Midterm Exam I

Math 361 9/27/10

Name:

Read all of the following information before starting the exam:

- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- A single 8 $1/2 \times 11$ sheet of notes (double sided) is allowed. Calculators are permitted.
- Circle or otherwise indicate your final answers.
- Please keep your written answers clear, concise and to the point.
- This test has . problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Turn off cellphones, etc.
- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Good luck!

1	
2	
3	
4	
5	
\sum	

1. (20 points) **a.** (10 pts) 10 people are in a room. Assuming their birthdays are independent and uniformly distributed, what is the probability that at least two of them share a birthday.

b. (10 pts) How many people must be in a room so that the probability that at least two of them share a birthday is 0.5?

2. (20 points) Recall: The mode of a random variable X is the value of x where the pmf p(x) or pdf $f_X(x)$ is maximized (depending on whether the random variable is continuous.) Find the mode of the following random variables.

a. (8 *pts*) X is discrete with pmf $p(x) = e^{-10} \frac{10^x}{x!}$ for x = 0, 1, 2, 3, ...

b. (7 *pts*) X is continuous with pdf $f_X(x) = \sin(x), 0 \le x \le \pi f_X(x) = 0$ otherwise.

c. (7 *pts*) X is continuous with pdf $f_X(x) = \frac{1}{e^{-1}}e^x$ for $0 \le x \le 1$, $f_X(x) = 0$ otherwise.

3. (20 points) **a.** (10 pts) Construct an example showing that 3 events can be pairwise independent, but not mutually independent.

b. (10 pts) Suppose A, B, and C are mutually independent with $\mathbb{P}(A) = 1/2$, $\mathbb{P}(B) = 1/4$, $\mathbb{P}(C) = 3/8$. Find $\mathbb{P}((A \cup B^c) \cap C^c)$

4. (20 points) A random word is chosen unformly from the sentence

"How much wood could a woodchuck chuck if a woodchuck could chuck wood."

Let X denote the length of the word. a. (10 pts) Find the pmf of X

b. (10 pts) Suppose two words are chosen uniformly from the sentence, with replacement. What is the probability that they have the same length?

5. (20 points) **a.** (10 pts) Suppose X is discrete with pmf $p(x) = \frac{6}{\pi^2} \cdot \frac{1}{x^2}$, p(x) = 0 otherwise. Find the pmf of $Y = X^2$.

b. (10 pts) Suppose X if continuous with pdf $f(x) = \frac{1}{x^2}$ for $x \ge 1$, f(x) = 0 otherwise. Find the pdf of $Y = X^2$.

Scrap Page

(please do not remove this page from the test packet)