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Abstract. A graph G is H-saturated if H is not a subgraph of G but the addition of any
edge from the complement of G to G results in a copy of H. The minimum number of edges
(the size) of an H-saturated graph on n vertices is denoted sat(n,H), while the maximum
size is the well studied extremal number, ex(n,H). The saturation spectrum for a graph
H is the set of sizes of H-saturated graphs between sat(n,H) and ex(n,H). In this paper
we show that paths and also trees with a vertex adjacent to many leaves, have a gap in the
saturation spectrum.

1. Introduction3

We will consider only simple graphs. Let the vertex set and edge set of G be denoted4

by V (G) and E(G) respectively. Let |G| = |V (G)|, e(G) = |E(G)| and G denote the5

complement of G. A graph G is called H-saturated if H is not a subgraph of G but for every6

e ∈ E(G), H is a subgraph of G+ e. Let SAT(n,H) denote the set of H-saturated graphs of7

order n. The saturation number of a graph H, denoted sat(n,H), is the minimum number8

of edges in an H-saturated graph on n vertices and SAT(n,H) is the set of H-saturated9

graphs order n with size sat(n,H). The extremal number of a graph H, denoted ex(n,H)10

(also called the Turán number) is the maximum number of edges in an H-saturated graph11

on n vertices and SAT(n,H) is the set of H-saturated graphs order n with size ex(n,H).12

The saturation spectrum of a graph H, denoted spec(n,H), is the set of sizes of H-13

saturated graphs of order n, that is, spec(n,H) = {e(G) : G ∈ SAT(n,H)}.14

In this paper we give a bound on the maximum average degree of a connected H-saturated15

graph that is not a complete graph when H is a member of a large family of trees. One16

of the consequences of this bound is that the saturation spectrum has a gap immediately17

preceding ex(n,H). The proof used to give this bound and hence the gap in the saturation18

spectrum is not dependent on the structure of the tree, hence the proof establishes a general19

technique that could be applied to a broad families of trees. We apply this technique to both20

paths and to trees with a vertex adjacent to many leaves.21

2. Background22

Graph saturation is a well-studied area of extremal graph theory. Mantel [13] gave the first23

result when he determined ex(n,K3). Following this Turán [16] determined ex(n,Kp+1) for24

all p ≥ 2 and showed that there is a unique Kp+1-saturated graph of size ex(n,Kp+1), namely25

the complete balanced p-partite graph of order n (often called the Turán graph, Tn,p). Erdős26
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and Simonovits [6] observed that Tn,p does not contain any graph H with χ(H) ≥ p+ 1 and27

hence28

ex(n,H) ≥ e(Tn,p) =

(
1− 1

p

)(
n

2

)
+ o(n2),

Further, they showed this bound is sharp.29

Theorem 2.1. If H is a graph with χ(H) = p+ 1, then30

ex(n,H) =

(
1− 1

p

)(
n

2

)
+ o(n2).

As a consequence of this theorem the magnitude of the extremal number for a graph G31

with χ(G) ≥ 3 is know. When χ(G) = 2, less is known. Consider the n-vertex graph G that32

is the union of bn/(k − 1)c vertex disjoint copies of Kk−1 and a Kr (0 ≤ r ≤ k − 2). It in33

not difficult to see that G does not contain any tree with k vertices. It follows that34

ex(n, Tk) ≥ k − 2

2
n− 1

8
k2.

Erdős and Sós [4] conjectured that this bound is sharp.35

Conjecture 2.2. Let Tk be an arbitrarily fixed k-vertex tree. If a graph G is Tk-free, then36

e(G) ≤ 1

2
(k − 2)n.

It is not difficult to see that the Erdős-Sós conjecture hold for stars. It has also been shown37

to hold for some other families of trees including paths [5], trees of order ` with a vertex x38

adjacent to at least `
2

leaves [15], and trees of diameter at most 4 [14]. A solution for large39

k has been announced by Ajtai, Komlós and Szemerédi in the early 1990’s. Although an40

exposition of their solution has never appeared, a recent series of long papers ([9, 10, 11, 12])41

of Hladký, Komlós, Piguet, Simonovits, Stein and Szemeredi proving a related conjecture of42

Loebl-Komlós-Sós has appeared on the arXiv. Its methods involve some of those used by43

Ajtai, Komlós and Szemerédi including a sparse decomposition theorem in the same vein as44

the regularity lemma.45

In Section 3 we give a bound on the maximum average degree of a T`-saturated graph that46

is not the union of cliques, when T` belongs to certain family of trees that we call strongly47

ES-embeddable trees.48

Definition 2.3. A tree T` of order ` is strongly Erdős-Sós embeddable (or strongly ES-49

embeddable for short) if every connected graph G of order at least ` with d(G) > `− 3 and50

δ(G) ≥
⌊
`
2

⌋
contains a copy of T`.51

We will observe below that every tree that is strongly ES-embeddable satisfies the Erdős-52

Sós conjecture, justifying the name. The converse is not true: stars, for instance, are not53

strongly ES-embeddable. It seems plausible to us that stars are the only trees which satisfy54

the Erdős-Sós conjecture but are not strongly ES-embeddable, however this is not the focus55

of this paper. While we do show that a few basic classes are strongly ES-embeddable, our56

main focus is instead to show how this property can be used to imply gaps in the saturation57

spectrum.58

We now state our main theorem whose proof will be given in Section 3.59
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Theorem 2.4. Let T` be a strongly ES-embeddable tree on ` ≥ 6 vertices. If G is T`-saturated60

with |G| ≡ 0 (mod `− 1) and G is not a union of copies of K`−1, then61

|E(G)| ≤ |G|
`− 1

(
`− 1

2

)
−
⌊
`− 2

2

⌋
.

As a consequence of this upper bound we show that the saturation spectrum for strongly62

ES-embeddable trees does not contain a consecutive set of values near the extremal number.63

The saturation spectrum for K3 was determined in [2]. That result was extended in [1] by64

determining the saturation spectrum for Kp, p ≥ 4.65

The saturation spectrum for small paths is also known. Gould, Tang, Wei, and Zhang66

[8] observe that sat(n, P3) = ex(n, P3), hence spec(n, P3) is continuous. They also observe67

that is straightforward to evolve a graph in SAT(n, P4) into a graph in SAT(n, P4), where68

at each step the size of the graph increases by exactly 1. Hence, spec(n, P4) is continuous.69

They also determine spec(n, P5) and spec(n, P6).70

Theorem 2.5 (Gould et al. [8]).71

Let n ≥ 5 and sat(n, P5) ≤ m ≤ ex(n, P5) be integers, m ∈ spec(n, P5) if and only if72

n = 1, 2 (mod 4), or73

m /∈

{{
3n
2
− 3, 3n

2
− 2, 3n

2
− 1
}

if n ≡ 0 (mod 4){
3n−5

2

}
if n ≡ 3 (mod 4).

Theorem 2.6 (Gould et al. [8]).74

Let n ≥ 10 and sat(n, P6) ≤ m ≤ ex(n, P6) be integers, m ∈ spec(n, P6) if and only if75

(n,m) /∈ {(10, 10), (11, 11), (12, 12), (13, 13), (14, 14), (11, 14)} and76

m /∈


{2n− 4, 2n− 3, 2n− 1} if n ≡ 0 (mod 5)

{2n− 4} if n ≡ 2 (mod 5)

{2n− 4} if n ≡ 4 (mod 5).

Let B3,t be the tree obtained by subdividing an edge of K1,t+1. Faudree, Gould, Jacobson77

and Thomas determined the saturation spectrum of B3,2 and B3,3.78

Theorem 2.7 (Faudree et al. [7]).79

Let n ≥ 5 and sat(n,B3,2) ≤ m ≤ ex(n,B3,2), then m ∈ spec(n,B3,2) if and only if n ≡ 1, 280

(mod 4) or81

m /∈

{{
3n
2
− 3, 3n

2
− 2, 3n

2
− 1
}

if n ≡ 0 (mod 4),{
3n−3

2

}
if n ≡ 3 (mod 4).

Theorem 2.8 (Faudree et al. [7]).82

Let m be an integer and n be an integers such that n ≥ 17. If sat(n,B3,3) ≤ m ≤ ex(n,B3,3),83

then m ∈ spec(n,B3,3) if and only if n ≡ 1, 2, 3 (mod 5) or84
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m /∈

{
{2n− 1, 2n− 2, 2n− 3, 2n− 4} if n ≡ 0 (mod 5),

{2n− 3, 2n− 4} if n ≡ 4 (mod 5).

In the cases of P5, P6, B3,2, and B3,3 there is a gap in the saturation spectrum when n ≡ 085

(mod ` − 1) where ` is the order of the tree. Corollary 3.7 shows that in general there is a86

gap in the saturation spectrum of P`, ` ≥ 6, and B3,t.87

3. Main88

In this section, we give general results showing that for given graphs, that there are par-89

ticular values, e, between sat(n,G) and ex(n,G) for which there can not exist G-saturated90

graphs having e edges.91

It is not difficult to show that if G is a vertex minimum counterexample to the Erdős–Sós92

conjecture that G has order at least ` with d(G) > `− 2 and δ(G) ≥
⌊
`
2

⌋
. Thus if a tree is93

strongly ES-embeddable then the Erdős–Sós conjecture holds for that tree.94

The following result was obtained by Erdős and Gallai [5] and independently by Dirac (cf.95

[3].)96

Theorem 3.1. If G is a connected graph with minimum degree δ and order at least 2δ + 1,97

then G contains a path on at least 2δ + 1 vertices.98

Since 2
⌊
`
2

⌋
+ 1 ≥ `, we obtain the following corollary.99

Corollary 3.2. Paths are strongly ES-embeddable.100

A tree T of order `, T 6= K1,`−1, having a vertex that is adjacent to at least
⌊
`
2

⌋
leaves will101

be referred to as a scrub-grass tree. The set of scrub-grass trees of order ` will be denoted102

SG`. We will show that scrub-grass trees are strongly ES-embeddable (a slight strengthening103

of the result of Sidorenko from [15]). First we give the following lemma, which is a slight104

strengthening of a well-known embedding result.105

Lemma 3.3. Let F` be a forest of order ` and G be a graph with δ(G) ≥ ` − 1. If v ∈ F`106

and u ∈ G then there is an embedding of F` in G such that u is mapped to v.107

Proof. We will prove a more general result. Specifically we will show that a forest, F`, on108

` vertices can be embedded into a graph, G, with minimum degree `− 1 so that any set of109

vertices, X, containing exactly one vertex from each component of F` can be mapped into110

any set of |X| vertices of G.111

Notice that there are 2 forests on 2 vertices, namely P2 and 2K1. In both cases it follows112

that the forest can be embedded into any graph G with δ(G) ≥ 1. Further this can be done113

having any vertex of G correspond to either vertex of P2 and any 2 vertices of G correspond114

to the vertices of 2K1. Hence the result holds when ` = 2.115

Assume the result holds for every forest of order at most `− 1. Let F` be a forest of order116

` and X be a set of vertices of F` containing exactly one vertex from each component of F`.117

Additionally choose v ∈ X. Let G be a graph with δ(G) ≥ ` − 1 with a vertex u ∈ V (G).118

F` − v is a forest, F`−1, of order ` − 1 and G − u has δ(G − u) ≥ ` − 2. Set Y = X − {v}.119

By the induction hypothesis F`−1 can be embedded into G − u so that the neighbors of v120

in F`−1 are mapped to neighbors of u in G − u and the vertices in Y are mapped to other121

vertices in G− u. This embedding of F`−1 into G− u together with u form an embedding of122
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F` in G. Since the choice of v and u were arbitrary, it follows that this embedding satisfies123

the condition of mapping any set of vertices, X, containing exactly one vertex from each124

component of F` into any set of |X| vertices of G. �125

We are now ready to prove that scrub-grass trees are strongly ES-embeddable.126

Theorem 3.4. Scrub-grass trees are strongly ES-embeddable.127

Proof. Let T` ∈ SG` and suppose that v ∈ T` is adjacent to at least
⌊
`
2

⌋
leaves. Let G be128

a graph with δ(G) ≥
⌊
`
2

⌋
and d(G) > ` − 3. Suppose that there is vertex u in G such that129

d(u) ≥ ` − 1. Then G − u is a graph with δ(G − u) ≥
⌊
`
2

⌋
− 1. Notice the forest obtained130

by removing v and all the leaf neighbors of v from T` has order at most `−
⌊
`
2

⌋
− 1 ≤

⌊
`
2

⌋
.131

Thus by Lemma 3.3 the forest may be embedded into G− u so that the non leaf neighbors132

of v correspond to neighbors of u. Since d(u) ≥ `− 1, there are at least
⌊
`
2

⌋
neighbors of u133

unused in this embedding. It follows that G contains T`.134

Now suppose that ∆(G) = `− 2 and let u ∈ V (G) such that d(u) = `− 2. Since T` is not135

a star, there is some vertex w, in T` so that d(v, w) = 2. There are ` − 1 vertices in N [u],136

which implies there is a vertex x ∈ G−N [u]. More specifically, there is a vertex x ∈ V (G)137

such that dG(u, x) = 2. Choose a vertex x′ such that x′ ∈ NG(u) ∩ NG(x) and let w′ be138

the common neighbor of v and w in T`. Now removing v along with all the leaf neighbors139

of v and w′ from T` creates a forest T ′` with at most ` −
⌊
`
2

⌋
− 2 ≤

⌊
`
2

⌋
− 1 vertices and140

G−{u, x′} is a graph with minimum degree at least
⌊
`
2

⌋
−2. Lemma 3.3 implies that T ′` can141

be embedded into G− {u, x′} so that the neighbors of v in T`, other than w′, are neighbors142

of u in G and neighbors of w′ in T`, other than v, are neighbors of x′ in G. Therefore, there143

is an embedding of T` in G. �144

The remainder of the results in this section will expand on the properties of the class of145

strongly ES-embeddable trees and use these results to show there is gap in the saturation146

spectrum of all strongly ES-embeddable trees by using Theorem 2.4.147

Our next result gives a bound on the number of edges in a T` free graph which satisfies a148

‘local sparsity’ condition.149

Lemma 3.5. Let T` be a strongly ES-embeddable tree on ` ≥ 6 vertices. If G is a T`-free150

graph and there is no set of `− 1 vertices that induce at least
(
`−1
2

)
−
⌊
`−2
2

⌋
edges, then151

∑
v∈V (G)

d(v) ≤ (`− 2)|G| − 2

⌊
`− 2

2

⌋
.

Proof. First note that every graph of order at most ` − 2 is T`-free and does not contain a152

set of ` − 1 vertices. Let |G| ≤ ` − 2 with ` ≥ 6. The degree sum of the vertices of G is at153

most154
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∑
v∈V (G)

d(v) ≤ |G|(|G| − 1)

≤ (`− 2)(|G| − 1)

= (`− 2)|G| − (`− 2)

≤ (`− 2)|G| − 2

⌊
`− 2

2

⌋
.

Hence,
∑

v∈V (G) d(v) ≤ (` − 2)|G| − 2
⌊
`−2
2

⌋
for every graph G such that |G| ≤ ` − 2. If155

|G| = ` − 1 then the result follows from the condition that no set of ` − 1 vertices induce156

more than
(
`−1
2

)
−
⌊
`−2
2

⌋
edges.157

Thus, any counterexample to the theorem must have order at least `. Let G be a vertex158

minimal counterexample to the statement. That is, suppose G is the graph of smallest order159

that is T`-free and has no set of ` − 1 vertices which induce more than
(
`−1
2

)
−
⌊
`−4
2

⌋
edges160

and161 ∑
v∈V (G)

d(v) > (`− 2)|G| − 2

⌊
`− 2

2

⌋
.

If G is disconnected then there is some component X of G such that d(G) ≤ d(G[X]),162

hence G[X] is a smaller counterexample. Thus we may assume that G is connected.163

Suppose there is a vertex u ∈ V (G) such that d(u) <
⌊
`
2

⌋
. Notice that since G − u is a164

subgraph of G, it is T`-free and does not contain a set of ` − 1 vertices that induce more165

than
(
`−1
2

)
−
⌊
`−2
2

⌋
edges. Now we calculate the degree sum of G− u as follows:166

∑
v∈V (G−u)

d(v) > (`− 2)|G| − 2

⌊
`− 2

2

⌋
− 2

(⌊
`

2

⌋
− 1

)

≥ (`− 2)|G| − 2

⌊
`− 2

2

⌋
− (`− 2)

= (`− 2)|G− u| − 2

⌊
`− 2

2

⌋
.

Thus G− u is a smaller order counterexample than G, hence we may assume that δ(G) ≥167 ⌊
`
2

⌋
. Finally note that d(G) > (` − 2) − 2

|G|

⌊
`−2
2

⌋
> (` − 3). Therefore, G contains every168

strongly ES-embeddable tree on ` vertices, a contradiction. �169

Our next result allows us to exploit the local sparsity condition in the previous theorem.170

We show that a close to complete graph on ` − 1 vertices, along with a pendant vertex171

contains all small trees.172

Lemma 3.6. Let T be a tree on ` vertices which is not K1,`−1, and G be a graph on `173

vertices consisting of a K`−1, with at most b `−2
2
c edges removed, having a single pendant174

edge adjacent to one of the vertices. Then there is an embedding of T into G.175

Proof. We prove the slightly stronger statement: Let z∗ ∈ V (T ) such that all but one of the176

neighbors of z∗ are leaves, and which has at most b `−2
2
c leaf neighbors. Note that in any177

tree that is a non-star, there are always at least two vertices all of whose neighbors except178
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one are leaves, and at least one of these vertices must be adjacent to at most b `−2
2
c leaves.179

Denote by x ∈ V (G) the neighbor of the pendant vertex of G. We prove that there is an180

embedding of T , so that z∗ maps to x.181

Inspection quickly verifies that this holds for 4 ≤ ` ≤ 5. (Note that the statement is false182

if b `−2
2
c is replaced by d `−2

2
e for ` = 3 so our statement is best possible.) We now assume183

` ≥ 6 and proceed by induction.184

Let H be the graph formed by removing s ≤ b `−2
2
c edges from K`−1 so that G = H + e,185

where e is the pendant edge. Also, let x denote the vertex of the H incident to the pendant186

edge in G. Note that since 2 · s ≤ ` − 2, there are at least two vertices of H not incident187

to any removed edges (that is H contains two dominating vertices), at least one of these188

dominating vertices is not x, denote it by y.189

Now let z ∈ V (T ) be an internal vertex of T incident to only one non-leaf and incident to190

as many leaves as possible, and z∗ be such an internal vertex incident to as few as possible.191

Suppose z is incident to t leaves. Consider G′ = G− ({y}∪L) where L consists of t vertices192

of G − {x} which are incident to as many removed edges as possible. In particular, note193

that L is incident to at least min{t, s} removed edges, and hence G′ consists of H ′, which is194

obtained by removing at most s−min{t, s} edges from K`−t−2, and the pendent edge.195

Let T ′ be the subtree of T obtained by removing from T the vertex Z and its t leaves. We196

now wish to inductively embed T ′ into H ′, with z∗ being placed at x, and then complete the197

embedding to T by placing z at y and its t leaves at the vertices of L.198

There are three possible problems with completing this embedding.199

(1) The degree of x in H ′ is insufficient, due to removed edges, to embed z∗.200

(2) The tree T ′ is a star and we cannot apply induction to embed it in H ′.201

(3) The vertex z′ is embedded at w, the leaf adjacent to x in H ′. Hence we cannot embed202

z at y and have z and z′ adjacent.203

To see that (1) does not happen, note that in H ′−{x} there remain `−2−(t+1) = `−t−3204

vertices. Even if all of the possible s− t missing edges are incident to x, then205

d(x) ≥ `− t− 3− (s− t)
= `+ s− 3

and by our restrictions d(x) ≤
⌊
`−2
2

⌋
+1. Hence, if

⌊
`−2
2

⌋
+1 > `+s−3 we have a problem.206

But this implies 4 >
⌊
`−2
2

⌋
+ s, a contradiction as ` ≥ 6.207

Thus we need only handle embeddings for cases (2) and (3), as induction applies otherwise.208

For case (2), T ′ is a star. Since T is not a star, the only way T ′ can be a star is if T is a209

double star, that is, z and z∗ are adjacent in T , or z and z∗ are joined by a path of length 2210

with z′ being the intermediate vertex (which produces the potential problem of case (3)).211

If T is a double star, then for T ′ we embed z∗ at x, one of its leaves at w, and the remaining212

vertices adjacent to z∗ at vertices adjacent to x in H ′. We know the degree of x is sufficient213

to allow this. Now embedding z at y and its leaves at vertices of L allows z to be connected214

to z∗, completing the embedding of T .215

If z∗ and z are joined by a path of length 2, then we embed T ′ as follows: Place z∗ at x,216

one of its leaves at w, and the remaining vertices adjacent to z∗, including z′, at neighbors217
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of x in H ′. Again we know from above this is possible. The embedding is now completed as218

before and z and z′ are adjacent.219

�220

We now restate and prove our main theorem.221

Theorem 2.4. Let T` be a strongly ES-embeddable tree on ` ≥ 6 vertices. If G is T`-saturated222

with |G| ≡ 0 (mod `− 1) and G is not a union of copies of K`−1, then223

|E(G)| ≤ |G|
`− 1

(
`− 1

2

)
−
⌊
`− 2

2

⌋
.

Proof. There is a component S of G which is not a copy of K`−1. Note that this implies224

|S| 6= ` − 1. It will be shown that G[S] satisfies the hypothesis of Lemma 3.5. Since G is225

T`-saturated it follows that G[S] is T`-free. If |S| ≤ ` − 2 then there is not a set of ` − 1226

vertices in G[S]. Suppose that |S| ≥ ` and there is a set of ` − 1 vertices X in V (G[S])227

that induce at least
(
`−1
2

)
−
⌊
`−2
2

⌋
edges. Since G[S] is connected there is an addition vertex228

in S that is connected to G[X]. Thus, Lemma 3.6 imples that G[X ∪ {v}] contains every229

non-star tree of order `. Therefore G[S] satisfies the hypothesis of Lemma 3.5. Hence230 ∑
v∈V (S) d(v) ≤ (` − 2)|S| − 2

⌊
`−2
2

⌋
and any component S that is not a copy of K`−1 has231

degree sum at most (` − 2)|S| − 2
⌊
`−2
2

⌋
. Let X be the vertices of G that are in a K`−1232

component and Y = V (G) \ X. It follows that the degree sum of G can be bounded as233

follows:234

∑
v∈V (G)

d(v) =
∑
v∈X

d(v) +
∑
v∈Y

d(v)

≤ (`− 2)|X|+ (`− 2)|Y | − 2

⌊
`− 2

2

⌋
≤ (`− 2)|G| − 2

⌊
`− 2

2

⌋
.

�235

From the proof of Theorem 2.4 it is easy to see that when |G| ≡ 0 (mod `−1) the extremal236

graph is a union of copies of K`−1. Hence, as an immediate corollary to Theorem 2.4 we237

obtain the following result.238

Corollary 3.7. Let T` be a path or scrub grass tree on ` ≥ 6 vertices and n = |G| ≡ 0239

(mod `− 1) and m be an inteteger such that 1 ≤ m ≤
⌊
`−2
2

⌋
− 1. There is no graph of size240

|G|
`−1

(
`−1
2

)
−m in spec(n, T`). Hence there is a gap in spec(n, T`).241

While Corollary 3.7 implies the existence of a gap in the saturation spectrum, it is possible242

that the size of the gap is larger than what the corollary guarantees. However, note that if243

T` is a tree of order `, where T` is not K1,`−1, then 2K`−2∪K2 is T`-saturated. This example244

shows that, for any non-star, any gap in the saturation spectrum is at most O(`), and hence245

our result gives a gap of the correct order.246
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Komlós-Sós Conjecture IV: Embedding techniques and the proof of the main result. preprint, arXiv:271

arXiv:1408.3870 [math.CO].272

[13] W. Mantel. Problem 28. Wiskundige Opgaven, 10(60-61):320, 1907.273
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