Midterm Exam II

Math 361 9/27/10

Name:

Read all of the following information before starting the exam:

- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- A single 8 $1/2 \times 11$ sheet of notes (double sided) is allowed. Calculators are permitted.
- Circle or otherwise indicate your final answers.
- Please keep your written answers clear, concise and to the point.
- This test has . problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Turn off cellphones, etc.
- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Good luck!

1	
2	
3	
4	
5	
\sum	

1. (20 points) Thirteen cards are drawn at random without replacement from a standard deck. Let X denote the number of face cards drawn (kings, queens or jacks) and let Y denote the number of spades drawn.

a. (10 pts) Find the marginal pmfs of X and Y.

b. (10 pts) Find the joint pmf $p_{X,Y}(x,y)$.

2. (20 points) **a.** (10 pts) Suppose X_n has the Gamma distribution $\Gamma(n,\beta)$. Explain why

$$\frac{X_n - \frac{n}{\beta}}{\frac{\sqrt{n}}{\beta^2}} \to_p N(0, 1).$$

b. (10 pts) Prove the weak law of large numbers: If X_n are iid with $\mathbb{E}[X] = \mu$ and $\operatorname{Var}(X) = \sigma^2 < \infty$, let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$X_n \to_p \mu$$

3. (20 points) **a.** (10 pts) Let X, Y and Z be random variables with joint pdf $f(x, y, z) = e^{-x-y-z}$ for x > 0, y > 0, z > 0. Compute

 $\mathbb{P}(X < Y < Z | Z > 1).$

b. (10 pts) Are X, Y, Z independent? Explain.

4. (20 points) **a.** (10 pts) Is it possible for two events A and B to be independent and mutually exclusive? Why or why not?

b. (10 pts) Independent events A, B and C have $\mathbb{P}(A) = .9$, $\mathbb{P}(B) = .3$ and $\mathbb{P}(C) = .2$. Find

 $\mathbb{P}((A\cup B)\cap C^c)$

5. (20 points) A random angle X is chosen according to pdf $f_X(x) = \frac{2}{\pi^2}x$ for $0 < x < \pi$, 0 otherwise. Let $Y = \cos(X)$. a. (10 pts) Compute $\mathbb{E}[Y]$.

b. (10 pts) Find the pdf $f_Y(y)$. Note: $\frac{d}{dx} \arccos(x) = -\frac{1}{\sqrt{1-x^2}}$. **6.** (20 points) **a.** (10 pts) Suppose X is a N(2,3) random variable. Determine

 $\mathbb{P}(X>1).$

b. (10 pts) Y is a $Bin(320, \frac{1}{8})$ random variable. Estimate $\mathbb{P}(X < 35)$.

7. (20 points) There are three widget factories construction widgets. The first constructs 1000 in a day, with 5% defective. The second constructs 10000 in a day, but only 1% are defective. The third constructs 4000 a day, but 10% are defective.

a. (10 pts) One of the 15000 widgets constructed today is chosen uniformly at random. It is defective. What is the probability it came from the second factory?

b. (10 pts) How many widgets must be selected at random (with replacement) from the 11000 constructed today so that the probability of finding a defective one is at least 0.5?

8. (20 points) Random variables X and Y have conditional pdf $f_{X|Y}(x|y) = e^{-x+2y}$ for x > 2y and Y has pdf $f_Y(y) = 2e^{-2y}$ for $y \ge 0$. **a.** (10 pts) Find $\mathbb{E}[X|y]$.

b. (10 pts) Compute the pdf of $\mathbb{E}[X|Y]$.

9. (20 points) Three integers are chosen with replacement from the first twenty integers. Find the probability that **a.** (8 pts) Their sum is even.

b. (7 *pts*) Their product is even

c. (5 *pts*) Their product is at least 10.

10. (20 points) Recall the MGF for a Poisson random variable X with parameter λ is $M_X(t) = e^{\lambda(e^t - 1)}$. a. (10 pts) Use this to find $\operatorname{Var}(X)$

b. (10 pts) Find $\mathbb{E}[X^4]$.