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Abstract. We first find the combinatorial degree of any map f : V →
F where F is a finite field and V is a finite-dimensional vector space
over F . We then simplify and generalize a certain construction due to
Chein and Goodaire that was used in characterizing code loops as finite
Moufang loops that posses at most two squares. The construction yields
binary codes of high divisibility level with prescribed Hamming weights
of intersections of codewords.

1. Introduction

Let V be a finite-dimensional vector space over F . Given a map f : V → F ,
the nth derived form δnf : V n → F is defined by

(1) δnf(v1, . . . , vn) =
∑

(−1)n−mf(vi1 + · · ·+ vim),

where the summation runs over all subsets of {v1, . . . , vn}, where we consider
vi different from vj if i 6= j. We have borrowed the name derived form from
[1, p. 41]. The process of obtaining the forms δnf from f is referred to
as combinatorial polarization. It can also be described recursively by the
formula

(2) δn+1f(v1, . . . , vn+1) = δnf(v1 + v2, v3, . . . , vn+1)

− δnf(v1, v3, . . . , vn+1)− δnf(v2, v3, . . . , vn+1),

for v1, . . . , vn+1 ∈ V .
The combinatorial degree cdegf of f is the smallest nonnegative integer

n such that δmf = 0 for every m > n, if it exists, and it is equal to ∞
otherwise. Note that the combinatorial degree of the zero map is 0.

Combinatorial polarization was first studied by Ward in [6]. He shows in
[6, Prop. 2.8] that the combinatorial degree of a polynomial map is equal to
its degree if F is a prime field or a field of characteristic 0, and he remarks in
parentheses on page 195 that “It is not difficult to show that, in general, the
combinatorial degree of a nonzero polynomial over GF (q), q a power of the
prime p, is the largest value of the sum of the p-weights of the exponents for
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the monomials appearing in the polynomials.” Since he does not prove the
statement and since the author believes the proof is not absolutely trivial,
we offer it in Section 2. We then move on to code loops and codes of high
level.

Recall that loop is a groupoid (L, ·) with neutral element 1 such that the
equation x · y = z has a unique solution whenever two of the three elements
x, y, z ∈ L are specified. The variety of loops defined by the identity
x · (y · (x · z)) = ((x · y) · x) · z is known as Moufang loops. The commutator
[x, y] of x, y ∈ L is the unique element u ∈ L such that xy = (yx)u.
Similarly, the associator [x, y, z] of x, y, z ∈ L is the unique element u ∈ L
such that (xy)z = (x(yz))u.

We shall need basic terminology from coding theory. A (linear) code C
is a subspace of V . For every codeword c = (c1, . . . , cm) ∈ C we define its
(Hamming) weight w(c) as the number of nonzero coordinates ci in c. If 2r

divides w(c) for every c ∈ C and if r is as big as possible then C is said to
be of level r.

Codes of level 2 are usually called doubly even, and doubly even codes are
behind Griess’ definition of a code loop: Let C be a doubly even code over
F = {0, 1}, and let η : C × C → F be such that

η(x, x) = w(x)/4,

η(x, y) + η(y, x) = w(x ∩ y)/2,

η(x, y) + η(x + y, z) + η(y, z) + η(x, y + z) = w(x ∩ y ∩ z)

for every x, y, z ∈ C. (Here, x ∩ y is the vector whose ith coordinate is
equal to 1 if and only if the ith coordinates of both x and y are equal to 1.)
Then L = C × F with multiplication

(3) (x, a)(y, b) = (x + y, a + b + η(x, y))

is a code loop for C. Griess shows in [4] that there is a unique code loop for
C, up to isomorphism, and that it is Moufang.

Chein and Goodaire found a nice characterization of code loops. Namely,
they show (cf. [2, Thm. 5]) that code loops are exactly finite Moufang loops
with at most two squares. Their proof is based on three observations:

First, if L is a Moufang loop with |L2| ≤ 2 then every commutator and
associator belongs to L2 and

(xy)2 = x2y2 [x, y] ,
[xy, z] = [x, z] [y, z] [x, y, z] ,(4)

[vx, y, z] = [v, y, z] [x, y, z]

holds for every v, x, y, z ∈ L (see [2, Thm. 1, 2]). In other words, if we set
Z = L2 then L/Z is an elementary abelian 2-group, and the well-defined
map P : L/Z → Z, x 7→ x2 satisfies δ2P (x, y) = [x, y], δ3P (x, y, z) =
[x, y, z], cdegP = 3, as can be seen immediately from (2) and (4). Note that
under these circumstances L is an elementary abelian 2-group if and only if
|L2| = 1.
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Second, if L = C × F is a code loop for C and x = (x̃, a), y = (ỹ, b),
z = (z̃, c) belong to L then

x2 = (0, w(x̃)/4),
[x, y] = (0, w(x̃ ∩ ỹ)/2),(5)

[x, y, z] = (0, w(x̃ ∩ ỹ ∩ z̃)),

by [2, Lm. 6]. (Note that (4) then holds because w(u + v) = w(u) + w(v)−
2w(u ∩ v) for any two binary vectors u, v.)

Third, given an integer n ≥ 1 and parameters αi, βij , γijk ∈ {0, 1}, for
1 ≤ i, j, k ≤ n, there is a doubly even code C with basis c1, . . . , cn such
that

αi = w(ci),
βij = w(ci ∩ cj),(6)

γijk = w(ci ∩ cj ∩ ck)

for 1 ≤ i, j, k ≤ n (cf. the proof of [2, Thm. 5]). It is this construction
that turns out to be the most difficult part of the proof that code loops are
exactly finite Moufang loops with at most two squares. We simplify and
generalize the construction in Section 3. The construction presented here is
easier than that of [5], too, because it avoids induction.

To conclude our discussion concerning code loops, note that a map f :
V → {0, 1} with combinatorial degree 3 is uniquely specified if we know
the values of f(ei), f(ei + ej) and f(ei + ej + ek) for some basis e1, . . . , en

of V . Hence, by (4), (5) and (6), code loops can be identified with maps
P : V → {0, 1} of combinatorial degree 3.

2. Combinatorial Degree over Finite Fields

In this section, let V be a vector space of dimension n over the field F =
GF (q) of characteristic p, and let f : V → F be an arbitrary map.

By an easy generalization of the Fundamental Theorem of Algebra, we can
identify f with some polynomial in F [x1, . . . , xn]. Moreover, if we assume
that the polynomial is reduced, then it is unique. Here is what we mean by
reduced polynomial: if cxa1

1 · · ·xan
n is a monomial of f then 0 ≤ ai < q, for

1 ≤ i ≤ n, and if cxa1
1 · · ·xan

n , dxb1
1 · · ·xbn

n are two such monomials of f , we
must have ai 6= bi for some 1 ≤ i ≤ n.

We will assume from now on that f is a reduced polynomial. Let us write
x for (x1, . . . , xn), and xa for xa1

1 · · ·xan
n . Then

(7) f(x) =
∑

a∈M(f)

caxa,

where M(f) is the set of all multiexponents of f , and 0 6= ca ∈ F for every
a ∈ M(f).
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Our goal is to calculate the combinatorial degree of f . When f(0) 6= 0
then cdegf = ∞, by (2). We will therefore assume that f(0) = 0 from now
on.

Lemma 2.1. Let f : V → F be as in (7). Then

cdegf = max{cdeg xa; a ∈ M(f)}.
Proof. Let us call two polynomials f , g disjoint if M(f) ∩M(g) = ∅. Since
every polynomial is a sum of monomials, it suffices to prove that if two
monomials are disjoint then their derived forms are disjoint, too.

To see this, consider the monomial g(x1) = x1
a where x1 = (x11, . . . ,

x1n), a = (a1, . . . , an). As seen in (1), a typical summand of δrg is
h = g(x1 + · · · + xr), which is a polynomial in nr variables. The crucial
observation is that for every 1 ≤ j ≤ r, every monomial of h contains exactly
ai variables xji, with possible repetitions. Hence the original monomial x1

a

can be uniquely reconstructed from every monomial of h. ¤
We focus on reduced monomials from now on. When a = (a1, . . . , an),

b = (b1, . . . , bn) are two multiexponents, let us write a ≤ b if ai ≤ bi for
every 1 ≤ i ≤ n, and a < b if a ≤ b and there is 1 ≤ i ≤ n with ai < bi.

Lemma 2.2. Let f(x) = xa. Then

(8) δ2f(x,y) =
∑

0<b<a

ca,bxbya−b,

where

(9) ca,b =
n∏

i=1

(
ai

bi

)
.

More generally, if f(x1) = x1
a1 then

(10) δsf(x1, . . . ,xs)

=
∑

0<a2<a1

· · ·
∑

0<as<as−1

ca1,a2 · · · cas−1,asx1
asx2

as−1−as · · ·xs
a1−a2 ,

where cai,ai+1
is analogous to (9).

Proof. We have

(x + y)a =
n∏

i=1

(xi + yi)ai =
n∏

i=1

ai∑

bi=0

(
ai

bi

)
xbi

i yai−bi
i

=
∑

b1,...,bn, 0≤bi≤ai

(
n∏

i=1

(
ai

bi

)
xbi

i yai−bi
i

)

=
∑

b1,...,bn, 0≤bi≤ai

(
n∏

i=1

(
ai

bi

))
xb1

1 · · ·xbn
n ya1−b1

1 · · · yan−bn
n .

Since δf(x,y) = (x + y)a − xa − ya, we are done with (8).
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We have also proved the more general statement (10) for s = 2, and we
proceed by induction on s. Assume that (10) holds for s. Using the polariza-
tion formula (2) on every summand of (10), we see that δs+1f(x1, . . . ,xs+1)
is equal to

∑

0<a2<a1

· · ·
∑

0<as<as−1

ca1,a2 · · · cas−1,asδ2g(x1,x2)x3
as−1−as · · ·xs+1

a1−a2 ,

where g(x) = xas . The term δ2g(x1,x2) expands as
∑

0<as+1<as

cas,as+1x1
as+1x2

as−as+1 ,

by (8), and we are done. ¤

Let a = (a1, . . . , an) be a multiexponent, f(x) = xa. Lemma 2.1 shows
that δsf is not the zero map if and only if there is a chain of multiexponents
a = a1 > a2 > · · · > as such that cai,ai+1

does not vanish in F for every 1 ≤
i < s. We will call such chains of multiexponents regular here. Obviously,
the length of a regular chain is bounded by qn.

Lemma 2.3. Let ai = (ai1, . . . , ain), for 1 ≤ i ≤ s. Assume that a1 > · · · >
as is a regular chain of maximum length for a1. Then ai+1, ai differ in
exactly one position, i.e., ai+1,j 6= aij for a unique 1 ≤ j ≤ n.

Proof. Suppose that there are 1 ≤ i < s and 1 ≤ j < k ≤ n such that
ai+1,j 6= aij and ai+1,k 6= aik. Construct a multiexponent b so that

bm =
{

ai,m, if m 6= j,
ai+1,m, if m = j.

Then ai > b > ai+1. Since cai,ai+1
=

∏n
m=1

(
ai,m

ai+1,m

) 6= 0, we have cai,b 6= 0
and cb,ai+1

6= 0. Thus a1, . . . , ai, b, ai+1, . . . , as is a regular chain of length
s + 1, a contradiction. ¤

Corollary 2.4. Let a = (a1, . . . , an) be a multiexponent, f(x) = xa, and
fi(x) = xai, 1 ≤ i ≤ n. Then

cdegf =
n∑

i=1

cdegfi.

We therefore continue to investigate combinatorial degrees of reduced
monomials in one variable.

Let m be a positive integer. Then there are uniquely determined integers
0 ≤ mi < p such that m =

∑∞
i=0 mip

i. This p-adic expansion of m is useful
when calculating binomial coefficients modulo p, as seen in the beautiful and
still not so well known theorem of Lucas (cf. [3]):
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Theorem 2.5 (Lucas Theorem). Let p be a prime, and m =
∑∞

i=0 mip
i,

k =
∑∞

i=0 kip
i the p-adic expansions of m and k, respectively. Then

(
m

k

)
≡

∞∏

i=0

(
mi

ki

)
(mod p),

where we set
(
a
b

)
= 0 whenever a < b.

The p-weight of m =
∑∞

i=0 mip
i is defined as wp(m) =

∑∞
i=0 mi.

Corollary 2.6. Let p be a prime and a > 0 an integer. Then the longest
regular chain for a has length wp(a).

Proof. Let ` be the length of the longest regular chain for a. Theorem 2.5
shows that

(
m
k

) 6≡ 0 (mod p) if and only if mi ≥ ki for every i (as both mi,
ki are less than p and

(
mi
ki

)
with mi ≥ ki is therefore not divisible by p). This

means that wp(m) ≥ wp(k) must be satisfied whenever
(
m
k

) 6≡ 0 (mod p),
and ` ≤ wp(a) follows.

On the other hand, if k is such that ki = mi for each i 6= j, and kj =
mj − 1 ≥ 0 then

(
m
k

) 6≡ 0 (mod p), by Theorem 2.5. Hence ` ≥ wp(a). ¤
We have proved:

Theorem 2.7. Let F be a finite field of characteristic p, let V be an n-
dimensional vector space over F , and let f : V → F be a map. Then
f : V → F can be written as a reduced polynomial f(x) =

∑
a∈M(f) x

a in
F [x], where x = (x1, . . . , xn), a = (a1, . . . , an), and M(f) is the set of all
multiexponents of f . Moreover,

cdegf =





0, if f is the zero map,
∞, if f(0) 6= 0,
degp f, otherwise,

where the p-degree degp f of f is calculated as

degp f = max
(a1,...,an)∈M(f)

n∑

i=1

wp(ai),

where the p-weight wp(ai) of ai =
∑∞

j=0 aijp
j, 0 ≤ aij < p, is the integer

wp(ai) =
∞∑

j=0

aij .

When F is a prime field, we have degp f = deg f .

Example 2.8. Let F = GF (9), V = F 3, f(x1, x2, x3) = f1(x1, x2, x3) +
f2(x1, x2, x3), where f1(x1, x2, x3) = x3

1x
7
2 and f2(x1, x2, x3) = x1x2x

5
3. Since

3 = 1 ·31, 7 = 1 ·30 +2 ·31, 1 = 1 ·30 and 5 = 2 ·30 +1 ·31, we have w3(3) = 1,
w3(7) = 1+2 = 3, w3(1) = 1 and w3(5) = 2+1 = 3. Thus cdegf1 = 1+3 = 4,
cdegf2 = 1 + 1 + 3 = 5, and cdegf = max{4, 5} = 5.
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3. Codes of High Level with Prescribed Weights of
Intersections of Codewords

We will assume from now on that F = {0, 1} is the two-element field and
that V is a vector space over F of dimension n.

In the Introduction, we have discussed a construction due to Chein and
Goodaire that is used in characterizing code loops as finite Moufang loops
with at most two squares. The fact that the values αi, βij , γijk in (6) can
be prescribed can be restated as follows:

Proposition 3.1 (Chein and Goodaire). Let P : V → F be a map with
cdegP = 3. Then there is a doubly even code C isomorphic to V such that
P (c) ≡ w(c)/4 (mod 2), for every c ∈ C.

The original proof of this Proposition is somewhat involved, and presents
the biggest obstacle when characterizing code loops. We offer a simpler
proof, while at the same time generalizing the result to codes of arbitrary
level:

Theorem 3.2. Let V be an n-dimensional vector space over F = {0, 1},
and let P : V → F be such that cdegP = r + 1. Then there is a binary
code C isomorphic to V and of level r such that P (c) ≡ w(c)/2r (mod 2)
for every c ∈ C.

Proof. The map P can be identified with some polynomial in F [x1, . . . , xn].
Calculating in F [x1, . . . , xn], we have

∏

i∈I

xi =
∑

K∈K

(
1 +

∏

j∈K

(1 + xj)
)
,

where I is a subset of {1, . . . , n}, and K is some set of subsets of I. Therefore

P (x1, . . . , xn) =
∑

J∈J

(
1 +

∏

j∈J

(1 + xj)
)

for some set J of subsets of {1, . . . , n}.
Let H be the parity-check matrix of the Hamming code of dimension r+1

(and length 2r+1− 1). Hence the rows of H are exactly the nonzero vectors
of F r+1, in some order. Let D be the code whose generating matrix is the
transpose of H. Then w(d) = 2r for every nonzero d ∈ D. Every codeword d
can be written as a linear combination of columns of H, and hence identified
with some (d1, . . . , dr+1) ∈ F r+1. Note that

(11) w(d)/2r ≡ 1 +
r+1∏

i=1

(1 + di),

since the product
∏r+1

i=1 (1 + di) vanishes for every nonzero d ∈ D.
For every subset J = {j1, . . . , jt} in J define the map πJ : V → D by

πJ(x1, . . . , xn) = (xj1 , . . . , xjt , 0, . . . , 0) ∈ F r+1.
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This map is well-defined because r + 1 = cdegP = deg2 P = deg P =
maxJ∈J |J |, by Theorem 2.7. For x ∈ V , let π(x) =

⊕
J∈J πJ(x), and let

C be the image of V under π. Then C is isomorphic to V and, for x = (x1,
. . . , xm) ∈ V ,

P (x) =
∑

J∈J

(
1 +

∏

j∈J

(1 + xj)
) (11)≡

∑

J∈J
w(πJ(x))/2r = w(π(x))/2r.

This finishes the proof. ¤
Example 3.3. We will work out an example illustrating the proof of Theo-
rem 3.2. Let P : V = F 3 → F be the map P (x1, x2, x3) = x2+x1x3+x1x2x3.
Then

P (x1, x2, x3) = (1 + x′1x
′
2) + (1 + x′2x

′
3) + (1 + x′1x

′
2x
′
3),

where x′i = 1 + xi. Thus J = {{1, 2}, {2, 3}, {1, 2, 3}}. We have cdegP =
deg P = 3 = r + 1, and n = dim V = 3.

The construction depends on a choice of the (dual) Hamming code. Let
us pick the code whose generating matrix is

HT =




1000111
0101011
0011101


 .

The explicit construction also depends on an ordering of the elements of
J . Let us agree that they are listed as above. Then π(x) = π{1,2}(x) ⊕
π{2,3}(x)⊕ π{1,2,3}(x).

Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) be the canonical basis for
V . Then, with respect to the basis consisting of the three rows of HT , the
vectors e1, e2, e3 are mapped onto

π(e1) = (1, 0, 0)⊕ (0, 0, 0)⊕ (1, 0, 0) = c1,

π(e2) = (0, 1, 0)⊕ (1, 0, 0)⊕ (0, 1, 0) = c2,

π(e3) = (0, 0, 0)⊕ (0, 1, 0)⊕ (0, 0, 1) = c3.

For instance, the middle summand of c3 is (0, 1, 0) because π{2,3}(0, 0, 1) =
(0, 1, 0).

Viewed as vectors over F , the vectors c1, c2, c3 (forming a basis of C)
become

c1 = (1000111, 0000000, 1000111),
c2 = (0101011, 1000111, 0101011),
c3 = (0000000, 0101011, 0011101).

Let us test Theorem 3.2 on two vectors. First, let x = e3. Then P (x) =
0 + 0 + 0 = 0, c = π(x) = c3, and w(c)/22 = 8/4 = 2. Similarly, with
x = e1 + e2 + e3, we obtain P (x) = 1 + 1 + 1 = 1,

c = π(x) = c1 + c2 + c3 = (1101100, 1101100, 1110001),

and w(c)/22 = 12/4 = 3. In both cases, w(c)/2r ≡ P (x) (mod 2).
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The construction of Theorem 3.2 allows us to calculate the dimension of
the resulting code C over F :

Corollary 3.4. Let P , C be as in Theorem 3.2,

P (x1, . . . , xn) =
∑

J∈J

(
1 +

∏

j∈J

(1 + xj)
)
.

Then the dimension of C over F is equal to |J | · (2 deg P − 1).
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