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Mikoláš Janotaa,∗, António Morgadob, Petr Vojtěchovskýc
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Abstract

We present an algorithm for calculating a minimal generating set of a finite
algebra. Despite the fact that the problem is in NP, a single call to a SAT
solver is impractical since the encoding is cubic. Instead, the proposed al-
gorithm solves a series of smaller subproblems. The individual subproblems
are formulated as integer linear programs (ILP) that are solved by an off-
the-shelf solver. Our implementation shows that the proposed algorithm is
highly efficient and is able to compute minimal generators for algebras of
orders approximately 2000.

In our experiments we focus on Moufang loops, a variety of loops with
properties close to groups. For Moufang loops of prime power order, we
are able to calculate a minimal generating set by another method, using
theoretical results on the Frattini subloop and algorithms for permutation
groups, of which some are reported here for the first time. This second
method does not cover all cases, but in the covered cases it serves as a check
of correctness of the ILP-based algorithm.
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1. Introduction1

For a subset S of an algebra A, let 〈S〉 be the subalgebra of A generated2

by S, that is, the smallest subalgebra of A containing S. Note that 〈S〉 is3

the subset of A obtained iteratively from S by applying the operations of A.4

We say that S is a generating set of A if 〈S〉 = A. A generating set of A of5

the smallest possible cardinality is called a minimal generating set. The rank6

r(A) of A is the cardinality of a minimal generating set of A.7

Finding small and minimal generating sets is of importance in algebra,8

both theoretically and for the purposes of computations. For instance, a9

vector space over a fixed underlying field is completely characterized by its10

rank (that is, dimension) and computational complexity of linear algebraic11

algorithms depends on the rank. Groups with a single generator (aka cyclic12

groups) are easy to understand, while groups with two generators can already13

be arbitrarily complicated in some sense [1]. The efficiency of algorithms in14

computational group theory depends heavily on the number of generators15

given [2, Thm 2.1.1]. As a final example, alternative algebras with two gen-16

erators are associative [3, Thm 3.1] and hence relatively easy to understand17

compared to general alternative algebras.18

In this paper we present an algorithm for calculating minimal generating19

sets in magmas (sets with a single binary operation) by means of SAT solvers20

and integer linear programs. Our method cannot compete with specialized21

algorithms in highly structured magmas, such as groups, but it performs well22

in less structured magmas where efficient rank algorithms are not available.23

According to our best knowledge, there are no existing algorithms for the24

calculation of the smallest generating sets in the general case. Papadimitriou25

and Yannakakis introduce a complexity class allowing to classify the com-26

plexity of the task for quasigroups [4] (this is possible because quasigroups27

always have a rank in O(log n)). Generating sets have been heavily studied28

for groups, cf. [5, 6, 7, 8, 9]. In particular, Lucchini and Mengazzo introduce29

dedicated algorithms for calculating a set of generators of minimal cardinality30

for finite solvable groups [10].31

As a case study, we focus on Moufang loops, a generalization of groups32

related to alternative algebras [3] and octonions [11]. Moufang loops are a33

good test candidate for the algorithm for the following reasons:34
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• The minimal generating set problem is not interesting for random mag-35

mas which are typically of rank one. Moufang loops are far from being36

random magmas.37

• The problem is hopelessly difficult for magmas A in which the rank38

r(A) is comparable to the size of A, such as for some semigroups. In39

Moufang loops, like in groups, the rank r(A) is bounded above by40

log2(|A|).41

• Unlike in groups, no efficient minimal generating set algorithm is known42

for Moufang loops.43

• On the other hand, there exist classes of Moufang loops where the rank44

and a minimal generating set can be calculated by group-theoretical al-45

gorithms running on a (much) larger permutation group associated with46

the Moufang loop. This allows us to check our method for correctness.47

• The rank of a Moufang loop can be increased and controlled within a48

certain range by simple constructions, such as the direct product. This49

allows us to construct test examples of desired size and (approximately50

controlled) rank.51

• Moufang loops of certain orders, such as 26 or 35, have been classified52

up to isomorphism. By using such an ensemble of algebras for testing,53

it is demonstrated that the algorithm performs well in most cases, not54

just in carefully constructed examples.55

2. Background on Quasigroups and Loops56

An algebra is a set A with a collection of We start with some background57

on quasigroups and loops, cf. [12]. Readers interested only in the algorithm58

can skip ahead to Section 4.59

A set A with three binary operations ·, \, / is a quasigroup if the following60

axioms hold: x · (x\y) = y, x\(x · y) = y, (x · y)/y = x and (x/y) · y = x.61

The three binary operations in quasigroups are referred to as multiplication,62

left division and right division, respectively.63

Equivalently, a quasigroup is a set A with a single binary operation ·64

(that is, a magma) such that all left translations Lx : A→ A, y 7→ x · y and65

all right translations Rx : A→ A, y 7→ y · x are permutations of A.66
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A loop is a quasigroup A with identity element 1 satisfying x·1 = x = 1·x67

for every x ∈ A. A Moufang loop is a loop satisfying additionally the identity68

x · (y · (x · z)) = ((x · y) · x) · z, a weakening of the associative law.69

A nonempty subset S of a quasigroup (loop)A is a subquasigroup (subloop)70

if it is a quasigroup (loop) in its own right. The following result shows that71

divisions play no role in finite quasigroups and loops as far as subalgebras72

are concerned.73

Lemma 2.1. Let S be a nonempty subset of a finite quasigroup (loop) A.74

Then S is a subquasigroup (subloop) if and only if it is closed under multi-75

plication.76

Proof. It suffices to show that if S is closed under multiplication then it is77

also closed under divisions and, in the case of loops, it contains the identity78

element.79

Let x, y ∈ S. The left quotient x\y can be expressed as L−1x (y). Since A80

is finite, the permutation Lx has finite order, say n. Then Ln−1
x = L−1x and81

x\y = L−1x (y) = Ln−1
x (y). We conclude that x\y ∈ S since S is closed under82

multiplication. Dually, x/y ∈ S.83

If A is a loop with identity element 1 and x ∈ S, then 1 = x\x ∈ S.84

Proper subquasigroups cannot be too large, cf. Proposition 2.2. This85

imposes a logarithmic upper bound on the rank of a quasigroup in terms of86

its order, cf. Corollary 2.3, which allows us to test Algorithm 1 on relatively87

large algebras. On the other hand, the complements of proper subalgebras88

are then large, which potentially adds to the running time of the algorithm.89

Proposition 2.2. Let A be a finite quasigroup and let S be a proper sub-90

quasigroup of A. Then |S| ≤ |A|/2.91

Proof. Let x ∈ A r S. We show that the right coset Sx = {sx : s ∈ S} is92

disjoint from S and of the same size as S. The fact that |Sx| = |S| follows93

from the fact that Sx = Rx(S) and Rx is a permutation. Suppose, for a94

contradiction, that y ∈ S ∩ Sx. Then y = s1 = s2x for some s1, s2 ∈ S and95

therefore x = s2\s1 ∈ S, a contradiction.96

Corollary 2.3. Let A be a finite quasigroup. Then r(A) ≤ log2(|A|).97

For general quasigroups and loops, Proposition 2.2 is best possible.98

We can use the direct product construction to bring the order of the99

magma to the desired size and the expected rank to a predictable range,100
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cf. Lemma 2.4. The output of Algorithm 1 demonstrates that the entire101

range of possible ranks r(A×B) from Lemma 2.4 is attained in examples.102

Lemma 2.4. Let A and B be finite magmas with identity elements. Then

max(r(A), r(B)) ≤ r(A×B) ≤ r(A) + r(B).

Proof. The first inequality is clear: If S is a generating set of A × B then103

{a : (a, b) ∈ S} is a generating set of A, and similarly for B.104

For the second inequality, consider X ∈ {A,B}, let 1X be the identity
element of X and let SX be a minimal generating set of X. Then

S = ({1A} × SB) ∪ (SA × {1B})

is a generating set of A × B, since the identity elements allow us to inde-105

pendently obtain any element of A from SA in the first coordinate and any106

element of B from SB in the second coordinate. This shows that r(A×B) ≤107

|S| = |SA|+ |SB| = r(A) + r(B).108

In some situations the rank r(A×B) can be predicted from r(A) and r(B).109

For instance, if A, B are loops in which powers of elements are well-defined,110

the order of every element divides the order of the loop and gcd(|A|, |B|) = 1,111

then r(A×B) = max(r(A), r(B)), attaining the lower bound of Lemma 2.4.112

But in general, it is difficult to predict the rank of r(A× B) from r(A) and113

r(B) without explicitly calculating it. Our algorithm does not take advantage114

of any theoretical results concerning the rank r(A×B).115

3. Results on Frattini Subalgebras and Moufang Loops116

In this section we gather results on the Frattini subalgebra that is highly117

relevant to the problem of minimal generating sets, and also on Moufang118

loops, our case study. Theorem 3.4 due to Gábor P. Nagy appears in the119

literature for the first time here; its proof will be presented elsewhere [13].120

An element x of an algebra A is said to be a nongenerator if for every121

subset S of A satisfying 〈S, x〉 = A we already have 〈S〉 = A. In other words,122

an element x ∈ A is a nongenerator if it can be removed from any generating123

set of A without impacting its generating property. The Frattini subalgebra124

Φ(A) of A is the set of all nongenerators of A, and it is indeed a subalgebra125

of A by Lemma 3.1.126

The following two results are an easy generalization of the results from [12,127

Section VI.2].128
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Lemma 3.1. Let A be an algebra. Then Φ(A) is a subalgebra of A.129

Proof. Let f be any n-ary operation ofA and suppose that x1, . . . , xn ∈ Φ(A).
We will show that f(x1, . . . , xn) is a nongenerator. Let S ⊆ A be such that
〈S, f(x1, . . . , xn)〉 = A. Since f(x1, . . . , xn) ∈ 〈S, x1, . . . , xn〉, we have

〈S, x1, . . . , xn〉 ≥ 〈S, f(x1, . . . , xn)〉 = A.

Since xn is a nongenerator, we conclude that 〈S, x1, . . . , xn−1〉 = A. Proceed-130

ing similarly for the nongenerators x1, . . . , xn−1, we reach 〈S〉 = A.131

A subalgebra M of A is said to be maximal if M < A and whenever132

M ≤ B ≤ A for some subalgebra B then either M = B or B = A.133

Proposition 3.2. If A is an algebra that contains at least one maximal134

subalgebra then Φ(A) is the intersection of all maximal subalgebras of A, else135

Φ(A) = A.136

Proof. First suppose that A has at least one maximal subalgebra and let137

F < A be the intersection of all maximal subalgebras of A. If x ∈ A \ F138

then there is a maximal subalgebra M of A such that x 6∈ M , but then139

〈M,x〉 = A > M = 〈M〉 by maximality, proving that x 6∈ Φ(A).140

Conversely, if x 6∈ Φ(A), let S ⊆ A be such that 〈S〉 < 〈S, x〉 = A.141

By Zorn’s Lemma, there exists a subalgebra M ≤ A that is maximal with142

respect to the property that S ⊆ M and x 6∈ M . Clearly, M < A. Consider143

any B ≤ A such that M < B. Since S ⊆ B and M < B we must also have144

x ∈ B and thus B ≥ 〈S, x〉 = A. Hence M is in fact a maximal subalgebra145

of A. Then x 6∈ F ≤M .146

Now suppose that A has no maximal subalgebras. If x 6∈ Φ(A) then the147

above paragraph shows that A has a maximal subalgebra M , a contradiction.148

Hence Φ(A) = A.149

Note that the assumption of Proposition 3.2 is satisfied in nontrivial finite150

loops.151

The following result of Bruck describes the rank and all minimal gener-152

ating sets in nilpotent loops of prime power order.153

The center Z(Q) of a loop is the set of all elements of Q that commute154

and associate with all elements of Q. The iterated centers are then defined155

by Z0(Q) = 1, Zi+1(Q) = π−1i (Z(Q/Zi(Q))), where πi : Q→ Q/Zi(Q) is the156

canonical projection x 7→ xZi(Q). A loop Q is nilpotent if Q = Zm(Q) for157
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some m. For a prime p, a group G is an elementary abelian p-group if it is a158

commutative group such that xp = 1 for every x ∈ G. In additive notation,159

an elementary abelian p-group (G,+) of size pd can be seen as a vector space160

of dimension d over the field of order p.161

Theorem 3.3 ([12, Theorem VI.2.3]). Let p be a prime and Q a nilpotent162

loop of order pn > 1. Then the Frattini subloop Φ(Q) is normal in Q and163

Q/Φ(Q) is an elementary abelian group of order pd for some d > 0. The164

rank of Q is then equal to d and {x1, . . . , xd} ⊆ Q generates Q if and only if165

{x1Φ(Q), . . . , xdΦ(Q)} is a basis of the vector space Q/Φ(Q).166

To calculate the rank and a minimal generating set in a nilpotent loop
Q of prime power order by Theorem 3.3, we therefore need to calculate the
Frattini subloop Φ(Q). The following recent result shows that this can be
done by transferring the calculation to the multiplication group

Mlt(Q) = 〈Lx, Rx : x ∈ Q〉

of Q, as long as Mlt(Q) is itself nilpotent. This might seem counterproductive167

since Mlt(Q) is typically much larger than Q, but it is a group, and standard168

algorithms from computational group theory apply.169

Theorem 3.4 (Gábor P. Nagy). Let Q be a finite loop such that Mlt(Q) is170

nilpotent. Consider the natural permutation action of Mlt(Q) on Q. Then171

Φ(Q) is equal to the orbit of the group Φ(Mlt(Q)) containing 1.172

Let us now turn attention to Moufang loops, one of the most investigated173

varieties of loops.174

Glauberman and Wright proved that every Moufang loop of prime power175

order is nilpotent [14, 15]. Bruck showed that a nilpotent loop of prime176

power order has a nilpotent multiplication group, cf. [12, Lemma VI.2.2].177

Theorems 3.3 and 3.4 therefore apply to Moufang loops of prime power order.178

(However, we stress that they do not apply to general Moufang loops, much179

less to general magmas, and hence the orbit computation of Theorem 3.4180

does not supersede Algorithm 1.)181

Moufang loops of order n < 64 were classified by Goodaire, May and182

Raman [16], of order n ∈ {64, 81} by Nagy and Vojtěchovský [17], and of183

order n = 243 by Slattery and Zenisek [18]. Libraries of Moufang loops are184

available in the GAP [19] package LOOPS [20].185
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Example 3.5. Let Q be the 100th Moufang loop of order 64 in the LOOPS186

package, i.e., MoufangLoop(64,100). Then G = Mlt(Q) is a nilpotent group187

of order 4096. The Frattini subgroup Φ(G) of G has order 64. The Frat-188

tini subloop Φ(Q) of Q is the orbit of Φ(G) containing 1, a set with 8 ele-189

ments. Thus Q/Φ(Q) is an elementary abelian group of size 64/8 = 8 =190

23, Q has rank 3, and any 3-element subset {x1, x2, x3} of Q such that191

{x1Φ(Q), x2Φ(Q), x3Φ(Q)} forms a basis of the vector space Q/Φ(Q) is a192

minimal generating set of Q.193

We conclude with another observation for Moufang loops that impacts194

Algorithm 1.195

As in the case of groups, the Lagrange Theorem holds for Moufang196

loops [21, 22], but unlike in the case of groups, no elementary proof of La-197

grange Theorem is known for Moufang loops; all known proofs rely on the198

classification of finite simple groups.199

Theorem 3.6 (Gagola-Hall, Grishkov-Zavarnitsine). Let A be a finite Mo-200

ufang loop and let S be a subloop of A. Then |S| divides |A|.201

Corollary 3.7. Let A be a finite Moufang loop and let p be the smallest202

prime dividing |A|. If S is a proper subloop of A then |S| ≤ |A|/p.203

4. Algorithm204

In this section we present an algorithm for finding a minimal generating205

set of a general finite algebra A. The decision version of the problem is206

in NP because verifying that a set of elements is generating can be done207

in polynomial time.1 One could therefore find a rank of a finite algebra208

by a series of SAT calls. Encoding the problem into SAT is essentially a209

reachability problem, where we introduce Boolean variables six representing210

that an element x is generated by applying i-times the operations of A. For211

finite magmas, this results in a polynomial encoding because we only need to212

consider at most |A| applications of the binary operation of multiplication.213

Unfortunately, since the whole multiplication table needs to be considered in214

each step, the resulting encoding is cubic, which renders it impractical.215

Rather than solving the problem by a single SAT call, we propose to apply216

the counterexample guided abstraction refinement paradigm (CEGAR) [23].217

1We conjecture that it is also NP-hard but this is out of the scope of the paper.

9



S
〈S〉

C A

Figure 1: Illustration of the concept of a subcomplement C = Ar 〈S〉

This enables us to translate the problem into a sequence of sub-problems,218

which are substantially easier than the whole problem.219

If S is a subset of the algebra A, then C(S) = Ar 〈S〉 will be called the220

subcomplement of S.2 The concept is illustrated by Figure 1. The terminol-221

ogy is supposed to indicate that C(S) is a complement of the subalgebra 〈S〉,222

as well as that C(S) is a subset of the complement Ar S.223

Subcomplements are crucial to the presented algorithm for two reasons:224

(i) the subcomplement C(S) is empty if and only if the set S is a generating225

set, (ii) if a subcomplement is nonempty, every generating set must intersect226

with it, cf. Proposition 4.1.227

Proposition 4.1. Let A be an algebra, S a subset of A and C(S) = Ar〈S〉.228

If C(S) is nonempty (that is, S does not generate A), then every generating229

set of A has a nonempty intersection with C(S).230

Proof. Suppose that T ⊆ A satisfies 〈T 〉 = A and T ∩ C(S) = ∅. Since231

T ∩ (A r 〈S〉) = ∅ and T ⊆ A, it follows that T ⊆ 〈S〉. As 〈T 〉 is the232

smallest subalgebra of A containing T , we deduce that A = 〈T 〉 ⊆ 〈S〉 6= A,233

a contradiction.234

Given a collection Γ of subsets of A, a subset H ⊆ A is a hitting set of Γ235

if for every C ∈ Γ we have H∩C 6= ∅. By Proposition 4.1, any generating set236

of A must be a hitting set of any collection Γ of nonempty subcomplements.237

This enables us to invoke the implicit hitting set paradigm where new238

sets C are gradually generated; interested reader is referred to relevant lit-239

erature [24, 25, 26, 27, 28]. Here we focus on the specific algorithm for240

generating sets inspired in this paradigm.241

Algorithm 1 shows the overall structure of the computation. The algo-242

rithm maintains a set of subcomplements Γ and in each iteration it calculates243

a smallest hitting set S of Γ. If this hitting set is a generating set of A, the244

2Note that in the case of finite quasigroups, the closure 〈S〉 in Algorithm 1 can be
calculated by closing the set S under multiplications only, cf. Lemma 2.1.

10



Algorithm 1: Minimal Generating Set

input : finite algebra A
output: minimal subset S of A s.t. 〈S〉 = A

1 Γ← ∅ // collected subcomplements

2 while true do
3 S ← minimal hitting set of Γ
4 if 〈S〉 = A then
5 return S // S is generating

6 Γ← Γ ∪ {extractSubcomplement(A, S)}

algorithm stops and we are done. Otherwise, we construct a new subcom-245

plement (see below) and add it to the set Γ.246

The minimum hitting set problem for a set of sets Γ is readily translated247

into an integer linear program (ILP) as follows.248

min
∑
x∈A

x subject to

x ∈ {0, 1} for every x ∈ A,∑
x∈C

x ≥ 1 for every C ∈ Γ.

We remark that calculating the smallest hitting set is a well-known NP-249

complete problem [29], which warrants the use of ILP. Also observe that the250

ILP program is always feasible since setting all x ∈ A to 1 trivially satisfies251

all the constraints. Due to Proposition 4.1, any generating set of A must be252

a hitting set of Γ and the fact that it is a smallest hitting set guarantees that253

it is a minimal generating set, once found.254

An important ingredient of Algorithm 1 is how to enlarge the set Γ of255

subcomplements while S ⊆ A is under consideration. In the pseudocode,256

this is encapsulated by the routine extractSubcomplement.257

The most direct approach is to add the subcomplement A r 〈S〉 to Γ.258

However, to speed up the algorithm, we attempt to calculate a smaller sub-259

complement instead. Adding a smaller subcomplement to Γ restricts more260

strongly future hitting sets S and therefore increases our chance of finding a261

generating set or may speed up the demonstration of non-existence thereof.262
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Algorithm 2: Subcomplement minimization

input : finite algebra A and S ⊆ A
output: subcomplement C ⊆ Ar 〈S〉

1 E ← Ar 〈S〉 // possible extensions

2 while E 6= ∅ do
3 x← arbitrary element of E
4 if 〈S ∪ {x}〉 = A then
5 E ← E r {x} // S ∪ {x} already generating

6 else
7 S ← S ∪ {x}
8 E ← Ar 〈S〉

9 return Ar 〈S〉

A smaller subcomplement can be found by trying to extend the set S263

by some element x ∈ A r 〈S〉 and check that it still does not generate the264

whole of A. And if it does not, we use the subcomplement of this extended265

S instead. This process is repeated until there are no more elements to try.266

This procedure is summarized in Algorithm 2.267

In essence, Algorithm 2 is greedy and does not guarantee to produce the268

smallest possible subcomplement but it does guarantee that it is irreducible269

in the sense that removing any element from it makes the extended S already270

generating.271

Note that Algorithm 2 requires O (|Ar 〈S〉|) tests 〈S ∪ {x}〉 6= A. Since272

〈S〉 6= A is anti-monotone with respect to S, more advanced procedures can273

be considered [30].274

Example 4.2. As a toy example consider the Klein four-groupA = {e, a, b, c},275

which is abelian and has rank 2. The product is defined by the following rules:276

ex = xe = x, xx = e, and in other cases yz = w with w 6= y, w 6= z, w 6= e.277

Calling the ILP solver on the initial empty Γ yields empty S as the mini-278

mal hitting set, i.e. its subcomplement is the whole of A. Algorithm 2 reduces279

the subcomplement’s size as follows. Suppose Algorithm 2 attempts to ex-280

tend S with elements of A in the order e, a, b, c. Since 〈S∪{e}〉 = 〈{e}〉 = {e},281

the element e is kept. Analogously, a is also kept. Extending with either of282

b, c already gives a generating set and therefore these will not be inserted into283

S. Hence, we are left with the subcomplement A \ 〈{e, a}〉 = {b, c}. This284
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means that after the 1st iteration of Algorithm 1, the set Γ is {{b, c}}.285

Suppose that in the 2nd iteration the ILP solver returns S = {b} with286

〈S〉 = {b, e}. In this case, Algorithm 2 is unable to extend S because adding287

any element already generates A. Hence, after the 2st iteration of Algo-288

rithm 1, the set Γ is {{b, c}, {a, c}}.289

In the 3nd iteration, the ILP solver necessarily returns S = {c}. Sim-290

ilarly as before, Algorithm 2 does not extend S. The set Γ increases to291

{{b, c}, {a, c}, {a, b}}. At this point, at least 2 elements are necessary to292

construct a hitting set of Γ, i.e., the lower bound on the rank of A is 2.293

Suppose that the solver picks the hitting set S = {a, b}, which is gen-294

erating and we have an answer. In this example, any hitting set will be295

generating but this might not be true in general.296

5. Experimental Evaluation297

We consider the problem of computing the generating set of smallest298

cardinality for a finite magma. As such, Algorithm 1 was implemented in299

the tool mgens. Two versions of mgens were considered. The first version300

computes the minimal hitting set on line 3 of Algorithm 1 iteratively using a301

SAT solver together with encodings of cardinality constraints into CNF. The302

SAT solver used was the CaDiCaL [31] solver using the library PBLIB [32]303

to encode the cardinality constraints into CNF. The second version of mgens304

takes advantage of the capabilities of an ILP solver to natively optimize a305

cost function to compute the minimal hitting set. The ILP solver used was306

the Gurobi [33] solver. In the experiments, we refer to the version of mgens307

using the SAT solver with cardinality constraints as mgens-iter, while the308

version using the ILP solver as mgens-opt.309

Additionally, we have implemented a brute-force search that exhaustively310

tests for each subset of the elements whether it is generating or not. The311

search goes systematically from smallest to largest subsets and terminates312

once a generating set is found. In the experiments, we refer to the brute-313

force search as mgens-bf.314

The experiments were run on a set of Moufang loops (see Section 3) and315

products of Moufang loops with the groups of order 8 and 9. We considered316

all Moufang loops from the package LOOPS [20] of GAP. The package contains317

all nonassociative Moufang loops of order n ≤ 64 = 26 and of orders n =318

81 = 34 and n = 243 = 35. Note that no efficient methods for calculating319

the rank of (general) Moufang loops are known. A total of 4497 Moufang320
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loops were used. There are 5 groups of order 8 and 2 groups of order 9. The321

total number of products between Moufang loops and groups, order 8 and 9,322

amounts to 31479. We divided the benchmarks into four sets as follows:323

• Moufangs — all the considered Moufang loops (4497 instances),324

• Moufangs × G8.1 — the product between the Moufang loops and325

the cyclic group of order 8 denoted as 8.1 (4497 instances),326

• Moufangs × G8 — the product between the Moufang loops and the327

groups of order 8 (22485 instances),328

• Moufangs × G9 — the product between the Moufang loops and the329

groups of order 9 (8994 instances).330

Note that the set Moufangs × G8 includes the instances Moufangs ×331

G8.1. Nevertheless we present the results for the set Moufangs × G8.1 in332

order to be able to compare the different implementations. Given the large333

number of benchmarks in Moufangs × G8, we obtain results for this set of334

benchmarks using only our best implementation, that is mgens-opt.335

All the experiments were performed on servers with Intel(R) Xeon(R)336

CPU at 2.60GHz, 24 cores, 64GB RAM with a timeout of 600 seconds.337

Table 1 presents the number of solved instances by each of the versions of338

mgens grouped by the reported rank. The table suggests several interesting339

observations. When multiplying the Moufang loops by the cyclic group of340

order 8, the rank of the loops almost always goes up (by 1). For instance,341

there are 780 Moufang loops of rank 3 but only 100 of the products have342

rank 3. Notably, all of the loops of rank 5 lead to a product of rank 6.343

Since the rank of the considered Moufang loops is at most 5, the maximum344

possible rank is 8, which is obtained in products with the elementary abelian345

group of order 8 (rank 3). Table 1 shows that this happens in all 80 cases.346

As can be seen from the table, mgens-opt solves the largest number of347

benchmarks, being able to solve instances with bigger ranks. On the other348

hand, the brute-force search algorithm mgens-bf solves the least number of349

instances, having difficulties solving instances with rank 4 or higher. Ad-350

ditionally, we can also see from the table that all the versions are able to351

solve all the Moufang loop benchmarks, while for product benchmarks, only352

mgens-opt is able to solve the majority of the benchmarks followed by mgens-353

iter.354
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Benchmark set Rank Total mgens-opt mgens-iter mgens-bf

Moufangs 3 780 780 780 780
4 3637 3637 3637 3637
5 80 80 80 80

Moufangs × G8.1 3 100 100 100 100
4 698 698 646 45
5 3619 3619 4 0
6 80 80 0 0

Moufangs × G8 3 361 361 n/a n/a
4 875 875 n/a n/a
5 5693 5634 n/a n/a
6 11616 11441 n/a n/a
7 3860 3832 n/a n/a
8 80 79 n/a n/a

Moufangs × G9 3 1440 1440 1440 1440
4 7300 7300 6927 34
5 237 237 0 0
6 17 17 0 0

Table 1: Number of instances solved per solver with the corresponding rank.

Figure 2 offers a more detailed presentation of the results, where the re-355

sults are presented as cactus plots. A cactus plot shows how many instances356

are solved within a specific timeout. The plot is obtained by ordering prob-357

lem instances by CPU-time needed to solve the instance (in increasing order).358

Then, each point in the plot corresponds to a problem instance where the359

horizontal coordinate is its position in this sequence and the vertical coor-360

dinate is CPU-time. Additionally, each of the points in the cactus plots is361

colored according to the rank of the instance.362

Figure 2 (a) confirms that all the versions of mgens are able to solve all363

the Moufang loop benchmarks. Nevertheless, mgens-opt is able to solve all364

the benchmarks in less than 10 seconds while, mgens-iter takes less than 40365

seconds, and mgens-bf requires slightly more than 100 seconds.366

From Figure 2 (b) and (d), we can see that mgens-opt is the fastest version367
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with the highest number of benchmarks solved, solving the majority of these368

instances in less than 100 seconds, followed by the version mgens-iter. The369

slowest version is mgens-bf that is able to solve less than a quarter of the370

benchmarks within the timeout.371

Finally, from Figure 2 (c) we can see that mgens-opt is able to solve the372

majority of the benchmarks with less than 100 seconds each, many of them373

with rank 7. The plots confirm that loops with higher rank are more difficult374

to calculate, which is only natural since for a loop A of order n, the algorithm375

needs to rule out
∑

k∈1..r(A)−1
(
A
k

)
possible candidates for a generating set.376

In our experiments, ILP clearly outperforms SAT. Possible justification377

for this might be that modern SAT solvers are anchored in propositional378

resolution [34] and proving the optimality of a hitting set in propositional379

resolution may lead to exponential refutations [35].380

5.1. Difficult Instances381

Out of the 35976 instances considered in the evaluation we were left with382

263 unsolved. We tackled these instances as follows. Recall that Algorithm 2383

is used to minimize a subcomplement in every iteration of the principal algo-384

rithm (Algorithm 1). Algorithm 2 has a random component because exten-385

sion elements can be tried in an arbitrary order. We reran the algorithm with386

randomly shuffled order of elements, which have solved new 193 instances,387

leaving 66 unsolved. This observation gives us a simple way of tackling a388

hard instance by trying different random orders—controlled by a seed for389

the pseudorandom generator.390

For the 66 unsolved instances we tried 10 different seeds with a 60 second391

timeout, resolving further 46 instances. So in the end, we were left with 20392

instances not solved by our algorithm. However, since they were all of order393

512 = 29 we were able to apply Theorems 3.3 and 3.4 (applicable to Moufang394

loops of order that is a power of some prime number).395

All the instances that required solving by hand had rank 7 except in one396

case where the rank was 6 and one case of 8. Further, all these instances397

resulted from a product of a Moufang loop of order 64 with the elementary398

Abelian group of order 8. This is not surprising because this group has399

rank 3 and therefore has the potential of substantially increasing the rank of400

the product. We have also tested running our algorithm on these instances401

with an enforced lower bound 7 on the rank and then the algorithm always402

terminated, i.e., providing a witness for the generating set whose size we have403

determined theoretically.404
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Figure 2: Cactus plots for different sets of instances using the solvers mgens-iter,
mgens-opt and mgens-bf
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6. Conclusions405

The article tackles the problem of calculating the rank of a given magma,406

which translates to calculating the smallest generating set of the magma. To407

the best of our knowledge, no other algorithm for this problem is known.408

It is easy to see that the problem is in NP but converting it to SAT is409

impractical because we are unaware of an encoding better than cubic. Rather410

than converting to a single NP-hard problem, we propose an algorithm that411

solves a series of (easier) NP-hard problems.412

As a case study, we have considered a set of Moufang loops as well as their413

products with groups. In this way, we have obtained algebraically interesting414

magmas. Random magmas typically have rank 1 and therefore would not be415

interesting for our study.416

The experimental results show that this approach is surprisingly effective.417

We are able to solve instances with magmas of order 512 and rank 8. Since418 (
512
8

)
≈ 1017, any brute-force approaches are ruled out for such cases. On the419

theoretical side, we have also shown that for Moufang loops of prime power420

order it is possible to convert the problem to a calculation of the Frattini421

subgroup of a larger permutation group.422

It is an open problem why the algorithm performs so well on the consid-423

ered instances. In particular, despite the problem being in NP, it is practically424

efficient to solve it by Algorithm 1, which may require exponential number425

of calls to an NP oracle. One may therefore ask, if there is a theoretical426

justification why our algorithm works so well. Such justification cannot be427

entirely trivial because the subcomplements are necessarily large in our case428

(see Corollary 3.7).429

We believe that the results themselves will be interesting for algebraists.430

For instance, the rank of a product of two magmas is upper bounded by the431

sum of the ranks of the operands. However, in some cases the rank of the432

product is lower than the sum. This behavior is not characterized and our433

results provide data to help forming new hypotheses in that direction.434
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groups, rings, and fields, Quaestiones Mathematicae 30 (3) (2007) 355–457

363. doi:10.2989/16073600709486205.458

[8] F. Mengazzo, The number of generators of a finite group, Irish Math.459

Soc. Bulletin 50, http://www.irishmathsoc.org//bull50/ (2003).460

[9] A. Lucchini, The largest size of a minimal generating set of a finite461

group, Archiv der Mathematik 101 (1) (2013) 1–8. doi:10.1007/462

s00013-013-0527-y.463

[10] A. Lucchini, F. Menegazzo, Computing a set of generators of minimal464

cardinality in a solvable group, Journal of Symbolic Computation 17 (5)465

(1994) 409–420. doi:10.1006/jsco.1994.1027.466

[11] J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2) (2002)467

145–205. doi:10.1090/S0273-0979-01-00934-X.468

[12] R. H. Bruck, A survey of binary systems. Gruppentheorie Ergebnisse der469

Mathematik und ihrer Grenzgebiete, Vol. 20, Springer Verlag, Berlin-470

Göttingen-Heidelberg, 1958.471

19

https://doi.org/https://doi.org/10.1006/jcss.1996.0058
https://doi.org/https://doi.org/10.1006/jcss.1996.0058
https://doi.org/https://doi.org/10.1006/jcss.1996.0058
https://doi.org/10.1017/s1446788700001312
https://doi.org/10.1017/s1446788700001312
https://doi.org/10.1017/s1446788700001312
https://doi.org/10.1007/11940128_25
https://doi.org/10.1007/11940128_25
https://doi.org/10.1007/11940128_25
https://doi.org/10.2989/16073600709486205
http://www.irishmathsoc.org//bull50/
https://doi.org/10.1007/s00013-013-0527-y
https://doi.org/10.1007/s00013-013-0527-y
https://doi.org/10.1007/s00013-013-0527-y
https://doi.org/10.1006/jsco.1994.1027
https://doi.org/10.1090/S0273-0979-01-00934-X
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