Math 361, Problem set 6

Due 10/18/10

- 1. (1.8.3) Let X have pdf f(x+2)/18 for -2 < x < 4, zero elsewhere. Find $\mathbb{E}[X], \mathbb{E}[(X+2)^3]$ and $\mathbb{E}[6X 2(X+2)^3]$.
- 2. (1.8.5) Let X be a number selected uniformly random from a set of numbers $\{51, \ldots, 100\}$. Approximate $\mathbb{E}[1/X]$. *Hint: Find reasonable upper and loewr bounds by finding integrals bounding* $\mathbb{E}[1/X]$.
- 3. Let X have the pdf $f(x) = 1/x^3$. Find $\mathbb{E}[X]$, but show that $e[X^2]$ does not exist.
- 4. (1.8.14) Let X have the pdf $f(x) = 3x^2$, 0 < x < 1, zero elsewhere.
 - (a) Compute $\mathbb{E}[X^3]$
 - (b) Show that $Y = X^3$ has a uniform (0,1) distribution.
 - (c) Compute $\mathbb{E}[Y]$ and compate this result with the answer obtained in Part (a).
- 5. (1.9.4) If the $\mathbb{E}[X^2]$ exists, show that

 $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$

6. (1.9.8) Let X be a random variable such that E[(X − b)] exists for all real b. Show that E[(X − b)²] is minimized when b = E[X].