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Abstract. Evolution algebras are not necessarily associative algebras
satisfying eiej = 0 whenever ei, ej are two distinct basis elements. They
mimic the self-reproduction of alleles in non-Mendelian genetics. We
present elementary mathematical properties of evolution algebras that
are of importance from the biological point of view.

Several models of Mendelian [2, 4, 12, 6, 8, 11] and non-Mendelian genetics
[1, 5] exist. Based on the self-reproduction rule of non-Mendelian genetics
[1, 7], the first author introduced a new type of algebra [10], called evolution
algebra. In this paper we discuss some basic properties of evolution algebras.

1. Evolution algebras and subalgebras

Let K be a field. A vector space E over K equipped with multiplication
is an algebra (not necessarily associative) if u(v +w) = uv +uw, (u+ v)w =
uw + vw, (αu)v = α(uv) = u(αv) for every u, v, w ∈ E and α ∈ K.

Let {ei; i ∈ I} be a basis of an algebra E. Then eiej =
∑

k∈I aijkek

for some aijk ∈ K, where only finitely many structure constants aijk are
nonzero for a fixed i, j ∈ I. The multiplication in E is fully determined by
the structure constants aijk, thanks to the distributive laws.

Let E be an algebra. Then F ⊆ E is a subalgebra of E if F is a subspace
of E closed under multiplication.

It is not difficult to show that the intersection of subalgebras is a subal-
gebra. Thus, given a subset S of E, there is the smallest subalgebra of E
containing S. We call it the subalgebra generated by S, and denote it by 〈S〉.
As usual:

Lemma 1.1. Let S be a subset of an algebra E. Then 〈S〉 consists of all
elements of the form α1(s1,1 · · · s1,m1)+ · · ·+αk(sk,1 · · · sk,mk

), where k ≥ 1,
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mi ≥ 0, si,j ∈ S, αi ∈ K, and where the product si,1 · · · si,mi is parenthesized
in some way.

An ideal I of an algebra E is a subalgebra of E satisfying I · E ⊆ I,
E · I ⊆ I. Clearly, 0 and E are ideals of E, called improper ideals. All other
ideals are proper. An algebra is simple if it has no proper ideals.

An evolution algebra is a finite-dimensional algebra E over K with basis
{e1, . . . , ev} such that aijk = 0 whenever i 6= j. Upon renaming the structure
constants we can write eiei =

∑v
j=1 aijej . We refer to {e1, . . . , ev} as the

natural basis of E. An evolution algebra is nondegenerate if eiei 6= 0 for
every i. Throughout the paper we will assume that evolution algebras are
nondegenerate.

The multiplication in an evolution algebra is supposed to mimic self-
reproduction of non-Mendelian genetics. We think and speak of the gen-
erators ei as alleles. The rule eiej = 0 for i 6= j is then natural, and the
rule eiei =

∑
aijej can be interpreted as follows: aij is the probability that

ei becomes ej in the next generation, and thus
∑

aijej is the superposition
of the possible states. Nevertheless, we will develop much of the theory
over arbitrary fields and with no (probabilistic) restrictions on the structure
constants aij .

Given two elements

x =
v∑

i=1

αiei, y =
v∑

i=1

βiei,

of an evolution algebra, we have

xy =
v∑

i=1

αiei ·
v∑

j=1

βjej =
v∑

i=1

αiβie
2
i

=
v∑

i=1


αiβi

v∑

j=1

aijej


 =

v∑

j=1

(
v∑

i=1

αiβiaij

)
ej ,

a formula we will use without reference.
The natural basis of an evolution algebra plays a privileged role among all

other bases, since the generators ei represent alleles. Importantly, the nat-
ural basis is privileged for purely mathematical reasons, too. The following
example illustrates this point:

Example 1.2. Let E be an evolution algebra with basis {e1, e2, e3} and
multiplication defined by e1e1 = e1 + e2, e2e2 = −e1 − e2, e3e3 = −e2 + e3.
Let u1 = e1 + e2, u2 = e1 + e3. Then (αu1 + βu2)(γu1 + δu2) = αγu2

1 +
(αδ + βγ)u1u2 + βδu2

2 = (αδ + βγ)u1 + βδu2. Hence F = Ku1 + Ku2 is a
subalgebra of E. However, F is not an evolution algebra:

Let {v1, v2} be a basis of F . Then v1 = αu1 + βu2, v2 = γu1 + δu2 for
some α, β, γ, δ ∈ K such that D = αδ − βγ 6= 0. By the above calculation,
v1v2 = (αδ + βγ)u1 + βδu2. Assume that v1v2 = 0. Then βδ = 0 and
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αδ + βγ = 0. If β = 0, we have αδ = 0. But then D = 0, a contradiction.
If δ = 0, we reach the same contradiction. Hence v1v2 6= 0, and F is not an
evolution algebra.

We have just seen that evolution algebras are not closed under subal-
gebras. We therefore say that a subalgebra F of an evolution algebra E
with basis {e1, . . . , ev} is an evolution subalgebra if, as a vector space, it is
spanned by {ei; i ∈ I} for some I ⊆ {1, . . . , v}. The subset I determines
F uniquely, and we write F = E(I) = {∑v

i=1 αiei; αi = 0 when i 6∈ I}.
Similarly, we define an evolution ideal as an ideal I of E that happens to

be an evolution subalgebra. This concept is superfluous, however:

Lemma 1.3. Every evolution subalgebra is an evolution ideal.

Proof. Let F = E(I) be an evolution subalgebra . Let x =
∑

i∈I αiei be an
element of F and ej an allele. We need to show that xej ∈ F . When j 6∈ I
then xej = 0 ∈ F . Assume that j ∈ I. Since F is an evolution subalgebra,
ei ∈ F for every i ∈ I. Then xej = αje

2
j ∈ F , since F is a subalgebra. ¤

Not every ideal of an evolution algebra is an evolution ideal:

Example 1.4. Let E be generated by e1, e2, where e1e1 = e1 + e2 = e2e2.
Then K(e1 + e2) is an ideal of E, but not an evolution subalgebra.

An evolution algebra is evolutionary simple if if has no proper evolution
ideals (evolution subalgebras).

Clearly, every simple evolution algebra is evolutionary simple. The con-
verse it not true, as is apparent from Example 1.4.

The following theorem gives some basic properties of evolution algebras,
all easy to prove (or see [10]). Recall that an algebra is flexible if it satisfies
x(yx) = (xy)x.

Theorem 1.5. Evolution algebras are commutative (and hence flexible), but
not necessarily power-associative (hence not necessarily associative). Direct
products and direct sums of evolution algebras are evolution algebras. Evo-
lution subalgebra of an evolution algebra is an evolution algebra.

An algebra is real if K = R. An evolution algebra is nonnegative if it
is real and all structure constants aij are nonnegative. A Markov evolution
algebra is a nonnegative evolution algebra such that

∑
j aij = 1 for every

1 ≤ i ≤ v.
When E is a real algebra, let E+ = {∑αiei; αi ≥ 0}.

Lemma 1.6. Let E be a nonnegative evolution algebra. Then E+ is closed
under addition, multiplication, and multiplication by positive scalars.

Proof. Let x =
∑

αiei, y =
∑

βiei ∈ E+. Then x + y =
∑

(αi + βi)ei

clearly belongs to E+. Moreover, xy =
∑

j (
∑

i αiβiaij) ej ∈ E+, since αi,
βi, aij ≥ 0 for every i, j. It is clear that E+ is closed under multiplication
by nonnegative scalars. ¤
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2. The evolution operator

Let E be an evolution algebra with basis {e1, . . . , ev}. Since we are
mainly interested in self-reproduction, we focus on the evolution operator
Λ : E → E, which is the (unique) linear extension of the map ei 7→ e2

i .

Lemma 2.1. Let E be an evolution algebra and x =
∑

αiei. Then Λ(x) =
x2, i.e.,

∑
α2

i e
2
i = (

∑
αiei)2.

Proof. This is an immediate consequence of the fact that eiej = 0 whenever
i 6= j. ¤

When E is a real evolution algebra, we can equip it with the usual L1

norm, i.e., ‖∑
αiei‖ =

∑ |αi|. Since E is then isomorphic to Rv as a
vector space, it becomes a complete vector space with respect to the metric
d(x, y) = ‖x− y‖. In other words, E is a Banach space.

Since v < ∞, all linear operators defined on E are continuous. In par-
ticular, every left translation by z, defined by Lz(x) = zx, is a continuous
operator on E. However, due to the lack of associativity, the composition
of two left translations does not have to be a left translation.

A (not-necessarily associative) Banach algebra is an algebra that is also a
Banach space with norm ‖·‖ satisfying ‖xy‖ ≤ ‖x‖·‖y‖. Not every evolution
algebra is a Banach algebra. However:

Lemma 2.2. Let E be a real evolution algebra such that
∑

j |aij | ≤ 1 for
every i (eg. a Markov evolution algebra). Then E is a Banach algebra.

Proof. Let x =
∑

i αiei, y =
∑

i βiei. Then ‖x‖ · ‖y‖ =
∑

i |αi| ·
∑

j |βj |. On
the other hand,

‖xy‖ =

∥∥∥∥∥∥
∑

j

(∑

i

αiβiaij

)
ej

∥∥∥∥∥∥
=

∑

j

∣∣∣∣∣
∑

i

αiβiaij

∣∣∣∣∣ ≤
∑

j

∑

i

(|αiβi| · |aij |)

=
∑

i


∑

j

|aij |

 |αiβi| ≤

∑

i

|αiβi|,

and the needed inequality follows. ¤
Note that even in the case of a Markov evolution algebra we never have

‖xy‖ = ‖x‖ · ‖y‖ for every x, y, as long as v > 1. For instance, ‖eiej‖ = 0 <
1 = ‖ei‖ · ‖ej‖ when i 6= j.

Given x in an algebra E, we define the plenary powers of x by x[0] = x,
x[n+1] = x[n]x[n]. Equivalently, we can set x[n] equal to Λn(x) for any n ≥ 0.

Recall that composition of maps is an associative binary operation. Thus:

Lemma 2.3. Let E be an algebra, x ∈ E, α ∈ K, and n, m ≥ 0. Then:
(i) (x[n])[m] = x[n+m],
(ii) (αx)[n] = α(2n)x[n].

Proof. It remains to prove (ii), which is easy by an induction on n. ¤
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3. Occurrence relation

The question we are most interested in is the following: When does the
allele ei give rise to the allele ej? The phrase give rise can be interpreted in
two ways: (i) the self-reproduction of ei yields ej with nonzero probability
after a given number of generations, or (ii) the self-reproduction of ei yields
ej with nonzero probability after some number of generations.

The first interpretation is studied below, while the second interpretation
is investigated later, starting with Section 5.

Let E be an algebra with basis {e1, . . . , ev}. We say that ei occurs in
x ∈ E if the coefficient αi ∈ K is nonzero in x =

∑v
j=1 αjej . When ei occurs

in x we write ei ≺ x.

Lemma 3.1. Let E be a nonnegative evolution algebra. Then for every x,
y ∈ E+ and n ≥ 0 there is z ∈ E+ such that (x + y)[n] = x[n] + z.

Proof. We proceed by induction on n. We have (x+ y)[0] = x+ y = x[0] + y,
and it suffices to set z = y. Also, (x+y)[1] = (x+y)(x+y) = x[1] +2xy+y2.
By Lemma 1.6, 2xy + y2 = z belongs to E+.

Assume the claim is true for some n ≥ 1. In particular, given x, y ∈ E+,
let w ∈ E+ be such that (x + y)[n] = x[n] + w. Then (x + y)[n+1] = ((x +
y)[n])[1] = (x[n] +w)[1]. Since w ∈ E+ and x[n] ∈ E+ by Lemma 1.6, we have
(x[n] + w)[1] = (x[n])[1] + z = x[n+1] + z for some z ∈ E+. ¤

Proposition 3.2. Let E be a nonnegative evolution algebra. When ei ≺ e
[n]
j

and ej ≺ e
[m]
k then ei ≺ e

[n+m]
k .

Proof. We have e
[m]
k = αjej +y for some αj 6= 0 and y ∈ E such that ej 6≺ y.

Moreover, by Lemma 1.6, we have αj > 0 and y ∈ E+. By Lemma 3.1,
e
[n+m]
k = (e[m]

k )[n] = (αjej + y)[n] = (αjej)[n] + z = α
(2n)
j e

[n]
j + z for some

z ∈ E+. Now, e
[n]
j = βiei + v for some βi > 0 and v ∈ E satisfying ei 6≺ v.

We therefore conclude that ei ≺ e
[n+m]
k . ¤

The proposition does not generalize to all evolution algebras, as the fol-
lowing example shows:

Example 3.3. Let E be an evolution algebra with basis {ei; 1 ≤ i ≤ 7} such
that e1e1 = e1, e2e2 = e4, e3e3 = e5 + e6, e4e4 = e1, e5e5 = e2, e6e6 = e7,
e7e7 = −e4. Then e

[1]
2 = e2e2 = e4, e

[2]
2 = e4e4 = e1. Thus e1 ≺ e

[2]
2 . Also,

e
[1]
3 = e3e3 = e5 + e6, e

[2]
3 = (e5 + e6)2 = e2

5 + e2
6 = e2 + e7. Thus e2 ≺ e

[2]
3 .

However, e
[3]
3 = (e2 + e7)2 = e2

2 + e2
7 = e4− e4 = 0, and so e

[n]
3 = 0 for every

n ≥ 3. This means that e1 6≺ e
[n]
3 for any n ≥ 0.

4. Occurrence sets

Let ei, ej be two alleles of an evolution algebra. Then the occurrence set
of ei with respect to ej is the set Oi,j = {n > 0; ei ≺ e

[n]
j }.
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Recall that a semigroup is a set with one binary operation that satis-
fies the associative law. When E is a nonnegative evolution algebra, every
occurrence set Oi,i is a subsemigroup of ({1, 2, . . . }, +) by Proposition 3.2.

The goal of this section is to show that any finite subset of {1, 2, . . . } can
be realized as an occurrence set of some evolution algebra, and that every
subsemigroup of ({1, 2, . . . }, +) can be realized as an occurrence set of some
nonnegative evolution algebra. Hence the occurrence sets are as rich as one
could hope for.

Example 4.1. Let n > 1. Consider the evolution algebra E with generators
{e1, . . . , en+1} defined by e1e1 = e2, e2e2 = e3, . . . , en−1en−1 = en, enen =
e1 + en+1, en+1en+1 = −e2. Then e

[m]
1 = em+1 for every 1 ≤ m < n,

e
[n]
1 = e1 + en+1, and e

[m]
1 = 0 for every m > n. Thus O1,1 = {n}.

Lemma 4.2. Let S be a finite subset of {1, 2, . . . }. Then there is an
evolution algebra E such that O1,1 = S.

Proof. Let S = {n1, . . . , nm}. In the following calculations we label basis
elements of E also by ei,j ; these can be relabeled as ei at the end.

Let e1e1 = e2,1 + · · ·+ e2,m. Given 1 ≤ i ≤ m, let e2,ie2,i = e3,i, e3,ie3,i =
e4,i, . . . , eni,ieni,i = e1 + eni+1,i, eni+1,ieni+1,i = −e1e1. Thus, roughly
speaking, we imitate Example 4.1 for every 1 ≤ i ≤ m. It is now not hard
to see that O1,1 = S. ¤

A semigroup is finitely generated if it is generated by a finite subset. Here
is a well-known fact:

Lemma 4.3. Every subsemigroup of ({1, 2, . . . }, +) is finitely generated.

Proof. Let S be a subsemigroup of ({1, 2, . . . }, +). Let n be the smallest
element of S. For every 1 ≤ i < n let mi be the smallest element of S
such that mi is congruent to i modulo n, if such an element exists, else set
mi = n. We claim that A = {n, m1, . . . , mn−1} generates S. Suppose that
this is not the case and let s be the smallest element of S not generated
by A. Since s cannot be a multiple of n, there is 1 ≤ i < n such that s is
congruent to i modulo n. Then mi 6= n and mi < s. But then s = mi + kn
for some k > 0, so s ∈ A, a contradiction. ¤

Lemma 4.4. Let S be a subsemigroup of ({1, 2, . . . }, +). Then there is a
nonnegative evolution algebra E such that O1,1 = S.

Proof. Assume that S is 1-generated, i.e., that S = {n, 2n, . . . } for some
n ≥ 1. Then define E by: e1e1 = e2, e2e2 = e3, . . . , en−1en−1 = en,
enen = e1. It is easy to see that O1,1 = S.

When S is generated by m elements, say n1, . . . , nm, we can use a similar
trick as in the proof of Lemma 4.2.

Every subsemigroup of ({1, 2, . . . }, +) is finitely generated by Lemma
4.3. ¤
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Problem 4.5. Can any subset of {1, 2, . . . } be realized as an occurrence
set of some evolution algebra?

Problem 4.6. Let S be a subset of {1, 2, . . . }, |S| = n. What is the
smallest integer v such that there is an evolution algebra E of dimension v
for which S is an occurrence set?

5. Occurrence based on evolution subalgebras

We are now going to look at the second interpretation of “ei gives rise to
ej .”

Lemma 5.1. Intersection of evolution subalgebras is an evolution subalge-
bra.

Proof. Let F = E(I), G = E(J) be two evolution subalgebras of E. Then
F ∩ G = E(I ∩ J) as a vector space. Since F ∩ G is a subalgebra, we are
done. ¤

Thus for any subset S of E there exists the smallest evolution subalgebra
of E containing S, and we denote it by 〈〈S〉〉. The notation is supposed to
suggest that the evolution subalgebra generated by S can be larger than the
subalgebra generated by S.

We now define another occurrence relation as follows: For x, y ∈ E, let
x ¿ y if x ∈ 〈〈y〉〉.
Lemma 5.2. For x, y, z ∈ E we have:

(i) if x ¿ y and y ¿ x then 〈〈x〉〉 = 〈〈y〉〉,
(ii) if x ¿ y and y ¿ z then x ¿ z,
(iii) if x ¿ y[n] for some n ≥ 0 then x ¿ y.

Proof. Easy. ¤
In view of Lemma 5.2(iii), it makes no sense to speak of occurrence sets

(analogous to Oi,j) in the context of ¿, since every occurrence set would be
either empty or would consists of all nonnegative integers.

Lemma 5.3. Let F , G be evolutionary simple evolution subalgebras of E.
Then either F = G or F ∩G = 0.

Proof. Assume that there is x ∈ F ∩ G, x 6= 0. Then 〈〈x〉〉 is an evolution
subalgebra of both F and G. Since both F , G are evolutionary simple, it
follows that F = G = 〈〈x〉〉. ¤

6. Algebraically persistent and transient generators

A generator ei of an evolution algebra E is algebraically persistent if 〈〈ei〉〉
is evolutionary simple, else it is algebraically transient.

Lemma 6.1. If E is an evolutionary simple evolution algebra then it has
no algebraically transient generators.
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Proof. Assume that ei is an algebraically transient generator, i.e., that 〈〈ei〉〉
is not evolutionary simple. If E = 〈〈ei〉〉, we see right away that E is not
evolutionary simple. If 〈〈ei〉〉 is a proper evolution subalgebra of E then it
is a proper evolution ideal of E by Lemma 1.3, and E is not evolutionary
simple. ¤

The following example shows that the converse of Lemma 6.1 does not
hold (but see Corollary 7.3):

Example 6.2. Let E have generators e1, e2 such that e1e1 = e1, e2e2 =
e2. Then 〈〈e1〉〉 = Ke1, 〈〈e2〉〉 = Ke2, which means that both e1, e2 are
algebraically persistent. Yet 〈〈ei〉〉 is a proper evolution ideal of E, and hence
E is not evolutionary simple.

Lemma 6.3. Let ei be an algebraically persistent generator of E, and as-
sume that ej ≺ eiei. Then ej is algebraically persistent.

Proof. Since ej ≺ eiei, we have 〈〈ei〉〉 ⊇ 〈〈ej〉〉. But 〈〈ei〉〉 is evolutionary
simple, thus 〈〈ei〉〉 = 〈〈ej〉〉. Then 〈〈ej〉〉 is evolutionary simple, and thus ej is
algebraically persistent. ¤

7. Decomposition of evolution algebras

An evolution algebra E is indecomposable if whenever E = F ⊕ G for
some evolution subalgebras F , G of E, we have F = 0 or G = 0. An easy
induction proves that every evolution algebra can be written as a direct sum
of indecomposable evolution algebras.

Here is an indecomposable evolution algebra that is not evolutionary sim-
ple:

Example 7.1. Let E be generated by e1, e2, where e1e1 = e1, e2e2 = e1.
Then 〈〈e1〉〉 = Ke1, 〈〈e2〉〉 = E.

An evolution algebra E is evolutionary semisimple if it is a direct sum
of some of its evolutionary simple evolution subalgebras. Note that every
evolutionary simple evolution subalgebra of E can be written as 〈〈ei〉〉 for
some algebraically persistent generator of E.

Proposition 7.2. An evolution algebra E is evolutionary semisimple if and
only if all of its alleles ei are algebraically persistent.

Proof. Assume that E is evolutionary semisimple, and write E = 〈〈ei1〉〉 ⊕
· · · ⊕ 〈〈ein〉〉, where each eij is algebraically persistent. Let ej be an allele
of E. Then ej belongs to some 〈〈eik〉〉. Since 〈〈ej〉〉 is an evolution ideal of
〈〈eik〉〉 and eik is algebraically persistent, we conclude that 〈〈ej〉〉 = 〈〈eik〉〉.
Thus ej is algebraically persistent, too.

Conversely, assume that every allele of E is algebraically persistent. For
each ei let Ii = {j; ej ¿ ei}. Given i 6= j, we have either Ii = Ij or
Ii ∩ Ij = ∅, by Lemma 5.3. Thus there exists {i1, . . . , in} ⊆ {1, . . . , v} = I
such that Ii1 ∪ · · · ∪ Iin = I, and the union is disjoint. In other words,
E = 〈〈ei1〉〉 ⊕ · · · ⊕ 〈〈ein〉〉. ¤
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Here is a partial converse of Lemma 6.1:

Corollary 7.3. An indecomposable evolution algebra with no transient gen-
erators is evolutionary simple.

Let E be an evolution algebra. Partition {1, . . . , v} as I ∪ J , where
ei ∈ I if and only if ei is an algebraically persistent generator of E. Let
P (E) = {∑αiei; αi = 0 for i 6∈ I}, and T (E) = {∑αiei; αi = 0 for i 6∈ J}.
Lemma 7.4. P (E) is an evolutionary semisimple evolution subalgebra of
E.

Proof. We first show that P (E) is an evolution subalgebra. Let x ∈ P (E),
y ∈ P (E), x =

∑
i∈I αiei, y =

∑
i∈I βiei, where I is as above. Then

xy =
∑

i∈I αiβie
2
i . By Lemma 6.3, e2

i is a linear combination of algebraically
persistent generators, and hence xy ∈ P (E).

Then P (E) is evolutionary semisimple by Proposition 7.2. ¤

Observe:

Lemma 7.5. Let E(I), E(J) be evolution subalgebras of E such that E(I)
is a subalgebra of E(J). Then I ⊆ J . If E(I) is a proper subalgebra of E(J),
then I is a proper subset of J .

Thus:

Lemma 7.6. Every evolution algebra E has an evolutionary simple evolu-
tion subalgebra. In particular, P (E) 6= 0.

Proof. We proceed by induction on v. If v = 1, then E = 〈〈e1〉〉 is evolution-
ary simple. Assume that the lemma is true for v − 1. If E = E({1, . . . , v})
is evolutionary simple, we are done. Else, by Lemma 7.5, there is a proper
subset I of {1, . . . , v} such that E(I) is a proper evolution subalgebra. By
induction, E(I) contains an evolutionary simple evolution subalgebra. ¤

Every evolution algebra E decomposes as a vector space into P (E)⊕T (E),
and P (E) 6= 0, by the above lemma. Moreover, P (E) is an evolutionary
semisimple evolution algebra, and can therefore be written as a direct sum
of evolutionary simple evolution algebras 〈〈eij 〉〉.

However, the subspace T (E) does not need to be a subalgebra of E, hence
it does not need to be an evolution algebra. But we can make it into an
evolution algebra:

Let T (E) = {∑αiei; αi = 0 for i 6∈ J}. Let J∗ = J \ {j; e2
j ⊆ P (E)}.

(This will guarantee that the resulting evolution algebra is nondegenerate.)
Let T ∗(E) be defined on the subspace generated by {ei; i ∈ J∗} by eiei =∑

j∈J∗ aijej , where the structure constants aij are inherited from E. If
J∗ 6= ∅, then T ∗(E) is a nondegenerate evolution algebra. If J∗ = ∅ then all
algebraically transient generators of E vanish after the first reproduction,
and therefore have no impact, biologically speaking.
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If E1 = T ∗(E) 6= 0, we can iterate the decomposition and form P (E1),
T (E1) and T ∗(E1), etc. Eventually we reach a point n when T ∗(En) = 0,
i.e., every transient generator of En disappears after the first generation.

Let us emphasize that the decomposition of E thus obtained results in an
evolution algebra not necessarily isomorphic to E; some information may be
lost in the decomposition P (E)⊕ T (E).
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