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MOST SIMPLE EXTENSIONS OF FLe ARE UNDECIDABLE

NIKOLAOS GALATOS AND GAVIN ST. JOHN

Abstract. All known structural extensions of the substructural logic FLe, the Full Lambek calculus with
exchange/commutativity (corresponding to subvarieties of commutative residuated lattices axiomatized by
{∨, ·, 1}-equations), have decidable theoremhood; in particular all the ones defined by knotted axioms
enjoy strong decidability properties (such as the finite embeddability property). We provide infinitely
many such extensions that have undecidable theoremhood, by encoding machines with undecidable halting
problem. An even bigger class of extensions is shown to have undecidable deducibility problem (the
corresponding varieties of residuated lattices have undecidable word problem); actually with very few
exceptions, such as the knotted axioms and the other prespinal axioms, we prove that undecidability is
ubiquitous. Known undecidability results for non-commutative extensions use an encoding that fails in
the presence of commutativity, so and-branching counter machines are employed. Even these machines
provide encodings that fail to capture proper extensions of commutativity, therefore we introduce a new
variant that works on an exponential scale. The correctness of the encoding is established by employing the
theory of residuated frames.

§1. Introduction. Substructural logics are defined as extensions of the Full
Lambek calculus FL and include among others classical, intuitionistic, linear,
relevance, bunched-implication, and many-valued logics. They find applications
to areas as diverse as mathematical linguistics, philosophy, management of
pointers in computer architecture, engineering, theoretical physics, and functional
programming. Their algebraic semantics, in the sense of Blok and Pigozzi [1], are
(pointed) residuated lattices (or FL-algebras) and they have an independent history
with connections to classical and to ordered algebra. In particular they include the
lattice of ideals of rings, lattice-ordered groups, algebras of relations, and of course
Boolean and Heyting algebras. Pointed residuated lattices form a variety FL and its
subvarieties correspond to extensions of FL via a dual lattice isomorphism; algebraic
and logical properties are tightly linked. See [6] for an introduction to the area.

Decidability questions are at the core of the study of logical systems and
here we explore logics/varieties with structure rich enough to allow for encoding
the computation of machines with undecidable halting problem. This yields
undecidability results for the word problem, and hence also for the quasiequational
theory, of these varieties (namely the deducibility relation for the logics) and
sometimes even the undecidability of the equational theory of the varieties (i.e.,
the theoremhood in the corresponding logics).
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MOST SIMPLE EXTENSIONS OF FLe ARE UNDECIDABLE 1157

The equational theory of FL is decidable and the same holds for many of its
standard extensions such as FLe (with exchange/commutativity: xy = yx), FLw
(with weakening/integrality: x ≤ 1), FLei (with exchange and weakening), FLec
(with exchange and contraction: x ≤ x2), and FLem (with exchange and mingle:
x2 ≤ x). The equational theory of FLc is one of the few known to be undecidable
[3]; a precursor to this result is the fact that the equational theory ofFLec, even though
decidable, is not primitive recursive [16]. The only other known subvarieties of FL
with undecidable equational theory are the ones axiomatized by xm ≤ xn (where
0 < m < n), the one axiomatized by the modular law, and the one axiomatized
by commutativity, involutivity, and distributivity (corresponding to the relevance
logic R). In particular, the last one is the only subvariety of FLe with undecidable
equational theory; actually distributivity does not correspond to a sequent structural
rule, unless the syntax is expanded, so it is not even a structural extension of FL. On
the contrary, prominent subvarieties ofFLe, such as (proper, non-trivial) subvarieties
axiomatized by any knotted inequality xm ≤ xn (where m �= n), not only have a
decidable equational theory but also a decidable quasiequational theory, and even
the finite embeddability property [17]. (In [2] it is further shown that this remains
true even under conditions weaker than commutativity.)

In contrast to the above, in this paper we construct infinitely many subvarieties of
FLe with undecidable equational theory. We also show that an even bigger collection
of subvarieties of FLe have an undecidable quasiequational theory, actually undecid-
able word problem. The encoding used for the undecidability of the word problem
for FLe does not work for its subvarieties, so we modify it in a novel way, by storing
the values in the counter machines as powers of a sufficiently large constant, which
depends on the subvariety.

A residuated lattice R = (R,∨,∧, ·, \, /, 1) is an algebraic structure such that
(R,∨,∧) is a lattice, (R, ·, 1) is a monoid, and the law of residuation holds: for
all x, y, z ∈ R,

x · y ≤ z iff x ≤ z/y iff y ≤ x\z,
where ≤ is the induced lattice order. The residuated lattice R is called commutative if
(R, ·, 1) is a commutative monoid; in such a case x\y = y/x for all x, y ∈ R and we
will use the notation x → y := x\y. It is well known that (commutative) residuated
lattices form a variety denoted (C)RL, see [6]. FL-algebras are defined as expansions
of residuated lattices by an arbitrary constant 0 (which is used to define the negation
operation), but we will not be making use of this constant in our encodings and our
results remain true in the presence or absence of this constant.

For example, the extension of (0-free) FLe with the structural rule

Γ,Δ,Δ,Σ � Π Γ,Δ,Δ,Δ,Σ � Π
Γ,Δ,Σ � Π

(ε)

corresponds to the subvariety of CRL defined by the inequality ε : x ≤ x2 ∨ x3.
More generally, structural rules, such as the above, correspond to inequalities in the
signature {∨, ·, 1}. We will show that theoremhood for FLe + (ε) and the equational
theory of CRL + ε are undecidable.

To establish the main undecidability results, we encode in the theory of
commutative residuated lattices the computation of machines with undecidable
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1158 NIKOLAOS GALATOS AND GAVIN ST. JOHN

halting problem; these are and-branching counter machines, a variant of counter
machines, introduced in [11]. In Section 3 we outline their structure and in Section 4
we use them to give a simple and direct proof of the undecidability of every variety
betweenCRL andRL, extending the result that was known for just these two varieties.
This is done to set the stage for the much more complicated development that follows,
while still introducing two of the main tools: abstract machines and residuated
frames. The theory of residuated frames, developed in [5], is used to prove the
completeness of the encoding, inspired by [3, 8]. The encodings used in the latter
and the standard encodings, however, do not work in the presence of commutativity
and this is why we make use of the one considered in [11]; in the Conclusions section
(Section 9) we compare some of the encodings and discuss further some related
results.

In the beginning of Section 5 we review the algebraic counterparts of structural
rules: equalities in the signature {∨, ·, 1}, as alluded to above, and show how
they can be viewed as conjunctions of simple inequalities. We also explain why
the encoding of and-branching counter machines fails to work for subvarieties
of CRL axiomatized by such equations, thus necessitating the use of a novel
encoding. Parts of Sections 5 and 6 explore properties of the new encoding that
are needed for capturing the additional equations: the application of the equation
even though it may interfere with the computation of the new machine, should not
add any more accepted configurations. We refer to this condition as admissibility
of the equation relative to the machine and also we work out some motivating
examples.

In Section 7 we define the new machines as variants of and-branching counter
machines working on an exponential level; the main idea is that the new equation
does affect the computation but only in a linear/polynomial way, so if the encoding
is done at the exponential level no new accepted configurations will be added. The
desired properties of these exponential machines are studied in detail in Section 7
and a technical condition (��) emerges as a prominent condition for the given
equation so that the encoding will work. In the beginning of Section 8 it becomes
clear that if the added equation fails condition (��), not even the new exponential
encoding will work to establish undecidability and thus such equations are outside
the scope of this paper. However, in Section 7 it is shown that if the equation satisfies
condition (��), then it indeed defines a variety of residuated lattices with undecidable
word problem. Actually, Theorem 7.17 shows that almost all 1-variable equations
actually satisfy condition (��), indicating that this condition is not really restrictive.
In parallel to all this, starting already from Section 5 we introduce a very big class
of equations, called spineless; the class is so big that we define it via its complement
(prespinal equations), which forms a very small portion of all equations and admits
a very natural and simple definition.

In Section 8 we show that, surprisingly, the very transparently defined spineless
equations are precisely the ones that satisfy the technical condition (��). Therefore,
the results of Sections 7 and 8 together imply that every spineless equation defines
a variety with undecidable word problem (Corollary 8.14). Wanting to showcase
this result as early as possible, we (re)state it in advance in Section 5 and use it to
derive the stronger result of the undecidability of the equational theory for certain
subvarieties; this is done by using a special form of the deduction theorem, relying
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MOST SIMPLE EXTENSIONS OF FLe ARE UNDECIDABLE 1159

on the characterization of congruences in commutative and expansive residuated
lattices. In that sense, someone who reads just the first third of the paper, up to
Section 5, has a full and clear grasp of all the notions and also knows the statements
of the two main results of the paper, Theorem 5.5 and Theorem 5.9.

The proof, given in Section 8, that these two differently looking notions coincide
is quite involved and relies on positive linear algebra, therefore Section 8 uses very
different tools than the ones of the rest of the paper. We even find it helpful to move
from the multiplicative notation for monoids, used in most of the paper and which
suits the link to the encoding of the machines, to additive notation for monoids,
giving rise to positive linear transformations and matrices with natural numbers as
entries. Therefore we chose to have this proof done as the last section of the paper,
as it already takes up one-fourth of the length of the paper.

§2. Preliminaries. We denote the sets of natural numbers, positive integers, and
real numbers by N, Z+, and R, respectively. We denote the powerset of a set X
by ℘(X ). Given a set X and a binary operation symbol ·, we denote by (X ∗, ·, 1)
the free commutative monoid generated by X with unit 1. A substitution on X
is a monoid homomorphism � : X ∗ → X ∗; substitutions are determined by their
restriction to X. For x ∈ X ∗, we write xn to denote 1, if n = 0, and the term
x · ··· · x consisting of n copies of x for n > 0. For subsets A,B of X, we define
A · B = {a · b : a ∈ A, b ∈ B}, and if a ∈ X then a · B = {a} · B .

Let L be an algebraic language, i.e., containing no relational symbols. Given a set
of variables X, T (X ) denotes the set of terms over X and L and T(X ) the absolutely
free algebra of terms. A quasiequation is (the universal closure of) a formula of the
form

s1 = t1 & ···& sn = tn =⇒ s0 = t0, (1)

where s0, t0, ... , sn, tn ∈ T (X ) are terms and n ∈ N. If n = 0 then the left-hand side
is empty and we obtain an equation.

For a class of algebras K in the language L, we say that (1) holds in K (i.e., K |=
(1)) if for every algebra A ∈ K and homomorphism h : T(X ) → A,

(∀i ∈ {1, ... , n})(A, h |= si = ti) =⇒ A, h |= s0 = t0.

Here A, h |= s = t means h(s) =A h(t).
A presentation is a pair 〈X,E〉 where X is a set of generators and E is a set of

equations over T (X ). A presentation 〈X,E〉 is said to be finite iff both X and E are
finite. We denote the conjunction of equations in E by &E. For a variety of algebras
V in the language L, we say V has an undecidable word problem if there exists a
finite presentation 〈X,E〉 such that there is no algorithm that on input s, t ∈ T (X )
decides whether the quasiequation

&E =⇒ s = t (2)

holds in V . Note that if V has undecidable word problem then its quasiequational
and universal theories are undecidable as well. The word problem is also referred
to as the local word problem and the quasiequational theory as the global word
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1160 NIKOLAOS GALATOS AND GAVIN ST. JOHN

problem, making explicit that in the former the antecedent of the quasiequations is
fixed while in the latter it is unrestricted.

In the following the proofs of the undecidability of the word problem will
rely on the fact that residuated lattices have a {∨, ·, 1}-reduct, and therefore the
undecidability results apply to all reducts that contain it.

§3. Counter machines. For proving undecidability we use a type of abstract
machine known as an And-branching k-Counter Machine (k-ACM), introduced
in [11], as they have an undecidable halting problem. A k-ACM is a tuple M =
(Rk, Q, P, qf) representing a type of parallel-computing counter machine, where

• Rk := {r1, ... , rk} is a set of k registers, each able to store a nonnegative integer
(representing the number of tokens in that register),

• Q is a finite set of states with a designated final state qf , and
• P is a finite set of instructions (to be formalized below) that indicate whether

to, given a certain state of the machine, increment a register or decrement a
nonzero register, as well as a “branching” instruction known as forking, with
no instruction applicable to the state qf .

A configuration C of a k-ACM is a tuple consisting of a single state and, for each
register, a nonnegative integer indicating the contents of that register. We can imagine
a configuration being a box labeled by a state and containing tokens each labelled
by an element of the set Rk . In essence, a configuration is specified by the state label
and the multiset of register labels of the tokens. Since the order of the symbols is
irrelevant, we represent a configuration C as a term in the free commutative monoid
generated by Q ∪ Rk , and canonically arranged as

qr
n1
1 r
n2
2 ··· rnkk ,

where q ∈ Q is the state of the configuration and ni is the number stored in the register
ri , for each i = 1, ..., k; if ni = 0, we say the register ri is empty. Since C contains
precisely one state, we may define the set of configurations by Conf(M) := Q · R∗k .

The instructions of a k-ACM replace a single configuration by a new configuration
(via increment and decrement), or by two configurations (via forking). An increment
instruction can be understood as “if a box is labeled by state q, add one register-ri
token and relabel the box with state q′,” decrement as “if a box is labeled by state
q, and ri is not empty, remove one register-ri token and relabel the box with state
q′,” and forking as “if a box is labeled by state q, duplicate the box and its contents,
resulting in two boxes relabeled by q′ and q′′, respectively.” As a consequence of the
forking instruction, the machine can be operating on multiple configurations, i.e.,
branches, in parallel and is inherently nondeterministic. The status of a machine
at a given moment in a computation, called an instantaneous description (ID), is
represented by the configurations that are present. Formally, an ID is an element

C1 ∨ ··· ∨ Cm,

of the free commutative semigroup ID(M) generated by Conf(M); we denote the
associated binary operation by ∨.

In this way, we view ID(M) as a subset of the commutative semiring AM = (AM,
∨, ·,⊥, 1) generated by Rk ∪ Q, where
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• (AM,∨,⊥) is a commutative monoid with additive identity ⊥,
• (AM, ·, 1) is a commutative monoid with multiplicative identity 1, and
• multiplication distributes over join.

Even though ∨ in AM is not defined to be idempotent, we will consider
homomorphisms from AM that will map ∨ to a semilattice operation and for our
applications it would not hurt to define ∨ to be idempotent. However, the non-
idempotent status of ID’s matches better the intuition of computation and this is
the reason for our choice.

Since multiplication fully distributes over ∨ in AM, each element of AM can be
written as a finite join

∨
i∈I mi , where I is a finite (possibly empty) set, of monoid

termsmi ∈ (Q ∪ Rk)∗, for all i ∈ I ; recall that the join of the empty set is the bottom
element (⊥ =

∨
∅). As usual, each element of AM, which is the equivalence class [t]

of a term t in the absolutely free algebra over {∨, ·, 1} and Q ∪ Rk , will be identified
with the term t itself, when no confusion arises.

Formally, an instruction p of a k-ACM is an expression of the form q ≤ q′ri ,
qri ≤ q′, or q ≤ q′ ∨ q′′, where q, q′, q′′ ∈ Q and ri ∈ Rk , representing increment ri ,
decrement ri , and fork, respectively. We will often write p : C ≤ u to indicate the
instruction p is given by C ≤ u, where C ∈ Conf(M) and u ∈ ID(M). For a state q ∈ Q,
we say p is a q-instruction if p : qx ≤ u for some x ∈ R∗k . Note that a machine M with
final state qf contains no qf-instructions by definition.

The computation relation ≤ for the machine M = (RK, Q, P, qf) is defined to be the
smallest {·,∨}-compatible preorder containing P, and will be denoted by ≤M. For
a given instruction p : C ≤ u, it will be useful to define the relation ≤p to be the
closure of p under the inference rules

v ≤p w
vx ≤p wx [·]

and
v ≤p w

v ∨ t ≤p w ∨ t [∨]
,

for all v,w, x, t ∈ AM (in that order, without loss of generality, due to the
distributivity of · over ∨). Consequently, v ≤p w if and only if v = Cx ∨ t and
w = ux ∨ t, for some x, t ∈ AM; these equalities are understood inside AM, so the
terms v and Cx ∨ t need not be identical. We therefore conclude that if v ≤p w, then
v ∈ ID(M) if and only if w ∈ ID(M).

It is easily verified that ≤M is equivalent to the smallest preorder generated by⋃
{≤p: p ∈ P}. Therefore, if s ≤M t, then there exist n ∈ N, a sequence of AM-

terms t0, ... , tn and a sequence of instructions p1, ... , pn from P, collectively called a
computation in M of length n witnessing s ≤M t, such that

s0 =AM t0 ≤p1 t1 ≤p2 ··· ≤pn tn =AM t.

Clearly, if there is a computation witnessing s ≤M t, then there is a computation
of minimal length, the value of which we simply call the computation length. The
following result is an easy consequence of the definitions.

Lemma 3.1. Let s, t, t′ ∈ AM.

1. If s ≤M t, then there exists a computation witnessing it and furthermore, s ∈ ID(M)
iff t ∈ ID(M).
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2. t ∨ t′ ≤M s if and only if there exist s ′, s ′′ ∈ AM such that s = s ′ ∨ s ′′, t ≤M s
′,

and t′ ≤M s
′′. Furthermore, the sum of the computation lengths of t ≤M s

′ and
t′ ≤M s

′′ is less than or equal to the computation length of t ∨ t′ ≤M s .

An ID consisting entirely of configurations labeled by the state qf with all registers
empty is called a final ID and we denote the set of final ID’s by Fin(M) := {

∨n
i=1 qf :

n ≥ 1}. Our choice to not assume the idempotency of ∨ in AM explains the necessity
of treating

∨n
i=1 qf as a final ID. We say that a term t ∈ AM is accepted by M if there

exists uf ∈ Fin(M) such that t ≤M uf , and we define the set of accepted terms to be
Acc(M) := {t ∈ AM : ∃uf ∈ Fin(M), t ≤M uf}.

Theorem 3.2. [10, 11, 13] There exists a 2-ACM M̃ such that membership in Acc(M̃)
is undecidable.

Example 3.3. Consider the 1-ACM Meven = (R1, Qeven, Peven, qf), where Qeven =
{q0, q1, qf} and Peven = {p0, p1, pf} is given by

p0 : q0r1 ≤ q1,
p1 : q1r1 ≤ q0,
pf : q0 ≤ qf ∨ qf.

For example, q0r
2
1 ≤p0 q1r1 ≤p1 q0 ≤pf qf ∨ qf is a computation showing that q0r

2
1

is accepted. On the other hand q0r1 ≤p0 q1 and q0r1 ≤pf (qf ∨ qf)r1 = qfr1 ∨
qfr1 are the only maximal computations starting with q0r1 and none of them ends
in a final configuration, so q0r1 is not accepted. In general, it is easy to see that
q0r

n
1 ∈ Acc(Meven) if and only if n is even.

Lemma 3.4. Let M be an ACM.

1. Acc(M) ⊆ ID(M) and the terms in any computation ending in a final ID are all
ID’s.

2. For all u, v ∈ AM, u ∨ v ∈ Acc(M) if and only if u ∈ Acc(M) and v ∈ Acc(M).

Proof. The first claim follows from Lemma 3.1(1) by induction on the
computation length since Fin(M) ⊆ ID(M) by definition. The second claim follows
from Lemma 3.1(2) since Fin(M) is exactly the set of finite non-empty joins of the
same configuration qf . �

Lemma 3.4 shows that in a computation witnessing the acceptance of an ID all
configurations are ID’s and therefore for those cases the inference rule [·] could have
been restricted to x ∈ R∗k .

§4. Machines and residuated frames. As a demonstration of our general tech-
nique, we will use counter machines and residuated frames to show that any variety
between CRL and RL has an undecidable word problem.

Let M = (Rk, Q, P, qf) be an ACM. For each u ∈ ID(M), formally viewed as an
{∨, ·, 1}-term in T(Rk ∪ Q), we define the quasiequation accM(u) to be

& Pcom ⇒ u ≤ qf,

where qf is the final state of M, and Pcom := P ∪ {xy ≤ yx : x, y ∈ Rk ∪ Q} is the
(finite) set of instructions P together with a finite set encoding commutativity for
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letters (and hence also all words) over the set Rk ∪ Q; for our purposes we could
actually restrict the x in Pcom to only state variables.

The following lemma shows that computations in machines can be performed
also in the theory of residuated lattices.

Lemma 4.1. Let M be an ACM and u an ID. If u ∈ Acc(M) then RL |= accM(u).

Proof. Let M = (Rk, Q, P, qf) be an ACM and suppose u ∈ ID(M) is accepted in
M. We proceed by induction on the length n of the computation witnessing the
acceptance of u in M. If the length is zero then u ∈ Fin(M). Since ∨ is idempotent
in residuated lattices, RL |= uf ≤ qf for any uf ∈ Fin(M). Hence RL |= accM(u) a
fortiori. Now, suppose the claim holds for all accepted ID’s with computation length
0 ≤ k < n. By Lemma 3.4(1), there is an instruction p ∈ P such that u ≤p u′ ∈
Acc(M) for some u′ ∈ ID(M), where the acceptance computation of u′ has length less
than n. Formally viewing u′ as an element in T(X ) whereX = Rk ∪ Q,RL |= accM(u′)
by the induction hypothesis.

Now, suppose that for a residuated lattice R and for a homomorphismf : T(X ) →
R we have R, f |= Pcom. Hence f(u′) ≤R f(qf) since RL |= accM(u′). As ≤R is
transitive, we need only show f(u) ≤R f(u′) to establish R, f |= accM(u).

Let S(X ) be the free algebra over {∨, ·, 1} and X. As R has a semiring reduct
and f(a)f(b) =R f(b)f(a), for all a, b ∈ X , the restriction of f on S(X ) factors

through A+
M := AM \ {⊥} as f : S(X ) �→ A+

M

h→ R as a semiring homomorphism,
where � is the natural surjective homomorphism and h is a semiring homomorphism.
So, h(a)h(b) =R h(b)h(a), for all a, b ∈ X , and h(C) ≤R h(v) where p : C ≤ v. By
definition of ≤p,

u =AM Cx ∨ w ≤p vx ∨ w =AM u
′,

for some x ∈ X ∗ andw ∈ AM, where vx ∨ w =AM vx ifw = ⊥. Using the properties
above and the fact that h is a semiring homomorphism we obtain

h(u) =R h(Cx ∨ w) ≤R h(vx ∨ w) =R h(u′).

It follows that h(u) ≤R h(u′) and therefore that f(u) ≤R f(u′). �

To show the converse of Lemma 4.1, we will need to show that given an
ACM M, if u �∈ Acc(M) then there is a residuated lattice W+

M (which will actually
even be commutative) that falsifies accM(u); actually, in the proof we proceed by
contraposition. We will further prove that every subvariety of RL that contains W+

M̃

has undecidable word problem (and thus undecidable quasiequational theory). The
construction of W+

M is based on residuated frames [5], structures that will also be
used later in the paper, so we define them briefly here.

For the purposes of this paper, a commutative residuated frame is a structure
W = (W,W ′,N, ·, 1), where (W, ·, 1) is a commutative monoid, W ′ is a set, and
N is a subset of W ×W ′, such that there exists a function // :W ′ ×W →W ′

with: ∀x, y ∈W z ∈W ′, x · y N z iff xN z // y. Given such a residuated frame,
for X ⊆W , x ∈W , Y ⊆W ′, and y ∈W ′, we define X N y to mean x N y for all
x ∈ X , and xN Y to mean x N y for all y ∈ Y . ForX ⊆W andY ⊆W ′, we define
X� := {y ∈W ′ : X N y}, Y� := {x ∈W : xN Y}. The pair (�, �) forms what is
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known as a Galois connection, and we will make use of the fact that X��1 ⊆ X��2 if
and only if X�2 ⊆ X�1 for any X1, X2 ⊆W .

Define �(X ) = X��. We write �(x) = �({x}) for x ∈W , and ℘(W )� =
�[℘(W )]. It follows from [5] that the algebra W+ := (℘(W )� ,∩,∪� , ·� ,→, �(1)) is
a commutative residuated lattice, where X ∪� Y := �(X ∪ Y ), X ·� Y := �(X · Y ),
and X → Y := {z ∈W : X · {z} ⊆ Y}.

Inspired by [8], given an ACM M = (Rk, Q, P, qf) we define the tuple WM =
(WM,WM,NM, ·, 1), where WM := (Q ∪ Rk)∗ ⊆ AM and xNM y if and only if xy ∈
Acc(M), for all x, y ∈WM.

Lemma 4.2. WM is a residuated frame and therefore W+
M ∈ CRL.

Proof. We define z // y = yz. Clearly, for x, y, z ∈WM, xy NM z iff xyz ∈ Acc(M)
iff xNM yz. �

For an ACM M = (Rk, Q, P, qf), we define the assignment e : Q ∪ Rk →W +
M via

e(a) := {a}�� and its homomorphic extension ē : T(Q ∪ Rk) → W+
M .

We will need to make use of the following technical lemma.

Lemma 4.3. If M = (Rk, Q, P, qf) is an ACM, then W+
M , ē |= Pcom. Furthermore,

ē(x ∨ y) = {x, y}�� for any x, y ∈WM.

Proof. In [5] it is shown that the map � satisfies the properties �(�(X ) · �(Y )) =
�(X · Y ) and �(�(X ) ∪ �(Y )) = �(X ∪ Y ), for all X,Y ⊆W . Using the first one,
for each a, b ∈ Q ∪ Rk we have

ē(ab) = ē(a) ·� ē(b) = e(a) ·� e(b) = �(�(a) · �(b)) = �(ab).

It follows by induction that ē(x) = �(x) for each x ∈WM.
Now, let x, y ∈WM. Then

ē(x ∨ y) = ē(x) ∪� ē(y) = �(x) ∪� �(y) = �(�(x) ∪ �(y)) = �({x, y}),

where the last equality follows from the second property of � above.
Since W+

M is commutative, we need only show W+
M |= P. Let p : C ≤ C1 ∨ C2 be in

P.1 By the calculation above, ē(C) = {C}�� and ē(C1 ∨ C2) = {C1, C2}��. So, to show
W+

M , ē |= C ≤ C1 ∨ C2, we need to show that {C}�� ⊆ {C1, C2}��, or equivalently that
{C1, C2}� ⊆ {C}�. Suppose x ∈ {C1, C2}�, then C1 NM x and C2 NM x, so C1x, C2x ∈
Acc(M). Now C ≤p C1 ∨ C2 implies Cx ≤p (C1 ∨ C2)x, thus by Lemma 3.4(2)

Cx ≤p (C1 ∨ C2)x = C1x ∨ C2x ∈ Acc(M),

and it follows that CNM x, or equivalently x ∈ {C}�. �
Lemma 4.4. Let V be a subvariety of RL containing W+

M for some ACM M. Then
for all u ∈ ID(M), u ∈ Acc(M) if and only if V |= accM(u).

Proof. Let M = (Rk, Q, P, qf) be a k-ACM. The forward direction follows from
Lemma 4.1. For the reverse direction note that from W+

M ∈ V we have W+
M |=

accM(u). By Lemma 4.3, W+
M , ē |= Pcom and so W+

M , ē |= u ≤ qf . Let t1, ... , tn ∈
(Q ∪ Rk)∗ be given so that u = t1 ∨ ··· ∨ tn, so ē(t1 ∨ ··· ∨ tn) ⊆ ē(qf), which yields

1The argument that follows clearly works for v = C1 as well.
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{t1, ... , tn}�� ⊆ qf�� by Lemma 4.3. This is equivalent to {qf}� ⊆ {t1, ... , tn}�.
Since ≤M is reflexive, qf ∈ Acc(M) and thus qf NM 1, so 1 ∈ {qf}�. Therefore, 1 ∈
{t1, ... , tn}�, that is {t1, ... , tn}NM 1, so t1 NM 1, ... , tn NM 1. Hence t1, ... , tn ∈ Acc(M)
and by Lemma 3.4(2) we conclude u ∈ Acc(M). �

As a consequence of Lemma 4.4, if V ⊆ RL is a variety containing W+
M ,

for some ACM M, then {accM(u) : u ∈ Acc(M)} = {accM(u) : V |= accM(u)}. Since
〈Q ∪ Rk, Pcom〉 is a finite presentation and all equations in accM(u) have a common
antecedent &Pcom, the following is immediate:

Theorem 4.5. Let M be an ACM and W+
M ∈ V ⊆ RL for a variety V . Then deciding

the word problem of V is at least as hard as deciding membership in Acc(M).

Corollary 4.6. If V is a subvariety of RL containing W+
M , where M is an ACM such

that membership in Acc(M) is undecidable, then V has an undecidable word problem. In
particular, any variety in the interval CRL to RL has undecidable word problem since
W+

M̃
∈ CRL, where M̃ is the machine from Theorem 3.2.

The above results hold even for the {∨, ·, 1} reducts of these varieties. Since
{accM(u) : V |= accM(u)} ⊆ {	 : 	 is a quasieq. such that V |= 	}, we therefore also
obtain the undecidability of the quasiequational theory. The quasiequational
theories of RL and CRL alone were known to be undecidable; see [9] and [11],
respectively.

§5. Equations in the signature {∨, ·, 1} and machine admissibility. Our goal is to
find proper subvarieties of (C)RL for which Theorem 4.5 will be applicable, as well
as strengthening this result to the undecidability of the equational theory for some
proper subvarieties of CRL. Since structural rules correspond to equations in the
signature {∨, ·, 1} (see [5]), we will restrict our attention to varieties axiomatized by
such equations.

Since in residuated lattices multiplication distributes over joins, every equation
over {∨, ·, 1} is equivalent to an equality between finite joins of monoid terms. This
equality can in turn be written as two inequalities and in each one of them the joins
on the left-hand side of the inequality yield a conjunction of inequalities of the
form t0 ≤ t1 ∨ ··· ∨ tl , where t0, ... , tl ∈ X ∗ are monoid terms. We call equations of
this form basic equations (or basic inequalities), if it is further true that the variable
sets on the two sides of the inequality are the same. It can be easily shown that
joinands on the right-hand side containing variables that do not appear on the left
can be safely omitted, resulting in an equivalent equation. (In the case where all the
joinands are of this form, the equation implies 1 ≤ x, so it defines the trivial variety)
Furthermore, if there are variables that appear on the left and not on the right,
then the inequality implies integrality (x ≤ 1). These claims are easy to prove and
the needed instantiations are also mentioned on page 277 of [4]. The trivial variety
and variety axiomatized by integrality together with any set of {∨, ·, 1}-equations
have the FEP, hence decidable universal (and quasiequational) theory. Therefore the
restriction of the variables appearing on both sides does not leave out any unknown
cases of (un)decidability. Via a process of linearization [5] any basic equation is
further equivalent to one where the term t0 is linear, namely to an equation of the
form x1 ···xn ≤

∨k
i=1mi, where k ≥ 1, m1, ... , mk ∈ X ∗ and x1, ... , xn are distinct
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elements of X. (For example the equation x2 ≤ x is equivalent to the linearized
equation x1x2 ≤ x1 ∨ x2) Such equations are called simple in [5], but in this paper
we will reserve the name simple equations of RL for the subclass where the variable
sets on the left- and the right-hand sides of the equation are equal.

When writing simple equations, we will be using the set of variables {xi : i ∈ Z+},
and we will assume implicitly that this set is ordered by the natural order of the
indices. We will informally use variables like x, y, z in some of the examples, as well.
We also define xn := (x1, ... , xn), for all n ∈ Z+ and for a tuple a ∈ Nn of natural
numbers, we define xan = xa(1)

1 ···xa(n)
n ; we also define x1

n = x1 ···xn. For reasons that
will be clear later, we will actually think of a as a column vector (as opposed to a
row vector).

For a simple equation ε, we will be interested in its commutative version εC ,
obtained from ε by rearranging the variables within each monoid term according to
the natural ordering of their indices and removing any resulting duplicate joinands
on the right-hand side. In particular, CRL + ε |= εC , and we call equations of the
form εC simple equations of CRL. As the encodings for the undecidability are harder
for commutative varieties than for arbitrary ones, by proving the results in the
commutative case we obtain as corollaries results for general subvarieties of RL.
Therefore, we restrict ourselves to simple equations of CRL and we will refer to them
simply as simple equations. Such equations are of the form

[D] : x1
n ≤

∨
d∈D

xdn ,

where D is a finite nonempty set of n-column vectors with entries in N, such that
the variable sets on the two sides are the same, namely there is no row such that
all column vectors in D are zero on that row. Note that because of the equality of
the variable sets on the left and on the right and due to the idempotency of join in
residuated lattices, every simple equation is fully determined by the set of joinands
on its right-hand side. Our notation is chosen so that if D is a set of n-columns, then
[D] denotes the simple equation displayed above (the exponents of the joinands on
the right-hand side come from D).

For the bigger class of basic equations of CRL (which may not be linearized), if D
is again a nonempty set of column vectors and f a column vector over the positive
integers, we denote by [f,D], the basic equation

[f,D] : xfn ≤
∨
d∈D

xdn .

The following theorem provides a link between simple equations that hold in W+

and conditions that hold in W.
Let (W, ·, 1) be a commutative monoid and [D] a n-variable simple equation

given by D = {dj : 1 ≤ j ≤ m}. If W = (W,W ′,N, ·, 1) is a residuated frame then
we write W |= (D) iff for all un ∈Wn and v ∈W ′, the following implication is
satisfied (the premises above the line are understood conjunctively and the vertical
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line denotes the implication to the conclusion below):

ud1
n N v ··· udmn N v

u1
n N v

(D)

For example if [D] is x1x1 ≤ x1 ∨ x2, then (D) is:

∀x1, x2 ∈W,v ∈W ′, x1 N v & x2 N v =⇒ x1x2 N v.

Theorem 5.1 [5]. Let [D] be a simple equation and suppose W is a residuated
frame. Then W+ |= [D] iff W |= (D).

5.1. Motivation for subvarieties of CRL. Recall from Example 3.3, that the
computations of the 1-ACM Meven leading to a final state are faithfully represented
by the inequality relation of CRL, in the sense that CRL |= (&P ⇒ u ≤ qf) iff
u ∈ Acc(M). If we consider the inequality relation in CRLs, where s is the simple
equation x ≤ x2 ∨ x4, we observe that for the computation relation of a machine to
be faithfully represented by the associated inequality relation it must further admit
the “ambient instruction” given by

t ≤s t2 ∨ t4,

for all t ∈ (Qeven ∪ R1)∗ in addition to being closed under the inference rules [·]
and [∨]. Let ≤sMeven be the smallest compatible preorder generated by Peven∪ ≤s,
and define Acc(sMeven) to be the set of accepted ID’s under the relation ≤sMeven . It
is clear that Acc(Meven) ⊆ Acc(sMeven) since ≤Meven ⊆ ≤sMeven , and since there are no
instructions (nor instances of≤s) that remove state variables we obtain Acc(sMeven) ⊆
ID(Meven). However, while q0r

3
1 �∈ Acc(Meven), we have q0r

3
1 ∈ Acc(sMeven) since

q0r
3
1 ≤s q0r

6
1 ∨ q0r

12
1 ∈ Acc(Meven).

It is clear that the expansion of the machine by the ambient instruction (needed for
representing the inequality relation in CRLs) does not have the same computation
relation, or put differently the machine Meven is not suitable for representing the
inequality relation in CRLs because these ambient instructions are not already
admissible in it.

Likewise, there is no guarantee that there is a machine that has an undecidable
acceptance problem (for example the machine M̃) and in which these ambient
instructions are available/admissible. For that reason we cannot use the same
argumentation to show that CRLs has undecidable word problem.

Exactly the same issue occurs if the simple equation is contraction c : x ≤ x2.
Actually, for the case of contraction not only does this particular encoding fail to
be faithful, but there is no faithful encoding of an undecidable machine: the word
problem for CRLc is actually decidable [17]. However, we will show that even though
for the equation s above the current encoding is problematic (as is with contraction),
surprisingly, unlike with contraction, there is a different encoding that works for s;
this will allow us to prove that the word problem for CRLs is undecidable. We
present the idea of this new encoding by showing that it at least faithfully encodes
the machine Meven. As we will see, what makes it work is that the new encoding is
such that, even if they were available, the ambient instructions would not contribute
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to any more accepted configurations; this is a rephrasing of what we referred to as:
the given equation is admissible in the particular machine.

The idea is to construct a new machine MK , for an appropriate integer K, as a
modification of Meven that works at an exponential scale (with base K) compared
to that of Meven. In particular, MK manages to replace the decrement instructions
p0 : q0r1 ≤ q1 and p1 : q1r1 ≤ q0 by programs (sets of instructions) P0 and P1,
respectively, that divide the contents of register r1 by the fixed constant K. For
example, the general effect for p0 being q0r

m
1 ≤p0 q1r

n
1 iff m = n + 1 is mirrored by

P0 in the sense that q0r
M
1 ≤P0 q1r

N
1 iffM = K ·N , and consequently q0r

Kn+1

1 ≤P0

q1r
Kn

1 ; therefore computations in Meven are simulated in MK by storing the contents
of r1 by Kn instead of n. In this case, we will say a term is accepted if it computes a
join of configurations of the form qfrK

0

1 (i.e., qfr1), so q0r
n
1 ∈ Acc(MK ) iff n = K2m

for somem ≥ 0. Thereupon an additional necessary condition for acceptance in MK
is demanded for configurations labeled by a state q ∈ Qeven (independently from the
conditions of acceptance in Meven) namely that if qrN1 is accepted in MK then N must
be a power of K.2 For the equation s, if we choose K > 2 it is easily verified that if s
is applied

qrn1r
m
1 ≤s qrn1(r2m

1 ∨ r4m
1 ) = qrn+2m

1 ∨ qrn+4m
1 ,

the only way n + 2m and n + 4m are both powers of K is if m = 0.3 In such an
instance, the configuration on the left-hand side of the equation appears as a joinand
on the right-hand side. Consequently we see that, with respect to being accepted,
instances of ≤s in a computation are superfluous, and we obtain

qrn1r
2m
1 ∨ qrn1r4m

1 ∈ Acc(MK ) =⇒ qrn1r
m
1 ∈ Acc(MK ),

thus Acc(MK ) = Acc(sMK ). So, the equation s is admissible in the machine MK .
The reason why this works is that the effect of the inequality s, even when applied

repeatedly, is to modify the register values in a linear or polynomial way, but when
these values are encoded on an exponential scale the applications of the inequality
do not produce modifications on the same scale and thus do not lead to final
configurations.

More generally, consider an n-variable simple equation [D] : x1
n ≤

∨
d∈D xdn . For

[D] to be admissible, and viewing [D] as an ambient instruction, we need to consider
all the substitution instances t1

n ≤
∨
d∈D tdn of [D], where the tuple of terms tn =

(t1, ... , tn) is given by a substitution � : xi �→ ti , for all i. Then for any term s,
st1
n ≤D s

∨
d∈D tdn is part of the computation that includes the ambient instructions

coming from [D]. It is shown in Lemma 6.5 that if [D] does not have instances
equivalent to a k-mingle equation4 and s

∨
d∈D tdn is accepted in an ACM M, then

2This definition of acceptance for the machine MK is for heuristic convenience. In Section 7, to properly
define programs to multiply/divide by K, we will need to add new states and instructions to carry out
such computations, as well a fresh variable qF , acting as a new final state, and a set of instructions that
guarantee qfr1 ≤MK qF .

3Indeed, if n + 2m = Ka and n + 4m = Ka+b , for some a ≥ 0 and b ≥ 1, thenKa ≥ 2m = Ka+b –
Ka ≥ Ka(K – 1), and hence K ≤ 2.

4Note that if there is an instance of [D] that is equivalent to k-mingle (xk ≤ x) for some k > 1,
[D] cannot be admissible for any ACM M: from qk

f
≤D qf we would obtain that qk

f
is accepted, a
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the term s contains precisely one state variable and no term ti contains any state
variable. In the case where M is a 1-ACM, for example M = Meven, this implies that
s = qrC1 , for some state q and number C, and � is a (1-variable) substitution with

�(xi) = ti = r

(i)
1 , where 
 is an n-tuple of natural numbers. Using the equality

relation for AM, this is equivalently written as

qrC+
1
1 ≤D

∨
d∈D

qrC+
d
1 , (3)

where 
d = 
(1)d (1) + ··· 
(n)d (n) and 
1 = 
(1) + ··· 
(n).
Admissibility of [D] in such a 1-ACM M is the demand that if the right-hand side

of the above inequality is accepted in M then the left-hand side is also accepted (thus
making every instance of [D] superfluous). The most naive and obvious way to
ensure this is to ask that the left-hand side already appears as one of the joinands on
the right-hand side; that is 
1 = 
d̄ for some d̄ ∈ D, hence rendering the substitu-
tion instance of [D] by � trivial. Recall that in the case of the machine MK constructed
from Meven, if a configuration qrN1 is accepted in MK then N must be some power of
K. So, for [D] to be admissible in MK the most obvious condition to require is:

If the exponents in the right-hand side of [D] produced by a 1-
variable substitution are translated powers of K (by the same
constant), then the substitution instance is trivial.

In symbolic terms this can be written as

If for some 
 ∈ Nn and C ∈ N,
every C + 
d is a power of K, where d ∈ D,
then there exists d̄ ∈ D such that 
d̄ = 
1,

(�K)

in which case we say that [D] satisfies (�K). We also consider the condition (�):
there exists K > 1 such that (�K) holds.

In the following sections we will make rigorous the notion of admissibility and
carefully construct the machines MK .

5.2. Spineless equations. We will now define a class of simple equations, for which
their defining subvarieties will have an undecidable word problem. The class is so
vast that it is easier to define its complement. We motivate the definition with the
following observation.

Consider the machine Meven from Example 3.3, and the simple equation d : x ≤
1 ∨ x2. As before, it is easy to see that q0r

3
1 ∈ Acc(dMeven) \ Acc(Meven). However,

this behavior cannot be remedied by MK for any K > 1. For example, let n = (K4 –
K2)/2, then q0r

K2+n
1 �∈ Acc(MK ) since K2 + n �= K2m for any m ∈ N. However,

q0r
K2+n
1 = q0r

K2

1 rn1 ≤d q0r
K2

1 r0
1 ∨ q0r

K2

1 r2n
1 = q0r

K2

1 ∨ q0r
K4

1 ∈ Acc(MK ).

contradiction. Actually, then the variety of CRL + [D] has a decidable word problem. More generally,
we note that k-mingle, as well as contraction, are examples of knotted equations: equations of the form
xk ≤ xl , where k �= l . It is known [17] that all knotted subvarieties of CRL have decidable universal
theories, and therefore so do the subvarieties of CRL axiomatized by any set of simple equations Γ for
which CRL + Γ |= xk ≤ xl by [5].

https://doi.org/10.1017/jsl.2021.46 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.46


1170 NIKOLAOS GALATOS AND GAVIN ST. JOHN

By setting C = K2 and 
 = (n) ∈ N1, this also demonstrates that (�K) is not
satisfied by d for any K > 1, i.e., d fails (�). In fact, we will show in Lemma 8.1 that
this failure occurs not just for functions of the form n �→ Kn but actually for any
function on N with infinite range (in particular those that are actually computable).

The equation d is an example of a spinal equation and as explained above,
unfortunately it cannot be handled by our work. In general, a basic equation [f,V]
is called spinal if it is of the form:

[f,V] : xf(1)
1 ···xf(k)

k︸ ︷︷ ︸
f

≤ (1 ∨ )︸ ︷︷ ︸
v0

x
v1(1)
1︸ ︷︷ ︸
v1

∨xv2(1)
1 x

v2(2)
2︸ ︷︷ ︸

v2

∨ ··· ∨ xvk (1)
1 ···xvk (k)

k︸ ︷︷ ︸
vk

,

wheref �∈ V, vj(j) �= 0, and vi(j) = 0 for each 0 ≤ i < j ≤ k, and (1∨) is meant to
signify that 1 may or may not be included in the join. Note that if the column vectors
of the set V = {(v0, )v1, ... , vk} are listed in the above order, V becomes an upper-
right triangular matrix whose diagonal contains only positive entries. In Corollary
8.2 we establish that spinal equations falsify the condition (�K) for every K > 1.

Definition 5.2. We say that a basic equation [f,V] is spinal if f �∈ V, vi(i) �= 0,
and vi(j) = 0, for all j > i , for all vi in V that are not constantly zero. In this case,
we will refer to the set V as a spine. We say that a simple equation is prespinal if it
has a spinal equation as the image under some monoidal substitution.

From now on we will only consider monoidal substitutions (the image of every
variable is a monoidal term, i.e., a product of variables) and we will refer to them
simply as substitutions.

Note that the only one-variable spinal equations are the knotted inequalities
xn ≤ xm (for which we know that they define subvarieties of CRL with decidable
quasiequational theory) and their variants xn ≤ 1 ∨ xm, where n �= m, for which
decidability results are still open.5 Also, their equivalent simple equations are
prespinal, as verified below in Lemma 5.4. As a consequence of the definition, a
simple equation [D] is prespinal if and only if [D ∪ {0}] is prespinal.

From Table 1, we see that (i) and (ii) are spinal. The simple equation (vi)
is prespinal via the 1-variable substitution � given by �(x) = x, �(y) = x, and
�(z) = 1, i.e., CRL + (vi) |= x2 ≤ x. On the other hand, no trivial equations are
prespinal. The general characterization of whether a simple equation is prespinal
will be addressed in Section 8, where it is verified that (iii)–(v) in Table 1 are not
prespinal right after Theorem 8.6.

Definition 5.3. A simple equation is called spineless if it is not prespinal. A
simple equation ε for RL is called spineless if εC is spineless.

To demonstrate the vastness of the collection of spineless equations, we will focus
our attention only on 1-variable basic equations below. Note that every one-variable
basic equation has the form

xn ≤
∨
p∈P
xp,

5The only exception being the case where n > m = 1, where equations of this form have the finite
model property by Theorem 3.15 in [5].
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[D] D
i. x ≤ x2 {2}
ii. x ≤ 1 ∨ x2 {0, 2}
iii. x ≤ x2 ∨ x4 {2, 4}

iv. xy ≤ 1 ∨ x2y ∨ x3y2
{

0 2 3
0 1 2

}

[D] D

v. xyz ≤ x2y ∨ y2z ∨ xz2

⎧⎨
⎩

2 0 1
1 2 0
0 1 2

⎫⎬
⎭

vi. xyz ≤ yz ∨ xz2

⎧⎨
⎩

0 1
1 0
1 2

⎫⎬
⎭

Table 1. Some simple equations viewed as sets of column vectors.

for some n > 0 and for some finite subset P of N such that P �= {0}; we denote such
an equation by [n, P]. Also, note that [n, P] is trivial iff n ∈ P.

Lemma 5.4. Let [n, P] be a 1-variable basic equation. Then the linearization of
[n, P] is a spineless simple equation iff [n, P] is trivial or P contains at least two
distinct positive integers.

Proof. The simple equation resulting from the linearization over CRL of [n, P]
is

[D] : x1
n ≤

∨{
xdn : d ∈ Nn,

n∑
i=1

d (i) ∈ P
}
, (4)

and is equivalent over CRL to [n, P].6

We prove the contraposition for each direction. For the forward direction, if
P = {p}, where 0 < p �= n, then [n, P] is spinal by definition and hence [D] is
prespinal by its obvious substitution to [n, P]: xi �→ x, for all i.

For the reverse direction, suppose that [n, P] is nontrivial and P contains distinct
positive numbersp > q. Then for each i ≤ n, the termsxpi andxqi appear as joinands
on the right-hand side of [D]. Let� be a monoidal substitution that is non-trivializing
for [D]. Then for some i ≤ n, � : xi �→ w for some monoid term w �= 1. So both
wp and wq appear as joinands on the right-hand side of �[D]. Since p > q > 0,
wp �= 1 �= wq , and CRL �|= wp = wq , so �[D] is not spinal, as wp and wq contain
the same variables. Since � was arbitrary, it follows that [n, P] is spineless. �

In the following sections we undertake a deep analysis of spineless equations,
culminating in Corollary 8.14. To highlight this result, we (re)state it here and we
use it right afterwards, in Section 5.3, to obtain results (Theorem 5.9) about the
equational theory.

Theorem 5.5. Let Γ be a finite set of spineless simple equations, then any variety
between CRL + Γ and RL has an undecidable word problem.

6By setting x := x1 ∨ ··· xn in [n, P], we obtain
∨
{xan :

∑n
i=1 a(i) = n} ≤∨{

xdn : d ∈ Nn,
∑n
i=1 d (i) ∈ P

}
. Since x1

n ≤
∨
{xan :

∑n
i=1 a(i) = n}, we obtain [D]. Conversely, by

setting xi := x, for all i ≤ n, in [D], we obtain [n, P].
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5.3. From quasiequations to equations in CRL. In this section we exploit the fact
that in certain varieties certain quasiequations are equivalent to equations to show
that even their equational theory is undecidable, making use of Theorem 5.5.

The negative cone of a residuated lattice A is the set A– = {a ∈ A : a ≤ 1}. We
will say that a subvariety V of CRL is negatively n-potent if the negative cone of
each algebra in V is n-potent, i.e., V |= (x ∧ 1)n = (x ∧ 1)n+1 (or equivalently, V |=
(x ∧ 1)n ≤ (x ∧ 1)n+1).

Let t be a term and S be a finite set of terms in the language of CRL. It can be
easily verified that7

(∃m ∈ N)(∃s1, ... , sm ∈ S) CRL |=
∏m
i=1(1 ∧ si) ≤ t,

if and only if (∃k ∈ N) CRL |= (1 ∧
∧
S)k ≤ t. (5)

If V ⊆ CRL is a negatively n-potent variety, then we obtain8

(∃m ∈ N)(∃s1, ... , sm ∈ S) V |=
m∏
i=1

(1 ∧ si) ≤ t ⇐⇒ V |= (1 ∧
∧
S)n ≤ t. (6)

We consider the following quasiequation and equation:

	S(t) : &
s∈S

1 ≤ s =⇒ 1 ≤ t, εnS(t) : (1 ∧
∧
S)n ≤ t.

In this way we establish the fact that satisfaction of a quasiequation in a negatively
n-potent subvariety of CRL is equivalent to the satisfaction of a corresponding
equation.

Lemma 5.6. If V is a negatively n-potent subvariety of CRL and S ∪ {t} a finite set
of terms in the language of V , then

V |= 	S(t) ⇐⇒ V |= εnS(t).

Proof. Let FV be the free algebra forV , and define the congruenceC := Cg({(1 ∧
s, s) : s ∈ S}). We denote the quotient algebra by FV/C . For a subset X of F–

V , we
denote by M (X ) the convex normal submonoid of F–

V generated by X.9 Observe
that V |= &

s∈S
1 ≤ s ⇒ 1 ≤ t

⇐⇒ in FV/C, [1 ∧ t]C = [1]C
⇐⇒ in FV , (1 ∧ t) ∈M ({1 ∧ s : s ∈ S}) [6]
⇐⇒ in FV , (∃m ∈ N)(∃s1, ... , sm ∈ S)

∏m
i=1(1 ∧ si) ≤ t [6]

⇐⇒ (∃m ∈ N)(∃s1, ... , sm ∈ S) V |=
∏m
i=1(1 ∧ si) ≤ t

⇐⇒ V |= (1 ∧
∧
S)n ≤ t Equation (6). �

For an inequality p : s ≤ t, define the term p→ := s → t. Let M = (Rk, Q, P, qf) be
an ACM. Define P→ := {p→ : p ∈ P}. Then for u ∈ AM, the quasiequation accM(u)

7The forward direction is trivial, taking k = m, since
∧
S ≤ s , for all s ∈ S. The reverse direction

holds by setting m = k · |S|, and observing that
∏
s∈S (s ∧ 1) ≤ 1 ∧

∧
S.

8The reverse direction follows from (5), while the forward direction uses the fact that (1 ∧ x)n ≤
(1 ∧ x)k , if k ≤ n, and (1 ∧ x)n = (1 ∧ x)k , if k > n, by the negative n-potency of V .

9See Theorem 3.47 in [6].
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is equivalent to 	P→(u → qf). By Lemma 5.6 and Theorem 4.5, we obtain the
following:

Theorem 5.7. Let V be a subvariety of CRL containing W+
M , for some k-ACM M

and satisfying (x ∧ 1)n ≤ (x ∧ 1)n+1 for some n ≥ 1. Then deciding membership in
the equational theory of V is at least as hard as deciding membership in Acc(M).

We say a simple equation ε is expansive if it has, as a substitution instance, an
equation of the form

xn ≤
m∨
j=1

xn+cj , (7)

for some n,m ≥ 1 and c1, ... , cm ≥ 1. It is easy to verify that if ε is expansive then
CRL + ε is negatively n-potent. We say a variety is expansive if it satisfies an expansive
equation. As a consequence of Lemma 5.4, if a simple equation is the equivalent
linearization of an expansive basic equation wherem ≥ 2 then it is spineless. By the
theorem above and Theorem 4.5 we obtain the following:

Corollary 5.8. Let V be an expansive subvariety of CRL containing W+
M , for some

ACM M. Then deciding membership in the equational theory of V is at least as hard as
deciding membership in Acc(M).

In particular, we prove the following theorem as a consequence of Theorem 5.5
and the corollary above.

Theorem 5.9. If Γ is a finite set spineless simple equation containing an expansive
equation then variety CRL + Γ has an undecidable equational theory.

§6. Admissibility. We now begin investigating the required features that a machine
should have, in order to achieve the exponential encoding. We begin by formalizing
the notion of admissibility and its two natural parts.

Let M = (Rk, Q, P, qf) be a k-ACM and [D] a n-variable simple equation. We define
the relation ≤D to be the smallest relation containing

t1
n ≤

∨
d∈D

tdn ,

for all tn ∈ ((Q ∪ Rk)∗)n, and closed under the inference rules [·] and [∨]. We define
the computation relation ≤DM as the smallest compatible preorder generated by
P ∪ ≤D, and set Acc(DM) := {u ∈ AM : ∃uf ∈ Fin(M), u ≤DM uf}.

The construction of ≤DM enjoys an analogue to Lemma 3.1(2), and therefore the
following analogue to Lemma 3.4(2):

Lemma 6.1. Let M be an ACM and [D] be a simple equation. For all u, v ∈ AM,
u ∨ v ∈ Acc(DM) if and only if u ∈ Acc(DM) and v ∈ Acc(DM).

The frame WDM is defined as WM, but the nuclear relation is defined with respect
to Acc(DM) instead of Acc(M).

Lemma 6.2. If M is an ACM and [D] a simple equation, then W+
DM ∈ CRL + [D].
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Proof. Let [D] be an n-variable simple equation where D = {d1, ... , dm}. It is
enough to show that W+

DM |= [D]. By Theorem 5.1, this is equivalent to showing
WDM |= (D), i.e., for all s ∈W , tn ∈Wn,

td1
n NDM s ··· tdmn NDM s

t1
n NDM s

(D).

If the antecedent of the implication holds, by the definition of NDM and ≤DM and
by Lemma 6.1 we obtain

(∀d ∈ D) tdn NDM s ⇐⇒ (∀d ∈ D) stdn ∈ Acc(DM) ⇐⇒
∨
d∈D

stdn ∈ Acc(DM).

Now, by the definition of ≤DM,

st1
n ≤DM s

∨
d∈D

tdn =
∨
d∈D

stdn ,

hence st1
n ∈ Acc(DM) and t1

n NDM s . Therefore W+
DM |= [D]. �

Since ≤M ⊆ ≤DM, it follows that Acc(M) ⊆ Acc(DM). We say a simple equation [D]
is admissible in a machine M if Acc(M) = Acc(DM). As the only difference between
WM and WDM is Acc(M) and Acc(DM), if [D] is admissible in M then W+

M = W+
DM.

Therefore by Lemma 6.2 we obtain the following lemma:

Lemma 6.3. If a simple equation [D] is admissible in M, then W+
M ∈ CRL + [D].

As we will see, admissibility in M depends on the machine M as well as the equation
[D]. We define the intermediate notions register-admissibility and state-admissibility
to make this distinction clear.

For a given ACM M = (Rk, Q, P, qf) and n-variable simple equation [D], we define
≤DR to be the smallest relation containing,

x1
n ≤

∨
d∈D

xdn ,

for all xn ∈ (R∗k)
n, and closed under the inference rules [·] and [∨]. Define the new

computation relation ≤DRM to be the smallest compatible preorder generated by
P ∪ ≤DR, and set Acc(DRM) := {u ∈ AM : ∃uf ∈ Fin(M), u ≤DRM uf}. Since the effect
of [D] is restricted to only register terms in ≤DR, by the same argument as Lemma
3.4(1), it follows that Acc(DRM) ⊆ ID(M).

It is clear then that Acc(DRM) ⊆ Acc(DM), since ≤DR is merely a restriction of
≤D. In total, we obtain

Acc(M) ⊆ Acc(DRM) ⊆ Acc(DM).

If Acc(M) = Acc(DRM), then we say [D] is register-admissible in M. If Acc(DRM) =
Acc(DM), we say [D] is state-admissible in M. Hence [D] is admissible in M iff [D]
is both register and state-admissible in M. Due to the property that instructions
in an ACM replace a single state-variable of a configuration by precisely one state-
variable, we show in Lemma 6.5 that state-admissibility is a property of the equation
[D] independent of the machine M.
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6.1. State-admissibility for spineless equations. We say that a simple equation [D]
is mingly if there exists a one-variable substitution � such that �[D] : x� ≤

∨
d∈D x

for some � > 1. That is, if [D] is an equation in n-variables, �(x1
n) = x� and �(xdn ) =

x, for all d ∈ D.
Of course, this is equivalent over RL to x� ≤ x, but since we do not assume

idempotency of ∨ in AM, we write x� ≤
∨
d∈D x so as to be explicit about the

implementation of the equation in computations.
By definition, mingly equations are prespinal. Equation (vi) from Table 1 is mingly,

using the substitution witnessing it is prespinal, while the remaining equations
can easily be verified to be not mingly.10 Since mingly equations are prespinal by
definition, we obtain the following result.

Lemma 6.4. A spineless equation is non-mingly.

As we will be dealing only with spineless equations, the equations we will consider
are not mingly. The following lemma shows that only mingly equations invalidate
state-admissibility and also that state-admissibility is independent of the choice of
the machine.

Lemma 6.5. The following are equivalent for any M and simple equation [D].

1. [D] is state-admissible in M.
2. Acc(DM) ⊆ ID(M).
3. [D] is not mingly.

Proof. Assume M = (Rk, Q, P, qf) and let [D] be an n-variable simple equation.
(1 ⇒ 2) We have that Acc(DM) = Acc(DRM) ⊆ ID(M).
(2 ⇒ 3) Proceeding by contraposition, suppose [D] is mingly. Then x� ≤

∨
d∈D x

is a direct substitution image of [D], for � > 1. For x = qf , we have

q�f ≤D
∨
d∈D

qf ∈ Fin(M) ⊆ Acc(DM).

Since � > 1, it follows that q�f �∈ ID(M).
(3 ⇒ 1) Proceeding by contraposition, suppose Acc(DRM) is a proper subset of

Acc(DM) and let t ∈ Acc(DM) \ Acc(DRM) be a witness with minimal computation

t = u0 ≤p1 u1 ≤p2 ··· ≤pN uN = uf ∈ Fin(M),

for some u0, u1, ... , uN ∈ AM and p1, ... , pN ∈ P ∪ {D}. Since Fin(M) ⊆ Acc(DRM),
we have that t �∈ Fin(M) and soN > 1. By Lemma 6.1, we may assume t ∈ (Q ∪ Rk)∗.
Since N is minimal, it follows that p1 = D and u1 ∈ Acc(DRM) ⊆ ID(M). So,

t = st1
n ≤D

∨
d∈D

stdn = u1,

where s ∈ (Q ∪ Rk)∗ and tn ∈ ((Q ∪ Rk)∗)n; here we used the fact that the rule [∨] is
not applicable, as t ∈ (Q ∪ Rk)∗.

10Note that the remaining equations are such that each variable appears with degree at least 2 on the
right-hand side, so any 1-variable non-trivializing substitution instance will result in a joinand of degree
at least 2.
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Since u1 ∈ ID(M), it follows that stdn ∈ Conf(M) for all d ∈ D. Also, because p1 �=
DR, there is some ti that contains at least one state variable. As that ti must also
appear on the right-hand side and st1

n ∈ Conf(M), it follows that s cannot contain
any state variable, so s ∈ R∗k . Consequently, every joinand in the right-hand side has
a unique ti containing a state variable.

Therefore, applying the substitution � defined by: �(xi) = x if ti contains a
state variable and �(xi) = 1 otherwise, yields x� ≤ x, where � is the number of ti ’s
containing a state variable.

We will show that � > 1. If, by way of contradiction, there was a unique tj
containing a state variable, then it would have the form tj = qx for some q ∈ Q and
x ∈ R∗k (with ti ∈ R∗k for all other ti ’s) and tj would appear on all the joinands on
the right-hand side. So, we have

t = sqx
∏
i �=j
ti ≤DR

∨
d∈D

sqx

n∏
i �=j
ti
d (i) = u1 ∈ Acc(DRM),

and thus t ∈ Acc(DRM), a contradiction. �

Therefore, in our search for an appropriate machine for spineless equations, state-
admissibility will be automatic and will not restrict the type of possible machines.

§7. The exponential encoding. Given a 2-ACM M = (R2, Q, P, qf) (we will later
choose as M a machine with undecidable halting problem) and simple equation [D],
our ultimate goal is to construct a new machine M′ “simulating” the machine M such
that Acc(DM′) = Acc(M′). More specifically, for any spineless equation [D] we can
construct a 3-ACM MK = (R3, QK, PK, qF ) for which it will be register-admissible,
for some K > 1 provided by Theorem 8.10, that will simulate the behavior of the
2-ACM M in the following way:

qr
n1
1 r
n2
2 ∈ Acc(M) if and only if qrK

n1
1 rK

n2
2 ∈ Acc(MK ).

So, the content n of a register r is not represented by rn but by rK
n
.

Computationally, this will be achieved by replacing each increment-r (decrement-
r) instruction by a distinct set of instructions (i.e., a program) that will carry out
the process of multiplying (dividing) the contents in register r by K. The auxiliary
register r3 will be necessary to carry out such computations, and the faithfulness of
this encoding will be guaranteed by the insistence that accepted configurations are
those which have a computation resulting in a finite join of configurations labeled
by state qF where all the registers are empty.

We will first show how we can achieve multiplying the contents of a register r ∈ R2

by a fixed constant K > 1. Let Q+K = {a0, ... , aK} be a set of (K + 1)-many fresh
state-variables. We can add K tokens to the contents of the auxiliary register r3 by
starting from the state a0 and applying the instructions P+K = {+i : i = 1, ... , K},
where +i : ai–1 ≤ air3, and reaching state aK . Then for each 0 ≤ i < K , we have

a0 ≤+K air
N
3 ⇐⇒ N = i,

where ≤+K is the computation relation defined in the usual way from P+K . Hence
a0x ≤+K aKy iff y = xrK3 , for each x, y ∈ R∗3 .
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Now, if we have N tokens in register r and we are at state aK , then by removing one
r-token, moving to state a0 by the instruction ×loop : aKr ≤ a0, and using P+K to
addK r3-tokens and repeating this process, we can essentially exchangeN r-tokens
for NK r3-tokens. For example,

aKr
N ≤×loop a0r

N–1 ≤+K aKr
N–1rK3 ≤×loop a0r

N–2rK3 ≤+K ··· aKrNK3 .

If we set ≤×r to be the computation relation defined from Pr×K = P+K ∪ {×loop},
then it is easily verified by induction that for each N,M, n,m ∈ N and 0 ≤ i ≤ K :

aKr
N ≤×r air

nrm3 ⇐⇒ KN = Kn +m + (K – i),
air
nrm3 ≤×r aKr

M
3 ⇐⇒ M = Kn +m + (K – i).

(8)

Observe that multiplying the contents of register r is achieved by an iterative process
of adding K-many tokens to r3 and then looping the process by removing one from
r. We can define a division program analogously. However, in both cases, we start
with tokens in r and compute the product (or quotient) by K in the register r3 by
emptying r. We would then like our machine to transfer those contents back to the
original register r to complete this program.

Let Tr be the program with fresh states QTr = {t0, t1} and instructions PTr =
{T–, T+} given byT– : t0r3 ≤ t1 andT+ : t1 ≤ t0r. Defining its computation relation
to be ≤Tr , we easily obtain for all N,M, n,m ∈ N:

t0r
N
3 ≤Tr t�r

nrm3 ⇐⇒ N = n +m + �,
t�r
nrm3 ≤Tr t0r

M ⇐⇒ n +m + � =M.
(9)

If we wish to implement the transfer program after, say, executing the program for
multiplying by K, then we need an instruction to switch from the state a0 to the state
t0. This can naively be achieved by a forking instruction, say p : aK ≤ t0,11 which
would allow for the computation

aKr
N ≤×r aKr

NK
3 ≤p t0rNK3 ≤Tr t0r

NK.

However, since the instruction p can be applied to any configuration labeled by aK ,
even those for which the register r is nonempty, we also get unwanted instances
of the form aKrN ≤ t0rM where M = Km +N – m for each 0 ≤ m ≤ N . Since
we want our simulation to be faithful, we need a way of switching to the transfer
program only when the register r is empty.

7.1. The zero-test program. What we are asking for is similar to (what is
commonly called) a zero-test instruction of a standard counter machine, i.e., an
instruction which is applicable only when a specified register is empty. Since we
require our computation relations to be compatible with multiplication, such an
insistence is impossible. That is, we insist q ≤ q′ to entail qx ≤ q′x for any term x.

However, following the ideas in [11], we construct a program that has a similar
behavior utilizing the insistence that accepted configurations are those that compute
final ID’s, i.e., finite joins of the configuration labeled by a final state qF with all
registers empty.

11Technically, p : a0 ≤ t0 ∨ t0 since ∨ is not idempotent, but this technicality is unnecessary for the
example.

https://doi.org/10.1017/jsl.2021.46 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.46


1178 NIKOLAOS GALATOS AND GAVIN ST. JOHN

We define the (sub-)machine ø = (R3, Qø, Pø, qF ), with a fresh set of variables
Qø = {z1, z2, z3, qF } and instructions Pø are given by:

øij : zirj ≤ zi ,

øiF : zi ≤ qF ∨ qF ,

for each i, j ∈ {1, 2, 3} with i �= j, resulting in a total of 6 + 3 = 9 instructions.
The addition of the auxiliary states z1, z2, z3 is explained by the fact that the role

of zi is to empty the contents of all registers other than ri and transition to the final
state qF . Thus it detects situations where ri is not already empty, as then it cannot
reach a final ID. So, assuming we want to move from state qin to qout only when the
register ri is empty, we can start a parallel computation, the main branch of which
moves to state qout (even if ri is non-empty) but the auxiliary branch involving the
zi terminates successfully only if ri is empty. This zi -branch ensures/safeguards that
the combined computation acts as intended.

We call the above machine the zero-test program, and we denote its computation
relation by ≤ø. The zero-test program for a register ri is implemented by a zero-test
ri instruction p, where p is of the form qin ≤ qout ∨ zi . Since the desired final ID’s
of MK will consist of only joins of the configuration qF , i.e., all registers are empty,
the above instruction copies the contents of the registers and creates two paths; one
path with the state qout where ri is intended to be empty, and the second with a state
zi where the program ø is intended to empty registers rj and rk and then output to
the final state. Below is an example of implementing the zero-test on register r1 via
the instruction p : qin ≤ qout ∨ z1 on the configuration qinr1r2r3:

qinr1r2r3 ≤p qoutr1r2r3 ∨ z1r1r2r3

≤ø1
2 qoutr1r2r3 ∨ z1r1r3

≤ø1
3 qoutr1r2r3 ∨ z1r1

≤ø1
F qoutr1r2r3 ∨ qF r1 ∨ qF r1.

As we see, the above (maximal in ø) computation detected that register r1 is not
empty in the configuration qr1r2r3 since the final ID contains the configuration
qF r1, and there are no qF -instructions. In fact, z1r1r2r3 �∈ Acc(ø) since there is no
instruction applicable to the state z1 which alters the contents of register r1. By a
similar analysis, we obtain the following:

Lemma 7.1. zir
n1
1 r
n2
2 r
n3
3 ∈ Acc(ø) if and only if ni = 0.

Let P be a program (i.e., a sub-machine) and ≤P be its corresponding
computation relation. We define the relation �P on Conf(P) via C �P C′ iff
C ≤P C′ ∨ u, where either u = ⊥ or u ∈ ID(ø) with u ∈ Acc(ø).12 If P contains no
Qø-instructions (i.e., no instruction zix ≤ ··· ), then C �P C′ iff there is a computation
from C to C′ ∨ u with instructions from P such that every zero-test was properly
applied. Note that �P is transitive on configurations and C ≤P C′ implies C �P C′.
We obtain the following lemma.

12If p is an instruction, by C �{p} C′ we mean C ≤p C′ ∨ u.
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Lemma 7.2. Let p be the instruction qin ≤ qout ∨ zi with distinct qin, qout �∈ Qø. For
x, x′ ∈ R∗3 , qinx �{p} qoutx

′ if and only if x = x′ = r
n1
1 r
n2
2 r
n3
3 and ni = 0.

Proof. Let x = r
n1
1 r
n2
2 r
n3
3 . The only instruction applicable to qinx is p, so from

qin ≤ qout ∨ zi we obtain qinx ≤p qoutx ∨ zix. Since the only instructions applicable
are those from {p} and qin �= qout, the computation cannot proceed from this
configuration. Hence by Lemma 7.1,

qinx �{p} qoutx
′ ⇐⇒ x = x′ and zix ≤ø qF ⇐⇒ x = x′ and ni = 0. �

7.2. Multiplying and dividing. We are now ready to faithfully simulate an
increment-r instruction by a program that multiplies the contents of register r ∈
{r1, r2} by the fixed constant K. For p : qin ≤ qoutr, we define the program ×(p) to
have states Q×(p) = Q+K ∪ QTr and instructions P×(p) = P+K ∪ PTr ∪ {×in,×T,×out},
where

×in : qin ≤ aK ∨ z3,
×T : aK ≤ t0 ∨ zi ,
×out : t0 ≤ qout ∨ z3.

The instruction ×in is intended to verify that the auxiliary register r3 is in fact empty,
and initiate the process of storing in r3 K -times the contents in the active register
r. The instruction ×T is meant to check that all the contents of the active register r
have been emptied (and thus K-times that amount is in r3), and initiate the transfer
program. The instruction ×out is intended to end the program by transitioning to
the state qout only when the transfer is complete, i.e., when r3 has been emptied.
Below is an example of ×(qin ≤ qoutr1) running on the configuration qinr

2
1r2:

qinr
2
1r2 �{×in} aKr

2
1r2

≤×r1
aKr2r

2K
3

�{×T} t0r2r
2K
3

≤Tr1
t0r

2K
1 r2

�{×out} qoutr
2K
1 r2.

In this way, we obtain the following technical lemma by induction as a consequence
of Lemma 7.2 and Equations (8) and (9). We state the lemma for r = r1, but the
same holds when swapping the roles of r1 and r2.

Lemma 7.3. Let p : qin ≤ qoutr1 be an increment-r1 instruction, where qin, qout �∈
Q×(p). Then

qinr
N1
1 r

N2
2 r

N3
3 �×(p) qoutr

M1
1 r

M2
2 r

M3
3 ,

if and only ifM1 = KN1,M2 = N2, andM3 = N3 = 0. In fact, for each n1, n2, n3 ∈ N

and state q ∈ Q×(p),

1. qinr
N1
1 r

N2
2 r

N3
3 �×(p) qr

n1
1 r
n2
2 r
n3
3 iff N3 = 0, N2 = n2, and

KN1 =
{

n1 + n3 + � if q = t� where � ∈ {0, 1},
Kn1 + n3 + (K – �) if q = a� where 0 ≤ � ≤ K.
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2. qrn1
1 r
n2
2 r
n3
3 �×(p) qoutr

M1
1 r

M2
2 r

M3
3 iffM3 = 0,M2 = n2, and

M1 =
{

n1 + n3 + � if q = t� where � ∈ {0, 1},
Kn1 + n3 + (K – �) if q = a� where 0 ≤ � ≤ K.

For a configuration C = qrn1r
m
2 in M, by CK we denote the configuration qrK

n

1 rK
m

2
in MK .

Corollary 7.4. Let p be an increment instruction from some 2-ACM M. Then
C ≤p C′ if and only if CK �×(p) C

′
K for any configurations C, C′ in Conf(M).

In a completely analogous way, given a decrement-r instruction p : qinr ≤ qout,
we define the division by K program ÷(p) as follows. For its set of states Q÷(p),
we define a fresh set of states Qr–K = {s0, ... , sK} and set Q÷(p) = Qr–K ∪ QTr . We
take as its instructions P÷(p) = Pr–K ∪ PTr ∪ {÷in,÷T,÷out}, where Pr–K contains
the instruction ÷loop : sK ≤ s0r3 and K-many instructions of the form –i : si–1r ≤ si ,
for 1 ≤ i ≤ K , and finally

÷in : qin ≤ s0 ∨ z3,
÷T : s0 ≤ t0 ∨ zi ,
÷out : t0 ≤ qout ∨ z3.

The instruction ÷in is intended to verify that the auxiliary register r3 is in fact
empty, and initiate the process of storing in r3 the quotient by K of the contents
in the active register r. The instruction ×T is meant to check that all the contents
of the active register r have been emptied (and thus K-divided by that amount is
in r3), and initiate the transfer program. The instruction ÷out is intended to end
the program transitioning to the state qout only when the transfer is complete, i.e.,
when r3 has been emptied. Below is an example of ÷(qinr1 ≤ qout) running on the
configuration qinr

2K
1 r2:

qinr
2K
1 r2 �{÷in} s0r

2K
1 r2

≤r1–K sKr
K
1 r2

≤÷loop s0r
K
1 r2r3

≤r1–K sKr2r3

≤÷loop s0r2r
2
3

�{÷T} t0r2r
2
3

≤Tr1
t0r

2
1r2

�{÷out} qoutr
2
1r2.

The following technical lemma is easily verified by induction. We state the lemma
for r = r1, but the same holds by swapping the roles of r1 and r2.

Lemma 7.5. Let p : qinr1 ≤ qout be a decrement-r1 instruction. Then

qinr
N1
1 r

N2
2 r

N3
3 �÷(p) qoutr

M1
1 r

M2
2 r

M3
3 ,

if and only if KM1 = N1 > 0, M2 = N2, and M3 = N3 = 0. In fact, for each
n1, n2, n3 ∈ N and state q ∈ Q÷(p),
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1. qinr
N1
1 r

N2
2 r

N3
3 �÷(p) qr

n1
1 r
n2
2 r
n3
3 iff N3 = 0, N2 = n2, and

N1 =
{

n1 + n3 + � if q = t� where � ∈ {0, 1},
Kn1 + n3 + (K – �) if q = s� where 0 ≤ � ≤ K.

2. qrn1
1 r
n2
2 r
n3
3 �×(p) qoutr

M1
1 r

M2
2 r

M3
3 iffM3 = 0,M2 = n2, and

KM1 =
{

n1 + n3 + � if q = t� where � ∈ {0, 1},
Kn1 + n3 + (K – �) if q = s� where 0 ≤ � ≤ K.

Corollary 7.6. Let p be a decrement instruction from some 2-ACM M and C, C′ be
configurations in M. Then C ≤p C′ if and only if CK �÷(p) C

′
K .

Corollary 7.7. Assume that p : qinr ≤ qout is a decrement instruction, Cin is a qin-
configuration, C is a Q÷(p)-configuration, and Cout is qout-configuration. If Cin �÷(p) C

and Cin �÷(p) Cout, then C �÷(p) Cout.

Proof. Since Cin �÷(p) C and Cin �÷(p) Cout, by Lemma 7.5 the values of Cin and
C, as well as the values of Cin and Cout are linked. Therefore, the values of Cout and C

are also linked and hence by Lemma 7.5 we obtain C �÷(p) Cout. �

7.3. Construction of MK . Let M = (R2, Q, P, qf) be a 2-ACM and let K > 1 be
an integer. Since the configuration qf is accepted in M by definition, we will need
(qf)K = qfr1r2 to be accepted in MK . To accommodate this, we define the end
program as follows. For a fresh variable cF , we define the set of states QF = {cF }
and the set of instructions PF = {F1, F2} by:

F1 : qfr1 ≤ cF ,

F2 : cF r2 ≤ qF .

By ≤F we denote the computation relation for the end program.

Lemma 7.8. For q ∈ QF ∪ {qf}, qrn1
1 r
n2
2 r
n3
3 ≤F qF if and only if n3 = 0 and

(n1, n2) =

⎧⎨
⎩

(1, 1) if q = qf,
(0, 1) if q = cF ,
(0, 0) if q = qF .

We write the instructions P of M as the disjoint union P+ ∪ P– ∪ P∨ of its increment,
decrement, and forking instructions, respectively. We can now formally define the
3-ACM simulation of M to be the machine MK = (R3, QK, PK, qF ), where

• QK is the (disjoint) union of Q, Qø, QF , Q×(p) for each p ∈ P+, and Q÷(p) for
each p ∈ P–.

• PK is the (disjoint) union of P∨, Pø, PF , P×(p) for each p ∈ P+, and P÷(p) for
each p ∈ P–.

• qF is the final state of MK .

Formally, we view all states and instructions in some multiply/divide program P(p)
(where p is an increment/decrement instruction from M) as being labeled by the
instruction p, e.g., a state from QP(p) is of the form qp, and an instruction PP(p) is of
the form p. In other words, we make states and instructions in each subprogram
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disjoint. In fact, since there are no instructions in P(p) of the form ··· ≤ qF ··· , we
obtain the following useful observation.

Lemma 7.9. Let p be an increment or decrement instruction from M and P(p) its
corresponding program in MK . If C is a configuration in MK labeled by a state from
QP(p) then the only instructions applicable to C are those from PP(p). Furthermore, if
qout is the output state of p, then C being accepted in MK implies C �P(p) C

′ ∈ Acc(MK ),
where C′ is labeled by qout.

Recall, for a configuration C = qrn1r
m
2 in M, by CK that we denote the configuration

qrK
n

1 rK
m

2 in MK .

Lemma 7.10. The following hold for any 2-ACM M = (R2, Q, P, qf) and K > 1.

1. A configuration C is accepted in M iff CK is accepted in MK . Furthermore, any
accepted configuration in MK labeled by a state from Q must be of the form CK
where C is accepted in M.

2. Let p be an increment or decrement instruction of M and C a configuration of the
corresponding programP(p) (P ∈ {×,÷}). Then C is accepted in MK iff there are
accepted configurations C′, C′′ in M such that C′ ≤p C′′ and C′K �P(p) C �P(p) C

′′
K .

Proof. For (1), let C be a configuration in M. Since there are no qf-instructions
in M by definition, if C is labeled by state qf then it is accepted in M iff C = qf , i.e.,
both registers r1 and r2 are empty. By definition, the only qf-instructions in MK are
those found in the end program. By Lemma 7.8, the only accepted configuration
in MK labeled by qf is CK . Now, suppose p is a q-instruction from M. Clearly, if p is
a forking instruction, then C ≤p C′ ∨ C′′ in M iff CK ≤p C′K ∨ C′′K . Otherwise, p is an
increment or decrement instruction, and by Corollaries 7.4 and 7.6, C ≤p C′ in M iff
CK �P(p) C

′
K in MK . The claim therefore follows by induction on the computation

lengths.
For (2), consider a configuration C in MK labeled by a state from some program

P(p), where p is an increment or decrement instruction from M. Let qin and qout

be the input and output states of p, respectively. By Lemma 7.9, we conclude that
if a computation witnesses C being accepted in MK it must implement the output
instruction of P(p). That is C �P(p) qoutr

n1
1 r
n2
2 r
n3
3 . By (1), n1 and n2 are powers of

K while n3 = 0. By Lemmas 7.3 and 7.5, the result follows. �

Let M̃ be the 2-ACM given by Theorem 3.2. Since membership of Acc(M̃) is
undecidable, we obtain the following consequence of Lemma 7.10(1):

Corollary 7.11. Membership in the set Acc(M̃K ) is undecidable for K > 1.

7.4. Register-admissibility in MK . Consider an n-variable simple equation [D], a
2-ACM M, and an integerK > 1. To show the register-admissibility of [D] in MK , we
need only show that for each configuration C in MK , if the ID

∨
d∈D Cd is obtained

by an instance of ≤DR from C and
∨
d∈D Cd is accepted in MK , then C is accepted in

MK . By Lemma 3.4(2), this implication is equivalently stated as

C ≤DR
∨
d∈D

Cd & (∀d ∈ D)(Cd ∈ Acc(MK )) =⇒ C ∈ Acc(MK ).
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Since we are only considering applications of [D] to the register contents, we
can split our analysis into cases depending upon the state q ∈ QK that labels the
configurations. The following useful observation follows from the fact that every
variable that appears on the right-hand side of a simple equation appears also on
the left-hand side.

Lemma 7.12. If a substitution sends all the joinands of a simple equation to 1, then
it sends all variables of the equation to 1.

In the following for two tuples 
 and d of the same length, 
d denotes their dot
product. In the next section we will actually view
 as a row-matrix and d as a column-
matrix, so 
d will be their matrix product. In this way, focusing on the list/column
vector d of exponents of the variables in [D] and also on the list/row vector 
 of the
exponents of the images of the variables via a one-variable substitution, the above
lemma can be stated as: for an n-variable simple equation [D], if 
d = 0 for each
d ∈ D, then 
 must be the constantly zero vector 0 ∈ Nn.

As observed in Section 5.1, if C ≤DR
∨
d∈D Cd is an instance of ≤DR, we may write

C = qxx1
n and Cd = qxxdn for each d ∈ D, where x ∈ R∗3 and xn = (x1, ... , xn) ∈

(R∗3 )n. Let x = r
C1
1 r

C2
2 r

C3
3 , where C1, C2, C3 ≥ 0, and for each j ∈ {1, 2, 3}, define


j ∈ Nn via xi = r

1(i)
1 r


2(i)
2 r


3(i)
3 , for each i ∈ {1, ... , n}. Then,

C = qrC1+
11
1 r

C2+
21
2 r

C3+
31
3 ,

and for each d ∈ D,

Cd = qrC1+
1d
1 r

C2+
2d
2 r

C3+
3d
3 .

Lemma 7.13. The zero-test program is register-admissible for any simple equation,
and the end program is register-admissible for any non-mingly simple equation.

Proof. Let [D] be a simple equation. If q is the final state qF , then Cd is accepted
iff all registers are empty, i.e., Cd = qF for each d ∈ D. Hence x = 1 and 
jd = 0
for each d ∈ D and j ∈ {1, 2, 3}. For each j ∈ {1, 2, 3}, this implies that 
j = 0, by
Lemma 7.12. Therefore C = qF ∈ Acc(MK ).

Suppose q = zi , and without loss of generality, let i = 3. By Lemma 7.1, Cd is
accepted iff register r3 is empty, i.e., Cd ∈ Acc(ø) iff C3 + 
3d = 0, for each d ∈ D.
This impliesC3 = 0 and 
3d = 0, for each d ∈ D. So by Lemma 7.12, 
3 = 0. Hence
C3 + 
31 = 0 and C ∈ Acc(ø) ⊆ Acc(MK ).

Lastly, suppose q = cF . By Lemma 7.8, Cd ∈ Acc(F ) iff Cd = cF r2. Hence C1 =
C3 = 0, 
1d = 
3d = 0 for each d ∈ D, and C2 + 
2d = 1. Again, by Lemma 7.12,

1 = 
3 = 0. Let � = 
21. Then � is positive since [D] is a simple equation. If � = 1,
then C = cF r2 and we are done. If � �= 1 then 
2 is a substitution witnessing that [D]
is mingly. �

Now, suppose C is labeled by a state q ∈ Q from M. By Lemma 7.10, Cd is accepted
in MK only if the contents of the registers r1, r2 are each powers of K and the register
r3 is empty. That is, C1 + 
1d and C2 + 
2d are powers of K and C3 + 
3d = 0. On
the one hand, Lemma 7.12 ensures that 
3 is the zero vector and C3 = 0, and so r3

is empty in C.
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By the motivation in Section 5.1, a natural condition to consider would be to
stipulate that [D] satisfies (�K). In such a case, if C1 + 
1d is a power of K for each
d ∈ D then there exists d̄ ∈ D such that 
11 = 
1d̄ . Similarly, ifC2 + 
2d is a power
of K for each d ∈ D, then there exists d̄ ′ ∈ D such that 
11 = 
1d̄

′. However, there
is no reason a priori that entails d̄ = d̄ ′ and thus C ∈ {Cd : d ∈ D}, which would be
sufficient to ensure that C would be accepted if

∨
d∈D Cd were accepted.

Since the most naive and obvious way to ensure acceptance is to ask that the left-
hand side C appears as one of the joinands Cd on the right-hand side, it is sufficient
to stipulate that [D] satisfies the following condition:

If the exponents of each variable in the right-hand side of [D]
produced by a 2-variable substitution are translated powers of K,
then the substitution instance is trivial.

In symbolic terms this can be written as:

For all 
, 
′ ∈ Nn and for all C,C ′ ∈ N,

if C + 
d and C ′ + 
′d are powers of K for each d ∈ D,
then there exists d̄ ∈ D such that 
d̄ = 
1 and 
′d̄ = 
′1.

(� � K)

In this case, we say [D] satisfies (��K). We also consider the condition (��): there
exists K > 1 such that (��K) holds. Note that, by setting 
 = 
′, we see that if [D]
satisfies (��K) then it satisfies (�K).13 So, we obtain the following lemma.

Lemma 7.14. If a simple equation satisfies (��) then it satisfies (�).

It is clear then that when q ∈ Q, if [D] satisfies (��K) then the acceptance of∨
d∈D Cd in MK implies the acceptance of C in MK by Lemma 7.10(1) and the

observations above.
As it turns out, the remaining cases can be reduced to the above, and so satisfying

the condition (��K) alone is sufficient to ensure register-admissibility. The only
remaining cases to verify are when the state q is internal to a multiply or divide
by K program. Let p ∈ P be some increment or decrement instruction for M. The
idea is that if an instance of [D], which leads to acceptance in MK , occurs internal
to a program P(p) then, by using Lemma 7.10(2) such an instance could have
equivalently occurred at the end (or beginning) of executing the program P(p).
Without loss of generality, suppose the instruction p acts on register r1 with input
and output states qin and qout, respectively.

For instance, if q is a transfer state q = t� , where � ∈ {0, 1}, then by Lemmas
7.3(2) and 7.5(2),

C �P(p) C
′ := qoutr

(C1+
11)+(C3+
31)+�
1 r

C2+
21
2 ,

and by Lemmas 7.3(2), 7.5(2), and 7.10(2), for each d ∈ D,

Cd �P(p) C
′
d := qoutr

(C1+
1d )+(C3+
3d )+�
1 r

C2+
2d
2 ∈ Acc(MK ).

13Surprisingly, we prove in Theorem 8.10 that the converse holds for all K sufficiently large.
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We see that by setting C = C1 + C3 + �, C ′ = C2, 
 = 
1 + 
3, and 
′ = 
2, we
obtain the instance C′ ≤D ∨

d∈D C′d ∈ Acc(MK). Since C ≤MK C′ and C′ is accepted (C′

is labeled by state qout ∈ Q, which was handled above), it follows that C is accepted.
Similarly, if q is a multiply state q = a� , for some � ≤ K , then by Lemma 7.3(2),

C �×(p) C
′ := qoutr

K(C1+
11+K–�)+(C3+
31)
1 r

C2+
21
2 ,

and by Lemmas 7.3(2) and 7.10(2), for each d ∈ D,

Cd �×(p) C
′
d := qoutr

K(C1+
1d+K–�)+(C3+
3d )
1 r

C2+
2d
2 ∈ Acc(MK).

So by setting C = KC1 + C3 +K – �, C ′ = C2, 
 = K
1 + 
3, and 
′ = 
2, we
obtain the instance C′ ≤D ∨

d∈D C′d ∈ Acc(MK). Since C ≤MK C′ and C′ is accepted (C′

is labeled by state qout ∈ Q, which was handled above), it follows that C is accepted.
Lastly, we consider when q is a division state q = s� , for some � ≤ K . By Lemma

7.5(2),

C′ := qinr
(C1+
11+�)+K(C3+
31)
1 r

C2+
21
2 �÷(p) C,

and by Lemmas 7.5(2) and 7.10(2), for each d ∈ D,

C′d := qinr
(C1+
1d+�)+K(C3+
3d )
1 r

C2+
2d
2 �÷(p) Cd �÷(p) C

′′
d ∈ Acc(MK ),

where C′′d is the unique output configuration of ÷(p) labeled by qout.
Now, it is clear that by setting C = C1 +KC3 + �, C ′ = C2, 
 = 
1 +K
3, and


′ = 
2, we have that C′ ≤D ∨
d∈D C′d . Hence C′ = C′

d̄
for some d̄ ∈ D by (��K),

and so C′
d̄
�÷(p) C. Since C′

d̄
�÷(p) C

′′
d̄

, by Corollary 7.7, it follows that C �÷(p) C
′′
d̄

.
Therefore C is accepted in MK if

∨
d∈D Cd is accepted in MK .

By the arguments above the following lemma is established:

Lemma 7.15. Let M be a 2-ACM and K > 1. If a non-mingly simple equation
satisfies (��K) then it is register-admissible in MK .

7.5. Condition (��) and undecidability. Assume that [D] is a non-mingly simple
equation that satisfies (��). Since it is non-mingly, by Lemma 6.5 we get that [D] is
state-admissible in any machine. Since it also satisfies (��), by Lemma 7.15 we have
that [D] is register-admissible in MK for some integerK > 1, where M is any machine.
In particular, [D] is admissible in M̃K , where M̃ is the machine with undecidable
halting problem. By Corollary 7.11, the machine M̃K has an undecidable set of
accepted configurations for anyK > 1. By Lemma 6.3 we obtain W+

M̃K
∈ CRL + [D].

Therefore,CRL + [D] has an undecidable word problem by Theorem 4.5. This proves
the following result.

Corollary 7.16. For any finite set Γ of non-mingly equations that satisfy (��),
every subvariety of RL containing CRL + Γ has an undecidable word problem.

As motivation for the general case, we show that the 1-variable basic equations
[n, P] : xn ≤

∨
p∈P x

p, where P contains at least two distinct positive integers,
considered in Lemma 5.4, define varieties with undecidable word problem. The
results of the next section will show that this holds for many more equations, all
spineless equations.
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Theorem 7.17. Let [n, P] be a 1-variable basic equation where P contains at least
two distinct positive integers. Then the variety CRL + [n, P] has an undecidable word
problem. If additionally P only contains integers strictly greater than n, then the variety
CRL + [n, P] has an undecidable equational theory.

Proof. Let [D] be the n-variable simple equation that is the linearization of
[n, P] over CRL (given by Equation (4) in Lemma 5.4) and let p, q ∈ P be such that
p > q > 0. Note that by Lemma 5.4, [D] is spineless and hence it is not mingly by
Lemma 6.4. By Corollary 7.16, to establish the first claim it is enough to show [D]
satisfies (��). We will show that [D] satisfies (��K), for every K > 1 + p – q; since
p > q, this implies that K > 1.

Assume that there exist C,C ′ ∈ N and 1-variable substitutions 
, 
′ such that
C + 
d and C + 
d ′ are powers of K for each d ∈ D. We will show that 
 and

′ are trivial substitutions (i.e., all entries are 0), and hence 
1 = 0 = 
d̄ and

′1 = 0 = 
′d̄ for every d̄ ∈ D.

Arguing towards contradiction, suppose that 
 is nontrivial with 
(i) > 0 for
some i ≤ n. Now (by Equation (4)) the terms xpi and xqi appear as joinands on the
right-hand side of [D], i.e., D contains d and d ′ such that d (i) = p, d ′(i) = q, and
d (j) = d ′(j) = 0 for each j �= i . By the assumption on 
 and C, C + 
d = Ka+b

and C + 
d ′ = Ka , for some a, b ∈ N, with b > 0 since p > q. We have that,

Ka(K – 1) ≤ Ka(Kb – 1) = Ka+b – Ka = 
d – 
d ′.

Also, 
d = 
(i)p and 
d ′ = 
(i)q (by definition of d, d ′), so we obtain


d – 
d ′ = 
(i)p – 
(i)q = 
(i)(p – q) ≤ Ka(p – q),

where the last inequality follows from 
(i) ≤ 
(i)q ≤ Ka ; note that q ≥ 1. Combin-
ing the inequalities we obtain K – 1 ≤ p – q and K ≤ 1 + p – q, a contradiction.
Hence [D] satisfies (��K). Furthermore, if all elements from P are larger then n, then
[n, P] is an expansive equation. Therefore the second claim follows by Corollary 5.8.�

§8. Characterization of spineless equations. In this section we prove that a simple
equation is spineless if and only if it satisfies (��K) for every K sufficiently large.

8.1. Basic and simple equations of CRL as sets of tuples. Given the natural
ordering of the variable set {xi : i ∈ Z+}, note that using the above-mentioned
vector notation, every commutative monoid term can be written in the form xfn , for
some n ∈ Z+ and some n-tuple f of natural numbers; recall that xn = (x1, ... , xn).
If we actually extend our notation to the case where x∞ = (xi)i∈Z+ = (x1, x2, ...)
and f is a sequence of natural numbers that is eventually constantly zero, then every
commutative monoid term is of the form xf∞, and thus it is fully specified by such
an f. In the following we will work interchangeably in the free monoid over the
variable set {xi : i ∈ Z+} and also in the isomorphic monoid F of eventually-zero
sequences of natural numbers. More formally, NZ

+
denotes the set of all functions

from Z+ to N and for f ∈ NZ
+

, we define supp(f) := {i ∈ Z+ : f(i) �= 0} to be
the support of f. Then the set F := {f ∈ NZ

+
: |supp(f)| <∞} of all functions of

finite support forms a commutative monoid (F,+, 0), under addition and with unit
the constantly zero function 0. Clearly, this monoid is simply an additive rendering
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of the free commutative monoid on countably many generators and is isomorphic
to the above multiplicative rendering by exactly the map f �→ xf∞. Up to now we
have favored the multiplicative representation due to its connection with machines,
but from now on we will use the additive one as it connects better with the linear
algebra arguments of this section. Under this isomorphism the variable xi maps to
the generator ei , which has 1 in the i-th entry and 0 everywhere else.

For reasons that will be clear soon, we view the elements of F as column vectors
and we also consider the bijective set F	 of the row vectors, which are the transposes
of the elements of F. In particular, for f ∈ F and 
 ∈ F	, the matrix product 
f
yields a 1 × 1 matrix, which we identify with the natural number equal to its unique
entry. Even though f and 
 are each of infinite dimension, they both have finite
support, so their product is well defined. For a subset S of Z+ we define FS to be
the set of eventually zero functions from S to N, so F = FZ+; we identify FS with
the corresponding subset of F in the natural way, as every function in FS is the
restriction to S of the function in F that is defined to be zero outside S. We write
Fn for F{1,...,n}. So, if f ∈ F with support included in {1, ... , n}, we will identify f
with the corresponding element of Fn. We define sets F	

S and F	
n in a similar way.

Therefore, Fn is the set of all n × 1 matrices and F	
n is the set of all 1 × n matrices.

For a set X ⊆ F, we write 
X := {
f ∈ N : f ∈ X} and supp(X ) :=⋃
f∈X supp(f). For each n ∈ Z+, we define the column vector 1n ∈ F to contain 1

in its first n entries and 0 everywhere else. A substitution � on F is fully determined
by its application on the generators ei �→ fi ∈ F for each i ∈ Z+, and as it is
a homomorphism, namely an additive/linear map, its application is given by
multiplication of an associated matrixM� ; so �(f) =M�f. Since we only consider
finite subsets A of F in basic equations [f,A], we may view A as a subset of Fn,
where n is the largest index in supp(A ∪ {f}) and, in this way, will only consider
substitutions � : Fn → Fk , in which case the associated M� is a k × n matrix; in
this case, we say that � is a k-variable substitution. We will write 
i ∈ F	

n for the
i-th row of M� for each i ≤ k and also M� = [
i ]ki=1. Abusing notation, we will
identify � with M� and also we use �[f,A] for the resulting basic inequality.
As we have seen in the statement of condition (��), 1-variable substitutions play
an important role. Actually, every substitution � is rendered as the product of
1-variable substitutions 
i (the ones corresponding to the rows ofM� = [
i ]ki=1) as
for every variable xj , �(xj) = 
1(xj) · 
2(xj) ··· 
k(xj), when using multiplicative
notation, and as a sum of 1-variable substitutions 
i as for every ej , we have
�(ej) = 
1(ej) + 
2(ej) + ··· + 
k(ej), when using additive notation.

8.2. Spinal equations. Let [f,V] be a k-variable spinal equation. We define v0 := 0
and V0 = V ∪ {v0}. Using additive notation, it follows from Definition 5.2:

1. V contains a subset V+ consisting of k ≥ 1 many vectors v1, ... , vk , where vj(i)
is positive if i = j and zero if i > j.

2. V is exactly either V+ or V0.
3. f is a vector in Fk with all entries positive such that f �∈ V.

We write [v1 ··· vk] for the matrix with columns v1, ... , vk , in that order. Observe
that (1) is equivalent to [v1 ··· vk] being a k × k upper-triangular matrix whose
diagonal entries are positive.
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Using this additive perspective, we will demonstrate why spinal equations fail to
satisfy the condition (��), and thus the argument for register-admissibility in the
machines MK found in Lemma 7.15 is not applicable to extensions by such equations.
In fact, we prove a much stronger property for spinal equations which entails such
an argument will fail, not just for our exponential encoding, but for any similar sort
of encoding in general.14

To that aim, for a set S of natural numbers, we consider the following property:

If the exponents in the right-hand side of [D] produced by a
1-variable substitution are in a translation of S (by the same
constant), then the substitution instance is trivial.

In symbolic terms this can be written as

If for some 
 ∈ F	
n and C ∈ N,

every C + 
d is in S, for d ∈ D,
then there exists d̄ ∈ D such that 
d̄ = 
1.

(�S)

In more compact terms, this can be written as

∀
 ∈ F	
n ,∀C ∈ N(C + 
D ⊆ S ⇒ 
1 ∈ 
D).

Clearly, what we called (�K) is simply (�S), where S is the set of all powers of K.
In Lemma 8.1, we essentially show that (�S) fails for any prespinal equation ε and
infinite set S.

Lemma 8.1. If a simple equation satisfies (�S) for an infinite subset S of N, then it
is spineless.

Proof. We argue by contraposition, assuming that a simple equation ε is
prespinal. So there is a substitution � such that [f,V] := �ε is a spinal equation,
where every column vector of V has k entries/rows. We will construct a 1-variable
substitution � = [t1 t2 ··· tk] ∈ F	

k such that C + �V0 ⊆ S, for some C, and
�f �∈ �V0 (hence also �f �∈ �V, as V ⊆ V0); let V0 = {v0, v1, ... , vk}. This will imply
that ε falsifies (�S) by the 1-variable substitution �� and constant C.

First note that for any � ∈ F	
k we have �v0 = 0, so C + �V0 ⊆ S iff C ∈ S and

C + �V+ ⊆ S. Observe that V+ := [v1 ··· vk] is an upper-triangular k × k matrix
whose entries are non-negative integers; note the different font from the set V+.
Furthermore, the determinant � := detV+ = v1(1) ··· vk(k) is positive since vn(n)
is positive for each 1 ≤ n ≤ k by definition. Hence V+ is invertible and V –1

+ =
�–1 adjV+, where the adjoint adjV+ is an upper-triangular matrix with integer entries
which furthermore has positive entries on its diagonal (each of the form �/vn(n)).

Now, if C ∈ S and � ∈ F	
k then

C + �V+ ⊆ S ⇐⇒ �V+ ∈ (S – C )k ⇐⇒ � ∈ (S – C )kV –1
+ .

14Specifically, we mean the following: Let M be a 2-ACM and φ : N → N any (computable) function
with infinite range. Let Mφ be an ACM constructed so that the register contents 〈n,m〉 of a configuration
from M are stored as 〈φ(n), φ(m), 0, ... , 0〉 in Mφ , and programs constructed so that increments n �→ n + 1
[decrements n �→ n – 1] of a register in M are simulated by φ(n) �→ φ(n + 1) [φ(n) �→ φ(n – 1)] in Mφ .
Lemma 8.1 ensures that the corresponding argument for register-admissibility is not valid for spinal
equations without having more information about Acc(M).
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Observe that

(S – C )kV –1
+ = (S – C )k

1
�

adjV+ =
(
S – C
�

)k
adjV+.

Therefore,

C + �V+ ⊆ S ⇐⇒ � ∈
(
S – C
�

)k
adjV+.

We claim that there is a C ∈ S such that the set (S – C )/� has an infinite subset
in the positive integers. Indeed, since S is infinite there exists a coset C + N� that
has infinite intersection with S, where we can take C ∈ S without loss of generality;
let N̄ ⊆ N be the infinite set such that C + N̄� is the intersection of S with C + N�.
Hence N̄ is such an infinite subset of (S – C )/�, and actually 0 ∈ N̄ since C ∈ S.
Consequently, if � ∈ N̄k adjV+, then C + �V+ ⊆ S. Note that N̄k adjV+ is an
infinite set and all if its entries are integers, while we need � ∈ F	

k . Therefore, it is
enough to be able to find [x1 ··· xk] ∈ N̄k such that [t1 t2 ··· tk] = [x1 ··· xk] adjV+,
where the entries ti are nonnegative and further �f �∈ �V0.

Note that since adjV+ is upper-triangular, the value of tn, for each n ≤ k, is deter-
mined only by the values x1, ... , xn; tn is a linear combination of only x1, ... , xn. This
allows us to recursively choose the values of the xi ’s, in order to specify the values ti
one-by-one. Furthermore, at the recursive step where we have already determined the
values of x1, ... , xn–1, the value of xn can be chosen arbitrarily large from the infinite
set N̄; moreover, in the linear combination specifying tn the coefficient of xn is the
(n, n)-entry of adjV+, which is positive; this allows for the value of tn to be as large as
we want (in particular nonnegative). Therefore, the only thing that we have to ensure
is that x1, ... , xn are chosen in N̄ so that furthermore �f �∈ �V0, i.e., �f �= �vi for all
1 ≤ i ≤ k. Below we first prove that �f �= �vk and then that �f > �vi , for all i < k.

Since [f,V] is a spinal equation, we have f �∈ V and in particular f �= vk . Let m
be the largest number in {1, ... , k} such that f(m) �= vk(m) and f(i) = vk(i) for
all i > m. We now define xi = 0 for each i < m; note that since 0 ∈ N̄, all of these
values are in N̄. Since ti is a linear combination of x1, ... , xi , we have that ti = 0 for
i < m. We define xm to be any positive number in N̄, resulting in a positive value for
tm, since xi = 0 for i < m. Since f(m) �= vk(m), we get tmf(m) �= tmvk(m), and
since f(i) = vk(i) for all i > m we obtain

�f =
k∑
i=m

tif(i) = tmf(m) +
∑
i>m

tivk(i) �= tmvk(m) +
∑
i>m

tivk(i) = �vk,

for all possible values of ti for i > m. So any choice of a positive value for xm in N̄

ensures that �f �= �vk .
For m < i < k, we continue choosing positive values for xi in N̄ that are large

enough to ensure that ti is nonnegative, as explained above. Finally, at the last step,
we have chosen x1, ... , xk–1 and therefore determined the values of t1, ... , tk–1. Note
that furthermore the values of �v1, ... , �vk–1 have also been determined: since V+

is an upper triangular matrix, we have vi(j) = 0 for each j > i , so �vi = t1vi(1) +
··· + tivi(i) = 0 for all i < m; in particular even though tk appears in �, it does not

https://doi.org/10.1017/jsl.2021.46 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.46


1190 NIKOLAOS GALATOS AND GAVIN ST. JOHN

appear in the values of �v1, ... , �vk–1. We now choose xk ∈ N̄ so that tk > �vi for all
i < k. Since [f,V] is a basic equation by definition, f is positive in each of its entries
and in particular f(k) ≥ 1, so we obtain �f ≥ tkf(k) ≥ tk > �vi for each i < k. �

Corollary 8.2. If a simple equation satisfies (�), then it is spineless.

Thus we obtain the following from Lemma 7.14 and Corollary 8.2:

Lemma 8.3. If a simple equation satisfies (��) then it is spineless.

8.3. Prespinality. We will begin with a concrete example of a prespinal equation
before illustrating the general case.

Example 8.4. Consider the 8-variable simple equation ε : stuvwxyz ≤

1 ∨ sw2xz4 ∨ s2 ∨ s3tx2yz ∨ s4tz2 ∨ s5twy2 ∨ s6z4 ∨ s7vwx2y ∨ s8t2 ∨ s9uvx2y,

where for better readability we use the letters s, ... , z for the formal variables
x1, ... , x8, in that order; we will use both names for each variable below.

Since ε is an 8-variable equation with 10 distinct joinands, and all spinal equations
in 8-variables have no more than 9 distinct joinands, the equation ε is not spinal.
However, it is easily verified that ε is prespinal, as witnessed by the 3-variable
substitution � defined via: s �→ 1, t �→ x2

1 , z �→ x1, y �→ x1x2, v �→ x3, and u,w, x �→
x2. Indeed, we have

�ε : x4
1x

4
2x3 ≤ 1 ∨ x4

1 ∨ x4
1x

3
2 ∨ x1x

4
2x3.

We name the joinands in the right-hand side of ε in order of appearance from
left to right: d1 = 1, d2 = sw2xz4, ... , d10 = s9uvx2y; we do the same for �ε: v0 = 1,
v1 = x4

1 , v2 = x4
1x

3
2 , and v3 = x1x

4
2x3. Also, we define the sets D = {d1, ... , d10} and

V = {v0, ... , v3}. Given this particular ordering of variables and joinands, the set-
theoretic equation �D = V induces the matrix equation �D = V (note the different
font for the sets D,V and the matrices D,V ), where

� =

s t u v w x y z⎡
⎣0 2 0 0 0 0 1 1

0 0 1 0 1 1 1 0
0 0 0 1 0 0 0 0

⎤
⎦, D =

s

t

u

v

w

x

y

z

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5 6 7 8 9
0 0 0 1 1 1 0 0 2 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 1
0 2 0 0 0 1 0 1 0 0
0 1 0 2 0 0 0 2 0 2
0 0 0 1 0 2 0 1 0 1
0 4 0 1 2 0 4 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V =

v0 v2 v0 v2 v1 v2 v1 v3 v1 v3⎡
⎣0 4 0 4 4 4 4 1 4 1

0 3 0 3 0 3 0 4 0 4
0 0 0 0 0 0 0 1 0 1

⎤
⎦ .

Note that the (i, j)-entry of D represents the degree of the i-th variable xi in the
joinand dj , and the (j, i)-entry of � represents the degree of xj in �(xi).

Note that, by omitting v0 = 0, the 3 × 3 matrix [v1 v2 v3] is upper triangular with
a positive diagonal (as demanded in the definition of �ε being spinal) and this is
the reason for the particular naming of v0, v1, v2, v3, in that order. In turn, given
this order, the substitution partitions the set of joinands D, i.e., the columns of D
into D0 = {d1, d3}, D1 = {d5, d7, d9}, D2 = {d2, d4, d6}, and D3 = {d8, d10}, so that
�Dj = {vj}, for all j. Guided by this ordering, we further rearrange the columns
of V into a new matrix V ′ and the columns of D into a new matrix D′, where
the ordering of the columns within each Di is done randomly. If we represent D′
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symbolically as [D0 D1 D2 D3], then we also have �D′ = [�D0 �D1 �D2 �D3] and
the equation �D′ = V ′.

We can improve the presentation of this equation even more by putting � and
D′ in a triangular form, at least in blocks. More specifically, we now rearrange the
rows ofD′ and simultaneously the columns of � (this corresponds to permuting the
variables of ε) to obtain new matricesD′′ and � ′, yielding the equation � ′D′′ = V ′:

s t z w x y u v⎡
⎢⎣ 0 2 1 0 0 1 0 0

0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎦

d1 d3 d5 d7 d9 d2 d4 d6 d8 d10⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 4 6 8 1 3 5 7 9
0 0 1 0 2 0 1 1 0 0
0 0 2 4 0 4 1 0 0 0
0 0 0 0 0 2 0 1 1 0
0 0 0 0 0 1 2 0 2 2
0 0 0 0 0 0 1 2 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

v0 v0 v1 v1 v1 v2 v2 v2 v3 v3⎡
⎢⎣ 0 0 4 4 4 4 4 4 1 1

0 0 0 0 0 3 3 3 4 4
0 0 0 0 0 0 0 0 1 1

⎤
⎥⎦.

Finally, we observe that the rearrangement of the rows results in a partition of the
set of rows such that the two partitions (of the set of rows and the set of columns)
induce a blocking (given by the solid lines above) that has an upper-triangular
shape. We denote by Db and �b the resulting block matrices, and the equation
� ′D′′ = V ′ of matrices yields the equation �bDb = V b of block matrices. We call
the elements of Db blocks and they are submatrices of D′′; we denote by (Db)ij the
(i + 1, j + 1)-block of Db, where 0 ≤ i, j ≤ 3. We observe that

1. each (Db)ij is the zero matrix when i > j (all blocks below the diagonal are
zero matrices) and

2. each row and each column of (Db)jj contains a nonzero entry for j ≥ 1 (in the
diagonal blocks no row and no column is fully zero, with the possible exception
of the top left block (Db)00).

We call such a partition of the matrix into a block matrix with these two features
a blocking of the matrix. Each blocking specifies an (ordered) partition of the set of
rows and an (ordered) partition of the set of columns of a matrix in the obvious way
(with the provision that the first class in this ordered list may be the empty set), but
each of these two partitions is special as we will explain. Given a column partition,
we define below an associated list of sets of rows. Whenever the original partition
comes from a blocking, the resulting list is actually an (ordered) partition (every
set in the list, except possibly the first one, is non-empty). The same holds with
the roles of rows and columns swapped. We will explain that blockings correspond
bijectively to column-partitions that happen to induce ordered row-partitions and
to row-partitions that happen to induce ordered column-partitions.

Given an I × J matrix D, formally viewed as a function from I × J , as usual
Dij denotes its entry in the i-th row and j-th column, for i ∈ I and j ∈ J ; usually
I and J are taken to be initial segments of the positive integers as in the example
above. We denote by Di the i-th row and by D j the j-th column of D. Given
an ordered partition (C0, C1, ... , Ck) of J (i.e., C0 may be empty, but not all of J,
and the remaining list forms a partition of J) we define the list (R0, R1, ... , Rk) of
subsets of I as follows: for m ≥ 1, Rm contains those i ∈ I such that the entry Din
is zero for n belonging to parts C� with � < m and there is a non-zero entry Din
for some n belonging to the part Cm. In other words, if we group the columns of
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D according to the ordered partition, then Rm corresponds to those rows that are
fully zero on all columns before Cm and are not fully zero on Cm. We define R0 as
containing the remaining i’s that are not in R1 ∪ ··· ∪Rk . (Note that we allow our
ordered partitions to have an optional initial empty partR0.) In the example above,
the sets Rn are all non-empty, thus resulting into a partition of the set of columns;
however, this may not be the case when (C0, C1, ... , Ck) of J is an arbitrary ordered
partition of J. Note that whenever (R0, R1, ... , Rk) is a partition, we can define a
partition of I × J into blocks of the form Rm × Cn with the feature that, for n ≥ 1,
each block Rn × Cn is such that no column and no row of D in that block is fully
zero. Therefore, blockings correspond to column-partitions that happen to induce
ordered row-partitions. Often, instead of writing a partition (C0, C1, ... , Ck) of the
column index set J, we will be writing the partition (D0,D1, ... ,Dk) of the set D of
the corresponding columns.

Conversely, given an ordered partition (R0, R1, ... , Rk) of I we define a list
(C0, C1, ... , Ck) of subsets of J as follows: for n ≥ 1, Cn contains those j ∈ J such
that the entry Dmj is zero for m belonging to parts R� with � > n, and there is a
non-zero entryDmj for some m belonging to the partCn. In other words, if we group
the rows of D according to the ordered partition, thenRn corresponds to those rows
that finish with zeros on all rows after Cn and are not fully zero on Cn. We define
C0 as containing the remaining i’s that are not in C1 ∪ ··· ∪ Ck . Again we can see
that this yields an ordered partition (i.e., the sets Cn, n ≥ 1, are non-empty) iff this
corresponds to a blocking of the matrix.

Given a blocking b of I × J on a matrix D, we obtain the block matrix Db and
observe that it has an upper-triangular form. In the following we will consider a
blocking given by either its ordered row-partition or its ordered column-partition.
In analogy with our notation for entries, rows and columns of a matrix, we define
Db
mn := {Dij : i ∈ Rm, j ∈ Cn}, Db

m = {Dij : i ∈ Rm}, and Db
n = {Dij : j ∈ Cn}.

If D is a set of column vectors, we say b is a blocking of D if it is a blocking of a
matrix D whose set of columns form D, and we define Db

j to be the j-th set of column
vectors Db

j . Observe that if b = (R0, ... , Rk) is a row blocking for D, then by how
the associated list of columns are defined, we get Db

j = {d ∈ D : supp(d ) ∩Rj �=
∅} \ (Db

j+1 ∪ ···Db
k), for each j ≥ 1, and Db

0 = D \ (Db
1 ∪ ···Db

k).
The blocking in the Example 8.4 is induced by� in the sense that the corresponding

partition on the set {1, ... , 10} of columns of D along the vertical lines in Db into
the sets C0 = {1, 3}, C1 = {5, 7, 9}, C2 = {2, 3, 6}, and C3 = {8, 10} is given by the
stipulation that Cn is exactly the set of the columns that are mapped by � to the
same column vector, vn, of V, for all n ∈ {0, 1, 2, 3}. The partition of the set of
rows {1, ... , 8} of D (along the horizontal lines of Db) yields the sets R3 = {3, 4},
R2 = {5, 6, 7}, R1 = {2, 8}, and R0 = {1}.

As in the example, every substitution � that maps an I × J matrix D to a spine
V = [v0 v1 ··· vk] induces a blocking b via a partitioning of the columns:Cn = {j ∈
J : �D j = vn}. The blockings induced by substitutions enjoy further properties (in
addition to yielding upper-triangular block matrices with diagonal blocks that have
no fully zero row or column). Returning to the example we see that �Db

j = vj for
each 0 ≤ j ≤ 3. We say that a substitution is a solution for a set/matrix of column
vectors if it sends all of the vectors of the set/matrix to the same vector. In this
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terminology, � is a solution for each of the sets Db
0, Db

1, Db
2, and Db

3. Note that a
substitution is a solution for a set/matrix iff each of its rows is a solution for it.

Also, looking at the induced partition on the rows, the Rm part of each row

m of � is not fully zero and all of its elements are non-negative. For f ∈ F and
T ⊆ Z+ we say f is T-positive if fT > 0, i.e., fT �= 0 and f(i) ≥ 0 for each i ∈ T ;
put differently f �∈ FTc , where Tc is the complement of T. In this terminology, the
row 
m of � is Rm-positive, for each m. Finally, we note that 
3 is an element of
F	
R3

, 
2 is an element of F	
R3∪R2

, and 
1 is an element of F	
R3∪R2∪R1

. In general, for
every blocking defined by a substitution � with respect to a spine, 
m is an element
of F	

R+
m

, where R+
m := Rm ∪ ··· ∪Rk . For T ⊆ S, we say f is (T, S) -positive if f is

T-positive and f ∈ FS ; put differently f ∈ FS and f �∈ FTc . Therefore, the row 
m
of � is (Rm,R+

m)-positive, for each m.
Given a row blocking b = (R0, ... , Rk) of a set D, a 1-variable substitution 
 ∈ F	

and 1 ≤ i ≤ k, if 
 is (Ri ,R+
i )-positive and 
 is a solution for each set of columns

Db
j , then we say that 
 is a (b, i) -solution for D. Finally, we say that a k-variable

substitution � is a b -solution for D, where b = (R0, ... , Rk), if for all i, the i-th row

i of � is a (b, i) -solution for D.
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 �b11 ··· �b1i ··· �b1k
...
...
. . .

...
...

...

0 0 ··· �bii ··· �bik
...
...
. . .

...
. . .

...

0 0 ··· 0 ··· �bkk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Db
00 Db

01 ··· Db
0i ··· Db

0k

0 Db
11 ··· Db

1i ··· Db
1k

...
...
. . .

...
...

...

0 0 ··· Db
ii ··· Db

ik
...

...
. . .

...
. . .

...

0 0 ··· 0 ··· Db
kk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 v1(1) ··· vi(1) ··· vk(1)
...

...
. . .

...
...

...

0 0 ··· vi(i) ··· vk(i)
...

...
. . .

...
. . .

...

0 0 ··· 0 ··· vk(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

The following lemma and theorem then follow by the definition of b-solutions.

Lemma 8.5. If a k-variable substitution � is a b-solution for D, then the matrix
[v1 v2 ··· vk], where vj = �Db

j , is a k × k upper-triangular matrix whose diagonal
contains positive entries.

Theorem 8.6. An n-variable simple equation [D] is prespinal if and only if D has a
b-solution � , for some row blocking b, such that �1n and �Db

k differ.

The importance of Theorem 8.6 is that it characterizes the notion of prespinality
without a reference to a spine.

Using Theorem 8.6 we now characterize which equations are spineless. For
instance, we can verify that Equations (iii)–(v) from Table 1 are spineless. In each
equation, the set D has only one blocking b, given by (Db

0 ,D
b
1 ) where Db

1 contains
all the nonzero columns from D. We see that there is no nonzero (b, 1)-solution for
either Equation (iii) or (iv). In the case of Equation (v), the only (b, 1)-solutions
are scalar multiples of 
 = [1 1 1], but 
13 ∈ 
D. Therefore Equations (iii)–(v) are
spineless.

8.4. Spineless equations satisfy (��). Theorem 8.6 provides the foundational link
between an equation being spineless and satisfying (��), namely by the (non-)
existence of certain 1-variable substitutions viewed as solutions to particular linear
systems.

We prove that every spineless equation satisfies (��K), for sufficiently large K,
contrapositively. So, we assume that a simple equation [D] satisfies the antecedent
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of (��K) and in particular there exists a (nontrivial) 1-variable substitution 
 for
which 
D is contained in some shift of KN. The following lemma ensures that, if K
is chosen large enough, 
 induces a blocking b on D in the sense that the naturally
ordered column-partition (D0, ... ,Dk) of D induces b, i.e., Dj = Db

j for each j. Here
we conventionally order the sets so that 
Dj < 
Dj+1 for j < k, and we always take
D0 to be the (possibly empty) set of all d ∈ D such that 
d = 0. Note that if a 

induces a blocking then it must be that k ≥ 1 and so 
 is not the zero vector.

For a finite set D ⊆ F, we define ΔD =
∑n
i=1 max{|d (i) – d ′(i)| : d, d ′ ∈ D}.

Lemma 8.7. Assume that for a finite D ⊆ F and for some 1-variable substitution 

that is nontrivial on D, 
D is contained in some shift ofKN, whereK > ΔD + 1. Then

 induces a blocking on D.

Proof. Suppose D ⊆ Fn and let (D0, ... ,Dk) be the column partition of D such
that 0 = 
D0 < ··· < 
Dk . We will show that the associated list (R0, R1, ... , Rk) of
sets of rows is an ordered row-partition, i.e., each of the R1, ... , Rk is not empty.
Recall that Rj is the set of all indices i ∈ {1, ... , n} such that Dij �= 0 but Dil = 0
for each l < j, where D := [D0 ···Dk] (the order of the columns within each Di
plays no role). We first prove that Rk induces Dk , i.e., each d ∈ Dk must have
some nonzero entry/row that is zero in every d ′ ∈ D \ Dk . If not, then there exists
some d ∈ Dk such that for each i ∈ supp(d ) there exists j < k and vector d ′ ∈ Dj
with i ∈ supp(d ′). By assumption, 
d and 
d ′ are in the same shift of KN, say
KN – C for some C ∈ N, and because of our ordering convention, 
d ′ < 
d . So,

d = Ka+1 – C and 
d ′ ≤ Ka – C for some a ≥ 0. Since d ′(i) ≥ 1, we have 
(i) ≤

(i)d ′(i) ≤ 
d ′ ≤ Ka , so

Ka(K – 1) = Ka+1 – Ka ≤ 
d – 
d ′ ≤ 
|d – d ′| ≤ KaΔ{d, d ′} ≤ KaΔD,

where the entries of |d – d ′| are the absolute values of the corresponding entries of
d – d ′. Therefore, K ≤ ΔD + 1, which contradicts the assumption on the size of K.
So, Rk is nonempty and we obtain Dk = {d ∈ D : supp(d ) ∩Rk �= ∅}.

Continuing in this way for 1 ≤ j < k, set D′ = D0 ∪ ··· ∪ Dj . Since D′ ⊆ D
implies ΔD′ ≤ ΔD, the same argument shows each d ∈ Dj contains a nonzero
entry that is zero for each d ′ ∈ D′ \ Dj . Hence Rj induces Dj , i.e.,

Dj = {d ∈ D : supp(d ) ∩Rj �= ∅} \ (Dj+1 ∪ ··· ∪ Dk).

Given R0 = supp(D) \R+
1 by definition, we conclude that b = (R0, ... , Rk) is a

blocking on D such that Db
j = Dj for each j ≤ k, i.e., 
 induces the blocking b

on D. �

Suppose 
 induces a row blocking b = (R0, R1, ... , Rk) of D. Since 
D1 > 0 by
definition, it must be that 
 is R1-positive, and since 
D0 = 0 by definition, it must
be that the support 
 is contained inR+

1 . That is, 
 must be (R1, R
+
1 )-positive. Since

it is also a solution for each Db
j by definition, this proves the following lemma.

Lemma 8.8. If a 1-variable substitution 
 induces a blocking b on D, then it is
a (b, 1)-solution for D. In particular, if � is any b-solution for D, the substitution
obtained by replacing the first row of � by 
 is also a b-solution for D.
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We now demonstrate the converse of Corollary 8.3 by proving the following
stronger statement. The proof relies on Lemma 8.13, which we prove in the next
section.

Lemma 8.9. A spineless equation satisfies (��K) for all sufficiently large K.

Proof. Toward establishing the contrapositive, we assume that the n-variable
simple equation [D] fails (��K) for infinitely many K ∈ N. Then there are infinitely
many pairs of 1-variable substitutions 
, 
′ witnessing such failures that furthermore
induce pairs of blockings for D by Lemma 8.7. Since there are only finitely many
blockings, and thus finitely many pairs of them, there must exist blockings b =
(R0, ... , Rk) and c = (R′

0, ... , R
′
l ) that are witnessed infinitely often as a pair. By

Lemma 8.13, [D] has a b-solution � and a c-solution � ′. By Lemma 8.8, we can
replace the first rows of � and � ′ with 1-variable substitutions 
1 and 
′1 (from the
above-mentioned infinitely many) witnessing the failure of (��K) and inducing b

and c, respectively.
If either �1n �= �Db

k or � ′1n �= � ′Dc
l , then [D] is prespinal by Theorem 8.6, and we

are done. If not, we have �1n = �Db
k and likewise � ′1n = � ′Dc

l . In particular, 
11n =

1d for every d ∈ Db

k and 
′11n = 
′1d for every d ∈ Dc
l , and hence for every d ∈

Db
k ∩ Dc

l . If Db
k and Dc

l were not disjoint, there would be a d ∈ D such that 
11n =

1d and 
′11n = 
′1d , which would imply that 
1, 


′
1 satisfy (��K), contradicting

their choice above. Hence Db
k and Dc

l are disjoint and by the definition of blockings,
Rk and R′

l are also disjoint.
As a result the row partition a := (B0, B1), where B1 = Rk ∪R′

l and B0 =
{1, ... , n} \ B1, is actually a row blocking on D which furthermore induces the
partition of columns Da

1 = Db
k ∪ Dc

l and Da
0 = D \ Da

1 . We will construct a 1-
variable substitution α that will serve as an a-solution for D witnessing the
prespinality of [D].

Let 
k and 
′l be the bottom rows of � and � ′, respectively. Since 
k is a (Rk,R+
k )-

positive solution for Db
k , the value t = 
kDb

k is positive, and since Rk and R′
l are

disjoint, 
kDc
l is zero; in detail R′

l contains columns that appear in earlier blocks
than Rk . Similarly, t′ = 
′lD

c
l is positive and 
′lD

b
k is zero. Note that 
k1n = t and


′l1n = t′ follow by the fact that �1n = �Db
k and � ′1n = � ′Dc

l .
We now define the 1-variable substitution α = t′
k + t
′l . Since Rk and R′

l are
disjoint, it follows that αDb

k = t′t + t0 = tt′ and αDc
l = t′0 + tt′ = tt′, so αDa

1 =
tt′; also α1n = t′t + tt′ = 2tt′. In the case when Da

0 is nonempty, we have αDa
0 =

0, because 
kDb
j = 0, for j < k, and 
′lD

c
i = 0, for i < l . Since t, t′ > 0, we have

2tt′ > tt′ > 0, and therefore it follows that α1n �∈ αD and so [D] is prespinal by
Theorem 8.6. �

Lemmas 8.3 and 8.9 establish the equivalences between a simple equation being
spineless and satisfying (��), and as well as satisfying (�).

Theorem 8.10. A simple equation is spineless iff it satisfies (��K) for every
sufficiently large K.

Therefore, to establish Theorem 8.10 we must prove Lemma 8.13.
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8.5. Solutions in Rn. The goal of this section is to prove Lemma 8.13. To address
this, we recall a theorem of alternatives for positive solutions to linear systems
accompanied by conventional terminology (see [15]).

Let v ∈ Rn (viewed as a row vector) and M ⊆ Rn. We say that v is orthogonal
to M if vM = 0. We say that v is strictly positive if v �= 0 and v(i) ≥ 0 for each
i ∈ {1, ... , n}. The set Xn+ denotes the set of all strictly positive vectors in Xn, called
the strictly positive orthant in Xn, where X ∈ {Z,Q,R}. The following (folklore)
theorem is equivalent to Farkas’s Lemma (for instance, see [14, Theorem 27]).

Theorem 8.11. LetM ⊆ Rn be nonempty set of vectors and i ∈ {1, ... , n} a fixed
index. Then exactly one of the following holds:

1. there exists a strictly positive vector v orthogonal to M where v(i) > 0, or
2. there exists a strictly positive vector w ∈ span(M ) where w(i) > 0.

Note that span(M )S = span(MS) for any M ⊆ Rn and S ⊆ {1, ... , n}; here the
subscript S denotes restriction to S.

Corollary 8.12. Let M ⊆ Rn and T ⊆ S ⊆ {1, ... , n} be non-empty. If there is
no T-positive vector inR|S|

+ orthogonal toMS then there existsL ∈ N such that, for any
v ∈ Rn+ orthogonal to M, v(i) ≤ L · max{v(j) : j ∈ {1, ... , n} \ S} for each i ∈ T .

Proof. By Theorem 8.11, for each i ∈ T there exists a strictly positive (in R|S|)
vectorwi ∈ span(MS) wherewi(i) > 0. Then w̄ :=

∑
i∈T wi ∈ span(MS) is strictly

positive with T ⊆ supp(w̄). Letw ∈ span(M ) be such thatwS = w̄. Note that since
T is nonempty andT ⊆ supp(wS), it follows that t := min{w(i) : i ∈ T} is positive.
Set Sc := {1, ... , n} \ S and m :=

∑
j∈Sc |w(j)|, where we take the empty sum to

be zero. Define L to be the smallest positive integer greater than m/t.
Now, suppose v ∈ Rn+ is orthogonal to M. Then vw	 = 0 and hence∑

j∈S
w(j)v(j) =

∑
j∈Sc

– w(j)v(j).

Let N denote this common value. Considering the right-hand side of the equation, we
obtainN ≤ m · max{v(j) : j ∈ Sc}.Considering the left-hand side of the equation,
tv(i) ≤ w(i)v(i) ≤ N , for all i ∈ T , since T ⊆ S and w(i) ≥ t > 0. Therefore, for
all i ∈ T , we deduce v(i) ≤ N/t ≤ L · max{v(j) : j ∈ Sc}. �

Lemma 8.13. Let D be a finite subset of Fn and b be a blocking on D. If there are
infinitely many K ∈ N for which there exists a 1-variable substitution 
 that induces b
and 
D is contained in some shift of KN, then D has a b-solution.

Proof. Working contrapositively, we assume that D has no b-solution. We will
show that if K > 1 is such that there exists a 1-variable substitution 
 ∈ F	

n that
induces a blocking b on D and that 
D is contained in some shift ofKN, then K can
be no larger than a certain multiple of ΔD. Let b = (R0, ... , Rk), where k ≥ 1.

For any nonempty A ⊆ Fn, fix ā ∈ A and define Ā := {a – ā : a ∈ A}; note that
the entries of the column vectors are in Z. For a set of rows S ⊆ {1, ... , n}, 
 is a
solution for AS iff 
AS is a singleton iff 
AS = 
ā iff 
ĀS = {0} iff 
 is orthogonal
to ĀS in Rn (regardless of the choice ā ∈ A). Hence, if T ⊆ S, then there exists a
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T-positive solution for A in F	
S iff there exists a T-positive solution for AS iff there

exists a T-positive vector of R|S|
+ orthogonal to ĀS .15

Now, by definition of being a blocking, for each i ≥ k the set Db
i is nonempty, so

we can define D̄
b

i = {d – d̄i : d ∈ Db
i } for some fixed d̄i ∈ Db

i . Since, if 0 ∈ D then

0 ∈ Db
0 by definition, we may define the (possibly empty) set D̄

b

0 := Db
0 . We note

that if 
 is a (b, i)-solution for D then 
D̄
b

= 0, where D̄
b

:= D̄
b

0 ∪ ··· ∪ D̄
b

k .
Since D has no b-solution, there must be some 1 ≤ i ≤ n for which there is no

(b, i)-solution. However, since 
 induces b, Lemma 8.8 implies that 
 is a (b, 1)-
solution, and so i > 1. Therefore, for some i > 1, there is no Ri -positive v ∈ R

|S|
+

orthogonal to MS , where M = D̄
b

and S = R+
i . Since 
 induces a blocking, 
 is

strictly positive, and since 
 is a (b, 1)-solution for D, 
 is orthogonal to D̄
b
; since

furtherRi ⊆ R+
i , by Corollary 8.12 we have that there existsL ∈ N such that 
(t) ≤

L · max{
(x) : x ∈ X} for all t ∈ Ri , whereX := {1, ... , n} \R+
i = R0 ∪ ... ∪Ri–1.

Since 
 induces b and since i > 1, we have 0 < 
Db
i–1 < 
Db

i . As 
D is contained
in a shift of KN, say KN – C for some C ∈ N, there must be a ≥ 0 and b > 0 such
that 
Db

i–1 = Ka – C and 
Db
i = Ka+b – C . Observe that 
(x) ≤ Ka for all x ∈ X

since 
Db
j ≤ 
Db

i–1 ≤ Ka for each j ≤ i – 1 by definition of 
 inducing b. Hence

(t) ≤ LKa for all t ∈ X ∪Ri .

For d ∈ Db
i and d ′ ∈ Db

i–1, we have supp({d, d ′}) ⊆ X ∪Ri , so

Ka(K – 1) ≤ Ka(Kb – 1) = 
d – 
d ′ ≤ 
|d – d ′| ≤ LKaΔ{d, d ′} ≤ LKaΔD.

It follows that K ≤ LΔD + 1. �
The lemma above completes the proof of Lemma 8.9 and hence Theorem 8.10.
Now, if Γ is a finite set of spineless simple equations then each equation in Γ

must be non-mingly by Lemma 6.4, and furthermore there must exist a smallest
K for which each equation in Γ satisfies (��K) as a consequence of Theorem 8.10.
Therefore, by Corollary 7.16, we obtain:

Corollary 8.14. For any finite set of spineless simple equations Γ, every subvariety
of RL containing CRL + Γ has undecidable word problem.

This completes the proof of Theorem 5.5, and therefore also of Theorem 5.9.

§9. Concluding remarks. First, we note that the quasiequations used to
establish Theorem 4.5 are in the signature {∨, ·, 1}, so all complexity lower-
bound/undecidability results hold even when restricting the word problem to
the {∨, ·, 1}-fragments of such varieties. On the other hand, the equations used to
establish Theorem 5.9 make use of the full signature.

Corollary 9.1. Let ε be a spineless equation that is simple over RL and V a
variety of residuated lattices containing CRLε as a subvariety. Then the word problem

15For the reverse direction, if v ∈ R
|S|
+ is orthogonal to ĀS , then since ĀS has integer entries, by

Gaussian Elimination we may assume that v ∈ Q
|S|
+ , and so t · v ∈ Z

|S|
+ for some t ∈ N and t · v is

orthogonal to ĀS .
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(and hence quasiequational theory) for the {∨, ·, 1}-fragment of V is undecidable.
Furthermore, if ε is expansive then the equational theory for V is undecidable.

Given a simple equation ε, by (ε) we denote its corresponding sequent-style
inference rule, e.g., if ε : xy ≤ x2yx ∨ x ∨ 1, then

Γ,Δ1,Δ1,Δ2,Δ1Σ � Π Γ,Δ1,Σ � Π Γ,Σ � Π
Γ,Δ1,Δ2,Σ � Π

(ε).

Corollary 9.2. Let ε be a spineless simple equation and L any logic contained in
the interval from FLe + (ε) to FL. Then deducibility in the {∨, ·, 1}-fragment of L is
undecidable. Furthermore, if ε is expansive then provability in the (0-free fragment of )
L is undecidable.

9.1. Commutative varieties and single variable extensions. In the following table
we display decidability results for subvarieties of CRL axiomatized by 1-variable
equations using Lemma 5.4. The numbers n, p, q, ... are distinct and positive,m ≥ 0,
and furthermore are all given so that ε is not trivial. By (1 ∨) we mean 1 may or
may not be included in the expression.

ε Eq. Th. of CRLε Quasi-Eq Th. of CRLε
xn ≤ xm FMP [17] FEP [17]
xn ≤ xm ∨ 1 ? ?
xn ≤ (1 ∨) xp ∨ xq ∨ ··· ? Und. (Thm 5.5)
xn ≤ xn+p ∨ xn+q ∨ ··· Und. (Thm 5.9) Und. (Thm 5.5)

We note that subvarieties axiomatized by equations of the form xn ≤ x ∨ 1 have
the finite model property. In fact, any subvariety of RL axiomatized by a simple
equation in which each term on the right-hand side is linear (i.e., any variable occurs
at most once in any joinand) has the finite model property (see Theorem 3.15 in
[5]). Similarly, while the subvariety of CRL axiomatized by the simple equation
ε : xyz ≤ xy ∨ xz ∨ yz ∨ x ∨ y ∨ z has an undecidable word problem (it is easily
verified that ε is spineless), CRL + ε has the FMP.

Subvarieties of CRL axiomatized by equations of the form xn ≤ xm+1 ∨ 1, the
simplest of which is d : x ≤ x2 ∨ 1, have no known decidability results for their
(quasi-)equational theories. Focusing on the equation d, we make the following
observations:

• CRLd does not have the finite embeddability property. In fact, extensions of
CRL by equations of the form xnym ≤ x2n ∨ y2m do not have the FEP for any
choice n,m. This follows from the fact that such equations hold in chains and
the FEP fails in such extensions of CRL (see [7]).

• The quasiequational theory ofCRLd does not have a primitive recursive decision
procedure. This can be shown using Theorem 4.5 and the machine constructed
in [16] (which shows that provability in FLec, while decidable, is not primitive
recursive). In fact, the same construction can be used to show that there
is no primitive recursive decision procedure for the quasiequational theory
of the subvariety of CRL axiomatized by xm ≤ xm+n (∨ 1) with m, n > 1.

https://doi.org/10.1017/jsl.2021.46 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.46


MOST SIMPLE EXTENSIONS OF FLe ARE UNDECIDABLE 1199

Furthermore, by Corollary 5.8 the same holds for the equational theory of the
subvariety of CRL axiomatized by xm ≤ xm+n, as this equation is expansive.
A more general treatment will be given in a forthcoming paper.

9.2. Non-commutative varieties. As mentioned above, although the main reason
for our study has been to establish undecidability for commutative varieties, we also
get results about non-commutative ones. Here we compare that portion of our results
with existing ones. In [8], it is shown that any variety of residuated lattices containing
(as a subvariety)H = RL + (x3 ≤ x2) + (x ≤ x2) has an undecidable word problem
witnessed in its {≤, ·, 1}-fragment; of course no subvariety ofCRL containsH, so this
result has no implication about commutative varieties. In fact, the algebra W+ ∈ H
constructed in [8] satisfies every equation for which the deletion of any collection
of its variables results in either a trivial equation or one with the right-hand side
containing a square subterm (i.e., a joinand of the from uv2w for u, v, w ∈ X ∗ with
v �= 1.) As a result, even though Theorem 5.5 covers a lot of commutative varieties,
it does not offer any new results for non-commutative varieties axiomatized by 1-
variable equations. In fact, the results in [8] entail undecidability of the word problem
for many non-commutative extensions of RL by prespinal equations; e.g., RLd has
an undecidable word problem since W+ |= x ≤ x2 ∨ 1.

However, there are infinitely many equations in two or more variables for which
Theorem 5.5 is applicable while [8] is not. For example, any equation that is rendered
trivial via commutativity (e.g., x2y ≤ xyx) is spineless and hence subvarieties of RL
by such equations have an undecidable word problem by Theorem 5.5.

More interesting 3-variable basic equations can be obtained by using square-free
joinands.16 LetX = {x, y, z} and let h : X ∗ → X ∗ be the homomorphism extending
the assignment h(1) = 1, h(x) = xyz, h(y) = xz, and h(z) = y. One can produce
square-free words of arbitrary length by considering h0(x) = x and hk+1(x) =
h(hk(x)) (see [12]). For any nontrivial 1-variable equation ε : xn ≤ (1 ∨) xp ∨ xq ∨
··· , we denote by h(ε) the basic equation:

hn(x) ≤ (1 ∨) hp(x) ∨ hq(x) ∨ ··· .
Since ε is nontrivial, h(ε) is nontrivial and furthermore has square-free joinands.

Consequently, H �|= h(ε) and so [8] is not applicable to equations of this form.
However, if ε is a spineless 1-variable basic equation then it can easily be shown that
h(ε)C is also spineless and therefore RL + h(ε) has an undecidable word problem by
Theorem 5.5. For example, consider the equation ε : x ≤ x2 ∨ x3, then

h(ε) : xyz ≤ xyzxzy ∨ xyzxzyxyzyxz and h(ε)C : xyz ≤ x2y2z2 ∨ x4y4z4.

It is easily checked using Theorem 8.6 that h(ε)C is spineless and hence h(ε) is
spineless in view of Definition 5.3. Therefore RL + h(ε) has an undecidable word
problem by Theorem 5.5, but H �|= h(ε).

While our undecidability results for the word problem in these varieties takes place
in the {∨, ·, 1}-fragment, we can strengthen such results to the {≤, ·, 1}-fragment for
many non-commutative extensions of residuated lattices (even by some prespinal

16A word w ∈ X ∗ is square-free if w �= ux2v for any words u, v, x ∈ X ∗ and x �= 1.
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equations) using a different encoding not relying on the ∨ operation. Such ideas will
be explored in a forthcoming paper.
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