = ω 	= ω + 1 = (supn>0(n)) + 1. It follows that,
if D′ is a sub-derivation of D, then ht (D′) < ht (D).

For classical infinitary logic it is possible to use a minimal language with only
infinitary disjunction, negation, and the existential quantifier as primitive. Infinitary
conjunction can be defined in such a way that the usual De Morgan laws hold (cf.
Proposition 12.4.7 below). However, it will be useful for our purposes to consider a
calculus where all the connectives and quantifiers, even if interdefinable, are given
as primitive and negation is defined as ∼ A ≡ A⊃⊥; this is not just useful but even
necessary since our purpose is to extract the constructive content of classical proofs
and many of the interdefinabilities do not hold in intuitionistic logic.

12.3 Geometric Implications

By a geometric implication we mean a sentence G of the form ∀x.C⊃D where
the quantifier (over a finite list x of variables) binds all free variables of C⊃D,
the antecedent C is a finite conjunction of atoms P1 . . . Pk and the succedent D
is a finite or countably infinite disjunction

∨
En of existentially quantified finite

conjunctions of atoms Qni , i.e., each En = ∃yn(Qn1 ∧ · · · ∧ Qnmn ). The restrictions
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Table 12.1 The calculus G3cω

Initial sequents:

P, � ⇒ �, P

Logical rules:

⊥, � ⇒ �
L⊥

A, B, � ⇒ �

A&B, � ⇒ �
L&

� ⇒ �, A � ⇒ �, B
� ⇒ �, A&B

R&

Ak ,
∧

n>0 An, � ⇒ �
∧

n>0 An, � ⇒ �
L

∧
k

{� ⇒ �, An | n > 0}
� ⇒ �,

∧
n>0 An

R
∧

A, � ⇒ � B, � ⇒ �

A ∨ B, � ⇒ �
L∨ � ⇒ �, A, B

� ⇒ �, A ∨ B
R∨

{�, An ⇒ � | n > 0}
�,

∨
n>0 An ⇒ �

L
∨ � ⇒ �,

∨
n>0 An, Ak

� ⇒ �,
∨

n>0 An
R

∨
k

� ⇒ �, A B, � ⇒ �

A⊃ B, � ⇒ �
L⊃ A, � ⇒ �, B

� ⇒ �, A⊃ B
R⊃

A(t/x),∀x A, � ⇒ �

∀x A, � ⇒ �
L∀ � ⇒ �, A(y/x)

� ⇒ �,∀x A R∀ (y fresh)

A(y/x), � ⇒ �

∃x A, � ⇒ �
L∃ (y fresh)

� ⇒ �, ∃x A, A(t/x)

� ⇒ �, ∃x A R∃

on the language already adopted ensure that, even if D is an infinite disjunction, it
only has finitely many free variables.

Such a sentence G determines a (finitary or infinitary) geometric rule where the
name LG indicates that it is a left rule, determined by the geometric sentence G:

. . . Qn1(x, yn), . . . , Qnmn (x, yn), P1(x), . . . , Pk(x), � ⇒ � . . .

P1(x), . . . , Pk(x), � ⇒ �
LG

with one premiss for each of the countably many disjuncts En of D. The variables in
yn are chosen to be fresh, i.e., are not in the conclusion; and without loss of generality
they are all distinct. The list yn of variables may vary as n varies, and maybe no finite
list suffices for all the countably many cases. The variables x (finite in number) may
be instantiated with arbitrary terms. Henceforth we shall normally omit mention of
the variables. We need also a further condition for admissibility of contraction to
hold:
Closure condition: Given a system with geometric rules, if it has a rule with an
instance of form
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. . . Qn1(x, yn), . . . , Qnmn (x, yn), P1(x), . . . , Pk−2(x), P(x), P(x), � ⇒ � . . .

P1(x), . . . , Pk−2(x), P(x), P(x), � ⇒ �

then also the rule

. . . Qn1(x, yn), . . . , Qnmn (x, yn), P1(x), . . . , Pk−2(x), P(x), � ⇒ � . . .

P1(x), . . . , Pk−2(x), P(x)� ⇒ �

has to be included in the system.

As was the case for the finitary case treated in Negri (2003), also in the infinitary
case the condition is unproblematic, since each atomic formula contains only a finite
number of variables and therefore so are the instances; it follows that the number of
rules to be added to a given system with geometric rules is finite.

Theorem 12.3.1 If we add to the basic system for Lω1ω a finite or infinite family of
geometric rules LG, then we can prove all of the geometric sentences G from which
they were determined.

Proof It suffices to deal with a single such sentence and its associated rule (or,
rather, since we must satisfy the closure condition, rules); let it be the sentence G
given above. Here is a derivation (with the variables omitted):

. . .

. . . Q j1, . . . , Q jm j , P1, . . . , Pk ⇒ ∨
En, Q jl . . .

Q j1, . . . , Q jm j , P1, . . . , Pk ⇒ ∨
En, Q j1 ∧ · · · ∧ Q jm j

R∧m j−1

Q j1, . . . , Q jm j , P1, . . . , Pk ⇒ ∨
En, E j

R∃
Q j1, . . . , Q jm j , P1, . . . , Pk ⇒ ∨

En
R

∨
j

. . .

P1, . . . , Pk ⇒ ∨
En

LG

P1 ∧ · · · ∧ Pk ⇒ ∨
En

L∧k−1

⇒ P1 ∧ · · · ∧ Pk ⊃∨
En

R⊃
⇒ ∀x. P1 ∧ · · · ∧ Pk ⊃∨

En
R∀∗

QED

Note that, in contrast to the case with finitary first-order logic, the depth may be
infinite; for example, there are as many R∀ steps as the finite number of variables in
x; then there is one R⊃step, then k − 1 steps of L∧, then one step of LG ; but this
has infinitely many premises, and it is not hard to ensure that, for each j > 0, E j has
(once its bound variables are stripped off) at least j conjuncts. This could of course
be fixed by having generalized versions of R∧ and R∃.

In the following, we shall denote with G3c∗
ω any extension of G3cω with a finite

or infinite family of such rules LG .
Before proceeding with the structural properties of extensions of G3cω by geo-

metric rules, we give some examples of geometric axioms and their corresponding
rules.
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12.3.1 Examples of Geometric Axioms and Rules

The axiom of torsion abelian groups, ∀x .∨n>1(nx = 0), becomes the rule

. . . nx = 0, � ⇒ � . . .

� ⇒ �
RTor

The axiom of Archimedean ordered fields, ∀x .∨n≥1(x < n), becomes the rule

. . . x < n, � ⇒ � . . .

� ⇒ �
RArc

The axiom of connected graphs,

∀xy.x = y ∨
∨

n≥1

∃z0 . . . ∃zn(x = z0 & y = zn & z0Rz1 & . . . & zn−1Rzn)

becomes the rule

x = y, � ⇒ � x Ry, � ⇒ � . . . x = z0, y = zn, z0Rz1, . . . , zn−1Rzn, � ⇒ � . . .

� ⇒ �
RConn

Finally, we mention an example that pertains to another domain of application,
that of epistemic logic. For what follows, we refer to Marti and Studer (2018) for the
basic background and a survey of proof systems. Common knowledge among a set
of agents {a1, . . . , ak} is defined starting from the Everybody knows operator

E(A) ≡ Ka1(A) ∧ · · · ∧ Kak (A),

i.e., the conjunction ranging over all the agents of the individual knowledge operators
Kai , and taking the infinitary conjunction of all the n-ary iterations of E

CA ≡
∧

n

En(A).

We thus have the following reading (with the group of agents made implicit):

A is common knowledge if everybody knows A, everybody knows that everybody
knows A, etc.

In Kripkean terms, each Kai is a modality with its own accessibility relation Rai ;
it is then not difficult to verify that the accessibility relation RE associated to E is the
union of all the Rai , i.e.,

x RE y ≡ x Ra1 y ∨ · · · ∨ x Rak y

and that the accessibility relation for C is the transitive closure of RE
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x RC y ≡ (∃n ∈ N
+)Rn

E

where Rn
E ≡ (∃y0, y1 . . . yn−1, yn ∈ W )(x = y0 & y = yn & y0RE y1 & . . . & yn−1

RE yn), so the above is, in infinitary logic,

x RC y ≡ x R1
E y ∨ · · · ∨ x Rn

E y . . . .

The truth condition for the common knowledge operator C is

x � CA iff for all y, x RC y implies y � A.

The definition of transitive closure RC gives the geometric rules

x R1
E y� ⇒ � . . . x Rn

E y, � ⇒ � . . .

x RC y, � ⇒ �
Tω

x RC y, � ⇒ �

x Rn
E y, � ⇒ �

I nc
.

We remark that also on the modal side, common knowledge is captured by an ω

rule; the single-sided sequent calculus of Jäger et al. (2007) the rule is

. . . En A, � . . . for alln
CA, �

ωC
.

12.4 Structural Properties

As a first step, we prove

Proposition 12.4.1 For every formula A, and for every �,�, the sequent A, � ⇒
�, A is derivable in G3cω.

Proof By (transfinite) induction on the depth of the formula. If A = ∨
n>0 An , we

have

. . .

. . .

Ai , � ⇒ �,
∨

n>0 An, Ai
I nd. Hyp.

Ai , � ⇒ �,
∨

n>0 An
R

∨
i . . .

∨
n>0 An, � ⇒ �,

∨
n>0 An

L
∨

from which the result follows by transfinite induction, each Ai being of lesser depth
than A.

If A = ∧
n>0 An the proof is similar, but with the left and right rules in opposite

order. For the finitary connectives and the quantifiers the proof is as for G3c (Negri
and von Plato 2001). QED
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In the following we shall use hp as an abbreviation of height preserving. A property
(such as invertibility, admissibility) is qualified as height preserving if it maintains
the height of the original derivation.

Lemma 12.4.2 (hp-substitution) Given a derivation of � ⇒ � in G3c∗
ω, with x a

free variable in�,�, t a term free for x in�,�andnot containinganyof the variables
of the geometric rules in the derivation, we can find a derivation of�(t/x) ⇒ �(t/x)
in G3c∗

ω with the same height.

Proof Similar to the proof of hp-substitution in Negri (2003). QED

Proposition 12.4.3 (hp-weakening) The rules of left and right weakening are hp-
admissible G3c∗

ω.

Proof By a straightforward (transfinite) induction on the height of the derivation
of the premiss of each rule, with the usual proviso on variables: if the last rule is
a rule with a condition on a variable and the weakening formula contains the same
variable, the fresh variable in the rule is first renamed before applying the inductive
hypothesis. QED

Proposition 12.4.4 (hp-invertibility) All the rules of G3c∗
ω are hp-invertible.

Proof By (transfinite) induction on the height of the derivation of the conclusion
of each rule. We consider the case of L

∨
, i.e., a sequent �,

∨
n>0 An ⇒ � with

derivation height α. If α is zero, then it is either an initial sequent, and thus each
�, An ⇒ � is also an initial sequent, thus definable with height zero. Else observe
that by definition of height of a derivation α has to be a successor ordinal, i.e.,
α = β + 1. If α is 1 and the sequent is an instance of L⊥, we have a rule with
an empty set of assumptions and there is nothing to prove. Let us consider the last
(proper) rule and distinguish the case in which

∨
n>0 An is a side formula and the

case in which it is the principal formula. In the former case the last rule can have
one or denumerably many premisses (if the last rule is L

∨
with a principal formula

other than
∨

n>0 An). The last rule has the form

{∨n>0 An, �m ⇒ � | m > 0}
∨

n>0 An, � ⇒ �
L

∨

and by definition of height we have, for each m, �γm

∨
n>0 An, �m ⇒ �9 where for

eachm, γm < β. By inductive hypothesis we have, for eachm and n, �γm An, �m ⇒
� and therefore, by applying the rule, �α An, � ⇒ �.

If instead
∨

n>0 An is principal, the last rule in the derivation has the form

9 As usual, we denote by �γ derivability with height bounded by γ .
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{An, � ⇒ � | m > 0}
∨

n>0 An, � ⇒ �
L

∨

and we have �γn An, � ⇒ � with γn < β < α and thus a fortiori �α An, � ⇒ �.
The proofs of hp-invertibility of R

∧
are similar. For the other infinitary rules, it

follows from Proposition 12.4.3. For the finitary rules, the proof is standard. QED

Next, we show that the structural rules of left and right contraction are hp-
admissible.

Proposition 12.4.5 (hp-contraction) The rules of left and right contraction

A, A, � ⇒ �

A, � ⇒ �
LC

� ⇒ �, A, A
� ⇒ �, A RC

are hp-admissible in G3c∗
ω.

Proof By a simultaneous (transfinite) induction for the left and right contraction
rule.

Consider the left rule. If it is an initial sequent, then the conclusion is also an
initial sequent and has the same derivation height.

If the contraction formula is
∨

n>0 An and it is not principal in the last rule, say
L

∨
, we have

{∨n>0 An,
∨

n>0 An, �m ⇒ � | m > 0}
∨

n>0 An,
∨

n>0 An, � ⇒ �
L

∨

we apply the induction hypothesis to each of its premisses and obtain for eachm > 0
the sequent

∨
n>0 An, �m ⇒ �, all with atmost the same height as the corresponding

premisses. A step of L
∨

gives the desired conclusion. The cases with other rules
are dealt with in a similar way.

If
∨

n>0 An is instead principal in the last rule, we have

{∨n>0 An, An, � ⇒ � | n > 0}
∨

n>0 An,
∨

n>0 An, � ⇒ �
L

∨

.

By hp-invertibility of L
∨

we obtain derivations, of height at most the height of the
premisses, of the sequents An, An, � ⇒ �, and by induction hypothesis of An, � ⇒
�. A step of L

∨
gives

∨
n>0 An, � ⇒ � with the required bound.

If the last rule is L⊃we have

�, A⊃ B ⇒ �, A B, �, A⊃ B ⇒ �

�, A⊃ B, A⊃ B ⇒ �
L⊃

.

By application of hp-invertibility of L⊃we obtain derivations of � ⇒ �, A, A and
of B, B, � ⇒ �, both of smaller height than the conclusion. Application of the
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induction hypothesis (for LC and RC) gives derivations (of the same height of the
latter) of� ⇒ �, A and of B, � ⇒ �, and a step of L⊃gives the desired conclusion.

All the other cases are dealt with in a similar or simpler way (i.e., R
∨

and R∃
do not require use of hp-invertibility and induction hypothesis is applied directly to
the premiss of the rule).

The cases in which one or both of the contraction formulas are principal in a (fini-
tary or infinitary) geometric rule are dealt with as usual (using the closure condition
in the case of both formulas principal) and the presence of a possibly infinite number
of premisses doesn’t change the structure of the inductive argument. QED

Lemma 12.4.6 The rules for negation, defined as ∼ A ≡ A⊃⊥,

� ⇒ �, A
∼ A, � ⇒ �

L∼ A, � ⇒ �

� ⇒ �,∼ A R∼

are admissible in G3cω.

Proof Immediate using L⊥, admissibility of RW , and the implication rules. QED

Nextwe check theDeMorgan laws, lest the infinitary nature of disjunctions forces
not only infinitary branching but prevents a uniform bound on the length of branches:

Proposition 12.4.7 The following sequents (the “infinitary DeMorgan laws”), with∧
defined as the dual of

∨
, i.e.,

∧

n>0

An ≡ ∼
∨

n>0

∼ An (Def∧)

are derivable in G3cω\ {L ∧
, R

∧}:
1. ∼∧

n>0 An ⇒ ∨
n>0 ∼ An

2.
∨

n>0 ∼ An ⇒ ∼∧
n>0 An

3. ∼∨
n>0 An ⇒ ∧

n>0 ∼ An

4.
∧

n>0 ∼ An ⇒ ∼∨
n>0 An

Proof 1. ∼∧
n>0 An ⇒ ∨

n>0 ∼ An follows thus:

∨
n>0 ∼ An ⇒ ∨

n>0 ∼ An

⇒ ∼∨
n>0 ∼ An,

∨
n>0 ∼ An

R ∼
⇒ ∧

n>0 An,
∨

n>0 ∼ An
Def∧

∼∧
n>0 An ⇒ ∨

n>0 ∼ An
L∼

2.
∨

n>0 ∼ An ⇒ ∼∧
n>0 An is similar;
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3.

. . .

∼∼ An ⇒ An

∼∼ An ⇒ ∨
n>0 An

R
∨

. . .
∨

n>0 ∼∼ An ⇒ ∨
n>0 An

L
∨

⇒ ∨
n>0 An,∼∨

n>0 ∼∼ An
R∼

⇒ ∨
n>0 An,

∧
n>0 ∼ An

Def∧

∼∨
n>0 An ⇒ ∧

n>0 ∼ An
L∼

4.
∧

n>0 ∼ An ⇒ ∼∨
n>0 An is similar.

QED

It is easy to verify that in the language we have chosen, with both infinitary
conjunction and disjunction as primitive, the De Morgan laws are derivable, with
derivations using both pairs of rules.

Admissibility of
� ⇒ �, A A, �′ ⇒ �′

�,�′ ⇒ �,�′ Cut

(in which A is the cut formula) for such a system (using finite sets rather than finite
or infinite multisets) is shown by a Gentzen-style argument in Feferman (1968). We
give a detailed proof below, allowing also the use of rules determined by geometric
implications. Thenotionof “height of a derivation” treats instances ofCut just like any
binary rule and allows also for the rules LG determined by geometric implications.

12.4.1 Cut Admissibility

For the above results (about geometric rules) to be useful, it remains to show the
admissibility of Cut for the calculus thus modified. For G3c, the proof of cut-
elimination eliminates a topmost cut by induction on the complexity of the cut for-
mula and subinduction on the sum of the heights of the derivations of the premisses
of cuts. To adapt the proof to the infinitary case, where heights are given by ordi-
nals, we shall employ the standard notion of (natural or Hessenberg) addition α#β
for countable ordinals α and β (cf. e.g., 10.1.2B in Troelstra and Schwichtenberg
2000 for the definition). We recall that # is commutative and that if α < α′ then
α#β < α′#β.

The rank π(I ) of an instance I of Cut with cut-free premisses D and D′ is the
pair comprising the depth d(A) of the cut formula and the natural sum h(D)#h(D′)
of the heights of the premisses. We will call the second component the total height
of the cut. Pairs are ordered lexicographically.

Ordinals are well ordered, so we can reason by (transfinite) induction; since we
actually do it for pairs, we call this transfinite lexicographic induction. It can be
converted to ordinary transfinite induction by turning pairs into ordinals, e.g., the
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pair (δ, σ ) can be converted to δ · ε0 + σ , where ε0 has the useful property of being
greater than any possible value of σ ; but pairs are conceptually clearer.

Lemma 12.4.8 In
� ⇒ �, A A, �′ ⇒ �′

�,�′ ⇒ �,�′ Cut

if the premisses have cut-free derivations in G3c∗
ω, then so has the conclusion.

Proof By transfinite lexicographic induction on the rank of instances ofCut and case
analysis. We first show (a) the reduction steps for cuts with cut formula principal in
both premisses, i.e., principal cuts. Then we show (b) how non-principal cuts are
reduced by permutation, maintaining the cut formula but reducing the sum of heights.
Different strategies are allowed, and we give the details only of the permutations
of cuts into the first premiss; permutations into the second premiss are covered
generically. We also omit treatment of the cases involving

∧
since they are duals of

those of
∨
.

(a) 1. If the cut formula is principal in each premiss for instances of initial sequents,
then the conclusion is already an initial sequent, so the cut can be eliminated.

2. If the cut formula
∨

n>0 An is principal in each premiss, then we consider the
cut

� ⇒ �,
∨

n>0 An, Ak

� ⇒ �,
∨

n>0 An
R

∨
k

. . . An, �
′ ⇒ �′ . . .

∨
n>0 An, �

′ ⇒ �′ L
∨

�,�′ ⇒ �,�′ Cut

which we transform into

� ⇒ �,
∨

n>0 An, Ak

. . . An, �
′ ⇒ �′ . . .

∨
n>0 An, �

′ ⇒ �′ L
∨

�,�′ ⇒ �,�′, Ak
Cut

Ak, �
′ ⇒ �′

�,�′, �′ ⇒ �,�′,�′ Cut

followed by contractions to reduce two copies of the finite multisets �′ and
�′ to one. By the induction hypothesis, we can construct a cut-free derivation
of the conclusion of the first cut, since the second component of the rank
has been reduced by 1 (and the first, i.e. d(

∨
n>0 An), is unchanged). We can

do the same for the second cut, since the depth of the first component has
been reduced (by 1 or more) from d(

∨
n>0 An) to d(An). The contractions

are admissible by a result above.
3. Principal cuts with formulas with binary connectives and quantifiers as outer-

most logical constant are reduced as in the standard proof for G3c (cf. Negri
and von Plato 2001).

(b) 1. If the first premiss is an instance of an initial sequentwith the atom P principal
and P is the cut formula, then the conclusion may be obtained byWeakening
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from the second premiss, regardless of the rule used in the second premiss,
as in

�, P ⇒ P,� P, �′ ⇒ �′.
�, P, �′ ⇒ �,�′ Cut

2. Similarly to case b.1, if the second premiss is an instance of an initial sequent
with the atom P principal and P is the cut formula, then the conclusion may
be obtained by Weakening from the first premiss, regardless of the rule used
in the first premiss.

3. If the first premiss is an instance of an initial sequentwith the atom P principal
but P is not the cut formula, then the conclusion is already an instance of an
initial sequent, regardless of the rule used in the second premiss, as in

�, P ⇒ P,�,C C, �′ ⇒ �′.
�, P, �′ ⇒ P,�,�′ Cut

4. Similarly to case b.3, if the second premiss is an instance of an instance of an
initial sequent with the atom P principal but P is not the cut formula, then
the conclusion is already an initial sequent, regardless of the rule used in the
first premiss.

If the cut formula C is not principal in the left premiss, we reason by cases on
the last rule used to derive it.

5. It is R
∨

k , we have

� ⇒ �,
∨

n>0 An, Ak,C

� ⇒ �,
∨

n>0 An,C
R

∨
k C, �′ ⇒ �′

�,�′ ⇒ �,
∨

n>0 An,�
′ Cut

can be transformed to

� ⇒ �,
∨

n>0 An, Ak,C C, �′ ⇒ �′

�,�′ ⇒ �,
∨

n>0 An, Ak,�
′ Cut

�,�′ ⇒ �,
∨

n>0 An,�
′ R

∨
k

the cut is “permuted upwards”, with unchanged cut formula C and reduced
total height. All the other cases of non-principal cuts with finitary rules are
treated in a similar way.

6. If the last rule is L
∨
, we have

. . . An, � ⇒ �,C . . .

�,
∨

n>0 An ⇒ �,C
L

∨

C, �′ ⇒ �′.
�,

∨
n>0 An, �

′ ⇒ �,�′ Cut
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This is transformed to

. . .

An, � ⇒ �,C C, �′ ⇒ �′

�, An, �
′ ⇒ �,�′ Cut

. . .

�,
∨

n>0 An, �
′ ⇒ �,�′ L

∨

with countably many cuts, each of lower rank (since the cut formula C is
unchanged but the total height has, in each case, been reduced).

7. If the last rule is a geometric rule, we have

. . . P1(t), . . . , Pn(t), Qk1(t, y), . . . , Qkmk (t, y), � ⇒ �,C . . .

�, P1(t), . . . , Pn(t) ⇒ �,C
LG C, �′ ⇒ �′

�, P1(t), . . . , Pn(t), �′ ⇒ �,�′ Cut

(with y fresh) that can be transformed to

. . .

�, P1(t), . . . , Pn (t), Qk1(t, y), . . . , Qkmk
(t, y) ⇒ �,C C, �′ ⇒ �′

�, P1(t), . . . , Pn (t), Qk1(t, y), . . . , Qkmk
(t, y), �′ ⇒ �, �′ Cut

. . .

�, P1(t), . . . , Pn (t), �′ ⇒ �, �′ LG

with countablymanycuts of lower rank (since the cut formulaC is unchanged
but the sum of heights has, in each case, been reduced). A similar treatment
applies to any additional rule required for the closure condition.

8. If the cut formula C is not principal in the second premiss, and that pre-
miss is not an initial sequent, then a permutation into the second premiss is
applicable, as in (for example)

� ⇒ �,C
A,C, �′ ⇒ �′, B
C, �′ ⇒ �′, A⊃ B

R⊃
�,�′ ⇒ �,�′, A⊃ B

Cut

which is transformed to

� ⇒ �,C A,C, �′ ⇒ �′, B.

A, �, �′ ⇒ �,�′, B Cut

�,�′ ⇒ �,�′, A⊃ B
R⊃

We include as a special case that where the second premiss is (in effect)
derived by L⊥, the cut’s conclusion is then similarly derivable, and similarly
for some instances of LG . Other cases produce a cut on the same cut formula
but with reduced sum of heights.

To complete the inductive argument, we have to be convinced that in each case we
have reduced the rank of the cut. There are two cases of interest: a.2 and b.6. The first
of these generates a single cut (of reduced total height) as premiss to a further cut on
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a reduced cut formula, and then some contractions. The second generates countably
many cuts on the same cut formula but reduces in each case the total height. QED

Theorem 12.4.9 The Cut rule is admissible in G3c∗
ω.

Proof It remains to show that an arbitrary derivation using instances (possibly infi-
nite in number) of the Cut rule can be transformed to a cut-free derivation. Since
this number may be infinite, we argue by transfinite induction on the height of the
derivation. Consider a derivation D; if it does not end in a cut, but with a step by
the rule R, then, by inductive hypothesis, each premiss (which has height less than
ht (D)) can be transformed to a cut-free derivation (with conclusion unchanged), and
thus so, by adding an R-step, canD. Otherwise, ifD ends with a cut, the derivations
of its premisses both have height less than ht (D); by inductive hypothesis, each can
be transformed to a cut-free derivation (with conclusion unchanged). We now use
the Lemma to obtain a cut-free derivation of the conclusion of D. QED

Observe that by the above we obtain cut elimination, not just cut admissibility,
because the proof is a syntactic transformation resulting in a cut-free proof.

More precise accounting can give us bounds on the height of the cut-free derivation
thus constructed; for details see the methods used in Feferman (1968). The present
methods suffice for our purpose.

12.5 An Intuitionistic Infinitary Calculus

The table of rules of the intuitionistic infinitary calculus is given below. As a justifi-
cation of the rules, observe that it is obtained from the classical calculus by

1. Imposing to the right rule of infinitary conjunction the same restrictions that are
needed for rule R∀;

2. Repeating the principal formula in the left premiss to L⊃ to make the rule invert-
ible;

3. Admitting the weakening context only in the conclusion (but not in the premiss)
of R⊃ .

We observe that the restriction on R
∧

is the reason why in the multi-succedent
calculus we cannot have the rules of binary conjunction as special cases of the
infinitary one. The reason why the rule for infinitary conjunction in the intuitionistic
multi-succedent calculus should have the same restriction as R∀, i.e., no weakening
context in the premiss but only in the conclusion, is best seen semantically. By taking
the Lindenbaum algebra that corresponds to the logic, a liberal use of a weakening
context in R

∧
would amount to imposing that join distributes over arbitrary meet;

however, complete Heyting algebras have distributivity (only) for meet over arbitrary
join, but not for join over arbitrary meets. Consider the complete Heyting algebra of
the topology generated by open intervals of the real line, where join is the operation
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Table 12.2 The calculus G3iω

Initial sequents:

P, � ⇒ �, P

Logical rules:

A, B, � ⇒ �

A&B, � ⇒ �
L&

� ⇒ �, A � ⇒ �, B
� ⇒ �, A&B

R&

Ak ,
∧

n>0 An, � ⇒ �
∧

n>0 An, � ⇒ �
L

∧
k

{� ⇒ An | n > 0}
� ⇒ �,

∧
n>0 An

R
∧

A, � ⇒ � B, � ⇒ �

A ∨ B, � ⇒ �
L∨ � ⇒ �, A, B

� ⇒ �, A ∨ B
R∨

{�, An ⇒ � | n > 0}
�,

∨
n>0 An ⇒ �

L
∨ � ⇒ �,

∨
n>0 An, Ak

� ⇒ �,
∨

n>0 An
R

∨
k

A⊃ B, � ⇒ �, A B, � ⇒ �

A⊃ B, � ⇒ �
L⊃ A, � ⇒ B

� ⇒ �, A⊃ B
R⊃

⊥, � ⇒ �
L⊥

�, A(y/x) ⇒ �

�, ∃x A ⇒ �
L∃ � ⇒ �, ∃x A, A(t/x)

� ⇒ �, ∃x A R∃
∀x A, A(t/x), � ⇒ �

�,∀x A ⇒ �
L∀ � ⇒ A(y/x)

� ⇒ �,∀x A R∀

of union and meet is the interior of intersection. Consider the interval (−1, 0) and the
family of intervals (−1/n, 1), where n ranges over the positive integers. For all n,
we have (−1, 0) ∨ (−1/n, 1) = (−1, 1), so

∧
n((−1, 0) ∨ (−1/n, 1)) = (−1, 1).

Instead,
∧

n(−1/n, 1) = (0, 1), so (−1, 0) ∨ ∧
n(−1/n, 1) = (−1, 1) − {0}.10

The following are provable by an easy adaptation of the proof forG3c∗
ω. We shall

thus limit ourselves to considering in detail only the cases that differ significantly
from those of G3c∗

ω.

Lemma 12.5.1 Given a derivation of� ⇒ � inG3i∗ω, with x a free variable in�,�,
t a term free for x in �,� and not containing any of the variables of the geometric
rules in the derivation, we can find a derivation of �(t/x) ⇒ �(t/x) in G3i∗ω with
the same height.

Proof Similar to the proof for G3c∗
ω. QED

Proposition 12.5.2 The rules of left and right weakening are hp-admissible inG3i∗ω.

10 A similar argument to discard the formulation of R
∧

without context restriction is presented in
Nadel (1978).
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Proof Since there are no restrictions on the antecedent in G3iω rules, the proof of
admissibility of leftweakening is identical to the proof forG3c∗

ω. For rightweakening,
we consider the inductive step in the case in which the last rule is a rule with context
restriction (R

∧
, R∀). In such cases, we cannot apply the inductive hypothesis to the

premiss(es) of the rule since this would result to an extra formula in the context that
would thus violate the restrictions. Instead, we just apply the rule with a new context
weakened on the right with the desired formula with a proviso on eigenvariables:
if the weakening formula contains some of them, rename the eigenvariables by hp-
substitution (Lemma 12.5.1) to avoid a clash. QED

Proposition 12.5.3 All the rules ofG3iω except R
∧
, R⊃, and R∀ are hp-invertible

in G3i∗ω.

Proof Observe that all the rules without context restrictions and the invertibility of
which is not an instance of weakening are identical to the rules forG3c∗

ω, so the proof
proceed as for G3c∗

ω. QED

Proposition 12.5.4 The rules of left and right contraction

A, A, � ⇒ �

A, � ⇒ �
LC

� ⇒ �, A, A
� ⇒ �, A RC

are hp-admissible in G3i∗ω.

Proof The proof has the same structure as the proof for the classical calculus, by
a simultaneous (transfinite) induction for the left and right contraction rule, so we
need to consider only the new cases arising from the modified rules (R

∧
, R⊃, R∀).

For (LC), if the last rule is one of the above, the contraction formula cannot be
principal, so we can proceed by applying the inductive hypothesis and then the rule.

For (RC), if the last rule is one of the above, we distinguish two cases: either the
two occurrences of the contraction formula are both in the context of the rule, or one
is in the context and another one is principal in the rule. In the former case, consider
the premiss of the rule and apply it with a modified weakening context in which only
one copy of the contraction formula is retained. In the latter, use a weakening context
without the formula. QED

Proposition 12.5.5 The cut rule is admissible in G3i∗ω.

Proof The proof uses the same induction as the one for the classical calculus. We
shall therefore limit ourselves to considering the new cases arising from the modified
rules, i.e., R

∧
, R⊃, and R∀.

(a) We start with principal cuts. Again, since the cases for cut formula that is an
implication or a universal formula are identical to those for the finitary intu-
itionistic multi-succedent calculusG3im (detailed in Negri and von Plato 2001,
theorem 5.3.6), it is enough to consider the case of an infinitary conjunction.
A cut with

∧
n>0 An principal in both premisses has the form
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{� ⇒ An | n > 0}
� ⇒ �,

∧
n>0 An

R
∧ Ak,

∧
n>0 An, �

′ ⇒ �′
∧

n>0 An, �
′ ⇒ �′ L

∧

,

�, �′ ⇒ �,�′ Cut

This is converted as follows

� ⇒ Ak

� ⇒ �,
∧

n>0 An Ak,
∧

n>0 An, �
′ ⇒ �′

�,�′, Ak ⇒ �,�′ Cut1

�2, �′ ⇒ �,�′ Cut2
,

�, �′ ⇒ �,�′ L/R-C∗

where Cut1 has reduced height, Cut2 has reduced depth, and L/R-C∗ denotes
possible multiple steps of left and right contraction.

(b) We then consider the case of a non-principal cut in which (at least) one of the
two premisses is a rule with context restriction. Among the various cases we
need to consider only the case in which one of the rules is (1) R

∧
or (2) a

∨

rule and a rule with context restriction, since the other cases are treated as for
G3c∗

ω or forG3im. We have the following cases for the left and right premiss of
cut, respectively:

1.1 R
∧

and initial sequent. There are two subcases, i.e., cut on the principal
formula of the initial sequent or on some other formula. In the first subcase
we have {� ⇒ An | n > 0}

� ⇒ �, P,
∧

n>0 An
R

∧

P, �′ ⇒ �′, P.

�, �′,⇒ �,�′,
∧

n>0 An
Cut

By using a new context for R
∧

and steps of LW , the above is converted
into the derivation where the cut disappears

{� ⇒ An | n > 0}
� ⇒ �,�′, P,

∧
n>0 An

R
∧

�,�′ ⇒ �,�′, P,
∧

n>0 An
LW ∗

.

In case the cut formula is in the context of the initial sequent, also the
conclusion of cut is an initial sequent, so the derivation is replaced by the
initial sequent and the cut disappears.

1.2 R
∧

and a conclusion of L⊥. There are again two cases, depending on
whether the cut formula is ⊥ or some other formula. In both cases we
proceed as above.

1.3 Initial sequent and R
∧
. Similar to 1.1.

1.4 Conclusion of L⊥ and R
∧
. Similar to 1.3.

1.5 R
∧

and generic rule.We first distinguish two cases: either the cut formula is
the principal formula of R

∧
or it is a formula in the context. The latter case
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is easily dealt with by applying R
∧

with a new weakening context without
the cut formula and using admissible weakening steps. In the former, in the
case of a rule with one premiss, we have

{� ⇒ An | n > 0}
� ⇒ �,

∧
n>0 An

R
∧

∧
n>0 An, �

′ ⇒ �′
∧

n>0 An, �
′′ ⇒ �′′ Rule

�,�′′ ⇒ �,�′′ Cut
.

The expected permutation is as follows, where the new cut has reduced
height:

� ⇒ �,
∧

n>0 An
∧

n>0 An, �
′ ⇒ �′

�,�′ ⇒ �,�′ Cut
.

�, �′′ ⇒ �,�′′ Rule

However such a permutation is blocked if Rule is a rule with context restric-
tion. So we need to examine such cases more closely because a different
conversion is needed. We have four sub-subcases.

1.5.1 R
∧

and R
∧
. We have the derivation

{� ⇒ An | n > 0}
� ⇒ �,

∧
n>0 An

R
∧ {∧n>0 An, �

′ ⇒ Bm | n > 0}
∧

n>0 An, �
′ ⇒ �′,

∧
m>0 Bm

R
∧

�,�′ ⇒ �,�′,
∧

m>0 Bm
Cut

which is converted into onewith infinitelymany cuts, all of lesser height

{� ⇒ An | n > 0}
� ⇒ ∧

n>0 An
R

∧

{∧n>0 An, �
′ ⇒ Bm | n > 0}

{�,�′ ⇒ Bm | n > 0} Cut

�,�′ ⇒ �,�′,
∧

m>0 Bm
R

∧

1.5.2 R
∧

and L⊃. We have the derivation

{� ⇒ An | n > 0}
�,⇒ �,

∧
n>0 An

R
∧

∧
n>0 An , B⊃C, �′ ⇒ B

∧
n>0 An ,C, �′ ⇒ �′

∧
n>0 An , B⊃C, �′ ⇒ �′ L⊃

�, �′, B⊃C ⇒ �, �′ Cut

and the conversion of the cut to two cuts of lesser height

{� ⇒ An | n > 0}
�, ⇒ ∧

n>0 An
R

∧
∧

n>0 An , B⊃C, �′ ⇒ B

�, �′, B⊃C ⇒ B
Cut

{� ⇒ An | n > 0}
� ⇒ ∧

n>0 An
R

∧
∧

n>0 An ,C, �′ ⇒ �′

�, �′,C ⇒ �′ Cut

�, �′, B⊃C ⇒ �′ L⊃

�, �′, B⊃C ⇒ �, �′ RW
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1.5.3 R
∧

and R⊃. By now, we have learnt the rationale of such reductions.
As in the previous case, R

∧
is re-applied with an empty right con-

text, which makes the permutation with the rule with context restriction
possible, with a reduction in the cut height.

1.5.4 R
∧

and R∀ . Similar.
1.6 Finitary rule and R

∧
. We consider the case of a generic one-premiss rule.

The derivation then has the form

� ⇒ �

�′ ⇒ �′,C Rule
{C, �′′ ⇒ An | n > 0}
C, �′′ ⇒ �′′,

∧
n>0 An

R
∧

�′, �′′ ⇒ �′,�′′,
∧

n>0 An
Cut

Wefirst consider the case of a finitary rule without context restriction. IfC is
not the principal formula of Rule, the cut is simply permuted to its premiss,
with reduced height. Then Rule is applied. This is easily generalized to the
case of a rule with two premisses, with two cuts instead of one, both of
reduced height.
If C is principal, there are two cases to consider, namely, R∨ and R∃. For
the former we have

� ⇒ �, B,C
� ⇒ �, B ∨ C R∨ {B ∨ C, �′′ ⇒ An | n > 0}

B ∨ C, �′′ ⇒ �′′,
∧

n>0 An
R

∧

�′, �′′ ⇒ �′,�′′,
∧

n>0 An
Cut

which is converted as follows, where we use steps of height-preserving
invertibility and convert the cut into two cuts both of reduced rank

� ⇒ �, B,C

B ∨ C, �′′ ⇒ �′′,∧n>0 An

B, �′′ ⇒ �′′,∧n>0 An
hp-inv

�, �′′ ⇒ �, �′′,C,
∧

n>0 An
Cut

B ∨ C, �′′ ⇒ �′′,∧n>0 An

C, �′′ ⇒ �′′,∧n>0 An
hp-inv

�′, �′′2 ⇒ �′,�′′2, ∧n>0 A2n
Cut

�′, �′′ ⇒ �′,�′′,∧n>0 An
L-RC∗

If Rule is a rule with two premisses, the remaining case is R∧, which is
similar to that of R∨.

1.7 Infinitary rule and R
∧
. We consider the case in which the infinitary rule is

R
∧

and the cut formula being the principal formula of R
∧

since the case
of cut formula in the weakening context is treated by just applying R

∧
with

a modified weakening context. We have

{� ⇒ An | n > 0}
� ⇒ �,

∧
n>0 An

R
∧ {∧n>0 An, �

′ ⇒ Bm | m > 0}
∧

n>0 An, �
′ ⇒ �′,

∧
m>0 Bm

R
∧

�,�′ ⇒ �,�′,
∧

m>0 Bm
Cut
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and the conversion

. . .

{� ⇒ An | n > 0}
� ⇒ ∧

n>0 An
R

∧
∧

n>0 An, �
′ ⇒ Bm

�,�′ ⇒ Bm
Cut

. . .

�, �′ ⇒ �,�′,
∧

n>0 Bn
R

∧

with denumerable many cuts of lower height.
2.1 L

∨
and rule with context restriction. We have a typical case of the form,

for R⊃,
{�, An ⇒ �,C | n > 0}

�,
∨

n>0 An ⇒ �,C
L

∨ C, �′, A ⇒ B
C, �′ ⇒ �′, A⊃ B

R⊃
�,�′,

∨
n>0 An ⇒ �,�′, A⊃ B

Cut

this converted to infinitely many cuts of smaller height as follows

. . .

�, An ⇒ �,C C, �′ ⇒ �′, A⊃ B
�,�′, An ⇒ �,�′, A⊃ B

Cut
. . .

�, �′,
∨

n>0 An ⇒ �,�′, A⊃ B
L

∨

2.2 R
∨

and rule with context restriction. If the cut formula is a side formula
in the left premiss, the cut is permuted to the left premiss, and then R

∨
is

applied. If the cut formula is
∨

n>0 An , a typical case, exemplified with R⊃,
has the form

� ⇒ �,
∨

n>0 An, Ak

� ⇒ �,
∨

n>0 An
R

∨
∨

n>0 An, A, �′ ⇒ B
∨

n>0 An, �
′ ⇒ �′, A⊃ B

R⊃
�,�′ ⇒ �,�′, A⊃ B

Cut

and is converted to two cuts, both of lower rank

� ⇒ �,
∨

n>0 An , Ak
∨

n>0 An , �
′ ⇒ �′, A⊃ B

�,�′ ⇒ �,�′, A⊃ B, Ak
Cut

∨
n>0 An , �

′ ⇒ �′, A⊃ B

Ak , �
′ ⇒ �′, A⊃ B

hp-inv.

�, �′2 ⇒ �,�′2, A⊃ B2
Cut

�,�′ ⇒ �,�′, A⊃ B
L-RC∗

2.3 Rule with context restriction and L
∨
, with cut formula

∨
n>0 An . The cut

formula is necessarily in the weakening context of the rule with context
restriction and we have
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� ⇒ �

�′ ⇒ �′,
∨

n>0 An
Rule

{�′′, An ⇒ �′′ | n > 0}
�′′,

∨
n>0 An ⇒ �′′ L

∨

�′, �′′ ⇒ �′,�′′ Cut
.

The conclusion of cut is obtained, without cut, by applying Rule with a
new weakening context without

∨
n>0 An and using admissibility of left

weakening.
2.4 Rulewith context restriction and L

∨
, with cut formula the principal formula

of the rule with context restriction. We have

�, A ⇒ B
� ⇒ �, A⊃ B

R⊃ {A⊃ B, An, �
′ ⇒ �′ | n > 0}

A⊃ B,
∨

n>0 An, � ⇒ �′ L
∨

�,�′,
∨

n>0 An ⇒ �,�′ Cut
.

This is transformed into denumerablymany cuts of reduced height as follows

. . .

� ⇒ �, A⊃ B A⊃ B, An, �
′ ⇒ �′

�,�′, An ⇒ �,�′ Cut
. . .

�, �′,
∨

n>0 An ⇒ �,�′ L
∨

.

QED

12.5.1 A Proof of the Infinitary Barr Theorem

Barr’s theorem11 is a fundamental result in geometric logic: it guarantees that for
geometric theories classical derivability of geometric implications entails their intu-
itionistic derivability. The result has its origin, through appropriate completeness
results, in the theory of sheaf models, with the following formulation (cf. e.g., Mac
Lane and Moerdijk 1994, Ch. 9, Theorem 2):

Theorem 12.5.6 For every Grothendieck topos E there exists a complete Boolean
algebra B and a surjective geometric morphism Sh(B) −→ E .
The most general form of Barr’s theorem (Barr 1974; Wraith 1980; Rathjen 2016)
is higher-order and includes the axiom of choice, and stated as eliminating not just
classical reasoning but also the axiom of choice12.

If one is interested solely in derivability in geometric logic (finitary or infinitary,
but without the axiom of choice), Barr’s theorem can be regarded as identifying

11 While this result is usually attributed to Barr (1974), it was implicit in works such as
Grothendieck’s Tohoku paper on homological algebra (Grothendieck 1957) or Joyal’s letter to
Grothendieck on model structure for simplicial sheaves (Joyal 1984).
12 That such formulations of Barr’s theorem should be takenwith caution is demonstrated in Rathjen
(2016) where internal vs.external addition of the axiom of choice is considered and it is shown that
the latter preserves conservativity whereas the former does not.
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a Glivenko class, i.e., a class of sequents for which classical derivability entails
intuitionistic derivability13 and a proof entirely internal to proof theory, without any
detour through completeness with respect to topos-theoretic models, obtains.

Consider now a classical theory axiomatized by finitary or infinitary geometric
implications. Extending the conversion into rules of Negri (2003) to cover the case of
infinitary disjunctions and using the results detailed above, we transform the classical
theory into a contraction- and cut-free sequent calculus, denoted byG3cωT. We shall
denote by G3iωT the corresponding intuitionistic extension of G3iω. The following
holds:

Theorem 12.5.7 If a finitary or infinitary geometric implication is derivable in
G3cωT, it is derivable in G3iωT.

Proof Almost nothing to prove. Any derivation inG3cωT uses only rules that follow
the (infinitary) geometric rule scheme and logical rules. Observe that geometric
implications contain no⊃, ∧ or ∀ in the scope of ∨, which means that no instance of
the rules that violate the intuitionistic restrictions is used, so the derivation directly
gives (through the addition, where needed, of the missing implications in steps of
L⊃) a derivation in G3iωT of the same conclusion. QED

A proof of Barr’s theorem for finitary geometric theories was given in Negri
(2003) through a cut-free presentation of finitary geometric theories and the choice
of an appropriate sequent calculus that, in effect, trivializes the result. By the results
above, the same trivialization works for infinitary logic: a classical proof already is
an intuitionistic proof.

12.6 Concluding Remarks and Further Work

This article stems from an unpublished note written in 2014 with Roy Dyckhoff
and circulated at that time among colleagues. It was recently presented in seminars
in Verona, Florence and Helsinki in the Autumn of 2018 and in a conference in
Tübingen in March 2019. I am grateful to the organizers and the audience of those
events for valuable feedback, in particular Michele Abrusci, Ingo Blechschmidt,
Giulio Fellin, Per Martin-Löf, Paolo Maffezioli, Dale Miller, Pierluigi Minari, Jan
von Plato, Gabriel Sandu, Peter Schuster, Göran Sundholm, DanielWessel. I am also
grateful to the two referees for their insightful suggestions.

There are several lines of extension of the results presented here. To start with,
it is well known that using the Axiom of Choice any set can be well ordered and
thus, in effect, turned into an ordinal. One can then use the same transfinite induction

13 Mints (2017) attributes the standard proof of the first-order version to Orevkov (1968), although
it does not appear therein. The result can nevertheless be reduced to one of the Glivenko classes
(Orevkov 1968) provided one uses, for intuitionistic logic, amulti-succedent calculuswith invertible
rules, as in Negri (2016).
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used here to generalize our results to an infinitary language with
∧

and
∨

indexed
by an arbitrary set rather than by the natural numbers. Second, the original Barr’s
theorem includes the axiom of choice. It would be interesting to see how the methods
presented here fare in comparison, e.g., to the treatment of Rathjen (2016). We plan
to constructivize the cut-elimination proof with a proof that replaces induction on
ordinals with induction on well-founded trees.

The infinitary proof theory investigated in this paper is that of infinite width.
However, as pointed out by one of the referees, there is another form of infinitary
proof theory, of infinite height. These are called proofs by infinite-descent: they
are allowed to have infinite height branches, as long as they admit some infinite-
descent condition (Brotherston and Simpson 2011). Such systems were recently
developed for Avron’s favorite ancestral logic in Cohen and Rowe (2018). It would
be interesting to investigate the infinite-descent style proof theory of theories of
geometric implications and compare it with the present approach.

Last but not least, our motivation in this work was to provide a framework for
reasoning both classically and intuitionistically with geometric theories. There are
however more general motivations that make proof analysis in infinitary logic of
independent interest. There are theories for which a complete, sound, finitary proof
system cannot be achieved, so that an infinitary proof system is developed to obtain
completeness, e.g., for PA. In this sense, a potentially interesting area of application of
the presentmethodology is infinitarymodal logic. Existing results on the proof theory
for infinitary modal logic can be found in Minari (2016). Particularly promising
would be to use labeled calculi to obtain cut elimination.
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Chapter 13
Connexive Variants of Modal Logics
Over FDE

Sergei Odintsov, Daniel Skurt, and Heinrich Wansing

Abstract Various connexive FDE-based modal logics are studied. Some of these
logics contain a conditional that is both connexive and strict, thereby highlighting that
strictness and connexivity of a conditional do not exclude each other. In particular,
the connexive modal logics cBK−, cKN4, scBK−, scKN4, cMBL, and scMBL are
introduced semantically by means of classes of Kripke models. The logics cBK−
and cKN4 are connexive variants of the FDE-based modal logics BK− and KN4
with a weak and a strong implication, respectively. The system cMBL is a connexive
variant of themodal bilattice logicMBL. The latter is amodal extension of Arieli and
Avron’s logic of logical bilattices and is characterized by a class of Kripke models
with a four-valued accessibility relation. In the systems scBK−, scKN4, and scMBL,
the conditional is both connexive and strict. Sound and complete tableau calculi for
all these logics are presented and used to show that the entailment relations of the
systems under consideration are decidable for finite premise set.Moreover, the logics
cBK− and cMBL are shown to be algebraizable. The algebraizability of cMBL is
derived from proving cMBL to be definitionally equivalent to MBL. All connexive
modal logics studied in this paper are decidable, paraconsistent, and inconsistent but
non-trivial logics.
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13.1 Introduction

In a recent paper titled “Strictness and Connexivity” (Iacona 2019), Andrea Iacona
argues that natural language indicative conditionals are adequately formalized as
strict implications. According to Iacona, this “strict conditional view” is in con-
flict with the characteristic principles of connexive logic,1 namely Aristotle’s and
Boethius’ theses, principles that express a certain contra-classical understanding of
implication, ⊃, and negation, ∼:

AT ∼(∼A ⊃ A)

AT′ ∼(A ⊃ ∼A)

BT (A ⊃ B) ⊃ ∼(A ⊃ ∼B)

BT′ (A ⊃ ∼B) ⊃ ∼(A ⊃ B).

He claims that the strict conditional view invalidates AT and AT′ for constantly true
propositions A, and that it invalidatesBT andBT′ for constantly false propositions A.
In the opinion of Iacona, the strict conditional view validates only restricted versions
of Aristotle’s and Boethius’ theses, namely (notation adjusted):

RAT If it is possible that ∼A, then ∼(∼A ⊃ A)

RAT′ If it is possible that A, then ∼(A ⊃ ∼A)

RBT If it is possible that A, then (A ⊃ B) ⊃ ∼(A ⊃ ∼B)

RBT′ If it is possible that A, then (A ⊃ ∼B) ⊃ ∼(A ⊃ B).

Moreover, Iacona (2019, p. 8) holds that since AT, AT′, BT, BT′ “are plausible
only insofar as they entail RAT, RAT′, RBT, RBT′, the strict conditional view is as
plausible as any connexivist theory of conditionals.”

According to Iacona, there is thus a substantial contrast between strict and con-
nexive conditionals and a reason to choose between them. In the present paper, we
present various ways of adding a connexive conditional to Belnap and Dunn’s basic
four-valued paraconsistent logic FDE (first-degree entailment logic). Three of the
five conditionals we will consider are both strict and connexive. Whereas Iacona
maintains that the strictness of a conditional provides reason for rejecting the char-
acteristic principles of connexive logic, we show that there exists no categorical
difference between the strictness and the connexivity of a conditional. This calls for
clarification, and we will therefore discuss the notion of strictness and comment on
the relationship between strictness and connexivity before we will introduce con-
nexive variants of modal logics over FDE.

1 For overviews of connexive logic see, Wansing (2021), McCall (2012).
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When is a conditional strict?
C.I. Lewis attempted to define a conditional that adequately formalizes indicative
conditionals in natural language.2 In his Lewis et al. (1918, p. 124) we can find the
following definition (notation slightly adjusted):

The relation of strict implication can be defined in terms of negation, possibility, and product:

11.02 p � q :≡ ∼♦(p ∧ ∼q)

Thus “p implies q” or “p strictly implies q” is to mean “It is false that it is possible that p
should be true and q false” or “The statement ‘p is true and q false’ is not self-consistent.”
When q is deducible from p, to say “p is true and q is false” is to assert, implicitly, a
contradiction.

Since in Lewis et al. (1918) the underlying non-modal logic is classical propositional
logic, if we assume the interdefinability of� (necessity) and ♦ by means of classical
negation, instead of the above definition we can use the following definition:

(Def. �) p � q :≡ �(p ⊃ q)

where ⊃ is classical, Boolean implication. If we want to define the notion of a strict
conditional more generally, we could then assume a conditional, ⊃, and a necessity
operator, �, as given and use (Def. �). There are, however, subtleties we have to
consider. In the theory of definitions, it is required that definiens and definiendum
are interreplaceable in all linguistic contexts without thereby effecting a change of
denotation. In logics in which provable equivalence is a congruence relation, an
axiom of the form (p � q) ≡ �(p ⊃ q) guarantees that (p � q) and �(p ⊃ q) are
mutually interreplaceable salva veritate, but we will also consider logics in which
provable equivalence fails to be a congruence relation. In particular, in FDE and its
extensions, where a clear distinction is drawn between (support of) truth conditions
and (support of) falsity conditions, in addition to interreplaceability salva veritate,
interreplaceability salva falsitate is a natural requirement, and interreplaceability
salva veritate need not always imply interreplaceability salva falsitate, or vice versa.
Another complication for defining a notion of a strict conditional comes with the
possibility of using (support of) truth conditions that are plausible as (support of) truth
conditions of �(p ⊃ q) in order to semantically define p � q with � as primitive,

2 When Iacona introduces the strict conditional view as a view of indicative conditionals, this
seems to presuppose that we are dealing with natural language conditionals. However, one can, and
Iacona does, also consider formal languages containing a conditional that is meant to represent a
natural language indicative conditional. Also, note that the claim that indicative and subjunctive
conditionals are distinct is contentious, see Priest (2018). Iacona (2019, p. 2) explains that his focus
on indicative conditionals “is not intended to suggest that counterfactuals differ in some important
respect. On the contrary, most of what will be said about conditionals can be extended, mutatis
mutandis, to counterfactuals.” We will not take a stance on this issue here. Moreover, when we are
just interested in defining the strictness and the connexivity of a conditional, we need not define the
notion of a conditional but may take it as given. The notion of an implication is often introduced by
requiring that it is a binary connective satisfying the Deduction Theorem, see, for example, Avron
et al. (2018), Wansing and Odintsov (2016). Note also that we will use the terms “conditional” and
‘implication” as synonymous.
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i.e., in order to semantically define p � q without having � and ⊃ available in the
language.

Iacona (2019) assumes a specific format of truth conditions for defining the
notion of a strict implication (the “strict conditional view of indicative conditionals”),
namely, restricted universal quantification over possible worlds, and he defines the
truth conditions of a strict conditional p � q (notation and terminology adjusted) as
follows:

p � q is true in a possible world w if and only if for every world w′ accessible
from w, it holds that p is false in w′ or q is true in w′.

Different notions of strict implication are then obtained by imposing conditions
on the accessibility relation between possible worlds. This seems to be a widely
shared understanding of strict conditionals, and for our purposes we need not further
elaborate the notion of a strict implication. We shall consider three support of truth
conditions for conditionals in terms of restricted universal quantification over worlds
(or rather states), and these conditionals are therefore strict in Iacona’s sense.

Strictness and connexivity
According to Iacona, the strictness and the connexivity of an implication are in con-
flict insofar as the strict conditional view invalidates the characteristic principles of
connexive logic. Aswe shall emphasize, with the standard conception of connexivity,
the one adopted by Iacona, there is no reason to oppose strictness and connexivity as
properties of conditionals.3 A conditional can be both strict and connexive, and this
observation is not new. The implication in the connexive logicC and its modal exten-
sion CK fromWansing (2005), for example, is both strict and connexive. Therefore,
what we are considering in this paper could also be presented from the perspective
of CK, starting with the replacement of the constructive implication of CK by the
non-strict Boolean implication. Although Iacona grants that his understanding of
connexivity validates AT, AT′, BT, and BT′, he doubts, however, that these prin-
ciples are valid in general. According to him, AT, AT′, BT, and BT′ are “falsified
by vacuously true conditionals, that is, conditionals with necessary consequents or
impossible antecedents” (Iacona 2019, p. 8).

This is not the place to present a detailed discussion and criticism of Iacona
(2019), but the difference between Iacona’s conception of connexive logic and the
understanding of connexive logic assumed in the present paper becomes clear also
from his claim that (notation adjusted) it “seems that connexivists face a dilemma:
either they deny that a conditional of the form p ⊃ (p ∨ q), or q ⊃ (p ∨ q), is true,
which is quite implausible, or they deny . . . AT.” Moreover, according to Iacona
connexivists face another dilemma, namely, that (notation adjusted) “either they
deny that a conditional of the form (p ∧ q) ⊃ p or (p ∧ q) ⊃ q is true, which is
quite implausible, or they deny BT.” There are, however, logics that validate these

3 Usually, it also required that a connexive implication,→, is non-symmetric, i.e., that (A → B) →
(B → A) fails to be a theorem.
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principles (“disjunctive addition” and “conjunctive simplification”) as well as AT,
AT′, BT, and BT′.4

In his concluding remarks Iacona writes that

If what we want to preserve is restricted connexivity, rather than full connexivity, then there
is no need to abandon classical logic, for conditionals can adequately be formalized as strict
conditionals by using the expressive resources of classical modal logic. Even if we were not
satisfied with such formalization and wanted to follow a different route, it would still be a
route that does not lead to connexive logic.

However, since the strictness of an implication does not prevent it from being con-
nexive, even if it is granted that conditionals are adequately formalized as strict
conditionals, this does not entail that one does not end up with a connexive impli-
cation in a system of connexive logic after all. In any case, connexive logic rests on
the challenge to define formal systems that unrestictedly validate AT, AT′, BT, BT′.
As we will see, connexive modal logics over FDE may well be strict.

The paper is structured as follows. In Sect. 13.2, the connexive modal logics
cBK−, cKN4, scBK−, scKN4, cMBL, and scMBL are introduced semantically by
means of Kripke models that use support of truth as well as support of falsity clauses.
The logics cBK− and cKN4 are connexive variants of the FDE-based modal logics
BK− and KN4 with a weak and a strong implication, respectively, see Odintsov
and Wansing (2017), Drobyshevich and Wansing (2020). The system cMBL is a
connexive variant of the modal bilattice logic MBL, and in the systems scBK−,
scKN4, and scMBL, the conditional is both connexive and strict. Section 13.3 is
devoted to the presentation of tableau calculi for our connexive variants ofFDE-based
modal logics, and in Sect. 13.4, these calculi are shown to be sound and complete
with respect to their Kripke semantics. In Sect. 13.5 we highlight some properties of
cBK−, cKN4, scBK−, scKN4, cMBL, and scMBL. Next, in Sect. 13.6, we study
the algebraization problem for the connexive logics cBK−, cKN4, and cMBL. It is
shown that cBK− and cMBL are algebraizable and that cKN4 is algebraizable if its
global semantical consequence relation is compact. Finally, Sect. 13.7 concludes the
paper with a few summarizing remarks.

4 Note that also for Richard Routley (Routley et al. 1982), the failure of conjunctive simplification
is characteristic of connexive logic. For Routley, connexive logic and relevance logic more or
less coincide. If one shares the containment view of valid implication according to which in a valid
implication A → B, the content of B must be included in the content of A, then disjunctive addition
fails, and if connexive logic is motivated by the idea of negation as cancelation, then conjunctive
simplification cannot hold in full generality, in particular, (A ∧ ∼A) ⊃ A and (A ∧ ∼A) ⊃ ∼A fail
to be valid (cf. also Wansing and Skurt 2018).
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13.2 Semantics for Connexive FDE-Based Modal Logics

13.2.1 Semantics for KFDE

We begin by defining the (support of) truth and the (support of) falsity conditions for
KFDE, a simple FDE-based modal logic without a primitive, detaching conditional,
introduced by Graham Priest (2008). In order to define the semantics, we will make
use of a metalogical language which is a two-sorted first-order language containing:

• all formulas of KFDE as the first sort of individual variables,
• a non-empty denumerable set V of information state variables as the second sort
of variables,

• the classical connectives ∧∧, ∨∨, ¬¬, →→,
• the classical quantifiers ∀∀ and ∃∃,
• the binary predicate symbols �+, �−, and R.

The metalanguage is then defined as follows:

state variables: w ∈ V
object language formula variables: A
atomic formulas of the metalanguage: α

formulas of the metalanguage: ϕ

α:: = w �+ A | w �− A | wRw

ϕ:: = α | ¬¬ϕ | ϕ ∧∧ ϕ | ϕ ∨∨ ϕ | ϕ →→ ϕ | ∀∀ ϕ | ∃∃ ϕ

Bi-implication, ↔↔, is defined as usual.

The object language LKFDE = {∨,∧,∼,�,♦} is then based on a non-empty count-
able set of atomic propositionsProp.We denote byForm(KFDE) the set of formulas
defined as usual, formulas by A, B, C , etc., and sets of formulas by �, �, �, etc.

A KFDE-model is a tuple M = 〈W, R, v+, v−〉, where W is a non-empty set
of information states (possible worlds), R ⊆ W 2 is an accessibility relation on W ,
and v+ and v− are functions v+, v− : Prop → 2W . We now define verification (or
support of truth) and falsification (or support of falsity) relations�+ and�− between
worlds and formulas in a model M as follows5:

5 Since the metalanguage is classical, all classical equivalences hold in the metalanguage.
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w �+ p ↔↔ w ∈ v+(p);
w �− p ↔↔ w ∈ v−(p);
w �+ A ∧ B ↔↔ (w �+ A ∧∧ w �+ B);
w �− A ∧ B ↔↔ (w �− A ∨∨ w �− B);
w �+ A ∨ B ↔↔ (w �+ A ∨∨ w �+ B);
w �− A ∨ B ↔↔ (w �− A ∧∧ w �− B);
w �+ ∼A ↔↔ w �− A;
w �− ∼A ↔↔ w �+ A;
w �+ �A ↔↔ ∀∀ u(wRu →→ u �+ A);
w �− �A ↔↔ ∃∃ u(wRu ∧∧ u �− A);
w �+ ♦A ↔↔ ∃∃ u(wRu ∧∧ u �+ A);
w �− ♦A ↔↔ ∀∀ u(wRu →→ u �− A).

We say that a formula A is true at world w in aKFDE-modelM = 〈W, R, v+, v−〉
iff w �+ A. We say that a formula A is A true in M, M, �+ A, iff A is true at
every world w ∈ W . A formula A is KFDE-valid, �KFDE A, iff A is true in every
KFDE-model. Finally, a set of formulas � entails a formula A, � �KFDE A, iff for
all KFDE-models M and worlds w, if w �+ B, for all B ∈ �, then w �+ A.

13.2.2 Connexive Extensions of KFDE

We will now successively enrich the language ofKFDE by four different connexive
implications →c, ⇒c, �→, and �⇒. They are defined by the following support of
truth and support of falsity conditions:

w �+ A →c B ↔↔ (w �+ A →→ w �+ B);
w �− A →c B ↔↔ (w �+ A →→ w �− B);

w �+ A ⇒c B ↔↔ ((w �+ A →→ w �+ B) ∧∧ (w �− B →→ w �− A));
w �− A ⇒c B ↔↔ (w �+ A →→ w �− B);

w �+ A�→B ↔↔ ∀∀ u(wRu →→ (u �+ A →→ u �+ B));
w �− A�→B ↔↔ ∀∀ u(wRu →→ (u �+ A →→ u �− B));

w �+ A�⇒B ↔↔ ∀∀ u(wRu →→ (((u �+ A →→ u �+ B) ∧∧ (u �− B →→ u �− A))));
w �− A�⇒B ↔↔ ∀∀ u(wRu →→ (u �+ A →→ u �− B)).

Note that the verification conditions for →c and ⇒c are exactly those of the weak
and strong implication of BK− andKN4, whereas the verification conditions of�→
and �⇒ can be interpreted a giving rise to a strict conditional. The falsification
conditions of the respective conditionals follow the idea that connexivity is about the
falsity conditions for the conditional, cf. Omori and Wansing (2019). We will call
the resulting systems cBK−, cKN4, scBK−, and scKN4. Moreover, note that the
implication in the mentioned systems C and CK from Wansing (2005) is also both
connexive and strict as it is a connexive variant of intuitionistic implication. In these
systems support of truth conditions analogous to those for �→ in scBK− are stated
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with respect to the preorder of Kripke models for intuitionistic logic, whereas the
modal operators � and ♦ are defined with respect to another binary relation on the
set of states. Finally, the system cBK− can also be viewed as a modal extension of
the material connexive logic MC from Wansing (2021). Note that Kamide (2019)
and Omori (2019) are related to the system MC with modality as well.

Observation 13.1 It is easy to observe that all the introduced implications together
with strong negation satisfy AT, AT′, BT, and BT′ (with ⊃ being replaced by the
connexive conditional in question).

Proof Since the proofs are straightforward, we will leave them to the reader. �

13.2.3 Semantics for cMBL and scMBL

Themodal bilattice logicMBL is a modal extension of Arieli and Avron’s prominent
logic of logical bilattices, (Arieli and Avron 1996). The study ofMBLwasmotivated
inRivieccio et al. (2015) by obtaining amodal extension of the four-valued logicFDE
characterized by possible worlds models with a four-valued accessibility relation
between possible worlds. In what follows we will enrich the language of MBL by
two different connexive implications,→c and�→, where the former is the connective
introduced above and the latter is a connexive strict implication based on the necessity
operator �.

The languages LcMBL = {∨,∧,⊗,⊕, →c, ∼, �,⊥,�, b, n} and LscMBL =
{∨,∧,⊗,⊕, �→, ∼, �,⊥,�, b, n} are based, as above, on a non-empty countable
set of atomic propositions Prop. Again, if L is a logic, we denote by Form(L) the
set of formulas of the language of L defined as usual, formulas by A, B, C , etc., and
sets of formulas by �, �, �, etc.

We define cMBL- and scMBL-models as tuples M = 〈W, R+, R−, v+, v−〉,
where R+, R− ⊆ W × W are accessibility relations on W , and the rest is analo-
gously defined as above. For the connectives and constants not considered so far, we
have the following verification and falsification conditions:

w �+ A ⊗ B ↔↔ (w �+ A ∧∧ w �+ B);
w �− A ⊗ B ↔↔ (w �− A ∧∧ w �− B);
w �+ A ⊕ B ↔↔ (w �+ A ∨∨ w �+ B);
w �− A ⊕ B ↔↔ (w �− A ∨∨ w �− B);
w �+ � ∧∧ ¬¬(w �− �);
¬¬(w �+ ⊥) ∧∧ w �− ⊥;
w �+ b ∧∧ w �− b;
¬¬(w �+ n) ∧∧ ¬¬(w �− n);
w �+ �A ↔↔ ∀∀ u(wR+u →→ u �+ A) ∧∧ ∀∀ u(wR−u →→ ¬¬(u �− A));
w �− �A ↔↔ ∃∃ u(wR+u ∧∧ u �− A);
w �+ A �→B ↔↔ ∀∀ u(wR+u →→ (u �+ A →→ u �+ B)) ∧∧ ∀∀ u(wR−u →→ ¬¬(u �+ A →→ u �− B));
w �− A �→B ↔↔ ∀∀ u(wR+u →→ (u �+ A →→ u �− B));



13 Connexive Variants of Modal Logics Over FDE 303

Truth at a world, truth in a model, validity, and entailment are defined in analogy to
the definitions of these notions in Sect. 13.2.1.

Observation 13.2 Together with strong negation, �→ satisfies AT and AT′, but
neither BT nor BT′.

Proof Left for the reader. �

13.3 Tableau Calculi for Connexive FDE-Based Modal
Logics

Sound and complete tableau calculi for the connexive extensions ofKFDEunder con-
sideration can easily be obtained by modifying Priest’s tableau calculus for KFDE,
cf. Priest (2008), and the tableau calculi for BK�− and KN4 from Odintsov and
Wansing (2017). Hence, in the following, we will only present the rules for the
connexive implications.

We assume some familiarity with the tableau method as applied to modal exten-
sions of FDE in Priest (2008), Odintsov and Wansing (2010, 2017). In the tableau
for the systems considered below, tableau lines are of the form A,+i ; A,−i ; i R j ;
i R+ j ; or i R− j where A is an object language formula of the connexive extension
of FDE-based modal logic in question, i and j are natural numbers representing
information states or worlds, + indicates verification (�+), − indicates failure of
verification (�+), and R, R+ and R− represent the respective accessibility relations.
Tableau for a single conclusion derivability statement � � A start with a line of the
form B,+0 for every premise B from the finite premise set � and a line of the
form A,−0. Then tableau rules are applied to tableau lines leading to more complex
tableau. A branch of a tableau closes iff it contains a pair of lines C,+i and C,−i .
A tableau closes iff all of its branches close. If a tableau (tableau branch) is not
closed, it is called open. A tableau branch is said to be complete iff no more rules
can be applied to expand it. A tableau is said to be complete iff each of its branches
is complete.

13.3.1 Tableau Calculi for cBK−, cKN4, scBK−, and scKN4

The tableau rules for →c, ⇒c, �→ and �⇒ make use of the “+”-rules for weak and
strong implication of BK�− and KN4, cf. Odintsov and Wansing (2017), whereas
the “–”-rules have to be adjusted accordingly:
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A →c B,+i

A, −i B,+i

A →c B,−i

A, +i ; B, −i

A ⇒c B,+i

A, −i;∼B, −i A, −i;∼A, +i B,+i;∼B, −i B,+i;∼A, +i

A ⇒c B, −i

A, +i ; B,−i ∼B,+i ; ∼A, −i

A�→B, +i

i R j

A, − j B,+ j

A�→B,−i

i R j

A, + j ; B, − j

A�⇒B, +i

i R j

A, − j;∼B,− j A, − j;∼A, + j B,+ j;∼B,− j B,+ j;∼A, + j

A�⇒B,−i

i R j i R j

A, + j ; B, − j ∼B, + j ;∼A, − j

∼(A →c B),±i

A →c ∼B,±i

∼(A ⇒c B),±i

A ⇒c ∼B,±i

∼(A�→B),±i

A�→∼B,±i

∼(A�⇒B),±i

A�⇒∼B,±i

13.3.2 Tableau Calculi for cMBL and scMBL

The tableau rules for cMBL and scMBL can be obtained by adding rules for→c and
�→ to the tableau rules of MBL and by eliminating the rules for →, cf. Odintsov
and Wansing (2017). Since the tableau rules for →c are exactly as above, we will
only present the rules for �→. However, since the definition of � is non-standard
and since the semantics for � is required for the definition of �→, we will present
those rules as well.

�A,+i

i R+ j

A,+ j

�A,+i

i R− j

∼A,− j

�A,−i

i R+ j i R− j
A,− j ∼A,+ j

∼ � A,+i

i R+ j
∼A,+ j

∼ � A,−i

i R+ j

∼A,− j

A �→B,+i

i R+ j

A,− j B,+ j

A �→B,+i

i R− j

A,+ j;∼B,− j

A �→B,−i

i R+ j i R− j i R− j

A,+ j; B,− j A,− j ∼B,+ j
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∼(A �→B),±i

A �→∼B,±i

13.4 Soundness and Completeness

13.4.1 cBK−, cKN4, scBK−, and scKN4

For the soundness and completeness of cBK−, cKN4, scBK−, and scKN4 we will
follow the structure of the proofs given in Odintsov and Wansing (2010), Odintsov
and Wansing (2017), and Priest (2008).

Definition 13.3 LetM = 〈W, R, v+, v−〉 be anyL-model, withL ∈ {cBK−, cKN4,
scBK−, scKN4} and b be a tableau branch. The modelM is said to be faithful to b
iff there exists a function f from the set of natural numbers into W such that

(1) for every line A,+i on b, f (i) �+ A.
(2) for every line A,−i on b, ¬¬( f (i) �+ A).
(3) for every line i R j on b, f (i)R f ( j).

The function f is said to show that M is faithful to the branch b.

Lemma 13.4 Let M = 〈W, R, v+, v−〉 be any L-model, with L ∈ {cBK−, cKN4,
scBK−, scKN4} and b be a tableau branch. IfM is faithful to b and a tableau rule
is applied to b, then the application produces at least one extension b′ of b, such that
M is faithful to b′.

Proof By induction on the construction of the tableau and inspection of the tableau
rules. The cases for ∧,∨,∼,�,♦, as well as the cases for A →c B,±i and A ⇒c

B,±i have been treated in the corresponding lemmata in Odintsov and Wansing
(2010), Odintsov and Wansing (2017), and Priest (2008).

Wewill nowsuppose the function f shows thatM is faithful to a branch containing
the following lines in the respective tableau:
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∼(A →c B),+i : Then, f (i) �− A →c B ↔↔ ( f (i) �+ A →→ f (i) �− B) ↔↔ f (i) �+ A →c ∼B.
∼(A →c B),−i : Then, ¬¬( f (i) �+ ∼(A →c B)) ↔↔ ¬¬( f (i) �− A →c B) ↔↔ ¬¬( f (i) �+ A →→

f (i) �− B) ↔↔ ¬¬( f (i) �+ A →c ∼B).
∼(A ⇒c B),+i : Then, f (i) �− A ⇒c B ↔↔ ( f (i) �+ A →→ f (i) �− B) ↔↔ f (i) �+ A ⇒c ∼B.
∼(A ⇒c B),−i : Then, ¬¬( f (i) �+ ∼(A ⇒c B)) ↔↔ ¬¬( f (i) �− A ⇒c B) ↔↔ ¬¬( f (i) �+ A →→

f (i) �− B) ↔↔ ¬¬( f (i) �+ A ⇒c ∼B).
A�→B,+i : Then, with f (i)R f ( j) we have, f (i) �+ A�→B ↔↔ ( f ( j) �+ A →→ f ( j) �+ B) ↔↔

(¬¬( f ( j) �+ A) ∨∨ f ( j) �+ B).
A�→B,−i : Then, there is a j such that f (i)R f ( j) andwe have,¬¬( f (i) �+ A�→B)↔↔¬¬( f ( j) �+

A →→ f ( j) �+ B) ↔↔ (( f ( j) �+ A) ∧∧ ¬¬ f ( j) �+ B).
∼(A�→B),+i : Then, with f (i)R f ( j) we have, f (i) �− A�→B ↔↔ ( f ( j) �+ A →→ f ( j) �− B) ↔↔

f (i) �+ A�→∼B.
∼(A�→B),−i : Then, there is a j such that f (i)R f ( j) and we have, ¬¬( f (i) �+ ∼(A�→B)) ↔↔

¬¬( f ( j) �− A�→B) ↔↔ ¬¬( f ( j) �+ A →→ f (i) �− B) ↔↔
A�⇒B,+i : Then, with f (i)R f ( j) we have, f (i) �+ A�⇒B ↔↔ (( f ( j) �+ A →→ f ( j) �+ B) ∧∧

( f ( j) �− B →→ f ( j) �− A)) ↔↔ (( f ( j) �+ A →→ f ( j) �+ B) ∧∧ ( f ( j) �+ ∼B →→
f ( j) �+ ∼A)) ↔↔ (¬¬( f ( j) �+ A) ∨∨ f ( j) �+ B) ∧∧ (¬¬( f ( j) �+ ∼B) ∨∨ f ( j) �+
∼A) ↔↔ (¬¬( f ( j) �+ A) ∧∧ ¬¬( f ( j) �+ ∼B)) ∨∨ (¬¬( f ( j) �+ A) ∧∧ ( f ( j) �+
∼A))∨∨ (( f ( j) �+ B) ∧∧ ¬¬( f ( j) �+ ∼B)) ∨∨ (( f ( j) �+ B) ∧∧ ( f ( j) �+ ∼A)).

A�⇒B,−i : Then, there is a j such that f (i)R f ( j) and we have, ¬¬( f (i) �+ A�⇒B) ↔↔
¬¬(( f ( j) �+ A →→ f ( j) �+ B) ∧∧ ( f ( j) �− B →→ f ( j) �− A)) ↔↔ ¬¬( f ( j) �+
A →→ f ( j) �+ B) ∨∨ ¬¬( f ( j) �− B →→ f ( j) �− A)) ↔↔ ( f ( j) �+ A) ∧∧
¬¬( f ( j) �+ B)) ∨∨ ( f ( j) �− B) ∧∧ ¬¬( f ( j) �− A)) ↔↔ ( f ( j) �+ A) ∧∧ ¬¬( f ( j) �+
B)) ∨∨ ( f ( j) �+ ∼B) ∧∧ ¬¬( f ( j) �+ ∼A)).

∼(A�⇒B),+i : Then, with f (i)R f ( j) we have, f (i) �− A�⇒B ↔↔ ( f ( j) �+ A →→ f ( j) �− B) ↔↔
f (i) �+ A�⇒∼B.

∼(A�⇒B),−i : Then, there is a j such that f (i)R f ( j) and we have, ¬¬( f (i) �+ ∼(A�⇒B)) ↔↔
¬¬( f ( j) �− A�⇒B) ↔↔ ¬¬( f ( j) �+ A →→ f ( j) �− B) ↔↔ ¬¬( f (i) �+ A�⇒∼B).

�

Definition 13.5 Let b be a complete open tableau branch. Then the structureMb =
〈Wb, Rb, v

+
b , v−

b 〉 induced by b is defined as follows:

(1) Wb := {wi |i occurs on b},
(2) wi Rbw j iff i R j occurs b,
(3) wi ∈ v+

b (p) iff p,+i occurs on b,
(4) wi ∈ v−

b (p) iff ∼p,+i occurs on b.

Lemma 13.6 Suppose b is a complete open tableau branch, and letMb = 〈Wb, Rb,

v+
b , v−

b 〉 be the model induced by b. Then,

• If A,+i occurs on b, then wi �+ A.
• If A,−i occurs on b, then wi �

+ A.
• If ∼A,+i occurs on b, then wi �− A.
• If ∼A,−i occurs on b, then wi �

− A.

From the lemmata above it follows by familiar reasoning, cf. Odintsov and Wansing
(2010), Odintsov and Wansing (2017), and Priest (2008) that the respective tableau
calculi are sound and complete for cBK−, cKN4, scBK−, and scKN4.

Theorem 13.1 Let � ∪ {A} be a finite set of L-formulas, with L ∈ {cBK−, cKN4,
scBK−, scKN4}. Then � �L A iff � �L A in the respective tableau calculus.
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13.4.2 cMBL and scMBL

For the soundness and completeness of cMBL and scMBLwewill follow, with some
modification, the structure of the proofs given in Sect. 13.4.1.

Definition 13.7 LetM = 〈W, R+, R−, v+, v−〉 be any L-model, with L ∈ {cMBL,
scMBL} and b be a tableau branch. The modelM is said to be faithful to b iff there
exists a function f from the set of natural numbers into W such that:

(1) for every line A,+i on b, f (i) �+ A.
(2) for every line A,−i on b, ¬¬( f (i) �+ A).
(3) for every line i R+ j on b, f (i)R+ f ( j).
(4) for every line i R− j on b, f (i)R− f ( j).

The function f is said to show that M is faithful to the branch b.

Lemma 13.8 Let M = 〈W, R+, R−, v+, v−〉 be any L-model, with L ∈ {cMBL,
scMBL} and b be a tableau branch. If M is faithful to b and a tableau rule is
applied to b, then the application produces at least one extension b′ of b, such that
M is faithful to b′.

Proof By induction on the construction of the tableau and inspection of the tableau
rules. We will proof the lemma only for the cases that involve �→, since the proofs
for the other connectives have been given in Odintsov and Wansing (2017) and
Sect. 13.3.1.

Wewill nowsuppose the function f shows thatM is faithful to a branch containing
the following lines in the respective tableau:

A �→B, +i : Then, with f (i)R+ f ( j) we have, f ( j) �+ A →→ f ( j) �+ B, which is
equivalent to ¬¬( f ( j) �+ A) ∨∨ f ( j) �+ B. And with f (i)R− f ( j) we
have ¬¬( f ( j) �+ A →→ f ( j) �− B), which is equivalent to f ( j) �+ A ∧∧
¬¬( f ( j) �− B).

A �→B, −i : Then, there is a j such that f (i)R+ f ( j) and we have, ¬¬( f ( j) �+ A →→
f ( j) �+ B), which is equivalent to f ( j) �+ A ∧∧ ¬¬( f ( j) �+ B). Or, there
is a j such that f (i)R− f ( j) and we have, f ( j) �+ A →→ f ( j) �− B, which is
equivalent to ¬¬( f ( j) �+ A) ∨∨ f ( j) �− B.

∼(A �→B),+i : Then, with f (i)R+ f ( j) we have, f (i) �− A �→B ↔↔ ( f ( j) �+ A →→
f ( j) �− B) ↔↔ f (i) �+ A �→∼B.

∼(A �→B),−i : Then, there is a j such that f (i)R+ f ( j) and we have, ¬¬( f (i) �+ ∼(A �→B))

↔↔ ¬¬( f ( j) �− A �→B) ↔↔ ¬¬( f ( j) �+ A →→ f ( j) �− B) ↔↔ ¬¬( f (i) �+
A �→∼B). �

Definition 13.9 Let b be a complete open tableau branch. Then the structureMb =
〈Wb, R

+
b , R−

b , v+
b , v−

b 〉 induced by b is defined as follows:

(1) Wb := {wi |i occurs on b},
(2) wi R

+
b w j iff i R+ j occurs b,

(3) wi R
−
b w j iff i R− j occurs b,
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(4) wi ∈ v+
b (p) iff p,+i occurs on b,

(5) wi ∈ v−
b (p) iff ∼p,+i occurs on b.

Lemma 13.10 Suppose b is a complete open tableau branch, and let Mb =
〈Wb, R

+
b , R−

b , v+
b , v−

b 〉 be the model induced by b. Then,

• If A,+i occurs on b, then wi �+ A.
• If A,−i occurs on b, then wi �

+ A.
• If ∼A,+i occurs on b, then wi �− A.
• If ∼A,−i occurs on b, then wi �

− A.

From the lemmata above it follows by familiar reasoning, cf. Odintsov andWans-
ing (2010), Odintsov and Wansing (2017), and Priest (2008) that the respective
tableau calculi are sound and complete for cMBL and scMBL.

Theorem 13.2 Let� ∪ {A} be a finite set of L-formulas, with L ∈ {cMBL, scMBL}.
Then � �L A iff � �L A in the respective tableau calculus.

Note that it is possible to consider infinite premise sets. This requires a modifica-
tion in the proof of the soundness lemma, cf. Priest (2008, p. 285).

13.5 Some Properties of cBK−, cKN4, scBK−, scKN4,
cMBL, and scMBL

Connexive logics are contra-classical insofar as they fail to be subsystems of classi-
cal logic, and connexive systems may have unusual properties. The connexive logic
CC1 of Angell and McCall (1966), for example, invalidates conjunctive simplifica-
tion, (A ∧ B) → A and (A ∧ B) → B. The logics cBK−, cKN4, scBK−, scKN4,
cMBL, and scMBL do validate conjunctive simplification, but they are all inconsis-
tent but non-trivial logics. The following schematic formulas are valid in the indicated
systems containing the displayed conditionals:

∼(A →c A) →c (A →c A) ∼(∼(A →c A) →c (A →c A))

(A ∧ ∼A) →c A, ∼((A ∧ ∼A) →c A),

(A ∧ ∼A) ⇒c A, ∼((A ∧ ∼A) ⇒c A)

(A ∧ ∼A)�→A, ∼((A ∧ ∼A)�→A),

(A ∧ ∼A)�⇒A, ∼((A ∧ ∼A)�⇒A),

(A ∧ ∼A) �→A, ∼((A ∧ ∼A) �→A).

Note that Arieli and Avron’s logic of logic bilattices BL⊃ on which cMBL is based
is already negation-inconsistent, as pointed out in Omori and Wansing (2018). This
is due to the fact that the information join, ⊕, combines the standard truth condi-
tions of disjunction with the standard falsity conditions of conjunction, so that, both
(A ⊃ A) ⊕ ∼(A ⊃ A) and∼((A ⊃ A) ⊕ ∼(A ⊃ A)) are valid, where⊃ is theweak
implication of BL⊃.
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All logics under consideration are, however, decidable.

Corollary 13.11 For finite premise sets, the entailment relations of the systems
cBK−, cKN4, scBK−, scKN4, cMBL, and scMBL are decidable.

Proof Each tableau rule for these systems, except of the rules for the propositional
constants �, ⊥, n, b (given in Odintsov and Wansing 2017), either outputs formulas
with a smaller number of connectives than present in the formula from the input or
with formulas that decompose into formulas with a smaller number of connectives.
We restrict the use of the tableau rules for the propositional constants to applications
by which a branch is closed. As a result, the tableau construction terminates. We can
make this more precise by introducing the following complexity measure, c(A), for
formulas:

c(p) = c(∼p) = 0 for atomic propositions p
c(�) = 0 for � ∈ {�,⊥, n, b}
c(�A) = c(A) + 1 for � ∈ {∼∼,�,♦}
c(�A) = c(A) + 2 for � ∈ {∼�,∼♦,�,∼�}
c(A�B) = c(A) + c(B) + 1 for � ∈ {∧,∨,→c,�→,⊕,⊗}
c(A�B) = c(A) + c(B) + 2 for � ∈ {⇒c,�⇒,�→}
c(∼(A�B)) = c(A) + c(B) + 2 for � ∈ {�→}
c(∼(A�B)) = c(A) + c(B) + 3 for � ∈ {→c,⇒c,�→,�⇒}
c(∼(A�B)) = c(A) + c(B) + 4 for � ∈ {∧,∨,⊕,⊗}

�

Another peculiarity of the systems scBK−, scKN4, and scMBL is due to the strictness
of their implications. The strict and connexive implications in the mentioned logics
C and CK are obtained by laying down suitable support of falsity conditions for the
otherwise intuitionistic implication. Since intuitionistic implication is defined with
respect to a preorder, the reflexivity of that relation guarantees that modus ponens
not only is a valid inference rule but that it also holds relativized to a given state.
The strict and connexive implications of scBK−, scKN4, and scMBL are defined
with respect to an arbitrary relation so that it is not guaranteed, for example, that if
w �+ A�→B and w �+ A, then w �+ B. Finally, being extensions of FDE, the
systems under consideration are paraconsistent logics.

13.6 On Algebraizability of the Connexive Logics cBK−,
cKN4, and cMBL

In this sectionwe dealwith a certainmore complicated property of logics, namely, the
existence of an equivalent algebraic semantics. More precisely, we study whether the
logics cBK−, cKN4, and cMBL are algebraizable in the sense of Blok and Pigozzi
(1989). Roughly speaking, the fact that some logic L is algebraizable means that its
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consequence relation �L is mutually interpretable with the equational consequence
relation defined over one or another class of algebras. The algebraizability ofL allows
to apply a variety of strong methods of universal algebra for studying this logic. Blok
and Pigozzi (1989) discovered also some intrinsic characterizations of algebraizable
logics that give us the possibility to conclude that logic L is algebraizable without
explicit construction of its equivalent algebraic semantics. We will apply one of such
characterizations and pass now to precise definitions.

The algebraizability theory was developed for logics defined via deductive sys-
tems. According to Łoś and Suszko (1958) a logic L may be defined via a deductive
system if and only if �L is a compact and structural Tarskian consequence relation,
i.e., �L satisfies the following five properties for all sets �,� of L-formulas and all
L-formulas A, B:

(1) Reflexivity. A ∈ � implies � �L A;
(2) Monotonicity. � �L A and � ⊆ � imply � �L A;
(3) Transitivity. � �L A and � �L B for every B ∈ � imply � �L A;
(4) Compactness. � �L A implies �′ �L A for some finite �′ ⊆ �;
(5) Structurality. � �L A implies σ(�) �L σ A for every substitution σ .

Recall that by a substitution we mean a mapping σ from Prop to the set of all
L-formulas, which can be extended homomorphically to the set of all L-formulas,
σ(�) = {σ A | A ∈ �}.

For a set 	(p, q) = {θi (p, q) | 0 ≤ i ≤ n} of L-formulas and for L-formulas A
and B, we consider � �L 	(A, B) as a tuple of sequents

� �L θ0(A, B), . . . , � �L θn(A, B).

On the other hand, �,	(A, B) �L C is an abbreviation for �, θ0(A, B), . . . , θn(A,

B) �L C . In what follows we will write A	B instead of 	(A, B).
A formal expression A ≈ B, where A and B are L-formulas, is called an L-

equation. For a finite set δ ≈ ε = {δ j ≈ ε j | 0 ≤ j ≤ m} of L-equations, δ 	 ε is an
abbreviation for

{θi (δ j , ε j ) | 0 ≤ i ≤ n, 0 ≤ j ≤ m}.

Theorem 13.3 (Theorem4.7 of Blok and Pigozzi 1989)LetL be a logic such that�L

is a compact and structural Tarskian consequence relation. Logic L is algebraizable
if and only if there exists a finite set � of L-formulas in two variables and a finite set
δ ≈ ε of L-equations in a single variable such that the following conditions (i)–(v)
hold for all L-formulas A, B,C:

(i) �L A� A;
(ii) A� B �L B � A;
(iii) A� B, B �C �L A�C;
(iv) A0 � B0, . . . An−1 � Bn−1 �L �(A0, . . . , An−1) � �(B0, . . . , Bn−1) for

every primitive connective � of arity n and for all L-formulas A0, . . . , An−1,
B0, . . . , Bn−1;
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(v) A ��L δ(A)� ε(A).

Up to this moment we considered local semantical consequence relations �L. Recall
that each of the logics L considered in the paper was defined via a class of its models
ModL, and the relation � �L A holds iff for every M ∈ ModL and every world w

of M, if w �+ B for all B ∈ �, then w �+ A. Such local semantical consequence
relations corresponds to the inference from premises and tautologies of logic L with
the help ofmodus ponens only. The consequence relation of a deductive system uses
all rules of the system and it corresponds to global semantical consequence, which
can be defined as follows. Let L be a logic defined via a class of models ModL. An
L-formula is true inM ∈ ModL, symbolicallyM � A, if w �+ A for every world
w ofM. We associate with L a global consequence relation �∗

L as follows. For a set
� ∪ {A} of L-formulas, the relation � �∗

L A holds if for everyM ∈ ModL, we have
M � A whenever M � B for all B ∈ �.

Using the definition of validity of formulas in models we can directly check the
following statement.

Proposition 13.12 LetL ∈ {cBK−, cKN4, cMBL}. Then�∗
L is a structural Tarskian

consequence relation.

Neither the definition of validity nor the weak completeness theorems of Sect. 13.4
dealing with finite sets of premises can help, however, to prove that the relations �∗

L

are compact. Fortunately, as we will see, a minor modification of calculus HBK�−
from Drobyshevich and Wansing (2020) produces a Hilbert-style calculus strongly
complete w.r.t. �∗

cBK− . This completeness result implies that the relation �∗
cBK− is

compact. Using Theorem 13.3 we will prove that �∗
cBK− is algebraizable. For the

relation �∗
cKN4 we prove a conditional statement: compactness implies algebraizabil-

ity. Finally, we will see that the relation �∗
cMBL is algebraizable due to the fact that

cMBL is definitionally equivalent toMBL.
We continue with the Hilbert-style calculus HcBK−, which has the following

axioms:

(1) axioms of the positive fragment of classical propositional logic in the language
{∨,∧,→c};

(2) axioms of strong negation ∼:
∼(A ∧ B) ↔c (∼A ∨ ∼B); ∼(A →c B) ↔c (A →c ∼B);
∼(A ∨ B) ↔c (∼A ∧ ∼B); ∼∼A ↔c A;

(3) modal axioms:

�1) �(A →c B) →c (�A →c �B); �2)�(∼A →c ∼B) →c (∼�A →c ∼�B);
�3) ∼�(A ∧ B) →c (∼�A ∨ ∼�B); �4)�(A ∨ ∼B) ⇒c (�A ∨ ∼�B);

♦1)♦A ⇔c ∼�∼A.

Here and in what follows, working with cBK− and cMBL, we use the following
abbreviations:

A ⇒c B := (A →c B) ∧ (∼B →c ∼A),
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A ↔c B := (A →c B) ∧ (B →c A), A ⇔c B := (A ⇒c B) ∧ (B ⇒c A).

The inference rules of cBK− include modus ponens for →c and necessitation for �:

(MP→c)
A A →c B

B
; (N�)

A

�A
.

The relation � �∗
cBK− A holds if A can be obtained from elements of � andHcBK−-

axioms with the help of MP→c and N�. The set of HcBK−-theorems is defined as
Th(HcBK−) = {A | ∅ �∗

cBK− A}. Finally, the relation � �cBK− A holds if A can be
obtained from elements of � ∪ Th(HcBK−) with the help of MP→c only. In what
follows we omit the lower index in the expressions “�cBK−” and “�∗

cBK−” if it does
not lead to confusion.

A set � of cBK−-formulas is said to be a prime cBK−-theory if it is non-trivial
(different from the set of all cBK−-formulas), closed under �, and satisfies the
disjunction property: A ∨ B ∈ � implies A ∈ � or B ∈ �.

Standardly, one can prove

Lemma 13.13 (Extension lemma) For any set � of cBK−-formulas and cBK−-
formula A, if � � A, then there is a prime cBK−-theory such that � ⊆ �′ and
�′

� A.

The canonical cBK−-model is a tuple Mc = 〈Wc, Rc, v
+
c , v−

c 〉, where 1) Wc is the
set of all prime cBK−-theories; 2) for prime cBK−-theories � and �, the relation
�Rc� holds if for every cBK−-formula A:

(�A ∈ � implies A ∈ �) and (∼A ∈ � implies ∼�A ∈ �);

3) v+
c (p) = {� ∈ Wc | p ∈ �} and v−

c (p) = {� ∈ Wc | ∼p ∈ �}.
Lemma 13.14 (Canonical model lemma) For every prime cBK−-theory � and
cBK−-formula A, we have

Mc, � �+ A iff A ∈ �; Mc, � �− A iff ∼A ∈ �.

Proof This statement can be proved by a natural modification of the proof of Droby-
shevich and Wansing (2020, Lemma 3.4). There are two main differences between
cBK− andBK�− ofDrobyshevich andWansing (2020). First, the language ofBK�−
lacks ♦, but axiom ♦1) of HcBK− allows to reduce the case of the possibility oper-
ator to that of the necessity operator. Second, the falsification of →c is defined in a
different way as compared to the implication → of BK�−. The case of falsification
(support of falsity) for connexive implication can be treated, however, as follows:

� �− A →c B iff (� �+ A →→ � �− B) iff (ind. hypothesis) (A /∈ � ∨∨ ∼B ∈ �) iff

iff A →c ∼B ∈ � iff ∼(A →c B) ∈ �.
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�

Theorem 13.4 (Strong completeness for global consequence) For any set � of
cBK−-formulas and any cBK−-formula A,

� �∗
cBK− A iff � �∗

cBK− A.

Proof The soundness part is omitted as usual.
Assume that � �

∗
cBK− A. Let �′ = {B | � �∗

cBK− B}. Obviously, �′
�

∗
cBK− A,

moreover, �′
�cBK− A. By the Extension lemma, there is �′′ ∈ Wc such that �′ ⊆ �′′

and �′′
�cBK− A. From the Canonical model lemma, we have

�′′ �+ B for all B ∈ �′ and �′′
�

+ A.

Let us consider the submodel of Mc generated by �′′, i.e., the model Mc
�′′ =

〈W�′′ , R1, v
+
1 , v−

1 〉, where W�′′ consists of �′′ and all those worlds from Wc which
can be reached from �′′ in a finite number of steps via Rc. The accessibility relation
R1 and valuations v+

1 , v−
1 are induced by Rc, v+

c , and v−
c in a natural way. Standardly

one can prove that for every � ∈ W�′′ and every cBK−-formula B,

Mc,� �+ B iff Mc
�′′ ,� �+ B. (13.1)

If � ∈ W�′′ and it can be reached from �′′ in n steps, i.e., there are �1, . . . ,�n−1

such that
�′′Rc�1Rc�2Rc . . . Rc�n−1Rc�,

then � �+ B whenever �′′ �+ �n B.6 Since �′ is closed under rule N�, we have

Mc
�′′ � B for all B ∈ �′.

At the same time from (13.1)we haveMc
�′′ , �′′

�
+ A, i.e.,Mc

�′′ � A. This concludes
the proof. �

Corollary 13.15 The relation �∗
cBK− is compact.

This corollary together with Proposition 13.12 imply that Theorem 13.3 can be
applied to �∗

cBK− .

Theorem 13.5 The relation �∗
cBK− is algebraizable with the equivalence formula

p ⇔c q and defining equation p →c p = p.

Proof It follows from the definition of validity of formulas that for every modelM
and cBK−-formulas A and B, we haveM � A ⇔c B if and only for every world w

of M,
w �+ A iff w �+ B, w �− A iff w �− B.

6 As usual, �0B = B and �n+1B = ��n B.
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Using this remark, we can easily check the items (i)–(iv) of Theorem 13.3 for �∗
cBK−

and formula p ⇔c q. It remains to check that for everymodelM and cBK−-formula
A,

M � A iff M � (A →c A) ⇔c A.

Assume that A is true in all worlds ofM and prove that the formulas A →c A and A
are true and false in the same worlds ofM. Since A →c A is true at every world of
every model, we have to check only that A →c A and A are false in the same worlds
of M. Let w be a world of M. We have

w �− A →c A iff (w �+ A →→ w �− A) iff w �− A.

The second equivalence is due to our assumption thatM � A. Now we assume that
A →c A and A are true and false in the same worlds ofM. FromM � A →c A we
obtain M � A.

Theorem 13.3 implies now that �∗
cBK− is algebraizable with the equivalence for-

mula p ⇔c q and defining equation p →c p = p. �
Modifying the proof of this theorem, we obtain

Corollary 13.16 If the relation �∗
cKN4 is compact, then it is algebraizable with the

equivalence formula p ⇔c q and the defining equation p ⇒c p = p.

Proof As above we check the items (i)–(iv) of Theorem 13.3 for �∗
cKN4 and formula

p ⇔c q. It remains to check that for every model M and cKN4-formula A,

M � A iff M � (A ⇒c A) ⇔c A.

Since the falsification conditions for ⇒c and →c are the same, this last check can be
done in essentially the same way as in the previous proof. Thus, the compactness of
�∗
cBK− implies its algebraizability. �

Theorem 13.6 The relation �∗
cMBL is algebraizable.

Proof Let us consider the formula �(p, q) = (p ∧ b) ∨ (∼q ∧ n) from Odintsov
et al. (2019). It has one remarkable property. For every model M and one of its
worlds w, we have the following equivalences:

w �+ �(p, q) iff w �+ p; w �− �(p, q) iff w �+ q.

In particular, the formula �(A →c B, A ∧ ∼B) has the following verification and
falsification conditions:

w �+ �(A →c B, A ∧ ∼B) iff (w �+ A →→ w �+ B);
w �− �(A →c B, A ∧ ∼B) iff (w �+ A ∧∧ w �− B).

Thus, �(A →c B, A ∧ ∼B) has exactly the same verification and falsification con-
ditions as A → B, where → is the conditional connective of the original logic
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MBL. Let us define a structural translation ρ from the set of all MBL-formulas
to the set of all cMBL-formulas so that it preserves all propositional variables
and constants, commutes with all connectives except for →, and for → we put
ρ(A → B) = �(ρA →c ρB, ρA ∧ ∼ρB). It is routine to check that for every set
� of MBL-formulas and MBL-formula A, we have

� �∗
MBL A iff ρ(�) �∗

cMBL ρA,

where ρ(�) = {ρB | B ∈ �}. Now we define a structural translation θ , which acts
in the inverse direction, from the set of all cMBL-formulas to the set of all MBL-
formulas, and preserves all propositional variables and constants, commutes with all
connectives except for →c, and θ(A →c B) = �(θ A → θB, θ A → ∼θB). Again
we can see that the verification and falsification conditions for θ(p →c q) coincide
with those for p →c q. This allows one to prove that for every set � of cMBL-
formulas and cMBL-formula A, we have

� �∗
cMBL A iff θ(�) �∗

MBL θ A.

Naturally, θ(�) = {θB | B ∈ �}. Nowwe calculate the results of double translations:

ρθ(A →c B) = �(�(ρθ A →c ρθB, ρθ A ∧ ∼ρθB),�(ρθ A →c ∼ρθB, ρθ A ∧ ∼∼ρθB)),

θρ(A → B) = �(�(θρA → θρB, θρA → ∼θρB), θρA ∧ ∼θρB),

from which we have

w �+ ρθ(A →c B) iff w �+ �(ρθ A →c ρθB, ρθ A ∧ ∼ρθB) iff w �+ ρθ A →c ρθB,

w �− ρθ(A →c B) iff w �+ �(ρθ A →c ∼ρθB, ρθ A ∧ ∼∼ρθB) iff w �− ρθ A →c ρθB,

and similarly

w �+ θρ(A → B) iff w �+ �(θρA → θρB, θρA → ∼θρB) iff w �+ θρA → θρB,

w �− θρ(A → B) iff w �+ θρA ∧ ∼θρB iff w �− θρA → θρB.

Using these relations, by induction on the complexity of formulas we infer that for
every cMBL-formula A and every MBL-formula B,

∅ �∗
cMBL A ⇔c ρθ A, ∅ �∗

MBL B ⇔ θρB.
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It was noticed in Odintsov and Wansing (2017) that the connective ⇔ determines
Tarski’s congruence on the algebra ofMBL-formulas (the greatest congruence com-
patible with all�∗

MBL-theories). Similarly, one can prove that⇔c determines Tarski’s
congruence on the algebra of cMBL-formulas.

We have thus proved that up to Tarski’s congruence there are mutually inverse
structural translations between MBL and cMBL, i.e., the logics MBL and cMBL
are definitionally equivalent in the sense of Gyuris (1999). According to Rivieccio
et al. (2015), logicMBL is algebraizable. Applying the results of Gyuris (1999), we
conclude that cMBL is algebraizable too. �

13.7 Conclusion

In this paper we introduced various FDE-based modal logics through classes of
Kripke models with suitable support of falsity conditions. In some of these logics
their implication connective is both connexive and strict, which is a combination of
properties that have been considered in the context of modeling natural language
conditionals. We presented sound and complete tableau calculi for all logics under
consideration. Moreover, we proved that the logics cBK− and cMBL are algebraiz-
able, but an equivalent algebraic semantics for these logics was not presented. In
the future, we plan to develop and study the algebraic semantics for these logics.
Also, we will try to axiomatize the rest of the logics considered in the paper and
we intend to study the algebraization problem for them. Other directions for further
investigations include the study of stronger modal logics by imposing the familiar
frame conditions for obtaining normal modal logics stronger than the smallest nor-
mal modal logic K based on classical logic, and the study of first-order extensions
of cBK−, cKN4, scBK−, scKN4, cMBL, and scMBL.
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Chapter 14
Comments on the Papers

Arnon Avron

Abstract This final chapter includes some comments of mine about the papers in
this volume and their connections with my work. I am very grateful to all the authors
of these papers for their nice contributions!

14.1 Bimbo

Kata is of course one of the world’s leading researchers on substructural logics in
general, and relevance logics in particular. This paper too is a contribution to the
study and understanding of substructural logics. As their very name indicates, such
logics are defined using proof systems. However, no proof-theoretical method is used
in Kata’s paper. Instead, the paper heavily uses semantic methods. This fits well my
recent tendency (noted upon also in my remarks about the contribution of Colacito,
Galatos, and Metcalfe) to rely more on semantic methods in the study of proof sys-
tems than on pure proof-theoretical ones. However, the semantic method that I have
usually employed in my research on substructural logics and paraconsistent logics
were mainly algebraic, or non-deterministic generalizations of algebraic methods.
In addition, I have also used Kripke-style semantics when modal or intermediate
logics were involved. What I have never used until not long ago was the semantic
framework for relevance logics which has been developed by Routley and Meyer.
This framework is based on the use of ternary relations among worlds (or “setups”,
or “situations”), and for long I have found it too complicated for me to work with.My
opinion about its value changed several years ago, when the use of such semantics
was the only way I could find for proving that the relevance logic R has what I take
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as the most basic relevance criterion. (This fact is announced on Page 457 of Avron
et al. (2018), but its proof has not been published yet.)

Specifically, in this paper Kata uses the relational approach to the study of certain
substructural logic which have the standard two modalities (or “exponentials”). But
its real goal is to contribute to the understanding of the standard connectives, their
general role(s), and the connections between them. Particularly interesting for me
is the light it shed on the role of the negation connective—a connective in which I
always have had a special interest. This statement might look strange, since delib-
erately, none of the systems studied here include negation. But seeing what can be
done without some connective is also essential for understanding the role of that
connective. Thus the presence of negation is usually crucial for establishing duality
between disjunction and conjunction, as well as between necessity and possibility.
Nevertheless, in this paper those dualities are handled and used without negation.
The way this is done in the case of disjunction and conjunction is particularly inter-
esting: instead of studying internal relations between them within one system, the
paper shows external duality between different systems, one having disjunction but
not conjunction, while in the other it is the other way around.

14.2 Caleiro, Marcelino

Developing and applying the semantic framework of non-deterministic matrices
(Nmatrices) is one of the main research programs on which I have been working
for the last twenty years. (Actually, at the beginning I thought that I had invented
it, but now I know that I had not been the first to come across this idea.) In my
work on it I have discovered that what is perhaps its greatest advantage is that not
only it makes it possible to provide useful (and frequently finite) semantics to log-
ics for which the use of ordinary matrices fails—in many cases this can be done in
a modular way. In other words: there were many cases in which I (together with
my coauthors) were able to provide simultaneously, and in a compositional way,
non-deterministic semantic to every logic in a given family of logics. This mainly
happened when all the logics in some family we considered are obtained by adding
various axioms to one basic logic. In such a case the process was as follows: using
intuitive considerations concerning the basic logic in the family, we have found a
corresponding NmatrixM for which it is sound and complete. Then with each axiom
used in the family, we have tried to associate a certain way of refining M. Usually
an Nmatrix which is sound and complete for a logic L in the family was obtained
by combining the refining methods associated with each of its extra axioms. In case
of an axiom for which this did not work, we tried to replace M by some rexpansion
(Avron and Zohar 2019) of it for which the modular approach works also for the
problematic axiom. This method was very successful, but it was applied on a case by
case basis. I felt that there should be a general theory behind this, that (among other
things) would enable one to know in advance what axioms will be easy to handle,
and which will be problematic. Unfortunately, I have never had the opportunity to
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try to develop such a theory. Therefore I was very pleased to read the contribution
of Carlos and Sérgio, and discover that this is precisely what they are doing in it.
Using a generalization of Nmatrices called PN-matrices (which has been introduced
by Agata Ciabattoni, Lara Spendier, Ori Lahav, and Anna Zamansky), they describe
some general, but still useful results, and then a special case which is still general
enough to cover all the cases that have been worked out in the literature (so far).
This is a very important (and very useful) step in the research on PNmatrics and
their applications. I also enjoyed seeing the application given in the paper of the
more general result to intuitionistic propositional logic. I do hope that the authors
will continue this research in the directions mentioned in the paper (including what
they justly call “mandatory topic” in the description of Example 4.3.) I hope also that
future papers will clarify the connections between the analytic multiple-conclusion
calculi developed in Sect. 14.5 to ordinary Gentzen-style calculi.

14.3 Carnielli and Bueno-Soler

The main subject of this paper is probability logics which are based on LFIs (Logics
of Formal Inconsistency) rather than on classical logic. This is a rather interesting
and promising application of LFIs. I have never worked on probability logics myself.
Nevertheless, this paper is strongly related to subjects on which I did work:

• Paraconsistency is of course an area towhichmany ofmyworks have been devoted.
Among them a great part was devoted to the study of LFIs. The latter is a central
family of paraconsistent logics, which have been introduced by Carnielli andMar-
cos as a generalization of da Costa’s systemsCn (1 ≤ n ≤ ω). Providing semantics
in a modular way to the main logics in this family was the second, particularly suc-
cessful application of my non-deterministic semantic framework, and the first one
that was employing more than two truth-values. (My framework is actually a spe-
cial, particularly simple and convenient, case of the possible translation semantics
of Carnielli and Marcos.) As mentioned in the paper, the use of logics like Cie is
much easier than that of daCosta’s systemC1, because in contrast toCie (which has
a characteristic three-valued Nmatrix), the latter has no finite characteristic Nma-
trix. Therefore I agree with the authors’ choice to work with Cie rather than with
C1. (It should be noted, though, that the addition of the consistency-propagation
axioms of C1 would retain the availability of a characteristic three-valued Nma-
trix.)

• My approach to paraconsistent logic is pragmatic. It is not based on the belief
that there are contradictions in the world, but on the fact that often there are
contradictions in our beliefs about it— and we should be able to cope with them.
One main source of contradictions in our beliefs is when we get information from
different sources. This state provides the main motivation of using the famous
Dunn-Belnap four-valued matrix FOUR. (This matrix, which is mentioned in
this paper, has also been a central subject of my research.) It is interesting to
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note that like the authors, I too have tried to handle cases for whichFOUR itself
cannot be used. ThusAvron andKonikowska (2012) uses a four-valuedNmatrix for
dealing with cases in which sources provide information on non-atomic formulas
(and not only on atomic ones, as in Belnap’s model). On the other hand, the present
paper provides probability-based tools for handling cases in which sources defer
in their reliability. I think it is very important to try to combine the two works into
one unified framework.

• Another goal to which I have tried to contribute is combining paraconsistency with
fuzziness. (See Sect. 14.5.) This means using all numbers in [0,1] as truth-values.
Something similar is done here. The connections, if any, should be an interesting
(and potentially rather useful) future research direction.

14.4 Colacito, Galatos, and Metcalfe

The interest formeof the contribution ofAlumendo,Nikolaos, andGeorge is twofold.
First of all, it generalizes in an interesting way (and by this put in context) a

theorem of mine about one of my favorite systems: the semi-relevant logic RM. I
was surprised to see that the proof they give of their generalization is easier than
both of my direct proofs of the original theorem, which were rather complex. It is
true that my theorem is an easy consequence of the cut-elimination theorem for my
Gentzen-type system for RM (which uses hypersequents). However, as pointed out
in this paper, the original proof of the latter theorem was very complicated. It should
be pointed out that a significantly simpler (though still far from easy) proof can now
be found in my book with O. Arieli and A. Zamansky on paraconsistent logics. The
new proof uses a semantic method, rather than the very involved syntactic method
of my original proof.

This brings me to the second, and more important, aspect of this paper which is
particularly interesting for me. For several years now I am usually trusting seman-
tic methods more than proof-theoretical ones, since the latter are much more diffi-
cult to verify. And indeed, this paper too uses semantic methods for proving proof-
theoretical properties of systems. However, in contrast to what I usually do, it relies
on algebraic methods, and the use of general algebraic structures. I have of course
used such structures myself in many of my papers (and even introduced new classes
of them). However, in most cases this was for me only a step on the way to finding
particular cases of the general semantics that are concrete and effective on one hand,
but still suffice for completeness on the other. Then what I really used was the more
concrete semantics. Here, in contrast, the general algebraic semantics itself is directly
applied. The paper demonstrates the power of this approach. I find it amazing how
successful it is!

One final remark: I would be very happy to see similar methods applied in the
investigation of my logicRMIwhich is employed in Edwin Mares’ paper. However,
one cannot conservatively add to it the propositional constants 1 and 0 with their
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usual properties. Hence it seems that a (significant?) change should be made in the
techniques used in this paper in order to cope with RMI.

14.5 Coniglio, Esteva, Gispert, and Godo

This paper is a continuation of an ongoing research project of its authors (together
with other collaborators) on paraconsistent fuzzy logics. The main problem that such
a project faces is that the standard basic fuzzy logics are based on preserving absolute
truth. More precisely: their prime intended semantics is many-valued semantics in
which the truth-values are all the real numbers in the interval [0,1], but just one of
them (in this case 1, representing absolute truth) is designated. As shown in Avron
et al. (2018), such logics cannot be paraconsistent. Accordingly, alternative, less
strict, semantics for fuzziness is needed, The most natural approach to this task is to
base the consequence relation on preserving some less-than-absolute degree of truth,
i.e., instead of taking the set of designated value to be the singleton {1}, we allow
it to be some interval of the form (t,1] or [t,1], where 0 < t < 1. This is indeed the
approach of this paper, and it has also been my approach in my own works on the
same problem, like in Sect. 14.5 of Avron and Zohar (2019).

There are other points of similarity between the content of this paper and the
related part of Avron and Zohar (2019). Thus both works concentrate on conservative
extensions of Gödel-Dummett logic; in the systems considered in both, this logic is
enriched with Łukasiewich negation, and this new connective is taken as the official
negation (rather than that of Gödel, which is still available); in both the truth-value
1/2 plays a special role, and a truth-value t leads to paraconsistent logic iff t ≤ 1/2;
and in both a potentially infinite family of logics is shown to actually have a small
finite cardinality. On the other hand, there are big differences as well between what
is done in these two papers. First, the present paper investigates also extensions of
the finite Gödel logics—something that (Avron and Zohar 2019) does not. More
important is the fact that the method used in Avron and Zohar (2019) is based on
the use of Nmatrices and operations on them that are peculiar to the full class of
Nmatrices. In contrast, the approach in the present paper is very algebraic, and uses
algebraic techniques and theory for which there are currently no counterparts for
Nmatrices. As a result of these different approaches, the families of logics which are
studied in the two papers are not the same. Nevertheless, I feel that there should be
close connections between them, and between the results of Avron and Zohar (2019)
and some of the results of this paper. It might be interesting to find those connections.
Another important challenge for the study of Nmatrices is to try to generalize to them
the algebraic concepts and theory that are used so efficiently here.

Finally, I would like to note that I like the concept of a saturated paraconsistent
logic, which is introduced here as a generalization of the concept of Ofer, Anna, and
me of an “ideal” paraconsistent logic. (The examples given in the paper of saturated
paraconsistent logics that are not “ideal” are also nice.) I believe that this concept
might prove to be rather useful in future investigations of paraconsistency.
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14.6 Dunn

Mike and me know each other for many years now. At the beginning of his contribu-
tion, he says that he is not sure when we first met. Naturally (as is usually the case in a
meeting between a well-known scientist and someone who is at the first stages of his
career), I do remember. We first met in 1993, when I was on sabbatical in Stanford,
and Mike was kind enough to invite me to be his guest in Bloomington. This was,
by the way, also the first (and the last) time in my life in which I met the inside of a
long limousine... (To my great surprise, Mike sent one to pick me from the airport.)
Of course we were having some correspondence before that, first when I tried to find
a place for doing my post-doc, and then when I wrote him about the new linear logic
of Girard and its strong relations with relevance logics. After the first meeting we
met many times, and each time gave me an opportunity to appreciate more and more
Mike’s abilities, as well as his personality. Needless to say, in everything connected
with relevance logics, Mike has always been for me the first person to consult.

Mike’s contribution is mainly devoted to the semi-relevant system RM, of which
he is one of the parents. So was my own contribution to his volume. The two papers
are in a way complimentary to each other, since Mike’s paper contains interesting
information onRMwhichmine lacks (and vice versa). This includes technical issues,
like Urquhart’s results about the complexity of RM, as well as a fascinating account
of the history of RM. Mike points out that the short story I tell about the birth of
RM in my paper on it is wrong. (The motivation I described there is something that
Mike actually discovered only after RM had been invented.) The truth is that I do
not feel too bad about it. What I wrote was not really meant to be faithful to the
actual events that had led to RM; rather, it was a rational reconstruction of how RM
could (or even should) have been born. But it is always very interesting and telling
to learn how discoveries are really reached. Anyhow, together our papers contain
almost everything that someone interested in RMmight like to know (as well as my
own contributions to the study of this system).

A very important point for me inMike’s paper is his description and discussion of
the pragmatist approach he now has to logic. This approach is in complete contrast to
that of Anderson and Belnap in Anderson and Belnap (1975) (a book to which Mike
has contributed a lot), where the goal has been to find the “one true logic”. It would be
very interesting for me to knowwhether this wasMike’s approach from the start, and
if not—when and why he turned to it. As for me, I have never hidden the fact (noted
also in connection with Sara Negri’s contribution), that I am a classical logician,
who freely applies classical logic in his investigations of non-classical logics. My
motivation in studying the latter have always been exactly what Mike describes as
his in his paper, and I am very glad to see that we now share this approach.

Before I end, I would like to make two small clarifications.

1. It is true that I had not been the first to use structures similar to hypersequents
(as noted in Sect. 6.1 of Mike’s paper). Nevertheless, it has been my independent
creation (including the name “hypersequent”). Moreover: I was the first to turn
hypersequents into a general tool for different families of logics.
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2. Unlike what is said in footnote 9, “theory” in the sense I use in my papers is not
my word. It is a rather usual terminology. (See, e.g., the definition of “theory” in
Hodges (2001).)

14.7 Fitting

Mel’s paper connects two topics to which I have devoted a great part of my research.
One is of course the subject of bilattices. The other is the general, rather difficult,
foundational question, which has always interested me (and was the subject of some
of my own papers): “What is a logic?”. What I particularly like about this paper is
that this time it uses the first, rather technical, subject in order to shed new light on
the second.

Bilattices is a subject I have first heard about in a lecture of Mel about 30 years
ago. That lecture made me very interested in the idea, and so I devoted some time
to learn it. Again I did it from Mel’s papers. Finally, I reached the point of being
able to contribute to this subject myself (and even to solve a problem left open by
Mel himself about the structure of interlaced bilattices). It is very satisfying to see
that in this paper, in turn, Mel is using some results and ideas concerning bilattices
due to Ofer Arieli and me (like logical bilattices and bifilters), in order to investigate
fine distinctions between logical concepts, and an interesting new class of logics (the
strict/tolerant ones). This is how global scientific research should be progressing!

As for the question “What is a logic?”, I said above that Mel’s paper is connected
with it, even thoughMel himself explicitly writes at the beginning of his paper that he
is not going to directly deal with this question, but only with its companion, “When
are logics the same?”. However, I do not see this as just a companion question, but
as an essential part of the general question. Thus if we take as distinct two logics
which are identical in their language and consequence relations, but differ on the
metalevel (as suggested, with many examples, involving general constructions, in
Mel’s paper), then necessarily the metalevel consequence should be included as an
essential component in any answer to the question “What is a logic?”. I find this idea
as very interesting and quite appealing—even though accepting it means that what
I have presented in my papers as the definition of a “propositional logic” is wrong,
and should be taken only as the definition of the first level of a logic.

14.8 Gabbay

Among the contributors to this volume, my acquaintance with Dov is by far the
longest: I first met him when I was still a Ph.D. student. Even though he is only
seven years older than me, he was then already a Professor of Mathematics, and one
of the world’s leading logicians. Since that first meeting. Dov has been having great
influence on my work. For example, it was from him that I learned for the first time
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about the notion of a consequence relation (that from that point became central for
my own work), and its crucial importance for logic. Dov has also been the one who
made me interested in big philosophical questions concerning logic, like: “What is
a logic?” or “What is an implication?”. Both of us have been devoting a lot of work
over the years to answer such questions. Therefore there is little wonder that Dov’s
contribution to this volume again deals with a problem of this sort: the problem of
what is a negation. In more precise words, the question is: when are we justified
in seeing as a negation a given unary connective of some logic? Working a lot on
paraconsistent logics, this question has always been particularly important for my
research, and (exactly like Dov) I gave several answers to it over the years. (One of
my papers about this subject was published in Gabbay andWansing (1999), a volume
of which Dov was one of the editors, as well as one of the contributors.) However,
Dov’s answer(s) in this volume is different from any of those that had been given by
me.

What I would like to understand better about Dov’s characterization of negation
is first of all its relations with the definition of negation which is given in Avron
et al. (2018). After Question 1.6 Dov writes: “If we write too many axioms we may
get only classical negation, and even that is not guaranteed because maybe we do
not know how the negation axioms are supposed to interact with other connectives”.
These words leave it unclear whether if ¬ is a negation in a logic L then L should
be contained in classical logic (or, more accurately, be coherent with it, according
to the definition in our book). If so, negation in Dov’s sense is negation in our sense
(but not necessarily vice versa). But does this follow from Dov’s definitions? For
example, what about the negation of connexive logics? It is not a negation according
to our definition. Is it a negation according to Dov’s definition, and/or his intuition?

Several other commentswhich I have had aboutDov’s contribution are nowquoted
in its final version, so I shall not dwell on them here. Let me just note that I find Dov’s
suggestion in this paper very interesting, and calling for extensive further research.
Accordingly, I perfectly understand, why despite its length and rich content, Dov is
still classifying his contribution as a “position paper”.

14.9 Mares

I enjoyed reading all the papers in this volume, and I am very grateful to all the
contributors. Still, I have been particularly delighted to read Ed Mares’ contribution
to it. The reason: it is the very first work known to me that refers to, and even tries to
apply, the main content of my Ph.D. thesis. In that thesis I developed a new approach
to relevance logics that was based on certain semantic ideas (which I believed then,
and still do, to be rather intuitive and appealing), and on the use of languages that
have just purely relevant connectives, without any extensional one. The main part
of the thesis was published in three parts in the JSL and NDFOL. Later I tried to
promote their content and to explain their ideas in another paper (“Whither Relevance
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Logic?”). However, unlike many of my other papers, those that were devoted to the
logicRMI, which was introduced and investigated in my thesis, where almost totally
ignored. At a certain point I gave up the hope of getting the logical community’s
attention to this logic. As a result, I have never published the chapter on its first-order
extension that was included in my thesis. Well, it is difficult to describe what a nice
surprise it is to finally see, thirty-six years after my thesis was submitted, a paper
that is based on it, continues the work done in it, and applies it to the philosophy and
practice of science—which was exactly the area in which I expected it to be applied.
Unfortunately, I myself do not have sufficient knowledge in this area to do it myself,
and being in a computer science department has necessarily dictated devoting my
time to the study of other topics. Anyhow, Ed’s applications look very promising,
and of course I welcome any additions or changes in my original framework (like
those made in this paper of Ed) that he or others might find useful. I myself, in turn,
am now strongly motivated by this paper to publish at last my old work on adding
quantifiers to RMI. As noted by Ed (and according to footnote 8 also by one of the
referees of his paper), this step is very important for a really successful application
of RMI. At present there is nothing about it in the literature, but I intend to change
this situation already this year.

14.10 Mundici

I have many things to be grateful to Danielle for. The most important of them is that
he is the person who has made me an official member of the fuzzy logic community
(in which I have now several other great friends). This happened about twenty years
ago, when he invited me to the first (out of two great ones I participated in) workshop
on the subject in Garnagno, on the shore of the beautiful Garda lake.

My main contribution to the research on fuzzy logics was the introduction of
the framework of hypersequents, which is now the main tool used in the proof
theory of fuzzy logics (Metcalfe et al. 2009). In fact, one of the two first logics for
which I have developed proof calculi based on hypersequents was Gödel logic (more
accurately: Gödel-Dummett logic), which is known as one of the three basic fuzzy
logics (the other two being product logic and Łukasiewicz logic). I have returned
from time to time to investigate Gödel logic also after this first contribution. In
contrast, I personally contributed practically nothing to the research on the oldest
and arguably the most important fuzzy logic: Łukasiewicz logic. The reason was
not because I thought that this logic is worthless. (On the contrary: it is the most
natural logic within which one may be able to develop naive set theory without
falling into contradictions.) It was because the methods I am accustomed to use are
discrete in nature, and not so suitable for dealing with Łukasiewicz logic. This is one
particular reason for me to admire Daniele’s successful work on Łukasiewicz logic in
general, and his contribution to this volume in particular. This contribution contains
the most convincing and interesting (at least for me) application of Łukasiewicz
logic I have ever seen. I am also very impressed by his success to provide semantics



328 A. Avron

for this logic that validates a compactness theorem and a strong soundness and
completeness theorem for the standard axiomatization of this logic. This semantics
comes from the continuous world of analysis (including the use of derivatives)—and
this is a completely new idea for me. The only small reservation I have about this
paper is that I would have liked it to contain some abstract general definition of
an “implication connective”, according to which the connective → of Łukasiewicz
logic is an implication. (Such a definition would necessarily be different from my
own notion of semi-implication, which is mentioned in Danielle’s paper.)

14.11 Negri

Sara is of course one of the world’s greatest experts on structural proof theory.
Accordingly, there have always been strong connections between her research and
mine, since both of us have devoted a great part of our work to the proof theory of
non-classical logics. However, this contribution of Sara is particularly interesting for
me, because of its relevance to two other mathematical areas which are close to my
heart. One is Euclidean geometry. The other is the development of frameworks for
mathematical reasoning and for the mechanization of mathematics that go beyond
first-order logic, but are not based on all the ontological commitments of full second-
order logic. As mentioned in Sara’s paper, the logic I find particularly suitable for
this task is ancestral logic, either in classical version or in an intuitionistic one.
(I myself am a classical logician, and I freely use classical logic in my study of
non-classical logics. Still, here too I see the benefits of using also a non-classical
logic. In this case it is intuitionistic logic which is the most obvious choice.) Another
feature of my research in this area is that I have restricted myself to absolutely finite
systems, and among them especially to those that are predicatively justified. Sara too
is investigating both a classical version and an intuitionistic version of the systems
she developed in her contribution to this volume. However, in contrast to me, she
is investigating here the use of infinitary proof systems. Nevertheless, her systems
are restricted in a way that may make them predicatively acceptable. Indeed, proof
systems similarly restricted have been successfully used by Schutte’s school of proof
theory for investigating predicative finite systems (like PA, as well as much stronger
ones). I see great potential in Sara’s results to serve as a promising starting point to
do the same with theories that are based on what are called in her paper coherent or
geometric axioms. I hope that in future continuation of this research an attention will
be given to the realization of this potential. One direction in which I have particular
interest is what Sara justly calls my favorite logic: Ancestral logic. Another one that I
am fond of is formalizations of Euclidean geometry that include Archimedes Axiom.
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14.12 Odintsov, Skurt, and Wansing

The paper of Sergey, Daniel, and Heinrich is a part of a research program of Heinrich
that is devoted to the family of connexive logics. This family is not dealt with in the
book of Ofer, Anna, and me on paraconsistent logics. Still, the connexive logics
investigated in this paper are implicitly shown in it to belong to what we have called
in our book effective paraconsistent logics. They are proved in it to be decidable;
analytic proof systems are provided for them; and they are endowedwith useful types
of semantics (both Kripke-style semantics and algebraic semantics). Moreover, these
logics are based on logical bilattices. These are structures that have been introduced
by Ofer and me, and are studied in our book. Accordingly, the question whether a
second edition of our book should contain a chapter on connexive logics depends on
the question to what extent the unary connective ∼ of these logics may be taken as
a negation. Unlike in the past, I tend now to think that it does.

The question “What is negation?” has been central for both Heinrich and me for
a long time. (This is even a name of a book with a contribution of mine that Heinrich
has edited.) In the past I thought that a connective ¬ of a logic L cannot be taken
as negation in case there is a formula ϕ such that both ϕ and ¬ϕ are logically valid
in L. However, as is pointed out in this paper, this is what happens even in some
of the logics which I have introduced and study (together with Ofer Arieli), in case
connectives of non-classical nature are present. Accordingly, in our book we define
¬ as a negation of L if L has a connective �, which is either a disjunction for L,
or a conjunction for it, or a semi-implication for it, so that the {¬,�}-fragment of
L is contained in its classical counterpart. This means that whether ¬ is a negation
in L depends on its relations with other connectives of the language of L. I believe
that the authors of this paper would agree at least with the last thesis. Thus the four
principles that a connexive logic should respect that are given at the beginning of
the paper are valid for classical negation in case ⊃ is interpreted as the classical
biconditional. Hence their acceptance or rejection depends on the question “What
is implication?” even more than it depends on the question “What is negation?”.
These fundamental questions are not directly discussed in this paper. Nevertheless,
its content is a significant contribution to the study of them.
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