Math 361, Problem set 7

Due 10/25/10

1. (1.9.6) Let the random variable X have E[X] = pu, E[(X — p)?] = 02 and
megf M(t), —h <t < h. Show that
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(Recall: exp(z) = e%).

Answer:
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so long as M(t/o) makes sense, which it does for —ho < t < ho.

2. (1.9.7) Show that the moment generating function of the random variable
1

X having pdf f(z) = 3 for =1 <2 < 2, zero elsewhere is
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Answer:



For t =0,
M(t) =E[e®X] =E[1] = 1.

. (1.9.18) Find the moments of the distribution that has mfg M(t) = (1 —
t)=3,t < 1. Hint: Find the MacLaurin’s series for M (t).
Answer:

Taking derivatives starting with the geometric series, we have
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By Taylor’s theorem, the coefficient of z* satisfies
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Therefore —
E[X*] = M) () = ¢ ; i3
. (1.9.23) Consider k continuous-type distributions with the following char-
acteristics: pdf fi(x), mean p; and variance o2, i =1,2,..., k. If ¢; > 0,
i =1,...,k and ¢; + --- + ¢ = 1, show that the mean and variance of

the distribution having pdf ¢ f1(z) + - - -+ cx fx(z) are p = Zi;l cipi, and
0% = Zle cilo? + (pi — p)?], respectively.

Answer:
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Where (x) follows from the fact that:
(x—p)* — (x — wi)* = p? — p? = 2px + 2uix = (0 — i) (1 + i — 2)

. (1.10.4) Let X be a random variable with mgf M (t), —h < ¢t < h. Prove
that
P(X >a)<e ™M(t), 0<t<h

and that

P(X <a)<e “M(t), —h<t<O.
Hint: Let u(z) = €' and ¢ = €' in Markov’s inequality (1.10.2)
Answer:

If t > 0, then u(z) = €' is positive, increasing and hence
P(X > a) = P(eX > ) < e YE[e™X] = e "M (1),

by Markov’s inequality.

If t < 0, then y(z) = e!* is positive, decreasing, and hence

P(X < a) =P(eX > ) < e ¥ M(t).

. (1.10.3) If X is a random variable such that E[X] = 3 and E[X?] = 13,
use Chebyshev’s inequality to determine a lower bound for the probability
P(—2 < X < 8).
Answer
Note 0 = E[X?] — E[X]? = 4. Then
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P(—2< X <8)=1-P(|X -3| >5) =P(X -E[X]| >5) > 1—5—2:2—5.



