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Abstract

We present a polynomial time algorithm for the unit
disk covering problem with an approximation factor 72,
and show that this is the best possible approximation
factor based on the method used. This is an improve-
ment on the best known approximation factor of 108.

1 Introduction

Given a set of points P and unit disksD in the Euclidean
plane, the unit disk covering problem (P,D) is to find a
minimal subset S of D such that P ⊆ ⋃

S. We will also
refer to this problem by DC(P,D).

It is well-known that DC(P,D) is NP-complete [2].
It is therefore reasonable to search for approximate,
polynomial-time solutions to DC(P,D). As usual, we
say that Sα ⊆ D is a solution to DC(P,D) with approx-
imation factor α if |Sα| ≤ α|S|, where S is a solution
to DC(P,D).

In [1], Calinescu, Mandoiu, Wan and Zelikovsky pre-
sented a polynomial-time algorithm for DC(P,D) with
approximation factor 108. The purpose of this note is
to improve the approximation factor to 72, and to show
that 72 is the best factor that can be obtained by the
method of [1].

2 Improved approximation factor

The following idea was used in [1] to obtain approxima-
tion factor 108:

(i) Assume that the Euclidean plane is tiled regularly
by equilateral triangles of diameter 1.

(ii) For a tile T , split the region T ′ = R2 \T into three
disjoint subsets T ′1, T ′2, T ′3 so that each set T ′i has
the following property (P): If D1, D2 are two disks
centered in T ′i then they do not intersect twice in T
and they do not touch in T .

(iii) Given a tile T , there is a polynomial-time algorithm
for DC(T ∩ P ,D) with approximation factor αT =
6.
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(iv) Since a unit disk intersects at most 18 tiles, the
union of the disk covers obtained in step (iii) is
a solution to DC(P,D) with approximation factor
α = 6 · 18 = 108.

The tile cover algorithm of step (iii) can be found in
[1], and we are not going to repeat it here. However, we
would like to make these remarks about it:

(I) Let T be a tile. If there is a disk D ∈ D centered
in T , then the entire tile T is covered by D (since the
diameter of T is 1), and αT = 1 ≤ 6. If no disk of D
is centered in T then the points T ∩ P are covered by
disks centered in the regions T ′i , in which case a certain
skyline algorithm and a linear programming argument
of [1] yield the approximation factor αT = 6. One can
see from the argument on page 109 of [1] that αT is
simply twice the number of subsets T ′i surrounding the
tile T . Hence, if we were to divide T ′ into k disjoint
subsets satisfying (P), the local approximation factor
αT would be equal to 2k.

(II) The authors of [1] claim that a unit disk inter-
sects at most 17 tiles in the regular tiling by equilateral
triangles of diameter 1, hence arriving at the global ap-
proximation factor α = 102. The correct number is 18,
and so α = 108.

Allow us also to explain in more detail step (iv); that
is how α is calculated from the local approximation fac-
tors αT :

Lemma 1 Let T be a tiling of R2. Let αT (T ∈ T )
be the local approximation factors of step (iii). Assume
that there exists a constant c such that any unit disk
intersects at most c tiles. Then α ≤ c maxT∈T αT .

Proof. We can assume that T consists only of those
tiles that contain at least one point of P. (Set αT = 0
for all other tiles.)

Let S ⊆ D be a solution to DC(P,D). Define a binary
relation ∼ on T ×S by T ∼ S if T ∩S 6= ∅. For T ∈ T ,
let T∼ = {S ∈ S; T ∼ S}. For S ∈ S let S∼ = {T ∈
T ; T ∼ S}. By counting the ordered pairs (T, S) in
relation ∼ in two ways, we conclude that

∑
T∈T |T∼| =∑

S∈S |S∼|. Since every unit circle intersects at most c
tiles, we have |S∼| ≤ c for every S ∈ S.

For a tile T ∈ T , let AT be our approximate solution
to DC(T ∩ P,D). Set A =

⋃
T∈T AT .

Since the disks of T∼ cover T ∩ P, we have |AT | ≤
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αT |T∼|. Therefore

|A| ≤
∑

T∈T
|AT | ≤

∑

T∈T
αT |T∼| ≤ max

T∈T
αT

∑

T∈T
|T∼| =

max
T∈T

αT

∑

S∈S
|S∼| ≤ c max

T∈T
αT |S|,

and we are through. ¤

3 Generalizing the method

Several questions arise immediately upon seeing the
method of [1]: Can a better approximation factor α be
obtained by employing a different tiling? Can the di-
ameter of tiles be increased? Can the region T ′ be split
into less than three subsets satisfying (P)? Can we use
a covering of R2 instead of a tiling?

Although some of these questions have apparently
been tacitly considered in [1], a careful analysis leads
to a better approximation factor, as we are going to
show.

First of all, if the diameter of T were allowed to be
bigger than 1, then it could happen that T is not covered
by a single disk D ∈ D and, at the same time, that the
points T ∩ P are not covered by disks of D centered in
T ′. It would therefore be necessary to use both disks
centered in T and outside T to cover T ∩ P, yielding a
possibly higher approximation factor αT . We therefore
must use tiles of diameter at most 1.

There are only three regular tilings of R2: by equilat-
eral triangles, squares and hexagons.

Figure 1: A disk in the hexagonal tiling.

Lemma 2 Let T be a tiling of R2 into hexagons of di-
ameter 1. Then a unit disk intersects the interior of
at most 12 hexagons of T , and the estimate cannot be
improved.

Proof. Let D be a unit disk centered at O, and let
T ∈ T be a hexagon containing O. Upon rotating and
reflecting the Euclidean plane, we can assume that O

belongs to the dark triangle ABC displayed in Figure
1. Elementary geometry then shows that the distance
of the triangle ABC from the boundary of the partial
hexagonal tiling of Figure 1 is 1. In other words, all
hexagons of T whose interior is intersected by a unit
disk centered in ABC are already displayed in Figure
1. The estimate cannot be improved since the unit disk
centered at A (pictured) actually does intersect the in-
terior of all 12 hexagons of Figure 1. ¤

For the sake of completeness, we remark that in a
regular tiling of R2 by squares of diameter 1, a unit
disk intersects the interior of at most 14 squares. (The
disk fits into a 4 × 4 array (aij) of squares of diameter
1. It cannot intersect the interior of a11 and a44 at the
same time. Similarly for a14 and a41.) It is easy to see
that this estimate cannot be improved either.

Let T be any of the regular tilings in question. Should
some points of P lie on the boundary of some tile T ∈ T ,
let ε = min{d(P, T ); P ∈ P, T ∈ T , P 6∈ T}, where
d(P, T ) is the distance of P from T . Then upon sliding
T by ε/2 in a direction not parallel to any side of any
tile of T , we can guarantee, and assume from now on,
that all points of P are inside the tiles.

In [1], the three regions T ′i surrounding an equilateral
triangle T were obtained by extending the sides of T
(see [1] for details). Proceeding analogously, the square
tiling yields approximation factor 2·4·14 = 112, and the
hexagonal tiling yields approximation factor 2 · 6 · 12 =
144, both bigger than 108. However, the region T ′ can
be split in a more efficient way:

Figure 2: One hexagonal tile and its surrounding re-
gions.

Lemma 3 Given a tile T in a regular tiling by hexagons
of diameter 1, the set T ′ = R2 \T can be split into three
disjoint subsets T ′1, T ′2, T ′3 satisfying (P).
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Proof. If two distinct unit circles are to intersect twice
in a set of diameter 1, their centers C1, C2 must be in
distance at least

√
3. This happens to be the distance

of the points A and E in Figure 2, where one tile T and
its three surrounding regions T ′i are depicted. Assume
that C1, C2 are in T ′1.

If both C1, C2 were outside the triangles ABC, CDE
then the midpoint of C1C2 were outside of T . If both
C1, C2 were in ABC or CDE, then |C1C2| ≤

√
3 (the

equality holds if and only if C1 = A and C2 = E, or the
other way round, in which case only one intersection is
inside T ).

We can therefore assume that C1 is inside ABC and
C2 is outside of ABC ∪ CDE. Consider the line `
through C1 parallel to AE. Let F be the intersection
of ` and the side DC. If C1C2 does not intersect T
we are done. Otherwise let G be the intersection of
C1C2 and DC. If G is to the left of F on DC then
C2 is inside CDE. If G is to the right of F on DC
then |C1G| < |C1F | ≤ |AE|/2 =

√
3/2, and hence the

midpoint of C1C2 is outside of T .
We have proved that no two disks centered in T ′1 in-

tersect twice in T . The fact that they cannot touch
inside T follows by essentially the same argument. ¤

4 Thin disk coverings

We have now showed that there is a polynomial time
algorithm for DC(P,D) with approximation factor 2 ·3 ·
12 = 72. Can we do better?

We start by considering the number of regions sur-
rounding a tile T . Note that the following lemma has
a trivial proof if we assume that the two subsets T ′1, T ′2
are separated by a straight line.

Lemma 4 Let T be a subset of R2 with nonempty inte-
rior and of diameter at most 1. Then T ′ = R2\T cannot
be written as a disjoint union of two subsets satisfying
(P).

Proof. Consider a regular n-gon An of diameter 2. As-
sume that n = 2m + 1. Label the vertices of An con-
secutively by v0, · · · , v2m. Connect the vertices v0,
vm, v2m, v3m mod n, v4m mod n, · · · , v(n−1)m mod n,
vnm mod n = v0 by a sequence of straight line segments,
in this order. Since n and m are relatively prime, the
resulting star-like curve Cn consists of n line segments
of length 2. The midpoints of the line segments of Cn

form a regular n-gon Bn. As n approaches infinity, the
diameter of Bn approaches 0 (since any two consecutive
vertices of Cn are close to being antipodal).

Choose a sufficiently large n = 2m + 1 and position
the polygon An so that all vertices of An are outside
of T (which is possible since the diameter of T is 1)
and all vertices of Bn are inside of T (which is possible
since T has nonempty interior). Assume that R2 \ T

is split into two disjoint subsets S0, S1. Without loss
of generality, the vertex v0 of An is in S0. Assume for
a while that vm is in S0, too. Then the 2 unit disks
centered at v0, vm touch inside T (at a vertex of Bn),
which is not allowed. Hence vm ∈ S1. By induction,
vkm mod n ∈ Sk mod 2 for every k. But this yields v0 =
vnm mod n ∈ Sn mod 2 = S1, a contradiction. ¤

Note that we never relied on the fact that the Eu-
clidean plane R2 is tiled—any covering of R2 into sub-
sets of diameter at most one with surrounding regions
satisfying property (P) would do. However, we believe
and conjecture that no such generalization would fur-
ther reduce the global approximation factor α, as long
as the methods of [1] are used. Here is our reasoning:

Lemma 4 shows that any tile requires at least three
subsets around it. Thus, in order to reduce α below 72,
we need a covering C of R2 by sets of diameter at most
1 such that no unit disk intersects more than 11 sets
of C (otherwise Lemma 1 cannot be used to produce
α < 72).

Let C∗ be such a covering. We will assume that all
sets of C∗ are disks of diameter 1 (i.e., maximal sets of
diameter 1).

For a covering C of R2 by disks of diameter d, let
µ(C) = supD |{C ∈ C; C ∩ D 6= ∅}|, where the supre-
mum runs over all disks D of diameter 2d in R2.

Let Th be the regular tiling of R2 by hexagons of
diameter 1. Let Ch be the covering of R2 by unit disks
whose centers coincide with the centers of the hexagons
of Th. We have already seen (in the proof of Lemma 2)
that µ(CH) ≥ 12. It is well known that no disk covering
of R2 is thinner (in the sense of overlapping area) than
the covering CH (see [4] or [3, p. 32]). Thus, C∗ is at
least as thick as CH , yet µ(C∗) ≤ 11 < µ(CH) suggests
that C∗ is locally sparser than CH . To be more precise:

Conjecture 1 Let C be a covering of R2 by unit disks.
Then there exists a disk of radius 2 intersecting at least
12 disks of C, i.e., µ(C) ≥ 12.

In support of the conjecture, we sketch the proof of
the following result:

Theorem 5 If C is a covering of R2 by unit disks then
µ(C) ≥ 11.

Proof. Let C be a covering of R2 by unit disks with
µ(C) ≤ 10. Define ρ : R2 → N as follows: ρ(x, y) =
number of disks in C that overlap with the disk of radius
2 centered at (x, y). In other words, ρ(x, y) counts the
number of disks in C whose center is within distance 3
of (x, y).

Although ρ is not continuous, it is integrable if the
covering is not very dense, which is surely the case when
µ(C) is small (finite).
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Let D be a disk of (large) radius R centered at the
origin. Then clearly

∫
D

ρ(x, y)dxdy ≤ 10πR2.
Let N(R) be the number of disks from C whose center

lies in D. Since no covering is thinner than CH , we know
that N(R) is about as large as (or larger than) 2π

3
√

3
R2,

because 2π
3
√

3
is the density of CH . (See [4] for details.)

We can think of the function ρ as being the sum of
characteristic functions of the disks of C. By neglecting
the fact that some disks of C centered in D and near
the boundary of D may not be contained in D, we see
that

∫
D

ρ(x, y)dxdy ≈ π32N(R) ≈ π32 2π
3
√

3
R2. By com-

paring the two integrals, we have 10 ≥ 2π
3
√

3
32 ≈ 10.88,

a contradiction. ¤
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