MOUFANG PERMUTATIONS OVER SMALL ABELIAN GROUPS

DYLENE AGDA SOUZA DE BARROS

Faculdade de Matemática, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil ORCID: 0000-0001-9300-5182 E-mail: dylene@ufu.br

PETR VOJTĚCHOVSKÝ

Dept. of Mathematics, University of Denver, 2390 S. York St., Denver, CO 80208, USA ORCID: 0000-0003-3085-6611 E-mail: petr@math.du.edu

Abstract. Moufang permutations are certain permutations on an abelian group X that differ from an automorphism of X by a symmetric alternating biadditive mapping. It is known that every finite split abelian-by-cyclic 3-divisible Moufang loop is obtained from a Moufang permutation of the abelian normal subgroup. In this paper we investigate Moufang permutations for small abelian groups. We prove that a finite abelian group X possesses non-automorphic Moufang permutations if and only if the 2-primary component of X is of order more than four and is not cyclic. The automorphism group of X acts by conjugation on the set of Moufang permutations of X and the orbits of this action provide a partial answer to the corresponding isomorphism problem. We explicitly find all Moufang permutations for small abelian groups, including small elementary abelian 2-groups.

1. Introduction. A *loop* is a nonempty set Q with a binary operation \cdot and a neutral element $1 \in Q$ such that for every $a, b \in Q$ the equations ax = b and ya = b have unique solutions $x, y \in Q$, respectively. Given a loop Q, we say that a subset $H \subseteq Q$ is a *subgroup* of Q if H is an associative subloop of Q.

A loop Q is a *Moufang loop* if ((xz)x)y = x(z(xy)) holds for every $x, y, z \in Q$. By Moufang's Theorem [7], if three elements of a Moufang loop Q associate (in some order) then they generate a subgroup of Q. In particular, Moufang loops are diassociative, that is, any two elements generate a subgroup.

In [2], the authors started a systematic study of *abelian-by-cyclic* Moufang loops, that is, Moufang loops Q with an abelian normal subgroup X such that C = Q/X is cyclic.

2020 Mathematics Subject Classification: 20N02.

Key words and phrases: Abelian-by-cyclic Moufang loop, semidirect product, Moufang permutation. The paper is in final form and no version of it will be published elsewhere. A systematic survey of related literature can be found in the introduction of [2]. Here we wish to highlight at least the papers [1, 3, 5, 6].

The following concept is key for the study of abelian-by-cyclic Moufang loops.

DEFINITION 1.1 (Definition 1.2,[2]). Let (X, +) be an abelian group. A permutation f on X is a *Moufang permutation* on (X, +) if the mapping $\beta : X \times X \to X$ defined by

$$\beta(x,y) = f^{-1}(f(x) + f(y)) - x - y \tag{1}$$

is (symmetric) alternating and biadditive,

$$\beta(\beta(x,y),z) = 0 \tag{2}$$

holds for all all $x, y, z \in X$, and

$$\beta(f(x), f(y)) = f(\beta(f^3(x), y)) \tag{3}$$

holds for all $x, y \in X$.

When f is a Moufang permutation and β is defined by (1), we call β the biadditive mapping *associated* with f and the tuple (f,β) a *Moufang pair*. We denote by Mfp(X,+) the set of all Moufang permutations on (X,+).

Note that condition (2) is equivalent to the fact that the image of the symmetric alternating biadditive mapping β is contained in the radical

$$\operatorname{Rad}(\beta) = \{ x \in X : \beta(x, y) = 0 \text{ for all } y \in X \}$$

of β . Also note that $\operatorname{Rad}(\beta)$ is a subgroup of (X, +).

Denote by $\operatorname{Aut}(X, +)$ the automorphism group of (X, +). One can easily see from Definition 1.1 that every $f \in \operatorname{Aut}(X, +)$ is a Moufang permutation on (X, +) (with zero associated biadditive mapping) and thus $\operatorname{Aut}(X, +) \subseteq \operatorname{Mfp}(X, +)$. We call a Moufang permutation on (X, +) proper if it is not an automorphism of (X, +). Here is a characterization of improper Moufang permutations:

LEMMA 1.2. Let (f, β) be a Moufang pair on the abelian group (X, +). The following conditions are equivalent:

- (i) $f \in \operatorname{Aut}(X, +)$,
- (*ii*) $\operatorname{Img}(\beta) = 0$,
- (*iii*) $\operatorname{Rad}(\beta) = X$.

Proof. If $f \in \operatorname{Aut}(X, +)$ then $\beta(x, y) = f^{-1}(f(x) + f(y)) - x - y = 0$ for all $x, y \in X$ and hence $\operatorname{Img}(\beta) = 0$. If $\operatorname{Img}(\beta) = 0$ then certainly $\operatorname{Rad}(\beta) = X$. Finally, if $\operatorname{Rad}(\beta) = X$ then $0 = \beta(x, y) = f^{-1}(f(x) + f(y)) - x - y$ for all $x, y \in X$ and hence $f \in \operatorname{Aut}(X, +)$.

In Section 2 we characterize all finite abelian groups that possess proper Moufang permutations.

The connections between Moufang permutations and abelian-by-cyclic Moufang loops are as follows (see [2] for more details).

Let X be an abelian normal subgroup of a Moufang loop (Q, \cdot) and let us denote the operation (X, \cdot) also by (X, +). For $a \in Q$, let f be the restriction of the "conjugation" $x \mapsto a^{-1}xa$ to X. Then f is a Moufang permutation on (X, +).

For $i, j \in \mathbb{Z}$ let

$$I(i,j) = \begin{cases} \emptyset, & \text{if } i = j, \\ \{i, i+1, \dots, j-1\}, & \text{if } i < j, \\ \{j, j+1, \dots, i-1\}, & \text{if } j < i. \end{cases}$$

If (X, +) is an abelian group, (f, β) a Moufang pair on (X, +) and $C = \langle b \rangle$ a cyclic group, then the formula

$$(b^{i}, x) \cdot (b^{j}, y) = \left(b^{i+j}, f^{-3j}(x) + y + \sum_{k \in I(i+j, -j)} f^{-3k}(\beta(x, y))\right)$$
(4)

correctly defines a multiplication on $C \times X$ if and only if

either C is infinite,

or C is finite, $|f^3|$ divides |C| and $\sum_{0 \le k < |C|} f^{3k}(x) \in \operatorname{Rad}(\beta)$ for all $x \in X$. (5)

(The last part of condition (5) holds for instance when C is finite, $|f^3|$ divides |C| and $\operatorname{Rad}(\beta)$ has no elements of order 3.) In that case the resulting groupoid is in fact a Moufang loop, denoted by

$$Q = C \ltimes_{(f^3,\beta)} X$$
 or $Q = C \ltimes_f X$

that contains the normal abelian subgroup $1 \times X$ such that $Q/(1 \times X)$ is isomorphic to C.

All abelian-by-cyclic Moufang loops Q = CX in which both C and X are 3-divisible are homomorphic images of the loops $C \ltimes_{(f^3,\beta)} X$. If Q is also split, it is isomorphic to $C \ltimes_{(f^3,\beta)} X$ for a suitable Moufang permutation f of (X, +).

In Section 3 we construct all Moufang permutations on small abelian groups (X, +). We show that if two Moufang permutations on (X, +) are conjugate by an automorphism of (X, +) and if C is fixed, then the corresponding Moufang loops are isomorphic. It therefore suffices to consider Moufang permutations Mfp(X, +) up to the conjugation action of the group Aut(X, +).

It is rather difficult to calculate the sets Mfp(X, +) even for small abelian groups (X, +). Let V be a vector space over the two-element field. In Section 4 we develop a mini-theory of symmetric alternating biadditive mappings $\beta : V \times V \to V$ satisfying $Img(\beta) \subseteq Rad(\beta)$ in order to push the calculation of Moufang permutations little bit further in the case of elementary abelian 2-groups.

2. Groups with proper Moufang permutations. Our goal here is to characterize all finite abelian groups (X, +) with proper Moufang permutations. Throughout this section, let (X, +) be an abelian group and C_n a cyclic group of order n.

We note in passing that Mfp(X, +) does not have to be a subgroup of the symmetric group on X. For instance, there are two Moufang permutations on $X = C_2^4$ whose product is not a Moufang permutation on X.

We start by recalling the following result of [2]:

LEMMA 2.1 (Lemma 9.1,[2]). Let (X, +) be an abelian group, (f, β) a Moufang pair on (X, +) and i an integer. Then:

- (i) f(0) = 0, f(2x) = 2f(x) and f(-x) = -f(x) for all $x \in X$,
- (*ii*) $\operatorname{Img}(\beta) \subseteq \operatorname{Rad}(\beta), 2X \subseteq \operatorname{Rad}(\beta) \text{ and } 2\operatorname{Img}(\beta) = 0,$
- (iii) f^i permutes both $\operatorname{Rad}(\beta)$ and $\operatorname{Img}(\beta)$,
- (iv) $f^{i}(x+y) = f^{i}(x) + f^{i}(y)$ whenever $\{x, y\} \cap \operatorname{Rad}(\beta) \neq \emptyset$,
- (v) f^i restricts to an automorphism of $\operatorname{Rad}(\beta)$.

COROLLARY 2.2. Let (X, +) be an abelian group of odd order. Then every Moufang permutation on X is an automorphism of X.

Proof. Let f be a Moufang permutation on X. Since X has odd order, the mapping $x \mapsto 2x$ is a bijection of X. Hence $X = 2X \subseteq \text{Rad}(\beta)$ by Lemma 2.1. Then $f \in \text{Aut}(X, +)$ by Lemma 1.2. \blacksquare

LEMMA 2.3. Let (f,β) be a Moufang pair on a nontrivial abelian group (X,+). Then $\operatorname{Rad}(\beta) \neq 0$.

Proof. If $\operatorname{Rad}(\beta) = 0$ then $\operatorname{Img}(\beta) = 0$ since $\operatorname{Img}(\beta) \subseteq \operatorname{Rad}(\beta)$ by Lemma 2.1. Then $X = \operatorname{Rad}(\beta) = 0$ by Lemma 1.2, a contradiction.

Given a subgroup H of a group G, let [G:H] be the index of H in G.

LEMMA 2.4. Let (f,β) be a Moufang pair on (X,+) with $[X : \operatorname{Rad}(\beta)] \leq 2$. Then $\operatorname{Rad}(\beta) = X$ and $f \in \operatorname{Aut}(X,+)$.

Proof. Set $R = \operatorname{Rad}(\beta)$. If [X : R] = 1 then X = R and, by Lemma 1.2, $f \in \operatorname{Aut}(X, +)$. If [X : R] = 2 then $X = R \cup (a + R)$ for some $a \in X \setminus R$. Let $x, y \in X$. If $\{x, y\} \cap R \neq \emptyset$, Lemma 2.1 implies that f(x + y) = f(x) + f(y). Suppose that both x and y are in the coset a + R and write $x = a + x_1$ and $y = a + y_1$ for some $x_1, y_1 \in R$. By Lemma 2.1, we get $f(x + y) = f(2a + x_1 + y_1) = f(2a) + f(x_1 + y_1) = 2f(a) + f(x_1) + f(y_1) =$ $(f(a) + f(x_1)) + (f(a) + f(y_1)) = f(a + x_1) + f(a + y_1) = f(x) + f(y)$, where in the second step we used $2X \subseteq \operatorname{Rad}(\beta)$. Therefore $f \in \operatorname{Aut}(X, +)$.

LEMMA 2.5. Let (X, +), (Y, +) be abelian groups, (f, β_f) a Moufang pair on (X, +) and (g, β_g) a Moufang pair on (Y, +). Define $h: X \times Y \to X \times Y$ by h(x, y) = (f(x), g(y)). Then h is a Moufang permutation on $X \times Y$ and the associated biadditive mapping β_h satisfies $\beta_h((x_1, y_1), (x_2, y_2)) = (\beta_f(x_1, x_2), \beta_g(y_1, y_2))$ for all $x_i \in X$, $y_i \in Y$. Moreover, $h \in \operatorname{Aut}(X \times Y)$ if and only if $f \in \operatorname{Aut}(X)$ and $g \in \operatorname{Aut}(Y)$.

Proof. This is straightforward but here are the details. Clearly, h is a permutation of $X \times Y$ with $h^{-1}(x, y) = (f^{-1}(x), g^{-1}(y))$. Now,

$$\begin{split} \beta_h((x_1,y_1),(x_2,y_2)) &= h^{-1}(h(x_1,y_1) + h(x_2,y_2)) - (x_1 + x_2,y_1 + y_2) \\ &= h^{-1}((f(x_1),g(y_1)) + (f(x_2),g(y_2))) - (x_1 + x_2,y_1 + y_2) \\ &= h^{-1}((f(x_1) + f(x_2),g(y_1) + g(y_2))) - (x_1 + x_2,y_1 + y_2) \\ &= (f^{-1}(f(x_1) + f(x_2)) - (x_1 + x_2),g^{-1}(g(y_1) + g(y_2)) - (y_1 + y_2)) \\ &= (\beta_f(x_1,x_2),\beta_g(y_1,y_2)), \end{split}$$

and then it is straightforward to check that β_h is alternating and biadditive. For all $x_i \in X$ and $y_i \in Y$, $\beta_h(\beta_h((x_1, y_1), (x_2, y_2)), (x_3, y_3)) = \beta_h((\beta_f(x_1, x_2), \beta_g(y_1, y_2)), (x_3, y_3)) =$

$$\begin{aligned} (\beta_f(\beta_f(x_1, x_2), x_3), \beta_g(\beta_g(y_1, y_2), y_3)) &= (0, 0), \text{ so } (2) \text{ holds for } \beta_h. \text{ Finally,} \\ \beta_h(h(x_1, y_1), h(x_2, y_2)) &= \beta_h((f(x_1), g(y_1)), (f(x_2), g(y_2))) \\ &= (\beta_f(f(x_1), f(x_2)), \beta_g(g(y_1), g(y_2))) \\ &= (f(\beta_f(f^3(x_1), x_2)), g(\beta_g(g^3(y_1), y_2))) \\ &= h(\beta_f(f^3(x_1), x_2), \beta_g(g^3(y_1), y_2)) \\ &= h(\beta_h((f^3(x_1), g^3(y_1)), (x_2, y_2))) \\ &= h(\beta_h(h^3(x_1, y_1), (x_2, y_2))), \end{aligned}$$

so (3) holds for β_h . Therefore (h, β_h) is a Moufang pair on $X \times Y$. The last assertion is clear.

Denote the order of an element $x \in (X, +)$ by |x|. In the finite case, for a prime p, let $X_p = \{x \in X : |x| = p^k \text{ for some } k\}$ be the p-primary component of X, and note that $X = \bigoplus_p X_p$ and $\operatorname{Aut}(X) \cong \bigoplus_p \operatorname{Aut}(X_p)$.

LEMMA 2.6. If (f, β) is a Moufang pair on a finite abelian group (X, +) then |f(x)| = |x| for every $x \in X$.

Proof. Set $X = X_2 \oplus Y$, where $Y = \bigoplus_{p>2} X_p$. As Y has odd order, $Y = 2Y \subseteq 2X \subseteq \operatorname{Rad}(\beta)$ by Lemma 2.1. Since f restricts to an automorphism of $\operatorname{Rad}(\beta)$, we conclude that |f(y)| = |y|, for every $y \in Y$. This implies that f(Y) = Y. If $x \in X_2$ then $|x| = 2^k$ for some k. By Lemma 2.1, we have $0 = f(2^k x) = 2^k f(x)$ and thus $|f(x)| = 2^j$ for some $j \leq k$. On the other hand, $0 = 2^j f(x) = f(2^j x)$ and then $2^j x = 0$, which implies $k \leq j$ and |f(x)| = |x|. In particular, $f(X_2) = X_2$. Now, for every $z \in X$ there are unique elements $x \in X_2$ and $y \in Y$ such that z = x + y. In addition, if $|x| = 2^k$ and |y| = n (with n odd) then $|z| = 2^k n$. Since $Y \subseteq \operatorname{Rad}(\beta)$, we get f(z) = f(x+y) = f(x) + f(y) with $|f(x)| = |x| = 2^k$ and |f(y)| = |y| = n. Therefore $|f(z)| = 2^k n = |z|$.

PROPOSITION 2.7. Let (f,β) be a Moufang pair on a finite abelian group (X,+). Then f restricts to a Moufang permutation on X_2 and to an automorphism of $Y = \bigoplus_{p>2} X_p$. In particular, f decomposes into a sum of a Moufang permutation of X_2 and an automorphism of Y.

Proof. It follows from Lemma 2.6 that $f(X_2) = X_2$ and f(Y) = Y. Since X_2 and Y are subgroups of X, it is straightforward to see that f restricts to a Moufang permutation on these subgroups. As Y has odd order, f restricts to an automorphism of Y by Corollary 2.2. Also, for every $z \in X$, z = x + y for some unique $x \in X_2$ and $y \in Y$. Since $Y \subseteq \text{Rad}(\beta), f(z) = f(x) + f(y)$, and the proof is complete.

We now prove that if (X, +) is a (not necessarily finite) cyclic group, then every Moufang permutation on X is an automorphism of X.

PROPOSITION 2.8. Let (X, +) be a cyclic group and let (f, β) be a Moufang pair on (X, +). Then f is an automorphism of (X, +).

Proof. First, suppose that |X| is finite. If X has odd order, then the result follows from Corollary 2.2. Let us suppose that X is a cyclic group of order $2^m n$, where $m \ge 1$ and n is odd. Let a and b be elements of X with $|a| = 2^m$ and |b| = n. Since b has odd

order, $b \in 2X$, and we obtain the cyclic subgroup $D = \langle 2a, b \rangle \subseteq 2X \subseteq \text{Rad}(\beta)$ satisfying $2 = [X : D] \ge [X : \text{Rad}(\beta)]$. By Lemma 2.4, $f \in \text{Aut}(X, +)$.

Now let $X = \mathbb{Z}$. We again have $2\mathbb{Z} \subseteq \operatorname{Rad}(\beta)$, $2 = [\mathbb{Z} : 2\mathbb{Z}] \ge [\mathbb{Z} : \operatorname{Rad}(\beta)]$, and therefore $f \in \operatorname{Aut}(\mathbb{Z}, +)$ by Lemma 2.4.

EXAMPLE 2.9. Let $X = C_2 \times C_2$. We have $\operatorname{Aut}(X) \cong S_3$. If $f \in \operatorname{Mfp}(X)$ then f(0) = 0 by Lemma 2.1. Hence $|\operatorname{Mfp}(X)| \leq 6$, $\operatorname{Mfp}(X) = \operatorname{Aut}(X)$, and there are no proper Moufang permutations on X.

Next we present a general construction of proper Moufang permutations.

PROPOSITION 2.10. Let (Z, +) be an abelian group and let $h \in Aut(Z, +)$ be such that |h| = 2 and h(2x) = 2x for all $x \in Z$. Let (A, +) be an abelian group with a subgroup S of index 2. Let $X = A \times Z$. Then $f : X \to X$ defined by

$$f(a,x) = \begin{cases} (a,x), & \text{if } a \in S, \\ (a,h(x)), & \text{otherwise,} \end{cases}$$

is a proper Moufang permutation of X and |f| = 2.

Proof. It is easy to see that f is a permutation of X. If $a \in S$, we have $f^{-1}(a, x) = (a, x)$. If $a \in A \setminus S$, we have $f^{-1}(a, x) = (a, h^{-1}(x)) = (a, h(x))$. Hence $f^{-1} = f$ and |f| = 2 follows from $h \neq 1$.

For all $(a, x), (b, y) \in X$, we have $\beta((a, x), (b, y)) = f^{-1}(f(a, x) + f(b, y)) - (a+b, x+y)$. Since X is an abelian group, β is symmetric.

If $a, b \in S$ then, since $a + b \in S$,

$$\begin{split} \beta((a,x),(b,y)) &= f^{-1}(f(a,x) + f(b,y)) - (a+b,x+y) \\ &= f^{-1}((a,x) + (b,y)) - (a+b,x+y) \\ &= f^{-1}(a+b,x+y) - (a+b,x+y) \\ &= (a+b,x+y) - (a+b,x+y) \\ &= (0,0). \end{split}$$

If $a \in S$ and $b \notin S$ then, since $a + b \notin S$ and $h^2 = 1$,

$$\begin{split} \beta((a,x),(b,y)) &= f^{-1}(f(a,x) + f(b,y)) - (a+b,x+y) \\ &= f^{-1}((a,x) + (b,h(y))) - (a+b,x+y) \\ &= f^{-1}(a+b,x+h(y)) - (a+b,x+y) \\ &= (a+b,h(x+h(y))) - (a+b,x+y) \\ &= (0,h(x)-x). \end{split}$$

If $a, b \notin S$ then, since $a + b \in S$,

$$\begin{split} \beta((a,x),(b,y)) &= f^{-1}(f(a,x) + f(b,y)) - (a+b,x+y) \\ &= f^{-1}((a,h(x)) + (b,h(y))) - (a+b,x+y) \\ &= f^{-1}(a+b,h(x+y)) - (a+b,x+y) \\ &= (a+b,h(x+y)) - (a+b,x+y) \\ &= (0,h(x+y) - (x+y)). \end{split}$$

To show that β is alternating, note that if $a \in S$ then $\beta((a, x), (a, x)) = (0, 0)$, and if $a \notin S$ then $\beta((a, x), (a, x)) = (0, h(2x) - 2x) = (0, 2x - 2x) = (0, 0)$.

For biadditivity, consider $\beta((a, x) + (b, y), (c, z)) = \beta((a + b, x + y), (c, z)) = (0, \ell)$ and $\beta((a, x), (c, z)) + \beta((b, y), (c, z)) = (0, r)$. If $a, b, c \in S$ then $\ell = 0$ and r = 0 + 0. If $a, b \in S$ and $c \notin S$ then $\ell = h(x + y) - (x + y)$ and r = h(x) - x + h(y) - y. If $a \in S$, $b \notin S$ and $c \in S$ then $\ell = h(z) - z$ and r = 0 + h(z) - z. If $a \in S$ and $b, c \notin S$ then $\ell = h(x + y + z) - (x + y + z)$ and r = h(x) - x + h(y + z) - (y + z). If $a, b \notin S$ and $c \in S$ then $\ell = 0$ and r = h(z) - z + h(z) - z = 2h(z) - 2z = h(2z) - 2z = 2z - 2z = 0. Finally, if $a, b, c \notin S$ then $\ell = h(x + y) - (x + y)$ and r = h(x + z) - (x + z) + h(y + z) - (y + z) = h(x + y) - (x + y) + 2h(z) - 2z = h(x + y) - (x + y). Hence β is biadditive.

For (2), observe that we always have $\beta((a, x), (b, y)) = (0, h(u) - u)$ for some $u \in A$. If $c \in S$ then $\beta(\beta((a, x), (b, y)), (c, z)) = \beta((0, h(u) - u), (c, z)) = (0, 0)$. If $c \notin S$, then $\beta(\beta((a, x), (b, y)), (c, z)) = \beta((0, h(u) - u), (c, z)) = (0, h(h(u) - u) - (h(u) - u)) = (0, 2u - 2h(u)) = (0, 0)$. Hence (2) holds for β .

For (3), we need to check $f(\beta(f^3(a, x), (b, y))) = \beta(f(a, x), f(b, y))$. Since |f| = 2, we have $f^3 = f$. Also, $\text{Img}(\beta) \subseteq 0 \times X$ and f(0, x) = (0, x), so all we need to check is $\beta(f(a, x), (b, y)) = \beta(f(a, x), f(b, y))$. By biadditivity, it is clear that this is the same as $\beta(f(a, x), f(b, y) - (b, y)) = (0, 0)$. But f(b, y) - (b, y) either vanishes or it is equal to (0, h(y) - y). We already showed above that $\beta((c, z), (0, h(y) - y)) = (0, 0)$.

Hence (f, β) is a Moufang pair on (X, +). Since $\text{Img}(\beta) \neq 0$, f is not an automorphism of (X, +), by Lemma 1.2.

COROLLARY 2.11. Let (X, +) be a noncyclic abelian 2-group. Then there exist a proper Moufang permutation on X if and only if $|X| \ge 2^3$.

Proof. The only noncyclic abelian 2-group of order less than 8 is $C_2 \times C_2$, which has no proper Moufang permutations by Example 2.9. Suppose that $|X| \ge 2^3$. We will use Proposition (2.10). Note that any nontrivial abelian 2-group contains a subgroup of index 2.

Suppose that X is elementary abelian, say $X = A \times C_2^2$. Then the mapping h that flips the two coordinates of C_2^2 clearly satisfies all the assumptions of Proposition 2.10.

Suppose that X is not elementary abelian, say $X = A \times C_{2m}$ for some positive even integer m. We claim that the mapping $h: C_{2m} \to C_{2m}$ defined by h(x) = (m+1)x satisfies all assumptions of Proposition 2.10. Since gcd(m+1, 2m) = 1, it is an automorphism of C_{2m} . Since $h(1) = m + 1 \neq 1$, it is nontrivial. We have $h^2(x) = (m+1)^2 x = (m^2 + 2m + 1)x = x$ because m^2 is divisible by 2m (as m > 0 is even). Finally, h(2x) = (m+1)(2x) = 2mx + 2x = 2x.

THEOREM 2.12. Let (X, +) be a finite abelian group and let X_2 be the 2-primary component of X. Then Mfp(X) = Aut(X) if and only if either X_2 is cyclic or $X_2 = C_2 \times C_2$.

Proof. Suppose that f is a Moufang permutation on X. By Proposition 2.7, f decomposes into a sum of a Moufang permutation on X_2 and an automorphism of $Y = \bigoplus_{p>2} X_p$. Conversely, Lemma 2.5 shows how to build a Moufang permutation of X from Moufang permutations of X_2 and Y. In view of Corollary 2.2, it remains to discuss the case of abelian 2-groups.

If $X = X_2$ is cyclic or $X = C_2 \times C_2$ then every Moufang permutation on X is an automorphism of X, by Proposition 2.8 and Example 2.9. If X is not cyclic and $|X_2| \ge 2^3$, Corollary 2.11 furnishes a proper Moufang permutation on X.

3. Moufang permutations up to conjugation and the corresponding Moufang loops. It seems to be a difficult problem to calculate Mfp(X, +) even for small abelian groups. A naive approach is to consider all permutations of X and check each one against Definition 1.1. (Since Mfp(X, +) is not a subgroup under composition, it does not suffice to find generators.)

A better approach is to take advantage of some of the properties of Moufang permutations established in Lemma 2.1, such as f(0) = 0, f(2x) = 2f(x) and f(-x) = -f(x). It therefore suffices to consider (minimal) subsets S of (X, +) from which (X, +) is obtained by iterated applications of the operations $x \mapsto 2x$ and $x \mapsto -x$. This works well for some groups (such as groups containing elements of large odd orders) but fails completely for other groups (such as elementary abelian 2-groups, where one has to take S = X).

Given a Moufang permutation $f \in Mfp(X, +)$ and a cyclic group C of order coprime to 3 such that $|f^3|$ divides |C|, the multiplication formula (4) yields the abelian-by-cyclic Moufang loop $C \ltimes_f X$. As usual, from the point of view of the isomorphism types of the resulting Moufang loops, it suffices to consider Moufang permutations up to conjugation by Aut(X). Here are the details:

LEMMA 3.1. Let (f,β) be a Moufang pair on the abelian group (X,+). Let g be an automorphism of X. Then $f^g = g^{-1}fg$ is a Moufang permutation on X with associated biadditive mapping given by $\beta^g(x,y) = g^{-1}\beta(g(x),g(y))$. Moreover, $\operatorname{Rad}(\beta^g) = g^{-1}(\operatorname{Rad}(\beta))$.

Proof. We have

$$\begin{split} \beta^g(x,y) &= (f^g)^{-1}(f^g(x) + f^g(y)) - (x+y) \\ &= g^{-1}f^{-1}g(g^{-1}fg(x) + g^{-1}fg(y)) - (x+y) \\ &= g^{-1}f^{-1}(fg(x) + fg(y)) - (x+y) \\ &= g^{-1}[f^{-1}(fg(x) + fg(y)) - (g(x) + g(y))] = g^{-1}\beta(g(x),g(y)). \end{split}$$

Since $g \in \operatorname{Aut}(X)$ and β is symmetric, alternating and biadditive, we immediately see that β^g is also symmetric, alternating and biadditive.

Let us establish (2) for β^g . For x, y and $z \in X$,

$$\begin{split} \beta^{g}(\beta^{g}(x,y),z) &= \beta^{g}(g^{-1}\beta(g(x),g(y)),z) \\ &= g^{-1}\beta(g(g^{-1}\beta(g(x),g(y))),g(z)) \\ &= g^{-1}\beta(\beta(g(x),g(y)),g(z)) = 0, \end{split}$$

where the last equality comes from the fact that β satisfies (2).

We now establish (3). On the one hand, we have

$$\begin{split} \beta^g(f^g(x), f^g(y)) &= g^{-1}\beta(g(f^g(x)), g(f^g(y))) \\ &= g^{-1}\beta(gg^{-1}fg(x), gg^{-1}fg(y)) \\ &= g^{-1}\beta(fg(x), fg(y)) \\ &= g^{-1}f\beta(f^3g(x), g(y)), \end{split}$$

where the last equality follows by (3) for (f,β) . On the other hand,

$$\begin{split} f^{g}\beta^{g}((f^{g})^{3}(x),y) &= f^{g}g^{-1}\beta(g(f^{g})^{3}(x),g(y)) \\ &= f^{g}g^{-1}\beta(gg^{-1}f^{3}g(x),g(y)) \\ &= g^{-1}fgg^{-1}\beta(f^{3}g(x),g(y)) \\ &= g^{-1}f\beta(f^{3}g(x),g(y)). \end{split}$$

Hence (3) holds and (f^g, β^g) is a Moufang pair on (X, +).

Finally, we have $x \in \operatorname{Rad}(\beta^g)$ if and only if $g^{-1}\beta(g(x), g(y)) = 0$ for every $y \in X$, which is equivalent to $\beta(g(x), z) = 0$ for every $z \in X$. Therefore, $x \in \operatorname{Rad}(\beta^g)$ if and only if $g(x) \in \operatorname{Rad}(\beta)$.

LEMMA 3.2. Let (X, +) be an abelian group, C a cyclic group, (f, β) a Moufang pair on (X, +) and $g \in Aut(X, +)$. Then (f, β) satisfies the condition (5) if and only if (f^g, β^g) satisfies the condition (5).

Proof. It suffices to establish the direct implication. Suppose that (5) holds for (*f*, β). If *C* is infinite then (5) clearly holds for (*f^g*, β^g), too. Suppose that *C* is finite. Then *f*³ divides |C| and $\sum_{0 \le k < |C|} f^{3k}(x) \in \text{Rad}(\beta)$ for all $x \in X$. Since f^g has the same cycle structure as *f*, it has the same order as *f* and so $|(f^g)^3|$ divides |C|. By Lemma 3.1, we need to check that $\sum_{0 \le k < |C|} (f^g)^{3k}(x) \in \text{Rad}(\beta^g) = g^{-1}(\text{Rad}(\beta))$ for all $x \in X$, which is the same as $g(\sum_{0 \le k < |C|} g^{-1} f^{3k} g(x)) \in \text{Rad}(\beta)$ for all $x \in X$, that is, $\sum_{0 \le k < |C|} f^{3k} g(x) \in \text{Rad}(\beta)$ for all $x \in X$, which is true because *g* permutes *X*. ■

PROPOSITION 3.3. Let (X, +) be an abelian group, let C be a cyclic group and let (f, β) be a Moufang pair on (X, +) such that (5) holds. Let $g \in \operatorname{Aut}(X, +)$ and let (f^g, β^g) be the corresponding Moufang pair. Then (f^g, β^g) is a Moufang pair on (X, +), (5) holds for (f^g, β^g) , and the Moufang loops $C \ltimes_f X$ and $C \ltimes_{f^g} X$ are isomorphic.

Proof. By Lemma 3.1, (f^g, β^g) is a Moufang pair on (X, +). By Lemma 3.2, (5) holds for (f^g, β^g) . Let $Q = C \ltimes_f X$ and $Q^g = C \ltimes_{f^g} X$. We shall prove that $\varphi : Q \to Q^g$, defined by $\varphi(b^i, x) = (b^i, g^{-1}(x))$ is an isomorphism. For every $(b^i, x), (b^j, y) \in Q$, we get

$$\begin{split} \varphi(b^{i}, x)\varphi(b^{j}, y) &= (b^{i}, g^{-1}(x))(b^{j}, g^{-1}(y)) \\ &= (b^{i+j}, g^{-1}f^{-3j}gg^{-1}(x) + g^{-1}(y) + \sum_{k \in I(i+j, -j)} g^{-1}f^{-3k}gg^{-1}\beta(gg^{-1}(x), gg^{-1}(y))) \\ &= (b^{i+j}, g^{-1}(f^{-3j}(x) + y + \sum_{k \in I(i+j, -j)} f^{-3k}\beta(x, y))) = \varphi((b^{i}, x)(b^{j}, y)) \end{split}$$

and hence φ is a homomorphism. The mapping is obviously onto and one-to-one.

EXAMPLE 3.4. Let $X = C_2^3$. There are 252 Moufang permutations on X, including 168 Moufang permutations contained in $\operatorname{Aut}(X) \cong \operatorname{GL}_3(\mathbb{F}_2)$. Up to conjugation by $\operatorname{Aut}(X)$, there are 9 Moufang permutations f_1, \ldots, f_9 , including 6 automorphisms of X. They have cycle structures 1⁸, 1⁶2¹, 1⁴2², 1²2³, 1²2¹4¹, 1²3², 1²6¹, 1¹7¹ and (again) 1¹7¹, respectively. Since the multiplication formula (4) depends only on f^3 , we clearly have $f_1^3 = f_6^3$ and we coincidentally also have $f_4^3 = f_7^3$, it suffices to keep f_1, \ldots, f_5, f_8 and f_9 .

Let us construct all Moufang loops $C_2 \ltimes_f X$ up to isomorphism. In order to apply the multiplication formula (4), we can only consider $f \in Mfp(X)$ such that $|f^3|$ divides $|C_2| = 2$. This eliminates f_5 , f_8 and f_9 , leaving f_1, \ldots, f_4 . These four permutations happen to yield four pairwise nonisomorphic Moufang loops: the group C_2^4 , the nonassociative Moufang loop MoufangLoop(16,1), the group $C_2 \times D_8$, and MoufangLoop(16,4), in this order. Here, MoufangLoop(n,m) denotes the *m*th Moufang loop of order *n* as cataloged in the GAP [4] package LOOPS [8].

REMARK 3.5. The converse of Proposition 3.3 does not hold. There are two Moufang permutations on $X = C_2 \times C_4$ (both of order 2, one is a transposition and the other is a product of three independent transpositions) that are not conjugate by an automorphism of X yet yield isomorphic Moufang loops with $C = C_2$.

(X, +)	m	2	4	8	10	14	16	20	22	26	28	32	34	38	40	44	46	50
$C_4 \times C_2$	3	3	1	1	2	2	1	1	2	2	1	1	2	2	1	1	2	2
C_{2}^{3}	3	2	1	1	2	2	1	1	2	2	1	1	2	2	1	1	2	2
$\overline{C_8} \times \overline{C_2}$	6	4	3	2	4	4	2	3	4									
$C_4 \times C_2^2$	26	17	11	11	17	17	11	11	17									
$C_4 \times C_4$	10	7	3	3	7	7	3	3	7									
C_{2}^{4}	8	5	4	4	5	5	4	4	5									
$C_8 \times C_4$	38	28	21	16	28													
$C_{16} \times C_2$	12	4	7	6	4													
$C_4^2 \times C_2$	274	150	79	79	150													
$C_8 \times C_2^2$	52	36	27	22	36													
$C_4 \times C_2^3$	201	115	74	76	115													
$C_{20} \times \bar{C}_2$	12	4	3	3	4													
$C_{10} \times C_2^2$	12	4	3	3	4													

Table 1. Proper Moufang permutations up to conjugation and the corresponding Moufang loops up to isomorphism.

In Table 1 we collect some computational results on Moufang permutations and the corresponding Moufang loops. In the first column we list some small abelian groups (X, +). In the second column we give the number m of proper Moufang permutations on X up to the action of the automorphism group of X. In the remaining columns labeled by n, we give the number of isomorphism types of loops $C_n \ltimes_f X$, where X is the abelian group from column one and f is one of the Moufang permutations enumerated in column 2.

4. The elementary abelian case. In this section we have a look at Moufang permutations over small elementary abelian groups. In view of Theorem 2.12, the only case of interest are the groups \mathbb{Z}_2^n .

4.1. Symmetric alternating biadditive mappings up to equivalence. Let F be a field and $V = F^n = \langle e_1, \ldots, e_n \rangle$ a vector space of dimension n over F. We start with some results concerning the classification of symmetric alternating biadditive mappings $\beta : V \times V \to V$ satisfying $\operatorname{Img}(\beta) \subseteq \operatorname{Rad}(\beta)$ up to the action of GL(V) given by

$$\beta^g(x,y) = g^{-1}\beta(gx,gy),$$

where $g \in GL(V)$ and $x, y \in V$. Recall that $\operatorname{Rad}(\beta^g) = g^{-1}(\operatorname{Rad}(\beta))$.

LEMMA 4.1. Let F be a prime field, $V = F^n = \langle e_1, \ldots, e_n \rangle$ and $R = \langle e_1, \ldots, e_r \rangle$ for some $0 \leq r \leq n$. A mapping $\beta : V \times V \to V$ is symmetric, alternating, biadditive and satisfies $\operatorname{Img}(\beta) \subseteq R \subseteq \operatorname{Rad}(\beta)$ if and only if $\beta(e_i, e_j) = \beta(e_j, e_i) \in R$ for all $1 \leq i, j \leq n$, $\beta(e_i, e_i) = 0$ for all $1 \leq i \leq n$, $\beta(e_i, e_j) = 0$ for all $1 \leq i \leq r$, $1 \leq j \leq n$, and $\beta(\sum_{i=1}^n x_i e_i, \sum_{j=1}^n y_j e_j) = \sum_{1 \leq i, j \leq n} x_i y_j \beta(e_i, e_j)$ for all $x_i, y_i \in F$.

Proof. The direct implication is clear. For the converse implication, everything is clear except perhaps the alternating property. With $i \neq j$ we have $x_i x_j \beta(e_i, e_j) + x_j x_i \beta(e_j, e_i) = (x_i x_j + x_j x_i) \beta(e_i, e_j) = 0$ thanks to symmetry. Hence $\beta(\sum_i x_i e_i, \sum_j x_j e_j) = \sum_{i,j} x_i x_j \beta(e_i, e_j) = \sum_{i < j} (x_i x_j \beta(e_i, e_j) + x_j x_i \beta(e_j, e_i)) + \sum_i x_i x_i \beta(e_i, e_i) = 0 + 0 = 0.$

In the situation of Lemma 4.1 we say that $R = \langle e_1, \ldots, e_r \rangle$ is the designated image and radical of β . It can of course happen that $\text{Img}(\beta)$ is properly contained in R and/or $\text{Rad}(\beta)$ properly contains R, depending on the values $\beta(e_i, e_j)$ with i, j > r.¹

Let $\beta: V \times V \to V$ be a symmetric alternating mapping satisfying $\operatorname{Img}(\beta) \subseteq \operatorname{Rad}(\beta)$. Let r be the dimension of $\operatorname{Rad}(\beta)$. Since GL(V) acts transitively on r-dimensional subspaces of V, we can assume without loss of generality that $\operatorname{Rad}(\beta) = \langle e_1, \ldots, e_r \rangle$. We must have r > 0, else $\operatorname{Img}(\beta) \subseteq \operatorname{Rad}(\beta) = 0$ yields $\beta = 0$ and $\operatorname{Rad}(\beta) = V$, a contradiction. We must also have $r \neq n-1$, else $\beta(e_n, e_i) = 0$ for all $1 \leq i \leq n-1$ but also $\beta(e_n, e_n) = 0$ and so $e_n \in \operatorname{Rad}(\beta)$, a contradiction. Ignoring the zero mapping (with r = n), we can therefore assume that $r \in \{1, \ldots, n-2\}$ and $n \geq 3$.

Let now $F = \mathbb{F}_2$ be the two-element field.

Dimension n = 3. We can assume that r = 1, $\operatorname{Rad}(\beta) = \langle e_1 \rangle$ and $\operatorname{Img}(\beta) = \langle e_1 \rangle$. Hence β is determined on the basis by

	e_1	e_2	e_3
e_1	0	0	0
e_2	0	0	a
e_3	0	a	0

for some $0 \neq a \in \text{Img}(\beta)$. Since $\text{Img}(\beta) = \{0, e_1\}$, we have $a = e_1$, obtaining the mapping $\beta_{3,1}$ of Table 2.

¹Our terminology is motivated by that of coding theory, where BCH codes with designated distance d are constructed so that their distance is guaranteed to be at least d but it might exceed d.

Dimension n = 4. We have $r \in \{1, 2\}$. Suppose that r = 1 and $\operatorname{Rad}(\beta) = \langle e_1 \rangle$, so again $\operatorname{Img}(\beta) = \langle e_1 \rangle$. Then β is determined by

	e_1	e_2	e_3	e_4
e_1	0	0	0	0
e_2	0	0	a	b
e_3	0	a	0	c
e_4	0	b	c	0

If a = b = 0 then $e_2 \in \operatorname{Rad}(\beta)$, a contradiction. Consider the element $g \in GL(V)$ determined by $g(e_1) = e_1$, $g(e_2) = e_2$, $g(e_3) = e_4$ and $g(e_4) = e_3$. Then $\beta^g(e_2, e_3) = g^{-1}\beta(ge_2, ge_3) = g^{-1}\beta(e_2, e_4) = \beta(e_2, e_4)$ and $\operatorname{Rad}(\beta^g) = g^{-1}(\operatorname{Rad}(\beta)) = \operatorname{Rad}(\beta)$. We can therefore assume that $a = \beta(e_2, e_3) \neq 0$, so $a = e_1$. If b = c = 0 then $e_4 \in \operatorname{Rad}(\beta)$, a contradiction. If $b = e_1$ and c = 0 then $e_3 + e_4 \in \operatorname{Rad}(\beta)$, since $\beta(e_3 + e_4, e_i) = \beta(e_3, e_i) + \beta(e_4, e_i) \in \{0 + 0, e_1 + e_1\} = \{0\}$. If b = 0 and $c = e_1$ then $e_2 + e_4 \in \operatorname{Rad}(\beta)$. Finally, if $b = c = e_1$ then $e_2 + e_3 + e_4 \in \operatorname{Rad}(\beta)$. Hence there is no solution for r = 1.

Suppose that r = 2 and $\text{Img}(\beta) \subseteq \text{Rad}(\beta) = \langle e_1, e_2 \rangle$. Then β is of the form

	e_1	e_2	e_3	e_4
e_1	0	0	0	0
e_2	0	0	0	0
e_3	0	0	0	a
e_4	0	0	a	0

for some $a \in \langle e_1, e_2 \rangle$. The group $GL(\langle e_1, e_2 \rangle) \leq GL(V)$ fixes $\langle e_1, e_2 \rangle = \operatorname{Rad}(\beta)$ and permutes nonzero elements of $\langle e_1, e_2 \rangle$. We can therefore assume that $a = e_1$, obtaining the mapping $\beta_{4,2}$ of Table 2.

Dimension n = 5. We have $r \in \{1, 2, 3\}$. If r = 3, a quick argument similar to the case n = 4 and r = 2 shows that we can take $\beta = \beta_{5,3}$ of Table 2.

Suppose that r = 1. We can take β of the form

	e_1	e_2	e_3	e_4	e_5
e_1	0	0	0	0	0
e_2	0	0	a	b	c
e_3	0	a	0	d	e
e_4	0	b	a	0	f
e_5	0	c	e	f	0

for some $a, b, c, d, e, f \in \langle e_1 \rangle$. We cannot have a = b = c = 0 (else $e_2 \in \operatorname{Rad}(\beta)$). By permuting e_3 , e_4 and e_5 , we can assume that $a \neq 0$, so $a = e_1$. Further analysis by hand is certainly possible but we delegate to a computer. There are 32 possibilities for the remaining parameters. A computer search shows that the resulting mappings either violate the condition on the radical, or they are equivalent to the mapping $\beta_{5,1}$ of Table 2. Finally suppose that r = 2 and $\operatorname{Rad}(\beta) = \langle e_1, e_2 \rangle$. Then β is of the form

	e_1	e_2	e_3	e_4	e_5
e_1	0	0	0	0	0
e_2	0	0	0	0	0
e_3	0	0	0	a	b
e_4	0	0	a	0	c
e_5	0	0	b	c	0

for some $a, b, c \in \langle e_1, e_2 \rangle$. We cannot have a = b = 0, and permuting e_4, e_5 shows that we can assume $a \neq 0$. Consider an element $g \in H = GL(\langle e_1, e_2 \rangle)$. Then $\beta^g(e_3, e_4) = g^{-1}\beta(ge_3, ge_4) = g^{-1}\beta(e_3, e_4) = g^{-1}(a)$. Since H acts transitively on 1-dimensional subspaces of $\langle e_1, e_2 \rangle$, we can assume that $a = e_1$. There are then 16 cases to consider for band c. A computer search shows that the resulting mappings either violate the condition on the radical, or they are equivalent to the mapping $\beta_{5,2}$ of Table 2.

					$B_{3,1}$ e_1 e_2 e_3	$e_1 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} e_2 \\ 0 \\ 0 \\ e_1 \end{array}$	e_3 0 e_1 0		$\begin{array}{c} \overline{\beta_{4,2}}\\ \overline{e_1}\\ \overline{e_2}\\ \overline{e_3}\\ \overline{e_4}\end{array}$	e_1 0 0 0 0	e_2 0 0 0 0 0	e (((e	e_{4} e_{4} e_{4} e_{1} e_{1} e_{1}					
$\beta_{5,1}$	e_1	e_2	e_3	e_4	e_5	Γ	$\beta_{5,2}$	e_1	e_2	e_3	e_4	e_5] [$\beta_{5,3}$	e_1	e_2	e_3	e_4	e_5
e_1	0	0	0	0	0		e_1	0	0	0	0	0		e_1	0	0	0	0	0
e_2	0	0	e_1	0	0		e_2	0	0	0	0	0		e_2	0	0	0	0	0
e_3	0	e_1	0	0	0		e_3	0	0	0	e_1	0		e_3	0	0	0	0	0
e_4	0	0	0	0	e_1		e_4	0	0	e_1	0	e_2		e_4	0	0	0	0	e_1
e_5	0	0	0	e_1	0		e_5	0	0	0	e_2	0		e_5	0	0	0	e_1	0

Table 2. All nonzero symmetric alternating biadditive mappings $\beta : V \times V \to V$ satisfying $\operatorname{Img}(\beta) \subseteq \operatorname{Rad}(\beta)$, up to the action of GL(V), with $V = \mathbb{F}_2^n$ and $1 \le n \le 5$.

4.2. Moufang permutations with a prescribed biadditive mapping.

PROPOSITION 4.2. Let p be a prime. Suppose that $F = \mathbb{F}_p$, $X = F^n = \langle e_1, \ldots, e_n \rangle$ and (f, β) is a Moufang pair on (X, +). Then

$$f(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} f(x_i e_i) - \sum_{i=1}^{n} \sum_{j=i+1}^{n} f(x_i x_j \beta(e_i, e_j))$$
(6)

for every $x_i \in \mathbb{F}_p$. Moreover,

$$f(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i f(e_i) - \sum_{i=1}^{n} \sum_{j=i+1}^{n} x_i x_j f\beta(e_i, e_j).$$
(7)

Proof. Recall that $\beta(x, y) = f^{-1}(f(x) + f(y)) - (x+y)$, so $\beta(x, y) + (x+y) = f^{-1}(f(x) + f(y))$ and $f(\beta(x, y) + (x+y)) = f(x) + f(y)$. Since $\text{Img}(\beta) \subseteq \text{Rad}(\beta)$ and f(u+v) = f(x) + f(y).

f(u)+f(v) whenever $u \in \text{Rad}(\beta)$, by Lemma 2.1, we have $f\beta(x,y)+f(x+y) = f(x)+f(y)$, and thus

$$f(x+y) = f(x) + f(y) - f\beta(x,y).$$
 (8)

Using the identity (8) repeatedly, we obtain

$$f(\sum_{i=1}^{n} x_i e_i) = f(\sum_{i=1}^{n-1} x_i e_i + x_n e_n) = f(\sum_{i=1}^{n-1} x_i e_i) + f(x_n e_n) - f\beta(\sum_{i=1}^{n-1} x_i e_i, x_n e_n)$$
$$= f(\sum_{i=1}^{n-2} x_i e_i) + f(x_{n-1} e_{n-1}) - f\beta(\sum_{i=1}^{n-2} x_i e_i, x_{n-1} e_{n-1})$$
$$+ f(x_n e_n) - f\beta(\sum_{i=1}^{n-1} x_i e_i, x_n e_n).$$

Continuing in this fashion and using biadditivity of β , we get

$$f(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} f(x_i e_i) - \sum_{j=1}^{n-1} f(\sum_{i=1}^{j} x_i x_{j+1} \beta(e_i, e_{j+1})).$$

Since every summand $x_i x_{j+1} \beta(e_i, e_{j+1})$ is in $\text{Img}(\beta) \subseteq \text{Rad}(\beta)$, we have

$$\sum_{j=1}^{n-1} f(\sum_{i=1}^{j} x_i x_{j+1} \beta(e_i, e_{j+1})) = \sum_{j=1}^{n-1} \sum_{i=1}^{j} f(x_i x_{j+1} \beta(e_i, e_{j+1})).$$

To finish the proof of (6), it suffices to note that $\{(i, j+1) : 1 \le j \le n-1, 1 \le i \le j\} = \{(i, j) : 1 \le i \le n, i+1 \le j \le n\}.$

If p is odd then $f \in \operatorname{Aut}(V, +)$ by Theorem 2.12 and $f(x_i e_i) = x_i f(e_i)$. If p = 2, note that $f(x_i e_i) = x_i f(e_i)$ obviously holds when $x_i = 1$ and it also holds when $x_i = 0$ since f(0) = 0 by Lemma 2.1.

LEMMA 4.3. Let $X = \mathbb{F}_2^n = \langle e_1, \ldots, e_n \rangle$ and let (f, β) be a Moufang pair on (X, +) such that $\operatorname{Rad}(\beta) = \langle e_1, \ldots, e_r \rangle$. Then $\{f(e_1), \ldots, f(e_n)\}$ is a basis of X.

Proof. The formula (7) together with Lemma 2.1 show that the image of f if contained in $\operatorname{Rad}(\beta) + \langle f(e_1), \ldots, f(e_n) \rangle$. Since f restricts to an automorphism on $\operatorname{Rad}(\beta) = \langle e_1, \ldots, e_r \rangle$, we must have $\operatorname{Rad}(\beta) = \langle f(e_1), \ldots, f(e_r) \rangle$. Thus we conclude $X = \operatorname{Img}(f) \subseteq \langle f(e_1), \ldots, f(e_n) \rangle$.

PROPOSITION 4.4. Let $0 \le r \le n$, $X = \mathbb{F}_2^n = \langle e_1, \ldots, e_n \rangle$ and $R = \langle e_1, \ldots, e_r \rangle$. Suppose that β is a symmetric alternating biadditive map with designated image and radical R. Let $\{f(e_i) : 1 \le i \le n\}$ be chosen so that $\{f(e_1), \ldots, f(e_r)\}$ is a basis of R and $\{f(e_1), \ldots, f(e_n)\}$ is a basis of X. Suppose that $f(\sum x_i e_i)$ is defined by (7). Then f permutes X, f(x+y) = f(x) + f(y) whenever $\{x, y\} \cap R \ne \emptyset$, (1) holds and (2) holds. Hence (f, β) is a Moufang pair if and only if (3) holds. In fact, (f, β) is a Moufang pair if and only if (3) holds for all $x, y \in \{e_1, \ldots, e_n\}$.

Proof. The formula (7) with x = 0 yields f(0) = 0, and then with $x = e_k$ it yields $f(e_k) - f\beta(e_k, e_k) = f(e_k) - f(0) = f(e_k)$, so the mapping f is well-defined. Suppose that $x = \sum x_i e_i \in R$ and $y = \sum y_i e_i$. Then $f(x + y) = \sum_i (x_i + y_i) f(e_i) - \sum_{i < j} (x_i + y_i) f(e_i)$.

 $\begin{aligned} y_i)(x_j+y_j)f\beta(e_i,e_j), \text{ while } f(x)+f(y) &= \sum_i x_i f(e_i) - \sum_{i < j} x_i x_j f\beta(e_i,e_j) + \sum_i y_i f(e_i) - \sum_{i < j} y_i y_j f\beta(e_i,e_j). \text{ We claim that } x_i y_j f\beta(e_i,e_j) &= 0 \text{ for all } i < j. \text{ Indeed, if } i > r \text{ then } x_i &= 0 \text{ and if } i \leq r \text{ then } \beta(e_i,e_j) = 0 \text{ and hence } f\beta(e_i,e_j) &= 0. \text{ Similarly, } x_j y_i \beta(e_i,e_j) = 0 \text{ for all } i < j. \text{ Hence } f(x+y) &= f(x) + f(y). \end{aligned}$

In particular, f restricts to an automorphism of R. To show that f permutes X, it suffices to prove that f is onto X. Let $z \in X$ and write z = z' + z'', where $z' \in R$ and $z'' \in \langle e_{r+1}, \ldots, e_n \rangle$. Since $\{f(e_i) : 1 \leq i \leq n\}$ is a basis of X, there is $x = \sum x_i e_i$ such that $\sum x_i f(e_i) = z''$. Then f(x) = z'' + u for some $u \in R$. Now, $z' - u \in R$ and therefore $f(x + f^{-1}(z' - u)) = f(x) + ff^{-1}(z' - u) = z'' + u + z' - u = z$.

The condition (1) holds if and only if $f(\beta(x, y) + x + y) = f(x) + f(y)$ for all $x, y \in X$. Since $\beta(x, y) \in R$, we need to check that $f\beta(x, y) + f(x+y) = f(x) + f(y)$. The left hand side is equal to $\sum_{i,j} x_i y_j f\beta(e_i, e_j) + \sum_i (x_i + y_i) f(e_i) - \sum_{i < j} (x_i + y_i) (x_j + y_j) f\beta(e_i, e_j)$, while the right hand side is equal to $\sum_i (x_i + y_i) f(e_i) - \sum_{i < j} (x_i x_j + y_i y_j) f\beta(e_i, e_j)$. We therefore need to check that $\sum_{i,j} x_i y_j f\beta(e_i, e_j) - \sum_{i < j} (x_i y_j + y_i x_j) f\beta(e_i, e_j) = 0$, which holds since β is symmetric and alternating.

Condition (2) holds because we are assuming $\text{Img}(\beta) \subseteq R \subseteq \text{Rad}(\beta)$.

Suppose that (3) holds whenever $\{x, y\} \subseteq \{e_1, \ldots, e_n\}$. We need to verify that it then holds for all $x, y \in X$. Let us write $f(e_i) = \sum_k f_{ik}e_k$ for suitable scalars f_{ik} . Calculating modulo R we have $f(\sum_i x_i e_i) \equiv \sum_i x_i f(e_i) = \sum_i x_i \sum_k f_{ik}e_k = \sum_k (\sum_i x_i f_{ik})e_k$. Reindexing, we have $f(\sum_i x_i e_i) \equiv \sum_i (\sum_k x_k f_{ki})e_i$. Then $f^2(\sum x_i e_i) \equiv f(\sum_i (\sum_k x_k f_{ki})e_i) =$ $\sum_i (\sum_{\ell,k} x_k f_{k\ell} f_{\ell i})e_i$ and finally $f^3(\sum x_i e_i) \equiv \sum_i (\sum_{m,\ell,k} x_k f_{k\ell} f_{\ell m} f_{mi})e_i$. Thus $f\beta(f^3x, fy) = f(\sum_{i,j} \sum_{m,\ell,k} x_k f_{k\ell} f_{\ell m} f_{mi} y_j \beta(e_i, e_j))$ and the coefficient at $\beta(e_i, e_j)$ is $\sum_{m,\ell,k} x_k f_{k\ell} f_{\ell m} f_{mi} y_j$. On the other hand, by our assumption, $\beta(fx, fy) =$ $\beta(\sum_i x_i f(e_i), \sum_j y_j f(e_j)) = \sum_{i,j} x_i y_j \beta(f(e_i), f(e_j)) = \sum_{i,j} x_i y_j f\beta(f^3(e_i), e_j)$. Applying the above formula for $f^3(x)$ in the special case of $x = e_u$ we conclude that $f^3(e_u) \equiv$ $\sum_{i,m,\ell} f_{u\ell} f_{\ell m} f_{mi} e_i$ and upon reindexing we obtain $f^3(e_i) \equiv \sum_{u,m,\ell} f_{i\ell} f_{\ell m} f_{mu} e_u$. Hence

$$\begin{aligned} \beta(fx, fy) &= \sum_{i,j} x_i y_j f\beta(f^3(e_i), e_j) = \sum_{i,j} x_i y_j f\beta(\sum_{u,m,\ell} f_{i\ell} f_{\ell m} f_{m u} e_u, e_j) \\ &= f(\sum_{i,j} x_i y_j \sum_{u,m,\ell} f_{i\ell} f_{\ell m} f_{m u} \beta(e_u, e_j)). \end{aligned}$$

In this expression the coefficient at $\beta(e_u, e_j)$ is equal to $\sum_{i,m,\ell} x_i f_{i\ell} f_{\ell m} f_{m u} y_j$ and this agrees with the above coefficient upon reindexing.

We can now calculate Mfp(X) for $X = C_2^k$ somewhat efficiently. First, we find all symmetric alternating biadditive mapping $\beta : X \times X \to X$ with $\text{Img}(\beta) \subseteq \text{Rad}(\beta)$ up to the action of $GL_k(2)$ as in Subsection 4.1. For a given $\beta : X \times X \to X$ with $\text{Img}(\beta) \subseteq \text{Rad}(\beta) = \langle e_1, \ldots, e_r \rangle$, we prescribe the values of f on the basis in all possible ways so that $\{f(e_1), \ldots, f(e_r)\}$ is a basis of $\langle e_1, \ldots, e_r \rangle$ and $\{f(e_1), \ldots, f(e_n)\}$ is a basis of X. We then extend f to X according to the formula (7). By Proposition 4.4 we obtain a Moufang pair (f, β) , except that we must explicitly check that the condition (3) holds on a basis.

Following this procedure, a computer search finds 16 Moufang permutations f for $\beta = \beta_{3,1}$, 224 fs for $\beta_{4,2}$, 5056 fs for $\beta_{5,1}$, 1408 fs for $\beta_{5,2}$ and 6144 fs for $\beta_{5,3}$. These

Moufang permutations can be further filtered by considering the conjugation action of the stabilizer of β .

EXAMPLE 4.5. We wish to recover the three proper Moufang permutations on $X = \mathbb{F}_2^3$ for the symmetric alternating biadditive mapping $\beta_{3,1}$ of Table 2. We have $\text{Img}(\beta) = \text{Rad}(\beta) = \langle e_1 \rangle$. According to (6), such Moufang permutation f must satisfy

$$f(\sum_{i=1}^{3} x_i e_i) = \sum_{i=1}^{3} x_i f(e_i) + x_2 x_3 f(e_1).$$

We must also have f(0) = 0, $f(e_1) = e_1$ and $\{f(e_1), f(e_2), f(e_3)\}$ must be a basis of X. There are thus $6 \cdot 4 = 24$ possible choices of $f(e_2)$ and $f(e_3)$. If we choose $f(e_2) = e_2$ and $f(e_3) = e_3$, formula (6) yields the transposition $(e_2 + e_3, e_1 + e_2 + e_3)$. If we choose $f(e_2) = e_1 + e_2$ and $f(e_3) = e_1 + e_3$, we get the permutation $(e_2, e_1 + e_2)(e_3, e_1 + e_3)(e_2 + e_3, e_1 + e_2 + e_3)$. Finally, towards the last nonconjugate Moufang permutation, we can choose $f(e_2) = e_3$ and $f(e_3) = e_2 + e_3$, obtaining $(e_2, e_3, e_2 + e_3, e_1 + e_2, e_1 + e_3, e_1 + e_2 + e_3)$.

Acknowledgments. P. Vojtěchovský supported by the Simons Foundation Mathematics and Physical Sciences Collaboration Grant for Mathematicians no. 855097.

References

- Aleš Drápal, On extensions of Moufang loops by a cyclic factor that is coprime to three, Comm. Algebra 45 (2017), no. 6, 2350–2376.
- [2] Aleš Drápal and Petr Vojtěchovský, On abelian-by-cyclic Moufang loops, to appear in Forum Mathematicum, https://doi.org/10.1515/forum-2022-0391.
- [3] Stephen M. Gagola, III, Abelian by cyclic groups resulting in Moufang loops, J. Group Theory 15 (2012), no. 1, 1–7.
- [4] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.12.2; 2022, http://www.gap-system.org.
- [5] Michael K. Kinyon and Kenneth Kunen, The structure of extra loops, Quasigroups Related Systems 12 (2004), 39–60.
- [6] Fook Leong and Andrew Rajah, Split extension in Moufang loops, Publ. Math. Debrecen 52 (1998), no. 1-2, 33-42.
- [7] Ruth Moufang, Zur Struktur von Alternativkörpen, Math. Ann. 110 (1935), no. 1, 416–430.
- [8] Gábor P. Nagy and Petr Vojtěchovský, LOOPS, version 3.4.1, package for GAP, https: //github.com/gap-packages/loops.