Sample Midterm Exam

Math 112 Z
Name:
9/28/08

Read all of the following information before starting the exam:

- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- A single $81 / 2 \times 11$ sheet of notes (double sided) is allowed. No calculators are permitted.
- Circle or otherwise indicate your final answers.
- Please keep your written answers clear, concise and to the point.
- This test has xxx problems and is worth xxx points. It is your responsibility to make sure that you have all of the pages!
- Turn off cellphones, etc.
- Good luck!

1	
2	
3	
4	
5	
\sum	

1. (20 points) Determine whether the following series converge absolutely, converge conditionally or diverge.
a. (10 pts)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{3 / 2}+1} .
$$

b. (10 pts)

$$
\sum_{n=1}^{\infty} \frac{(n!)^{2}}{((2 n)!)}
$$

2. (20 points) Determine the radius and interval of convergence for the following power series. a. (10 pts)

$$
\sum_{n=1}^{\infty}(\ln n)^{n} x^{n}
$$

b. (10 pts)

$$
\sum_{n=0}^{\infty}\left(\frac{2 n+3}{n+2}\right)^{n^{2}} x^{n^{2}}
$$

3. (20 points) Consider the power series:

$$
f(x)=\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n e^{n}}
$$

a. (10 pts) Find the radius and interval of convergence for the power series.
b. (5 pts) Find a power series representation for $f^{\prime}(x)$. What is the interval and radius of convergence for this new power series?
c. (5 pts) Find a power series representation for $f\left(x^{2}\right)$. What is the interval and radius of convergence for this new power series?
4. (20 points) Give an example of each of the following:
a. (5 pts) A power series with interval of convergence $(0,2]$.
b. (5 pts) A power series with radius of convergence $R=\infty$.
c. (5 pts) A series which is absolutely convergence, but is not alternating or strictly positive.
d. (5 pts) Two series such that $f_{n}<g_{n}$ for all $n, \sum_{n=0}^{\infty} f_{n}$ diverges and $\sum_{n=0}^{\infty} g_{n}$ converges. (Hint: what hypothesis of the comparison test is missing?

5. (20 points)

a. (10 pts) Use the power series for $\ln (1-x)$ to find a power series for $\ln (x)$. What is the radius and interval of convergence for this power series?
b. (10 pts) Note that $e^{-1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$. How many terms must be used to estimate e^{-1} with an error of at most $\frac{1}{120}$. (If you can not solve explicitly for n, just leave an expression, but it is set up to have a nice answer.)

