Math 361, Problem set 9

Due 11/8/10

1. (2.2.3) Let X_1 and X_2 have the joint pdf $h(x_1, x_2) = 2e^{-x_1-x_2}$, $0 < x_1 < x_2 < \infty$, zero elsewhere. Find the joint pdf of $Y_1 = 2X_1$ and $Y_2 = X_2 - X_1$. Answer: We have that $X_1 = Y_1/2$ and $X_2 = Y_2 + Y_1/2$. This gives us the Jacobian

$$J = \left| \begin{array}{cc} 1/2 & 1 \\ 0 & 1 \end{array} \right| = \frac{1}{2}.$$

Thus

$$f_{Y_1,Y_2}(y_1,y_2) = \frac{1}{2} f_{X_1,X_2}(y_1/2,y_2+y_1/2) = exp^{-y_1-y_2} \quad 0 < y_1 < \infty \quad 0 < y_2 < \infty.$$

- 2. (2.3.2) Let $f_{1|2}(x_1|x_2) = c_1x_1/x_2^2$, $0 < x_1 < x_2$, $0 < x_2 < 1$ zero elsewhere, and $f_2(x_2) = c_2x_2^4$, $0 < x_2 < 1$, zero elsewhere, denote, respectively, te conditional pdf of X_1 given $X_2 = x_2$ and the marginal pdf of X_2 . Determine
 - (a) The constants c_1 and c_2 .
 - (b) The joint pdf of X_1 and X_2 .
 - (c) $\mathbb{P}(\frac{1}{4} < X_1 < 1/2 | X_2 = \frac{5}{8})$
 - (d) $\mathbb{P}(1/4 < X_1 < 1/2)$

Answer: $f_{1|2}(x_1|x_2)$ is a pdf so:

$$1 = \int_0^{x_2} c_1 x_1 / x_2^2 dx_1 = \frac{c_1}{2}.$$

Thus $c_1 = 2$. Likewise, f_2 is a pdf, so $\int_0^1 c_2 x_2^4 dx_2 = 1$, and hence $c_2 = 5$. $f_{1,2}(x_1, x_2) = f_{1|2}(x_1|x_2)f_2(x_2) = 10x_1x_2^2$ for $0 < x_1 < x_2 < 1$. For (c)

$$\mathbb{P}(\frac{1}{4} < X_1 < \frac{1}{2} | X_2 = \frac{5}{8}) = \int_{1/4}^{1/2} \frac{128}{25} x_1 dx_1 = \frac{12}{25}$$

For (d)

$$\mathbb{P}(\frac{1}{4} < X_1 < \frac{1}{2}) = \int_{1/4}^{1/2} \int_{x_1}^1 10x_1 x_2^2 dx_2 dx_1$$
$$= \int_{1/4}^{1/2} \frac{10}{3} (x_1^4 - x_1) dx_1$$
$$= \frac{449}{1536}.$$

3. (2.3.5) Let X_1 and X_2 be two random variables such that the conditional distributions and means exist. Show that

(a)
$$\mathbb{E}[X_1 + X_2 | X_2] = \mathbb{E}[X_1 | X_2] + X_2$$

(b) $\mathbb{E}[u(X_2) | X_2] = u(X_2).$

Answer:

First we check the identities conditioning on $X_2 = x_2$: that

$$\mathbb{E}[X_1 + X_2 | X_2 = x_2] = \mathbb{E}[X_1 | X_2 = x_2] + x_2 \quad \text{and} \\ \mathbb{E}[u(X_2) | X_2 = x_2] = u(x_2)$$

follows from linearity of expectation and the fact that X_2 and $u(X_2)$ are constants when we condition on $X_2 = x_2$. Since these identities hold for every choice of x_2 , they hold for the general random variable X_2 .

- 4. (2.3.9) Five cards are drawn and random and without replacement from an ordinary deck of cards. Let X_1 and X_2 denote, respectively, the number of spades and the number of hearts that appear in the five cards.
 - (a) Determine the joint pmf of X_1 and X_2
 - (b) Find the two marginal pmfs
 - (c) What is the conditional pmf of X_2 given $X_1 = x_1$.

Note: First two parts are similar to what was on your last homework! *Answer:*

$$\mathbb{P}_{X_1,X_2}(x_1,x_2) = \frac{\binom{13}{x_1}\binom{13}{x_2}\binom{26}{5-x_1-x_2}}{\binom{52}{5}}$$

so long as $x_1 + x_2 \leq 5$, 0 otherwise.

For (b), we have that

$$\mathbb{P}_{X_1}(x_1) = \frac{\binom{13}{x_1}\binom{39}{x_1}}{\binom{52}{5}} \quad \mathbb{P}_{X_2}(x_2) = \frac{\binom{13}{x_2}\binom{39}{x_2}}{\binom{52}{5}}.$$

if $0 \le x_1 \le 5$ and $0 \le x_2 \le 5$; 0 otherwise. For (c) we have

$$\mathbb{P}_{2|1}(x_2|x_1) = \frac{\binom{13}{x_2}\binom{26}{5-x_1-x_2}}{\binom{39}{x_2}}$$

if $0 \le x_2 \le 5 - x_1$.

- 5. (2.3.11) Let us choose at random a point from the interval (0, 1) and let the random variable X_1 be equal to the number which corresponds to that point. Then choose a point at random from the interval $(0, x_1)$, where x_1 is the experimental value of X_1 ; and let the random variable X_2 be equal to the number which corresponds to this point.
 - (a) Make assumptions about the marginal pdf $f_1(x_1)$ and the conditional pdf $f_{2|1}(x_2|x_1)$.
 - (b) Compute $\mathbb{P}(X_1 + X_2 \ge 1)$.
 - (c) Find the conditional mean $\mathbb{E}[X_1|x_2]$.

Answer:

We have $f_1(x_1) = 1$ for $0 < x_1 < 1$, zero otherwise, and $f_{2|1}(x_2|x_1) = \frac{1}{x_1}$, for $0 < x_2 < x_1$, 0 otherwise.

For (b), we have that $f_{1,2}(x_1, x_2) = f_{2|1}(x_2|x_1)f_1(x_1) = \frac{1}{x_1}$ for $0 < x_2 < x_1 < 1$, and hence

$$\mathbb{P}(X_1 + X_2 \ge 1) = \int_{1/2}^1 + \int_{1-x_1}^{x_1} \frac{1}{x_1} dx_2 dx_1$$

= $\int_{1/2}^1 \frac{2x_1 - 1}{x_1} dx_1 = 1 - \ln(1) + \ln(1/2) = 1 - \ln(2).$

For (c) we must first compute $f_{1|2}(x_1|x_2)$. We have

$$f_2(x_2) = \int_{x_2}^1 \frac{1}{x_1} dx_1 = -\ln(x_2).$$

Thus

$$f_{1|2}(x_1|x_2) = \frac{1}{x_1 \ln(1/x_2)}.$$

 So

$$\mathbb{E}[X_1|X_2 = x_2] = \int_{x_2}^1 \frac{x_1}{x_1 \ln(1/x_2)} = \frac{1 - x_2}{\ln(1/x_2)}.$$