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Abstract

We prove that an inverse-free equation is valid in the variety LG of lattice-ordered
groups (�-groups) if and only if it is valid in the variety DLM of distributive lattice-
ordered monoids (distributive �-monoids). This contrasts with the fact that, as
proved by Repnitskiı̆, there exist inverse-free equations that are valid in all Abelian
�-groups but not in all commutative distributive �-monoids, and, as we prove here,
there exist inverse-free equations that are valid in all totally ordered groups but
not in all totally ordered monoids. We also prove that DLM has the finite model
property and a decidable equational theory, establish a correspondence between
the validity of equations in DLM and the existence of certain right orders on free
monoids, and provide an effective method for reducing the validity of equations
in LG to the validity of equations in DLM.
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groups, free monoids.

1. Introduction

A lattice-ordered group (�-group) is an algebraic structure 〈L,∧,∨, ·, −1, e〉
such that 〈L, ·, −1, e〉 is a group, 〈L,∧,∨〉 is a lattice, and the group multiplication
preserves the lattice order, i.e., a ≤ b implies cad ≤ cbd for all a, b, c, d ∈ L,
where a ≤ b :⇐⇒ a ∧ b = a. The class of �-groups forms a variety (equational
class) LG and admits the following Cayley-style representation theorem:

Theorem 1.1 (Holland [6]). Every �-group embeds into an �-group Aut(〈Ω,≤〉)
consisting of the group of order-automorphisms of a totally ordered set (chain)
〈Ω,≤〉 equipped with the pointwise lattice order.

Holland’s theorem has provided the foundations for the development of a rich and
extensive theory of �-groups (see [2, 11] for details and references). In particular,
it was proved by Holland [7] that an equation is valid in LG if and only if it is valid
in Aut(〈Q,≤〉), and by Holland and McCleary [8] that the equational theory of
LG is decidable.

The inverse-free reduct of any �-group is a distributive lattice-ordered monoid
(distributive �-monoid): an algebraic structure 〈M,∧,∨, ·, e〉 such that 〈M, ·, e〉 is
a monoid, 〈M,∧,∨〉 is a distributive lattice, and the lattice operations distribute
over the monoid multiplication, i.e., for all a, b, c, d ∈ M ,

a(b ∨ c)d = abd ∨ acd and a(b ∧ c)d = abd ∧ acd.

The class of distributive �-monoids also forms a variety DLM and admits a Cayley-
style (or Holland-style) representation theorem:

Theorem 1.2 (Anderson and Edwards [1]). Every distributive �-monoid embeds
into a distributive �-monoid End(〈Ω,≤〉) consisting of the monoid of order-
endomorphisms of a chain 〈Ω,≤〉 equipped with the pointwise lattice order.

Despite the obvious similarity of Theorem 1.2 to Theorem 1.1, the precise
nature of the relationship between the varieties of distributive �-monoids and
�-groups has remained unclear. It was proved by Repnitskiı̆ in [13] that the variety
of commutative distributive �-monoids does not have the same equational theory
as the class of inverse-free reducts of Abelian �-groups, but the decidability of its
equational theory remains an open problem. In this paper, we prove the following
results for the general (noncommutative) case:
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Theorem 2.3. The variety of distributive �-monoids has the finite model property.3

More precisely, an equation is valid in all distributive �-monoids if and only if it
is valid in all distributive �-monoids of order-endomorphisms of a finite chain.

Corollary 2.4. The equational theory of distributive �-monoids is decidable.

Theorem 2.9. An inverse-free equation is valid in the variety of �-groups if and
only if it is valid in the variety of distributive �-monoids.

Theorem 2.9 shows, by way of Birkhoff’s variety theorem [3], that distributive
�-monoids are precisely the homomorphic images of the inverse-free subreducts
of �-groups. It also allows us, using a characterization of valid �-group equations
given in [4], to relate the validity of equations in distributive �-monoids to the
existence of certain right orders on free monoids. As a notable consequence of
this correspondence, we obtain:

Corollary 3.4. Every right order on the free monoid over a set X extends to a
right order on the free group over X .

To check whether an equation is valid in all distributive �-monoids, it suffices,
by Theorem 2.9, to check the validity of this same equation in all �-groups. We
prove here that a certain converse also holds, namely:

Theorem 4.2. Let ε be any �-group equation with variables in a set X . A finite
set of inverse-free equations Σ with variables in X ∪ Y for some finite set Y can
be effectively constructed such that ε is valid in all �-groups if and only if the
equations in Σ are valid in all distributive �-monoids.

Finally, we turn our attention to totally ordered groups and totally ordered
monoids, that is, �-groups and distributive �-monoids with a total lattice order.
We show that the variety generated by the class of totally ordered monoids can
be axiomatized relative to DLM by a single equation (Proposition 5.4). However,
analogously to the case of commutative distributive �-monoids and unlike the case
of DLM, we prove:

Theorem 5.7. There is an inverse-free equation that is valid in all totally ordered
groups, but not in all totally ordered monoids.

3Recall that a variety V has the (strong) finite model property if an equation (respectively,
quasiequation) is valid in V if and only if it is valid in the finite members of V.
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We also exhibit an inverse-free equation that is valid in all finite totally ordered
monoids, but not in the ordered group of the integers (Proposition 5.8), witnessing
the failure of the finite model property for the variety of commutative distributive
�-monoids and the varieties generated by totally ordered monoids and inverse-free
reducts of totally ordered groups (Corollary 5.9).

2. From distributive �-monoids to �-groups

In this section, we establish the finite model property for the variety DLM of
distributive �-monoids (Theorem 2.3) and the decidability of its equational theory
(Corollary 2.4). We then prove that an inverse-free equation is valid in DLM if
and only if it is valid in the variety LG of �-groups (Theorem 2.9). The key tool
for obtaining these results is the notion of a total preorder on a set of monoid
terms that is preserved under right multiplication, which bears some similarity to
the notion of a diagram employed in [8]. In particular, the existence of such a
preorder satisfying a given finite set of inequalities is related to the validity of a
corresponding inverse-free equation in DLM or LG.

Let X be any set. We denote by Tm(X), Tg(X), Td(X), and T�(X) the
term algebras over X for monoids, groups, distributive �-monoids, and �-groups,
respectively, and by Fm(X), Fg(X), Fd(X), and F�(X), the corresponding free
algebras, assuming for convenience that Fm(X) ⊆ Tm(X), Fg(X) ⊆ Tg(X),
Fd(X) ⊆ Td(X), and F�(X) ⊆ T�(X). Given a set of ordered pairs of monoid
terms S ⊆ Fm(X)2, we define the set of initial subterms of S:

is(S) := {u ∈ Fm(X) | ∃s, t ∈ Fm(X) : 〈us, t〉 ∈ S or 〈s, ut〉 ∈ S}.

Note in particular that s, t ∈ is(S) for each 〈s, t〉 ∈ S.
Recall now that a preorder 
 on a set P is a binary relation on P that is

reflexive and transitive. We write a ≺ b to denote that a 
 b and b �
 a, and call

 total if a 
 b or b 
 a for all a, b ∈ P . Let 
 be a preorder on a set of monoid
terms P ⊆ Fm(X). We say that 
 is right-X-invariant if for all x ∈ X , whenever
u 
 v and ux, vx ∈ P , also ux 
 vx, and strictly right-X-invariant if it is right
X-invariant and for all x ∈ X , whenever u ≺ v and ux, vx ∈ P , also ux ≺ vx.

Following standard practice for �-groups, we write (p)f for the value of a
(partial) map f : Ω → Ω defined at p ∈ Ω. As a notational aid, we also often write
ϕr to denote the value of a (partial) map ϕ defined for some element r.

Lemma 2.1. Let S ⊆ Fm(X)2 be a finite set of ordered pairs of monoid terms
and let 
 be a total right-X-invariant preorder on is(S) satisfying s ≺ t for each
〈s, t〉 ∈ S.
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(a) There exists a chain 〈Ω,≤〉 satisfying |Ω| ≤ |is(S)|, a homomorphism
ϕ : Td(X) → End(〈Ω,≤〉), and some p ∈ Ω such that (p)ϕs < (p)ϕt

for each 〈s, t〉 ∈ S.
(b) If 
 is also strictly right-X-invariant, then there exists a homomorphism

ψ : T�(X) → Aut(〈Q,≤〉) and some q ∈ Q such that (q)ψs < (q)ψt for
each 〈s, t〉 ∈ S.

Proof. For (a), we let [u] := {v ∈ is(S) | u 
 v and v 
 u} for each u ∈ is(S)
and define Ω := {[u] | u ∈ is(S)}, noting that |Ω| ≤ |is(S)|. If [u] = [u′],
[v] = [v′], and u 
 v, then u′ 
 v′, so we can define for [u], [v] ∈ Ω,

[u] ≤ [v] :⇐⇒ u 
 v.

Clearly, ≤ is a total order on Ω and [s] < [t] for each 〈s, t〉 ∈ S. Moreover, if
[u], [v] ∈ Ω, x ∈ X , and ux, vx ∈ is(S), then, using the right-X-invariance of 
,

[u] ≤ [v] =⇒ [ux] ≤ [vx].

In particular, if [u] = [v] ∈ Ω, x ∈ X , and ux, vx ∈ is(S), then [ux] = [vx].
Hence for each x ∈ X , we obtain a partial order-endomorphism ϕ̃x : Ω → Ω of
〈Ω,≤〉 by defining ([u])ϕ̃x := [ux] whenever [u] ∈ Ω and ux ∈ is(S). Moreover,
each of these partial maps ϕ̃x extends to an order-endomorphism ϕx : Ω → Ω of
〈Ω,≤〉. Now let ϕ : Td(X) → End(〈Ω,≤〉) be the homomorphism extending
the assignment x �→ ϕx. Then ([e])ϕu = [u] for every u ∈ is(S) and hence
([e])ϕs < ([e])ϕt for each 〈s, t〉 ∈ S.

For (b), note that the set Ω defined in (a) is finite and, assuming that 
 is
strictly right-X-invariant, the partial order-endomorphisms ϕ̃x : Ω → Ω of 〈Ω,≤〉
for x ∈ X are injective. Hence 〈Ω,≤〉 can be identified with a subchain of 〈Q,≤〉
and each ϕ̃x can be extended to an order-automorphism ψx : Q → Q of 〈Q,≤〉.
As in (a), we obtain a homomorphism ψ : T�(X) → Aut(〈Q,≤〉) extending the
assignment x �→ ψx such that ([e])ϕs < ([e])ϕt for each 〈s, t〉 ∈ S.

For s, t ∈ T�(X), we write s ≤ t as an abbreviation for the equation s∧ t ≈ s,
noting that s ≈ t is valid in an �-monoid or �-group L if and only if s ≤ t and
t ≤ s are valid in L. It is easily seen that every �-group (or �-monoid) term is
equivalent in LG (or DLM) to both a join of meets of group (monoid) terms and
a meet of joins of group (monoid) terms. It follows that to check the validity of
an (inverse-free) equation in LG (or DLM), it suffices to consider equations of the
form

∧n
i=1 ti ≤

∨m
j=1 sj where sj, ti ∈ Fg(X) (or sj, ti ∈ Fm(X)) for 1 ≤ i ≤ n,
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1 ≤ j ≤ m. The next lemma relates the validity of an inverse-free equation of this
form in LG or DLM to the existence of a total (strictly) right-X-invariant preorder
on a corresponding set of initial subterms.

Lemma 2.2. Let ε = (
∧n

i=1 ti ≤
∨m

j=1 sj) where sj, ti ∈ Fm(X) for 1 ≤ i ≤ n,
1 ≤ j ≤ m, and let S := {〈sj, ti〉 ∈ Fm(X)2 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

(a) DLM |= ε if and only if there is no total right-X-invariant preorder 
 on
is(S) satisfying s ≺ t for each 〈s, t〉 ∈ S.

(b) LG |= ε if and only if there is no total strictly right-X-invariant preorder 

on is(S) satisfying s ≺ t for each 〈s, t〉 ∈ S.

Proof. For the left-to-right direction of (a), suppose contrapositively that there
exists a total right-X-invariant preorder 
 on is(S) satisfying s ≺ t for each
〈s, t〉 ∈ S. By Lemma 2.1(a), there exist a chain 〈Ω,≤〉, a homomorphism
ϕ : Td(X) → End(〈Ω,≤〉), and some p ∈ Ω such that (p)ϕs < (p)ϕt for each
〈s, t〉 ∈ S. So (p)ϕ∧n

i=1 ti
> (p)ϕ∨m

j=1 sj
, and hence DLM �|= ε. Similarly, for

the left-to-right direction of (b), there exist, by Lemma 2.1(b), a homomorphism
ψ : T�(X) → Aut(〈Q,≤〉) and some q ∈ Q such that (q)ψ∧n

i=1 ti
> (q)ψ∨m

j=1 sj

and hence LG �|= ε.
For the right-to-left direction of (a), suppose contrapositively that DLM �|= ε.

By Theorem 1.2, there exist a chain 〈Ω,≤〉, a homomorphism ϕ : Td(X) →
End(〈Ω,≤〉), and some p ∈ Ω such that

∧n
i=1(p)ϕti >

∨m
j=1(p)ϕsj . Then

(p)ϕt > (p)ϕs for each 〈s, t〉 ∈ S and we define for u, v ∈ is(S),

u 
 v :⇐⇒ (p)ϕu ≤ (p)ϕv.

Clearly 
 is a total preorder satisfying s ≺ t for each 〈s, t〉 ∈ S. Moreover, since
ϕ is a homomorphism, 
 is right-X-invariant on is(S).

For the right-to-left direction of (b), suppose that LG �|= ε. By Theorem 1.1,
there exist a chain 〈Ω,≤〉, a homomorphism ψ : T�(X) → Aut(〈Ω,≤〉), and
q ∈ Ω such that

∧n
i=1(q)ψti >

∨m
j=1(q)ψsj . The proof then proceeds exactly as

in the case of (a), except that we may observe finally that 
 is strictly right-X-
invariant on is(S), using the fact that ψu is bijective for each u ∈ is(S).

We now combine the first parts of the preceding lemmas to obtain:

Theorem 2.3. The variety of distributive �-monoids has the finite model property.
More precisely, an equation is valid in all distributive �-monoids if and only if it
is valid in all distributive �-monoids of order-endomorphisms of a finite chain.
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Proof. It suffices to establish the result for an equation ε = (
∧n

i=1 ti ≤
∨m

j=1 sj),
where s1, . . . , sm, t1, . . . , tn ∈ Fm(X). Suppose that DLM �|= ε and let S :=
{〈sj, ti〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Combining Lemmas 2.2(a) and 2.1(a), there
exist a finite chain 〈Ω,≤〉, a homomorphism ϕ : Td(X) → End(〈Ω,≤〉), and
some p ∈ Ω such that (p)ϕs < (p)ϕt for each 〈s, t〉 ∈ S. But then (p)ϕ∧n

i=1 ti
>

(p)ϕ∨m
j=1 sj

, so End(〈Ω,≤〉) �|= ε.

Since DLM is a finitely axiomatized variety, we also obtain:

Corollary 2.4. The equational theory of distributive �-monoids is decidable.

Similarly, the second parts of Lemmas 2.1 and 2.2 can be used to show that an
inverse-free equation is valid in all �-groups if and only if it is valid in Aut(〈Q,≤〉).
Indeed, this correspondence is known to hold for all equations.

Theorem 2.5 ([7]). An equation is valid in all �-groups if and only if it is valid in
Aut(〈Q,≤〉).

Lemma 2.7 below provides the key ingredient for showing that an inverse-free
equation is valid in LG if and only if it is valid in DLM. First, we illustrate the
rather involved construction in the proof of this lemma with a simple example.

Example 2.6. Let End(2) be the distributive �-monoid of order-endomorphisms
of the two-element chain 2 = 〈{0, 1},≤〉, and let 〈k0, k1〉 denote the member of
End(2) with 0 �→ k0 and 1 �→ k1. The equation yxy ≤ xyx fails in End(2),
since for the homomorphism ϕ : Td({x, y}) → End(2) extending the assignment
x �→ ϕx = 〈0, 0〉 and y �→ ϕy = 〈1, 1〉, we obtain

(1)ϕyxy = (((1)ϕy)ϕx)ϕy = 1 > 0 = (((1)ϕx)ϕy)ϕx = (1)ϕxyx.

Let S := {〈xyx, yxy〉}. Then ϕ yields a total right-{x, y}-invariant preorder 

on is(S) = {e, x, y, xy, yx, xyx, yxy} given by x ∼ yx ∼ xyx ≺ e ∼ y ∼
xy ∼ yxy, since (1)ϕx = (1)ϕyx = (1)ϕxyx = 0 < 1 = (1)ϕe = (1)ϕy =
(1)ϕxy = (1)ϕyxy. Note that 
 is not strictly right-{x, y}-invariant, since x ≺ e,
but xy ∼ y; this corresponds to the fact that ϕy is not a partial bijective map on
{0, 1}, as 0 < 1 and (0)ϕy = (1)ϕy.

We describe a total strictly right-{x, y}-invariant preorder � on is(S) such that
≺ ⊆ �. This corresponds to constructing partial bijections ϕ̂x and ϕ̂y on is(S)
that extend ϕx and ϕy, respectively. The relation � can be computed directly using
the definition given in Lemma 2.7, but to provide both a simpler description and
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intuition for the construction, we identify each element xk · · ·x1 of is(S) with the
sequence ((1)ϕe, (1)ϕxk

, . . . , (1)ϕxk···x1), so e = (1), x = (1, 0), y = (1, 1), xy =
(1, 0, 1), yx = (1, 1, 0), xyx = (1, 0, 1, 0), and yxy = (1, 1, 0, 1). Note that these
are the paths of elements of {0, 1} involved in the successive computation steps
for each term at the point p = 1 and can be visualized as indicated in Figure 1.

0

1

0

1
ϕx ϕy ϕx

0

1

0

1
ϕy ϕx ϕy

Figure 1: The paths for xyx = (1, 0, 1, 0) and yxy = (1, 1, 0, 1).

The relation � on these paths is simply the reverse lexicographic order:

(1, 0) � (1, 0, 1, 0) � (1, 1, 0) � (1) � (1, 0, 1) � (1, 1, 0, 1) � (1, 1),

where the first three elements serve as copies of 0 and the last four as copies of 1,
so via the above identification we obtain

x � xyx � yx � e � xy � yxy � y.

It can be verified that this is a total strictly right-{x, y}-invariant (pre)order, or,
more easily, that the corresponding partial order-endomorphisms ϕ̂x and ϕ̂y are
partial bijections as shown in Figure 2.

(1, 1)

(1, 1, 0, 1)

(1, 0, 1)

(1)

(1, 1, 0)

(1, 0, 1, 0)

(1, 0)

(1, 1) = y

(1, 1, 0, 1) = yxy

(1, 0, 1) = xy

(1) = e

(1, 1, 0) = yx

(1, 0, 1, 0) = xyx

(1, 0) = x

ϕ̂y ϕ̂x ϕ̂y

Figure 2: The partial bijections ϕ̂x and ϕ̂y and the evaluation of ϕ̂xyx at (1) = e.

Lemma 2.7. For any S ⊆ Fm(X)2 and total right-X-invariant preorder 
 on
is(S), there exists a total strictly right-X-invariant preorder � on is(S) such that
≺ ⊆ �.
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Proof. We define the following relations on is(S):

u ∼ v :⇐⇒ u 
 v and v 
 u;

xk · · ·x1 � yl · · · y1 :⇐⇒ ∃j ≤ l + 1: xk · · ·xi ∼ yl · · · yi for all i < j and
(xk · · ·xj ≺ yl · · · yj or j = k + 2);

xk · · ·x1 ≡ yl · · · y1 :⇐⇒ k = l and xk · · ·xi ∼ yl · · · yi for each i ≤ k;

u � v :⇐⇒ u � v or u ≡ v,

assuming that xk · · ·xi is the empty product e for i > k.
Observe that setting j = 1 in the definition of � yields ≺ ⊆ �. Also u �

v implies u �≡ v. The irreflexivity of � follows directly from the fact that ≺
is irreflexive. For the transitivity of �, we consider u, v, w ∈ is(S) satisfying
u = xk · · · x1, v = yl · · · y1, w = zm · · · z1, u � v, and v � w. By definition,
there exists a j1 ≤ l + 1 such that xk · · ·xi ∼ yl · · · yi for all i < j1, and either
xk · · ·xj1 ≺ yl · · · yj1 or j1 = k + 2, and there exists a j2 ≤ m + 1 such that
yl · · · yi ∼ zm · · · zi for all i < j2, and either yl · · · yj2 ≺ zm · · · zj2 or j2 = l + 2.
There are four cases to check:

1. xk · · ·xj1 ≺ yl · · · yj1 and yl · · · yj2 ≺ zm · · · zj2 . If j2 ≤ j1, then xk · · ·xi ∼
yl · · · yi ∼ zm · · · zi for all i < j2 and xk · · · xj2 ∼ yl · · · yj2 ≺ zm · · · zj2 ,
so (since ∼ and 
 are transitive), u � w. If j1 < j2, then j1 ≤ m + 1 and
xk · · ·xi ∼ yl · · · yi ∼ zm · · · zi for all i < j1 and xk · · ·xj1 ≺ yl · · · yj1 ∼
zm · · · zj1 , so u � w.

2. xk · · ·xj1 ≺ yl · · · yj1 and j2 = l + 2. Then j1 ≤ l + 1 < j2 ≤ m + 1, so
xk · · ·xi ∼ yl · · · yi ∼ zm · · · zi for all i < j1 and xk · · ·xj1 ≺ yl · · · yj1 ∼
zm · · · zj1 . Hence u � w.

3. j1 = k+2 and yl · · · yj2 ≺ zm · · · zj2 . If j2 < j1, then xk · · · xi ∼ yl · · · yi ∼
zm · · · zi for all i < j2 and xk · · ·xj2 ∼ yl · · · yj2 ≺ zm · · · zj2 , so u � w. If
j1 ≤ j2, then j1 ≤ m+1, xk · · ·xi ∼ yl · · · yi ∼ zm · · · zi for all i < j1, and
j1 = k + 2, so u � w.

4. j1 = k + 2 and j2 = l + 2. Then j1 ≤ m + 1 and xk · · ·xi ∼ yl · · · yi ∼
zm · · · zi for all i < j1. Hence u � w.

For the transitivity of �, there are also several cases to check. Clearly, if u � v
and v � w, then u � w, by the transitivity of �. If u � v and v ≡ w, then u � w,
using the definition of � and ≡ and the transitivity of ∼ and ≺. Similarly, if
u ≡ v and v � w, then u � w. Finally, if u ≡ v and v ≡ w, then u ≡ w, by the
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transitivity of ∼. Moreover, � is reflexive, since u ≡ u for any u ∈ is(S), so � is
a preorder. Since 
 is total, u �� v and v �� u implies u ≡ v; so � is total. Note
also that u � v if and only if u � v and v �� u as suggested by the notation.

To prove that � is strictly right-X-invariant on is(S), consider x ∈ X and
u, v ∈ is(S) such that u � v and ux, vx ∈ is(S). Suppose first that u ≡ v, so
u and v have the same length and u ∼ v. Then ux and vx have the same length
and, since 
 is right-X-invariant, ux ∼ vx. So ux ≡ vx and hence ux � vx.
Now suppose that u � v. If ux ≺ vx, then ux � vx. Also, if ux ∼ vx, then,
since u � v, the definition of � gives ux � vx. Finally, suppose towards a
contradiction that ux �
 vx. Since 
 is right-X-invariant, u �
 v. But then, since

 is total, v ≺ u and so v � u, contradicting u � v.

Proposition 2.8. An inverse-free equation is valid in all distributive �-monoids if
and only if it is valid in Aut(〈Q,≤〉).

Proof. The left-to-right direction follows directly from the fact that the inverse-
free reduct of Aut(〈Q,≤〉) is a distributive �-monoid. For the converse, suppose
without loss of generality that DLM �|=

∧n
i=1 ti ≤

∨m
j=1 sj , where sj, ti ∈ Fm(X)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and let S := {〈sj, ti〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. By
Lemma 2.2(a), there exists a total right-X-invariant preorder 
 on is(S) satisfying
s ≺ t for each 〈s, t〉 ∈ S. By Lemma 2.7, there exists a total strictly right-X-
invariant preorder � on is(S) such that ≺ ⊆ �. In particular, s � t for each
〈s, t〉 ∈ S. Hence, by Lemma 2.1(b), there exist a homomorphism ψ : T�(X) →
Aut(〈Q,≤〉) and q ∈ Q such that (q)ψsj < (q)ψti for 1 ≤ i ≤ n, 1 ≤ j ≤ m. So
Aut(〈Q,≤〉) �|=

∧n
i=1 ti ≤

∨m
j=1 sj .

The main result of this section now follows directly from Proposition 2.8 and
the fact that the inverse-free reduct of any �-group is a distributive �-monoid.

Theorem 2.9. An inverse-free equation is valid in the variety of �-groups if and
only if it is valid in the variety of distributive �-monoids.

It follows by Birkhoff’s variety theorem [3] that DLM is generated as a variety by
the class of inverse-free reducts of �-groups and hence that distributive �-monoids
are precisely the homomorphic images of the inverse-free subreducts of �-groups.

Since the equational theories of the varieties of distributive lattices [10] and
�-groups [5] are co-NP-complete, we also obtain the following complexity result:

Corollary 2.10. The equational theory of distributive �-monoids is co-NP-complete.
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The correspondence between �-groups and distributive �-monoids established
in Theorem 2.9 does not extend to inverse-free quasiequations. In particular, the
quasiequation xz ≈ yz =⇒ x ≈ y, describing right cancellativity, is valid in all
�-groups, but not in the distributive �-monoid End(2). A further example is the
quasiequation xy ≈ e =⇒ yx ≈ e, which is clearly valid in all �-groups, but not
in the distributive �-monoid End(〈N,≤〉). To see this, define f, g ∈ End(〈N,≤〉)
by (n)f := n + 1 and (n)g := max(n − 1, 0); then (n)fg = n for all n ∈ N,
but (0)gf = 1. Let us also remark, however, that this quasiequation is valid
in any finite distributive �-monoid L. If ab = e for some a, b ∈ L, then, by
finiteness, an = an+k for some n, k ∈ N>0, so e = anbn = an+kbn = ak and
ba = akba = ak−1aba = ak = e. Hence the variety of distributive �-monoids does
not have the strong finite model property.

3. Right orders on free groups and free monoids

In this section, we use Theorem 2.9 and a characterization of valid �-group
equations in LG given in [4] to relate the existence of a right order on a free monoid
satisfying some finite set of inequalities to the validity of an equation in DLM
(Theorem 3.3). In particular, it follows that any right order on the free monoid
over a set X extends to a right order on the free group over X (Corollary 3.4).

Recall first that a right order on a monoid (or group) M is a total order ≤ on
M such that a ≤ b implies ac ≤ bc for any a, b, c ∈ M ; in this case, M is said to
be right-orderable. Left orders and left-orderability are defined symmetrically.

The following result of [4] establishes a correspondence between the validity
of an equation in LG and the existence of a right order on a free group with a
negative cone (or, by duality, a positive cone) containing certain elements.

Theorem 3.1 ([4, Theorem 2]). Let s1, . . . , sm ∈ Fg(X). Then LG |= e ≤
∨m

j=1 sj
if and only if there is no right order ≤ on Fg(X) satisfying sj < e for 1 ≤ j ≤ m.

Combining this result with Theorem 2.9, we obtain a correspondence between the
validity of an equation in DLM and the existence of a right order on a free monoid
satisfying certain corresponding inequalities.

Proposition 3.2. Let ε = (
∧n

i=1 ti ≤
∨m

j=1 sj) where sj, ti ∈ Fm(X) for 1 ≤ i ≤
n, 1 ≤ j ≤ m. Then DLM |= ε if and only if there is no right order ≤ on Fm(X)
satisfying sj < ti for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof. For the left-to-right direction, suppose contrapositively that there exists a
right order ≤ on Fm(X) satisfying sj < ti for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then
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DLM �|= ε by Lemma 2.2(a). For the converse, suppose contrapositively that
DLM �|= ε. By Theorem 2.9, also LG �|= ε and, rewriting the equation,

LG �|= e ≤
∨

{sjt−1
i | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

By Theorem 3.1, there exists a right order ≤ on Fg(X) such that sjt−1
i < e, or

equivalently sj < ti, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The restriction of ≤ to Fm(X)
therefore provides the required right order on Fm(X).

Proposition 3.2 relates the validity of an equation in DLM to the existence of a
right order extending an associated set of inequalities on a free monoid. However,
it does not relate the existence of a right order on a free monoid extending a
given set of inequalities to the validity of some equation in DLM. The next result
establishes such a relationship via the introduction of finitely many new variables.

Theorem 3.3. Let s1, t1 . . . , sn, tn ∈ Fm(X). The following are equivalent:

(1) There exists a right order ≤ on Fg(X) satisfying si < ti for 1 ≤ i ≤ n.
(2) There exists a right order ≤ on Fm(X) satisfying si < ti for 1 ≤ i ≤ n.
(3) DLM �|=

∧n
i=1 tiyi ≤

∨n
i=1 siyi for any distinct y1, . . . , yn �∈ X .

Proof. (1)⇒ (2). This follows directly from the fact that if ≤ is a right order on
Fg(X), then the restriction of ≤ to Fm(X) is a right order on Fm(X).

(2)⇒ (3). Let ≤ be a right order on Fm(X) satisfying si < ti for 1 ≤ i ≤ n,
assuming without loss of generality that X is finite. By Lemma 2.1(b), there exists
a homomorphism ψ : T�(X) → Aut(〈Q,≤〉) and q ∈ Q such that (q)ψsi <
(q)ψti for 1 ≤ i ≤ n. So Aut(〈Q,≤〉) �|= e ≤

∨n
i=1 sit

−1
i and clearly LG �|=∧n

i=1 tit
−1
i ≤

∨n
i=1 sit

−1
i . But then for any distinct y1, . . . , yn �∈ X , we have

LG �|=
∧n

i=1 tiyi ≤
∨n

i=1 siyi and therefore also DLM �|=
∧n

i=1 tiyi ≤
∨n

i=1 siyi.
(3)⇒ (1). Suppose that DLM �|=

∧n
i=1 tiyi ≤

∨n
i=1 siyi for some distinct

y1, . . . , yn �∈ X . By Theorem 2.9, also LG �|=
∧n

i=1 tiyi ≤
∨n

i=1 siyi and, by
multiplying by the inverse of the left side, LG �|= e ≤ (

∨n
i=1 siyi)(

∨n
i=1 y

−1
i t−1

i ).
But then, since LG |=

∨n
i=1 sit

−1
i ≤ (

∨n
i=1 siyi)(

∨n
i=1 y

−1
i t−1

i ), it follows that
LG �|= e ≤

∨n
i=1 sit

−1
i . Hence, by Theorem 3.1, there exists a right order ≤ on

Fg(X) satisfying sit
−1
i < e, or equivalently si < ti, for 1 ≤ i ≤ n.

For any group G and N ⊆ G, there exists a right order ≤ on G satisfying
a < e for all a ∈ N if and only if for every finite subset N ′ ⊆ N , there exists
a right order ≤′ on G satisfying a < e for all a ∈ N ′ (see, e.g., [11, Chapter 5,
Lemma 1]). Theorem 3.3 therefore yields the following corollary:
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Corollary 3.4. Every right order on the free monoid over a set X extends to a
right order on the free group over X .

Note also that by left-right duality, every left order on the free monoid over a set
X extends to a left order on the free group over X .

We conclude this section with a brief discussion of the relationship between
distributive �-monoids and right-orderable monoids. It was proved in [9] that a
group is right-orderable if and only if it is a subgroup of the group reduct of
an �-group, and claimed in [1] that an analogous theorem holds in the setting of
distributive �-monoids. Indeed, any monoid M that admits a right order ≤ embeds
into the monoid reduct of the distributive �-monoid End(〈M,≤〉) by mapping
each a ∈ M to the order-endomorphism x �→ xa. However, contrary to the claim
made in [1], it is not the case that every submonoid of the monoid reduct of a
distributive �-monoid is right-orderable.

Proposition 3.5. The monoid reduct of End(〈Ω,≤〉) is not right-orderable for
any chain 〈Ω,≤〉 with |Ω| ≥ 3.

Proof. We first prove the claim for the distributive �-monoid End(3) of order-
endomorphisms of the three-element chain 3 = 〈{0, 1, 2},≤〉, using the same
notation for endomorphisms as in Example 2.6. Assume towards a contradiction
that End(3) admits a right order ≤. Note that for any a, b, c ∈ End(3), if ba <
ca, then b < c, since otherwise c ≤ b would yield ca ≤ ba. Suppose first that
〈0, 0, 2〉 < 〈0, 1, 1〉. Then

〈0, 0, 1〉 = 〈0, 0, 2〉 ◦ 〈0, 1, 1〉 ≤ 〈0, 1, 1〉 ◦ 〈0, 1, 1〉 = 〈0, 1, 1〉

and 〈0, 0, 1〉 ◦ 〈0, 1, 1〉 = 〈0, 0, 1〉 < 〈0, 1, 1〉 = 〈0, 1, 2〉 ◦ 〈0, 1, 1〉. So 〈0, 0, 1〉 <
〈0, 1, 2〉, yielding 〈0, 0, 0〉 = 〈0, 0, 1〉 ◦ 〈0, 0, 1〉 ≤ 〈0, 1, 2〉 ◦ 〈0, 0, 1〉 = 〈0, 0, 1〉.
But 〈0, 0, 2〉 < 〈0, 1, 1〉 also implies 〈0, 0, 1〉 = 〈0, 0, 2〉 ◦ 〈0, 0, 1〉 ≤ 〈0, 1, 1〉 ◦
〈0, 0, 1〉 = 〈0, 0, 0〉. Hence 〈0, 0, 1〉 = 〈0, 0, 0〉, a contradiction. By replacing <
with > in the above argument, 〈0, 0, 2〉 > 〈0, 1, 1〉 implies 〈0, 0, 1〉 = 〈0, 0, 0〉,
also a contradiction. So the monoid reduct of End(3) is not right-orderable.

Now let 〈Ω,≤〉 be any chain with |Ω| ≥ 3. Without loss of generality we can
assume that 3 is a subchain of Ω. We define a map ϕ : End(3) → End(〈Ω,≤〉)
by fixing for each q ∈ Ω,

(q)ϕf :=

{
(�q�)f if 0 ≤ q

q if q < 0,
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where �q� := max{k ∈ {0, 1, 2} | k ≤ q}. Observe that �·� is order-preserving,
so ϕf ∈ End(〈Ω,≤〉) for every f ∈ End(3). Also ϕ is injective, since ϕf

restricted to 3 is f for each f ∈ End(3). Let f, g ∈ End(3) and q ∈ Ω. If q < 0,
then (q)ϕf◦g = q = (q)(ϕf ◦ ϕg). Otherwise 0 ≤ q, so (q)ϕf◦g = ((�q�)f)g =
(�(�q�)f�)g = (q)(ϕf ◦ ϕg). Hence ϕ is a semigroup embedding. Finally, since
the monoid reduct of End(3) is not right-orderable, it follows that the monoid
reduct of End(〈Ω,≤〉) is not right-orderable.

Note that, although a group is left-orderable if and only if it is right-orderable,
this is not the case in general for monoids, even when they are submonoids of
groups [15]. Nevertheless, a very similar argument to the one given in the proof
of Proposition 3.5 shows that also the monoid of endomorphisms of any chain
with at least three elements cannot be left-orderable.

4. From �-groups to distributive �-monoids

The validity of an equation in the variety of Abelian �-groups is equivalent to
the validity of the inverse-free equation obtained by multiplying on both sides to
remove inverses. Although this method fails for LG, we show here that inverses
can still be effectively eliminated from equations, while preserving validity, via
the introduction of new variables. Hence, by Theorem 2.9, the validity of an
equation in LG is equivalent to the validity of finitely many effectively constructed
inverse-free equations in DLM (Theorem 4.2).

The following lemma shows how to remove one occurrence of an inverse from
an equation while preserving validity in LG.

Lemma 4.1. Let r, s, t, u, v ∈ T�(X) and y �∈ X .

(a) LG |= e ≤ v ∨ st ⇐⇒ LG |= e ≤ v ∨ sy ∨ y−1t.
(b) LG |= u ≤ v ∨ sr−1t ⇐⇒ LG |= ryu ≤ ryv ∨ rysyu ∨ t.

Proof. The left-to-right direction of (a) follows from the validity in LG of the
quasiequation e ≤ xy ∨ z =⇒ e ≤ x ∨ y ∨ z (cf. [5, Lemma 3.3]). For the
converse, suppose that LG �|= e ≤ v ∨ st. Then Aut(〈Q,≤〉) �|= e ≤ v ∨ st,
by Theorem 2.5. Hence there exist a homomorphism ϕ : T�(X) → Aut(〈Q,≤〉)
and q ∈ Q such that (q)ϕv < q and (q)ϕst < q. Consider p1, p2 ∈ Q with
p1 < q < p2. Since (q)ϕs < (q)ϕt−1 and p1 < p2, there exists a partial order-
embedding on Q mapping (q)ϕs to p1 and (q)ϕt−1 to p2 that extends to an order-
preserving bijection ϕ̂y ∈ Aut(〈Q,≤〉). Now let also ϕ̂x := ϕx for each x ∈ X to
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obtain a homomorphism ϕ̂ : T�(X ∪ {y}) → Aut(〈Q,≤〉) satisfying q > (q)ϕ̂v,
q > (q)ϕ̂sy, and q > (q)ϕ̂y−1t. Hence LG �|= e ≤ v ∨ sy ∨ y−1t as required.

For (b), we apply (a) to obtain

LG |= u ≤ v ∨ sr−1t ⇐⇒ LG |= e ≤ vu−1 ∨ sr−1tu−1

⇐⇒ LG |= e ≤ vu−1 ∨ sy ∨ y−1r−1tu−1

⇐⇒ LG |= ryu ≤ ryv ∨ rysyu ∨ t.

Eliminating variables as described in the proof of Lemma 4.1 yields an inverse-
free equation that is valid in LG if and only if it is valid in DLM.

Theorem 4.2. Let ε be any �-group equation with variables in a set X . A finite
set of inverse-free equations Σ with variables in X ∪ Y for some finite set Y can
be effectively constructed such that ε is valid in all �-groups if and only if the
equations in Σ are valid in all distributive �-monoids.

Proof. Let ε be any equation with variables in a set X . Since LG |= s ≈ t if and
only if LG |= e ≤ s−1t∧st−1 and every �-group term is equivalent in LG to a meet
of joins of group terms, we may assume that ε has the form e ≤ u1 ∧ · · · ∧ uk for
some joins of group terms u1, . . . , uk. Suppose now that for each i ∈ {1, . . . , k}, a
finite set of inverse-free equations Σi with variables in X∪Yi for some finite set Yi

can be effectively constructed such that e ≤ ui is valid in all �-groups if and only if
the equations in Σi are valid in all distributive �-monoids. Then Σ := Σ1∪· · ·∪Σk

with variables in X ∪ Y , where Y := Y1 ∪ · · · ∪ Yk is the finite set of inverse-free
equations required by the theorem.

Generalizing slightly for the sake of the proof, it therefore suffices to define an
algorithm that given as input any t0 ∈ Tm(X) and t1, . . . , tn ∈ Tg(X) constructs
s0, s1, . . . , sm ∈ Tm(X ∪ Y ) for some finite set Y such that

LG |= t0 ≤ t1 ∨ · · · ∨ tn ⇐⇒ DLM |= s0 ≤ s1 ∨ · · · ∨ sm.

If t0 ≤ t1∨· · ·∨tn is an inverse-free equation, then the algorithm outputs the same
equation, which satisfies the equivalence by Theorem 2.9. Otherwise, suppose
without loss of generality that t1 = ux−1v. By Lemma 4.1, for any y �∈ X ,

LG |= t0 ≤ t1 ∨ · · · ∨ tn ⇐⇒ LG |= xyt0 ≤ xyuyt0 ∨ v ∨ xyt2 ∨ · · · ∨ xytn.

The equation xyt0 ≤ xyuxt0 ∨ v ∨ xyt2 ∨ · · · ∨ xytn contains fewer inverses than
t0 ≤ t1 ∨ · · · ∨ tn, so iterating this procedure produces an inverse-free equation
after finitely many steps.
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Since the variety DLM has the finite model property (Theorem 2.3), the algorithm
given in the proof of Theorem 4.2 provides an alternative proof of the decidability
of the equational theory of �-groups, first established in [8].

5. Totally ordered monoids

In this section, we turn our attention to totally ordered monoids and groups,
that is, distributive �-monoids and �-groups where the lattice order is total. We
show that the variety generated by the class OM of totally ordered monoids can
be axiomatized relative to DLM by a single equation (Proposition 5.4), and that
there exist inverse-free equations that are valid in the class OG of totally ordered
groups but not in OM (Theorem 5.7). We also prove that there is an inverse-free
equation that is valid in all finite totally ordered monoids, but not in the ordered
group of the integers (Proposition 5.8), showing that the variety of commutative
distributive �-monoids and the varieties generated by totally ordered monoids and
inverse-free reducts of totally ordered groups do not have the finite model property
(Corollary 5.9). The proofs of these results build on earlier work on distributive
�-monoids by Merlier [12] and Repnitskiı̆ [13, 14].

We begin by establishing a subdirect representation theorem for distributive
�-monoids. Note first that since every distributive �-monoid M has a distributive
lattice reduct, prime ideals of its lattice reduct exist. For a prime (lattice) ideal I
of a distributive �-monoid M and a, b ∈ M , define

I
a
:= {〈c, d〉 ∈ M ×M | cad ∈ I} and a ∼I b :⇐⇒ I

a
= I

b
.

Proposition 5.1 ([12]). Let M be a distributive �-monoid and let I be a prime
lattice ideal of M. Then ∼I is an �-monoid congruence and the quotient M/I :=
M/∼I is a distributive �-monoid. Moreover, for any a, b ∈ M ,

[a]∼I
≤ [b]∼I

⇐⇒ I
b
⊆ I

a
, I

a∨b =
I
a
∩ I

b
, and I

a∧b =
I
a
∪ I

b
.

In particular, M/I is totally ordered if and only if 〈{ I
a
| a ∈ M},⊆〉 is a chain.

Proposition 5.2. Every distributive �-monoid M is a subdirect product of all the
distributive �-monoids of the form M/I , where I is a prime ideal of M.

Proof. Let I be the set of all prime lattice ideals of M. By Proposition 5.1, there
exists a natural surjective homomorphism νI : M → M/I; a �→ [a]∼I

for each
I ∈ I. Combining these maps, we obtain a homomorphism

ν : M →
∏

I∈I

M/I; a �→ (νI(a))I∈I .
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It remains to show that ν is injective. Let a, b ∈ M with a �= b. By the prime
ideal separation theorem for distributive lattices, there exists an I ∈ I such that,
without loss of generality, a ∈ I and b /∈ I , yielding 〈e, e〉 ∈ I

a
and 〈e, e〉 /∈ I

b
. But

then νI(a) �= νI(b) and ν(a) �= ν(b). So ν is a subdirect embedding.

The following lemma provides a description of the prime lattice ideals I of a
distributive �-monoid M such that M/I is a totally ordered monoid.

Lemma 5.3. Let M be a distributive �-monoid and let I be a prime lattice ideal
of M. Then M/I is totally ordered if and only if for all b1, b2, c1, c2, d1, d2 ∈ M ,

c1b1c2 ∈ I and d1b2d2 ∈ I =⇒ c1b2c2 ∈ I or d1b1d2 ∈ I.

Proof. Suppose first that M/I is totally ordered and hence, by Proposition 5.1,
that I

b1
⊆ I

b2
or I

b2
⊆ I

b1
for all b1, b2 ∈ M . Then c1b1c2 ∈ I (i.e., 〈c1, c2〉 ∈ I

b1
)

and d1b2d2 ∈ I (i.e., 〈d1, d2〉 ∈ I
b2

) must entail c1b2c2 ∈ I (i.e., 〈c1, c2〉 ∈ I
b2

)
or d1b1d2 ∈ I (i.e., 〈d1, d2〉 ∈ I

b1
) as required. For the converse, suppose that

M/I is not totally ordered. By Proposition 5.1, there exist b1, b2 ∈ M such that
I
b1

�⊆ I
b2

and I
b2

�⊆ I
b1

. That is, there exist c1, c2, d1, d2 ∈ M such that c1b1c2 ∈ I
and d1b2d2 ∈ I , but c1b2c2 �∈ I and d1b1d2 �∈ I , as required.

An �-group or a distributive �-monoid is called representable if it is isomorphic
to a subdirect product of members of OG or OM, respectively. The following
result provides a characterization of representable distributive �-monoids in terms
of their prime lattice ideals, and an equation axiomatizing the variety of these
algebras relative to DLM.

Proposition 5.4. The following are equivalent for any distributive �-monoid M:

(1) M is representable.
(2) M |= (x1 ≤ x2 ∨ z1y1z2)& (x1 ≤ x2 ∨ w1y2w2) =⇒ x1 ≤ x2 ∨ z1y2z2 ∨

w1y1w2.
(3) M |= z1y1z2 ∧ w1y2w2 ≤ z1y2z2 ∨ w1y1w2.
(4) For any prime lattice ideal I of M, the quotient M/I is totally ordered.

Proof. (1)⇒ (2). Since quasiequations are preserved by taking direct products
and subalgebras, it suffices to prove that (2) holds for the case where M is a totally
ordered monoid. Let a1, a2, b1, b2, c1, c2, d1, d2 ∈ M satisfy a1 ≤ a2 ∨ c1b1c2
and a1 ≤ a2 ∨ d1b2d2. Since M is totally ordered, we can assume without loss
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of generality that b1 ≤ b2. It follows that c1b1c2 ≤ c1b2c2 and therefore a1 ≤
a2 ∨ c1b1c2 ≤ a2 ∨ c1b2c2 ≤ a2 ∨ c1b2c2 ∨ d1b1d2 as required.

(2)⇒ (3). Let s1 := z1y1z2, s2 := w1y2w2, t1 := z1y2z2, and t2 := w1y1w2,
and suppose that M |= (x1 ≤ x2 ∨ s1)& (x1 ≤ x2 ∨ s2) =⇒ x1 ≤ x2 ∨ t1 ∨ t2.
Since M |= s1 ∧ s2 ≤ t1 ∨ t2 ∨ s1 and M |= s1 ∧ s2 ≤ t1 ∨ t2 ∨ s2, it follows that
M |= s1 ∧ s2 ≤ t1 ∨ t2 as required.

(3)⇒ (4). Assume (3) and suppose that c1b1c2 ∈ I and d1b2d2 ∈ I for some
b1, b2, c1, c2, d1, d1 ∈ M . Since I is a lattice ideal, c1b1c2∨d1b2d2 ∈ I . By (3) and
the downwards closure of I , also c1b2c2 ∧ d1b1d2 ∈ I . But then, since I is prime,
it must be the case that either c1b2c2 ∈ I or d1b1d2 ∈ I . Hence, by Lemma 5.3,
the quotient M/I is totally ordered.

(4)⇒ (1). By (4), M/I is totally-ordered when I is a prime ideal of M, so
representability follows by Proposition 5.2.

It follows directly from Propositions 5.2 and 5.4 that the class of representable
distributive �-monoids is the variety generated by the class OM of totally ordered
monoids. Similarly, it follows from these results that the class of representable
�-groups is the variety generated by the class OG of totally ordered groups and is
axiomatized relative to LG by z1y1z2 ∧w1y2w2 ≤ z1y2z2 ∨w1y1w2. (Just observe
that if the inverse-free reduct of an �-group L is a subdirect product of totally
ordered monoids, then each component is a homomorphic image of L and hence
a totally ordered group.) Hence, an equation is valid in these varieties if and only
if it is valid in their totally ordered members.

We also obtain the following known fact:

Corollary 5.5 ([12, Corollary 2]). Commutative distributive �-monoids are repre-
sentable.

Proof. By Proposition 5.4, it suffices to note that for any commutative distributive
�-monoid M and b1, b2, c1, c2, d1, d2 ∈ M ,

c1b1c2 ∧ d1b2d2 = c1c2b1 ∧ d1d2b2

≤ (c1c2 ∨ d1d2)b1 ∧ (c1c2 ∨ d1d2)b2

= (c1c2 ∨ d1d2)(b1 ∧ b2)

= c1c2(b1 ∧ b2) ∨ d1d2(b1 ∧ b2)

≤ c1c2b2 ∨ d1d2b1

= c1b2c2 ∨ d1b1d2.
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It is shown in [13] that there are inverse-free equations that are valid in all to-
tally ordered Abelian groups, but not in all totally ordered commutative monoids.
We make use here of just one of these equations.

Lemma 5.6 ([13, Lemma 7]). The following equation is valid in all totally ordered
Abelian groups, but not in all totally ordered commutative monoids:

x1x2x3 ∧ x4x5x6 ∧ x7x8x9 ≤ x1x4x7 ∨ x2x5x8 ∨ x3x6x9.

We use this result to show that the same discrepancy holds when comparing
the equational theories of OM and OG.

Theorem 5.7. There is an inverse-free equation that is valid in all totally ordered
groups, but not in all totally ordered monoids.

Proof. Consider the inverse-free equation t1 ∧ t2 ≤ s1 ∨ s2, where

t1 := x1x2x3 ∧ x5x4x6 ∧ x9x7x8; s1 := x1x4x7 ∨ x5x2x8 ∨ x9x6x3;

t2 := x1x3x2 ∧ x5x6x4 ∧ x9x8x7; s2 := x1x7x4 ∨ x5x8x2 ∨ x9x3x6.

Clearly t1 ≈ t2 and s1 ≈ s2 are valid in all totally ordered commutative monoids,
so t1∧ t2 ≤ s1∨s2 fails in some totally ordered monoid by Lemma 5.6. It remains
to show that this equation, or equivalently e ≤ (t−1

1 ∨ t−1
2 )(s1 ∨ s2), is valid in

every totally ordered group. Recall first that (cf. [5, Lemma 3.3])

LG |= e ≤ xy ∨ z =⇒ e ≤ x ∨ y ∨ z. (1)

Since LG |= e ≤ e ∨ x8x
−1
3 x−1

8 x3, it follows using (1) that

LG |= e ≤ x−1
3 x8x3x

−1
8 ∨ x8x

−1
3 x−1

8 x3. (2)

An application of (1) with (2) as premise yields

LG |= e ≤ x−1
3 x8x

−1
6 x7 ∨ x−1

7 x6x3x
−1
8 ∨ x8x

−1
3 x−1

8 x3, (3)

and then another application of (1) with (3) as premise yields

LG |= e ≤ x−1
3 x8x

−1
6 x7 ∨ x−1

7 x6x3x
−1
8 ∨ x8x

−1
3 x7x

−1
6 ∨ x6x

−1
7 x−1

8 x3. (4)

For any ordered group L and a, b, c ∈ L, if e ≤ ab ∨ c, then either e ≤ c, or
a−1 ≤ b and hence e ≤ ba, so e ≤ ba ∨ c. Hence

OG |= e ≤ xy ∨ z =⇒ e ≤ yx ∨ z. (5)
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We apply (5) four times with (4) as the first premise to obtain

OG |= e ≤ x7x
−1
3 x8x

−1
6 ∨ x−1

8 x−1
7 x6x3 ∨ x−1

3 x7x
−1
6 x8 ∨ x−1

7 x−1
8 x3x6. (6)

For convenience, let

u1 := x−1
3 x−1

2 x4x7; u2 := x−1
6 x−1

4 x2x8; u3 := x−1
8 x−1

7 x6x3;

u4 := x−1
2 x−1

3 x7x4; u5 := x−1
4 x−1

6 x8x2; u6 := x−1
7 x−1

8 x3x6.

An application of (1) with (6) as premise yields

OG |= e ≤ x7x
−1
3 x−1

2 x4 ∨ x−1
4 x2x8x

−1
6 ∨ u3 ∨ x−1

3 x7x
−1
6 x8 ∨ u6. (7)

Applying (5) twice with (7) as the first premise, we obtain

OG |= e ≤ u1 ∨ u2 ∨ u3 ∨ x−1
3 x7x

−1
6 x8 ∨ u6. (8)

Another application of (1) with (8) as premise yields

OG |= e ≤ u1 ∨ u2 ∨ u3 ∨ x−1
3 x7x4x

−1
2 ∨ x2x

−1
4 x−1

6 x8 ∨ u6. (9)

Applying (5) twice with (9) as the first premise, we obtain

OG |= e ≤ u1 ∨ u2 ∨ u3 ∨ u4 ∨ u5 ∨ u6. (10)

Observe now that for some joins of group terms u′, u′′,

OG |= t−1
1 s1 ≈ u1 ∨ u2 ∨ u3 ∨ u′ and OG |= t−1

2 s2 ≈ u4 ∨ u5 ∨ u6 ∨ u′′.

Hence, since OG |= (t−1
1 ∨ t−1

2 )(s1 ∨ s2) ≈ t−1
1 s1 ∨ t−1

1 s2 ∨ t−1
2 s1 ∨ t−1

2 s2, by (10),

OG |= e ≤ (t−1
1 ∨ t−1

2 )(s1 ∨ s2).

In [13], it is proved that the variety generated by the class of inverse-free
reducts of Abelian �-groups is not finitely based and can be axiomatized relative
to DLM by the set of inverse-free equations s1 ∧ · · · ∧ sn ≤ t1 ∨ · · · ∨ tn such that
s1, . . . , sn, t1, . . . , tn ∈ Tm(X) and s1 · · · sn ≈ t1 · · · tn is valid in all commutative
monoids. It is not known, however, if the variety generated by the class of inverse-
free reducts of totally ordered groups is finitely based. Decidability in each case
of the equational theories of commutative distributive �-monoids, totally ordered
monoids, and inverse-free reducts of totally ordered groups is also open. The
following result shows, at least, that unlike DLM, the varieties generated by these
classes do not have the finite model property.
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Proposition 5.8. There is an equation that is valid in every finite totally ordered
monoid, but not in Z = 〈Z,min,max,+, 0〉.

Proof. Consider the equation xy2 ≤ e ∨ x2y3. Note that Z �|= xy2 ≤ e ∨ x2y3,
since (−3) + 2 + 2 = 1 > 0 = 0 ∨ ((−3) + (−3) + 2 + 2 + 2). We show that
this equation holds in every finite totally ordered monoid M. Suppose towards a
contradiction that ab2 > e∨ a2b3 for some a, b ∈ M , i.e., ab2 > e and ab2 > a2b3.

Observe first that, inductively, ab2 > a2+nb3+n for each n ∈ N. The base
case n = 0 holds by assumption, and for n > 0, assuming ab2 > a2+n−1b3+n−1

yields ab2 > a2b3 = a(ab2)b ≥ a(a2+n−1b3+n−1)b = a2+nb3+n. Also, inductively,
anb2n ≥ ab2 for each n ∈ N>0. The base case n = 1 is clear, and for n > 1,
assuming an−1b2n−2 ≥ ab2 yields (recalling that ab2 > e),

anb2n = an−1(ab2)b2n−2 ≥ an−1eb2n−2 = an−1b2n−2 ≥ ab2.

Finally, since M is finite and totally ordered, an+1 = an and bn+1 = bn for some
n ∈ N. But then ab2 > a2+nb3+n = anbn = anb2n ≥ ab2, a contradiction.

Corollary 5.9. The variety of commutative distributive �-monoids and varieties
generated by the classes of totally ordered monoids and inverse-free reducts of
totally ordered groups do not have the finite model property.
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