Math 362, Problem set 5

Due 3/16/10

1. (3.7.6) Another estimating chi-square: Let the result of a random experiment be classifies as one of the mutually exclusive and exhaustive ways A_1, A_2, A_3 and also as one of the mutually exclusive and exhaustive ways B_1, B_2, B_3, B_4 . Two hundred independent trials of the experiment result in the following data

	B_1	B_2	B_3	B_4
A_1	10	21	15	6
A_2	11	27	21	13
A_3	6	19	27	24

Test, at the 0.05 significance level the hypothesis of independence of the A and B attribute, namely $H_0 : \mathbb{P}(A_i \cap B_i) = \mathbb{P}(A_i)\mathbb{P}(B_i)$, i = 1, 2, 3 and j = 1, 2, 3, 4 against the alternative of dependence.

- 2. (5.8.5) Determine a method to generate random observations for the following pdf: $f(x) = 4x^3$ for 0 < x < 1, zero elsewhere.
- 3. (5.8.18) For $\alpha>0$ and $\beta>0,$ consider the following accept/reject algorithm:
 - (1) Generate U_1 and U_2 iid uniform(0,1) random variables. Set $V_1 = U_1^{1/\alpha}$ and $V_2 = U_2^{1/\beta}$.
 - (2) Set $W = V_1 + V_2$. If $W \le 1$, set $X = V_1/W$, else goto Step(1).
 - (3) Deliver X.

Show that X has a beta distribution with parameters α and β .

Note/Hint: The analysis is quite similar to the analysis of the algorithm we did in class. That is, look for the cdf $\mathbb{P}(X \leq x)$ and note that it is some conditional probability.

4. (5.9.1) Let x_1, \ldots, x_n be the values of a random sample. A bootstrap sample $\mathbf{x}^{*'} = (x_1^*, \ldots, x_n^*)$ is a random sample of x_1, \ldots, x_n drawn with replacement.

- (a) Show that $\mathbb{E}[x_i^*] = \bar{x}$
- (b) If n is odd, show that median $\{x_i^*\} = x_{((n+1)/2)}$
- (c) Show that $\operatorname{Var}(x_i^*) = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$

Notes: There was a part (a) on the book problem, which I cut as it's obvious but hard to write up nicely. It asks you to show that the x_i^* are independent (which they are because I chose with replacement) and have the CDF \hat{F}_n which is $\hat{F}_n(x) = \frac{1}{n} \times (\# \text{ of } x_i < x)$, which is obvious because I select the x_i^* uniformly from x_1, \ldots, x_n . Note that in (c), you have $\frac{1}{n}$ and not $\frac{1}{n-1}$ because \bar{x} is the *real* mean of the x_i^* as opposed to the sample mean of the x_i^* .

- 5. (5.9.2) Let X_1, \ldots, X_n be a random sample from a $\Gamma(1, \beta)$ distribution.
 - (a.) Show that the confidence interval $(2n\bar{X}/(\chi_{2n}^2)^{(1-(\alpha/2))}, 2n\bar{X}/(\chi_{2n}^2)^{\alpha/2})$ is an exact $(1-\alpha)100\%$ confidence interval for β . Notation note: $(\chi_{2n}^2)^{(1-(\alpha/2))}$ is the books (rather confusing) way of saying 'the number such that $\mathbb{P}(\chi^2(2n) < (\chi_{2n}^2)^{(1-(\alpha/2))}) = 1 - \alpha/2$; for instance for $\alpha = .5$ and n = 4, so that 2n = 8, we have (by our chart) $(\chi_8^2)^{(1-(\alpha/2))} = 17.535$. Unfortunately the notation makes the problem look harder than it is.
 - (b.) Using part (a), show that the 90% confidence interval discussed in Example 5.9.1 is (64.99, 136.69).
- 6. (5.9.10) Let z^* be drawn at random from the discrete distribution which has mass n^{-1} at each point $z_i = x_i - \bar{x} + \mu_0$, where (x_1, \ldots, x_n) is the realization of a random sample. Determine $\mathbb{E}[z^*]$ and $\operatorname{Var}(z^*)$.