DISTANCES OF GROUPS OF PRIME ORDER

PETR VOJTECHOVSKY

1. INTRODUCTION

Let G be a finite set with n elements, and G(o), G(*) two groups defined on
G. Their (Hamming) distance is the number of pairs (a,b) € G x G for which
aob# axb. Let us denote this value by dist(G(o), G(%)).

It is not difficult to show that dist(_,_) is a metric on the set of all groups
defined on G. In fact, when G,, G,, are two groups of different orders n and m,
respectively, and dist(G,,, Gy,) is defined simply by maxz{n?,m?}, then dist(_,_) is
a metric on all finite groups (defined on some fixed sets).

Similar ideas were first introduced by L. Fuchs in [8]. He asked about the max-
imal number of elements, which can be deleted at random from a group multipli-
cation table M, so that the rest of M determines M up to isomorphism, or even
allows a complete reconstruction of M. These two numbers have been denoted by
kl(M) and kQ(M)

J. Dénes shows in [1] that k(M) = 2n— 1, not including abelian groups of order
4 and 6. His proof (published also in [2]) was fixed by S. Frische in [7]. She also
found correct values of ko (M) for abelian groups of order 4 and 6 — these are equal
to 3 and 7. Surprisingly, the value of ko (M) does not depend on structure of M at
all.

Definition 1.1. Let G(o) be a group. Then

§(G(0)) = min{dist(G(e), G(%)); G(x) # G(o)}
is called Cayley stability of G(o). In similar manner, put

1(G(0)) = min{dist(G (o), G(*)); G(+) ~ G(c) # G(+)},
v(G(0)) = min{dist(G (o), G(+)); G(x) # G(o)},

and call these numbers Cayley stability of G(o) among isomorphic groups, Cayley
stability of G(o) among non-isomorphic groups, respectively. Note that v(G(o)) is
defined only when n is not a prime.

Definition 1.2. Let f : H — K be a mapping between two groups H, K.
Distance of f from a homomorphism is the number my of pairs (a,b) € H x H at
which f does not behave as a homomorphism, i.e. f(ab) # f(a)f(b).

When both operations o and * are fixed, and ¢ is an element of GG, we shall use
d(g) to denote the cardinality of {h € G;goh # g h}.
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2. SOME KNOWN FACTS

Relatively few facts are known about v(G(0)). One can prove that v(FEgn) =
227=2 where Fan is the elementary abelian 2-group of order 2" (see [5]). More
generally, when G(o), G(x) are two groups of order n with d(G(o),G(x)) < n?/4,
then their Sylow 2-subgroups must be isomorphic (see [6]).

The Cayley stability is known for any group G(o) of order n > 51 (main result
of [4]), and is equal to do(G(0)), where, using words of [3],

6n — 18 if n is odd,
Jo(G(0)) = S 6n —20 if G(o) is dihedral of twice odd order,
6n — 24 otherwise.

Cayley stability of G(o) is less than or equal to do(G(0)) whenever n > 5 (for more
details see 2.3). Moreover, the nearest group G(*) must be isomorphic to G(o). As
2.3 says, when f : G(o) — G(x) is an isomorphism, then f is a transposition. This
means that pu(G(o)) < v(G(o)) holds for all groups of order at least 51. However,
1(G(0)) < v(G(0)) is not true in general; the exceptions embrace the elementary
abelian 2-group of order 8 and the group of quaternions of order 8. This is shown
in [9], section 8. The biggest group found so far, for which §(G(0)) # do(G(0)) is
the cyclic group of order 21 (see [9], p.36).

Our goal is to prove that §(G(o)) = 6p— 18 for each prime p greater than 7 (note
that §(G(o)) < 6p — 18 holds for each p > 7). In order to achieve this we need the
following propositions:

Lemma 2.1. Suppose that G(o), G(x) are two groups of order n, and aob # a*b
for some a, b € G. Then d(a) 4+ d(b) + d(aob) > n.

Proof. [9] lemma 2.10, or, more generally, [4] lemma 2.4. O

Proposition 2.2. Let G(o), G(x) be two groups. Put K = {a € G;d(a) < n/3},
and assume that |K| > 3n/4. Define a mapping f : G — G by f(g) = axb for
any g € G, a,be K, g=aob. Then f is an isomorphism of G(o) onto G(x), and
f(a) = a for each a € K. Moreover, f(g) # g for any g € G with d(g) > 2n/3.

Proof. [4] proposition 3.1. O

Proposition 2.3. Let G(o) be a finite group of order n > 5. Then there exists
a transposition f of G(o) with my = §o(G(0)). Furthermore, my > 6o(G(0)) for
any transposition f of G. Finally, if n > 12, and f is such a permutation of G
that n > |{g € G; f(g9) = g}| > 2n/3, then my > §o(G(0)), and f is a transposition
whenever my = §o(G(0)).

Proof. [4] proposition 7.1. O

Lemma 2.4. Assume that G(o), G(x) are two isomorphic groups of order n > 7
satisfying dist(G(o), G(x)) < 6n — 18. Then we have 1g(o) = la()-

Proof. Let e = 1g(o), f = lg(+)- Assume that e # f. We would like to prove that
d = dist(G(0), G(x)) > 6n — 18.

Put E = {(a,b) € GxG; {e, f}Nn{a,b} # 0}. We show that aob # a*b for any
(a,b) € E. When a = e, we have aob = b, and a*b # b, since a # f. All remaining
cases follow from symmetry.
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For any a € G denote by a™!, a* the inverse element of a in G(o), G(x), respec-
tively. Define I = {a € G; a~! = a*}.

We prove that d(a) >4 forany a € I, a & {e, f}. Let M = (e, f,a™t, a o f)
be an ordered set. Note that all elements of M are distinct. Hence also ao M = (a,
aof,e, fyand ax M = (axe, a, f,a* (a"t o f)) are four-element sets. Moreover,
each two respective elements of a o M and a * M are different.

If a € I and b € G are such that aob = a*xb = ¢, we have a* oc # a* % c.
Otherwise b=a**a*b=a**c=a*oc# a ' oc=b, a contradiction. This means
that d(a) + d(a*) > n for any a & I.

Let ¢ = |I]. We need to consider three possible cases.

(t)LetegI, fEI. Ifi>n—4, wehaved>4(n—4)+2n =6n—16 > 6n—18.
On the other hand, if i <n—5, then d > (n—1i)n/2+4i = n*/2+i(4—n/2). Since
n > 7, we can conclude that d > n?/2+ (n —5)(4 —n/2) = 13n/2 — 20 > 6n — 18.

(i) Let |{e, f}NI| = 1. If i > n—3, then again (however, the reason is different)
d>4(n—4) 4 2n. For i <mn —4, one can see that d > (n —i)n/2+4(i— 1) +n =
n?/2+i(4—n/2)—4+n>n?/2+(n—4)4—-n/2) —4+n="Tn—20>6n—18.

(¢i7) Finally, let {e,f} C I. If i > n — 2, we have d > 4(n — 4) 4+ 2n. If
i<n-—3, thend > (n—i)n/2+4(i —2)+2n =n?/2 +i(4 —n/2) — 8+ 2n >
n?/2+ (n—3)(4 —n/2) —8+2n = 15n/2 — 20 > 6n — 18.

This proof can be found in [9]. O

Unfortunately, also some use of computers is needed in two special cases.

3. BASIC ESTIMATES

From now on suppose that G(o), G(x) are two distinct groups of prime order
p > 7. Let us denote by H the set of all rows in multiplication table of G(o) at
which operations o and * completely agree, i.e. H = {g € G;d(g) = 0}. Assume
that H is not empty, and a, b belong to H. Then (a*xb)og = (aob)og = ao(bog) =
ao(bxg)=ax(bxg)=(axb)*g=(aob)xg, which shows that H is a common
subgroup of G(o) and G(x).

According to lemma 2.4, H is never empty, when dist(G (o), G(x)) < 6p — 18.
Because there are no non-trivial subgroups in Z,, H must be the one element
subgroup 1 = 1go) = lg(x), since G(o), G(*) are distinct.

Put m = min{d(g); g # 1}. We know that m > 0. The case m = 1 is impossible,
hence m > 1. In fact, as the following lemma shows, m > 2.

Lemma 3.1. Let G(o), G(x) be two groups of odd order n. Then d(g) # 2 for any
geaqG.

Proof. Let m : G — G be a left translation by ¢g in G(o), and 0 : G — G
a left translation by ¢ in G(*). Then goa # g a if and only if 7(a) # o(a), i.e.
7 loo(a) # a.

Suppose that d(g) = 2. This means that 7= o is a transposition. In particular,
sgn(r~too) = —1. But sgn(m) = sgn(r)" = sgn(n™) = sgn(id) = 1, and a similar
argument shows that also sgn(c) = 1, a contradiction. (I

Suppose, for a while, that m > 6. Then dist(G(o),G(x)) > 6(n — 1) > 6n — 18,
and we can see that this case is not interesting.

Some additional theory is needed for m = 3, 4, 5.

We use symbol [z] to denote the smallest integer k such that « < k.
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Proposition 3.2. Let G(o),
either dist(G(o), G(x)) > 0o(G
G(

dist(G(o),

G(x) be two distinct groups of order n > 5. Then

(0)), or
%)) = [n/4][n/3] + (n — [n/4] = 1)m

Proof. Put K = {a € G;d(a) < n/3}.

(¢) Suppose that |K| > 3n/4. By 2.2 there is an isomorphism f : G(o) — G(x)
such that f(a) = a for each a € K. If n < 12, then we have |K| > 3n/4 > n — 3.
Therefore f must be a transposition, and dist(G(o), G(x)) = my > §o(G(0)) follows
by 2.3. If n > 12, then dist(G (o), G(x)) > do(G (o)) follows at once from 2.3, because
n > |K| > 3n/4 > 2n/3.

(i4) Now, let |K| < 3n/4. We show that there are at least [n/4] elements
g with d(g) > [n/3]. Assume the contrary, i.e. assume that there are at least
n — [n/4] + 1 elements g with d(g) < [n/3], so also with d(g) < n/3. However,
n — [n/4] +1 > 3n/4, a contradiction with |K| < 3n/4. O

Proposition 3.3. Let G(o), G(x) be as in previous proposition. Let’s choose h € G
such that d(h) = m, and hg,...,hm—_1 are pairwise different elements satisfying
hoh; # hxh; fori=0,...,m—1. Further suppose there is an [-element subset Y
of {hoy- .., hm—1} such that Y NhoY = 0. Then either dist(G(o),G(x)) > 6n—18,
or we get

(1) dist(G(0),G(x))
(2)  dist(G(0),G(x))

provided [n/4] — 20 > 0.

Iln—m)+ (n—20—1)m,and
I(n—m)+ ([n/4] —20)[n/3] + (n — [n/4] — 1)m

2
2

Proof. Let us keep the notation of 3.2. If |K| > 3n/4, then dist(G(o),G(x)) >
Jo(G(0)) follows in the same way as in 3.2. When |K| < 3n/4, we have at least
[n/4] elements g € G for which d(g) > [n/3]. Without loss of generality, put
Y ={hg,...,hi—1}. According to 2.1, we get
d(h) + d(h;) + d(h o h;) > n,or in other words
d(h;) +d(hoh;) >n—mforeachi=0,...,1 —1.

This immediately proves (1). In order to prove (2), notice there are at least [n/4] —
2l rows in K not belonging to Y UhoY. (]

Corollary 3.4. When G(o) is a group of prime order p > 31, then 6(G(o)) =
6p — 18.

Proof. Let G(x) be the nearest group to G(o). Since m > 3, it is easy to see that we
can always find a set Y (from 3.3) such that it has at least two elements. Inequality

(2) gives
dist(G(e), G(x)) = 2(p —m) + ([p/4] = 4)[p/3] + (p — [p/4] = I)m
Observe that its right hand side is increasing in m. For m = 3 we obtain
dist(G(e), G(x)) = 5p — 9+ ([p/4] — 4)[p/3] — 3[p/4],

and one can check that the expression on the r.h.s. is for p > 31 always greater
than 6p — 18 (consider p in form 12r + s, say). O
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4. CASEm =25

Estimate (1) from 3.3 turns out to be strong enough when m = 5. Let us denote,
for convenience, the powers of any h in G(o) by h". For example, h? = h o h.

Lemma 4.1. Let G(o), G(x) be two distinct groups of prime order p > 7, and
suppose that m = 5. Then dist(G(o), G(x)) > 6p — 18.

Proof. Denote by h one of the rows for which d(h) = 5. Suppose that hio, ht
hiz, hs, h' are pairwise different elements with h o h%7 # hx hii, j = 0,...,4,
where i < i1 < i3 < i3 < 44 < p. We can suppose that i > 0 (otherwise
dist(G(o), G(x)) > 6p — 18 follows from 2.4).

We would like to find a 3-element subset Y of {h%, hit hiz hs hi} satisfying
Y NhoY = {. Clearly, hiot! £ b2, h#4. As iy > 0, we have also hf2t!, piatl £ pio,
Finally, h'2+1 2 hit and Y = {h% h®2 hi4} is such a subset. By (1) we know that

dist(G(0), G(*)) > 3(p — 5) + (p — 7)5 = 8p — 50,

and 8p — 50 is less than 6p — 18 only when p < 16, i.e. p < 13.
But when p < 13 we have dist(G(o), G(x)) > 5p — 5 > 6p — 18. O

5. CASES m =4, m =3

Proposition 5.1. For any two distinct groups G(o), G(x) of prime order p > 19
with m = 4 we have dist(G(o), G(x)) > 6p — 18.

Proof. Assume there is a 3-element subset Y from 3.3. Then (1) yields
dist(G(0), G(x)) > 3(p—4) + (p — 7)4 = Tp — 40,

and 7p — 40 is less than 6p — 18 only when p < 22, i.e. p < 19. We cannot improve
this result by using estimate (2), since [p/4] > 20 = 6 if and only if p > 21.

It is not always feasible to find a 3-element subset Y of {h%, kit hiz A%} with
Y NhoY = (). One can show by tedious elementary methods that this is not feasible
if and only if 43 = ig + 1 and i3 = i3 + 1. However, in such a case we can show
that the transposition f = (A%, h%) is an isomorphism of G(o) onto G(x) (detailed
proofs are given in [9] 4.18, 4.19). Our wanted estimate then follows from 2.3. O

There is no such estimate for m = 3. We need more information about the group
operation .

Lemma 5.2. Let G(o), G(x) be two groups of odd order n, and let h be a common
generator of G(o), G(x) with d(h) = 4. Denote by h'o, h't, h'2, h% the pairwise
different elements for which ho h¥ # hxh%, 7 =0,...,3, where ig < i1 < iy < i3.
Then hxh'o = hoh®2, hxh'2 =hoh®™, hxh't =hoh®, and h* h*® = ho h1

Proof. Let m, o be as in the proof of 3.1. Then 7~ ! o ¢ is either a 4-cycle, or
a composition of two independent transpositions. In fact, 7' o ¢ cannot be a 4-
cycle, because sgn(m~! o) = 1. It is not difficult to observe that =1 o o must be
a permutation (g, i2)(i1,13). ]

We can depict the situation as follows:

T T
~—__
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For m = 3, the appropriate picture is (without proof):

AT TN N

*r———

\_/

Now we have enough information to write efficient computer programs in order
to solve all remaining cases — we only need to consider situations when m = 4 and
T<p<l19,orm=3and 7 < p<3l.

We will not give a concrete implementation of requested algorithms (which can
be found in [9]), but we describe these algorithms in words instead.

Suppose that p is a prime between 7 and 19. We would like to modify the
canonical multiplication table of Z, = G(o) in all possible ways, such that the
resulting table will be a multiplication table of some group G(*) satisfying m = 4
(the other case m = 3 is similar), and then check that dist(G(o), G(x)) > 6p — 18.

By lemma 2.4, the first row and the first column of G(o) remain unchanged. We
choose some row h # 0 in G and modify it at four places 0 < ig < i1 < iy < i3 < p.
According to 5.2, this modification is given by permutation (g, i2)(i1, i3), otherwise
we never get a group multiplication table.

It is worth to point out that we do not need to go through all choices of h € G.
In fact, we can fix only one row (a detailed explanation of this fact can be found
in [9], 4.1). This trick speeds up the algorithm p — 1 times, and hence it is not
essential.

Once we know one row of multiplication table of G(x), we can build up G(x)
fully, because each non-zero element of Z,, is a generator.

6. MAIN RESULT

The algorithm described in section 5 does not find any pair of groups G(o), G(x)
with dist(G (o), G(x)) < 6p — 18, which, together with all previous results, means
that:

Theorem 6.1. Fach group of prime order p > 7 has Cayley stability equal to
6p — 18.

Note that there are two groups G(o), G(

x) of order 7 with d(G(0),G(x)) =18 <
24 — counsider isomorphism f : G(o) — G(x*

) given by
01 2 3 4 5 6
0145 2 3 6)’°
so the estimate p > 7 in 6.1 cannot be improved. These two groups are the nearest
possible groups of order 7 — in other words, §(Z7) = 18.
It is easy to check that 0(Z2) = 4 and 6(Z3) = 9. Computation reveals that

d(Zs) = 12. Here, the group nearest to Zs is obtained via transposition (2, 3), for
example.

REFERENCES

[1] J. Dénes, On problem of L. Fuchs, Acta Sci. Math. (Szeged) 23 (1962), 237-241

[2] J. Dénes, A. D. Keedwell, Latin Squares and their Applications, Akadémiai Kiad6, Budapest,
1974.

[3] Diane Donnovan, Sheila Oates-Williams, Cheryl E. Praeger, On the Distance between Distinct
Group Latin Squares, Journal of Comb. Designs 5 (1997), 235-248.



DISTANCES OF GROUPS OF PRIME ORDER 7

[4] Ales Drépal, How Far Apart Can the Group Multiplication Tables be?, European Journal of
Combinatorics 13 (1992), Academic Press Limited, 335-343

, On Distances of Multiplication Tables of Groups, (to appear).

, Non-isomorphic groups coincide at most in three quarters of their multiplication
tables, (to appear).

[7] S. Frische, Lateinische Quadrate, diploma thesis, Vienna, 1988

[8] L. Fuchs, Abelian Groups, Akadémiai Kiad4, Budapest, 1958

[9] Petr Vojtéchovsky, On Hamming Distances of Groups, Master Degree thesis (in Czech),
Charles University, 1998

(5]
[6]

DEPARTMENT OF ALGEBRA, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY,
SOKOLOVSKA 83, PRAGUE, CZECH REPUBLIC

Current address: Department of Mathematics, lowa State University, Ames, IA, U.S.A.

E-mail address: petr@iastate.edu



