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Octonions, simple Moufang loops and triality

Gábor P. Nagy and Petr Vojt¥chovský

Abstract

Nonassociative �nite simple Moufang loops are exactly the loops constructed by Paige
from Zorn vector matrix algebras. We prove this result anew, using geometric loop
theory. In order to make the paper accessible to a broader audience, we carefully discuss
the connections between composition algebras, simple Moufang loops, simple Moufang 3-
nets, S-simple groups and groups with triality. Related results on multiplication groups,
automorphisms groups and generators of Paige loops are provided.
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1 Introduction
The goal of this paper is to present the classi�cation of �nite simple Moufang
loops in an accessible and uniform way to a broad audience of researchers in
nonassociative algebra. The results are not new but the arguments often are.
Although not all proofs are included, our intention was to leave out only
those proofs that are standard (that is those that can be found in many
sources), those that are purely group-theoretical, and those that require
only basic knowledge of loop theory. We have rewritten many proofs using
geometric loop theory�a more suitable setting for this kind of reasoning. To
emphasize the links to other areas of loop theory and algebra, we comment
on de�nitions and results generously, although most of the remarks we make
are not essential later in the text.

Here is a brief description of the content of this paper. After reviewing
some basic properties of loops, nets and composition algebras, we construct
a family of simple Moufang loops from the Zorn alternative algebras. These
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loops are also known as Paige loops. We then brie�y discuss the multiplica-
tion groups of Paige loops, because these are essential in the classi�cation.

With every Moufang loop we associate a Moufang 3-net, and with this
3-net we associate a group with triality. An S-homomorphism is a homo-
morphism between two groups with triality that preserves the respective
triality automorphisms. This leads us to the concept of S-simple groups
with triality, which we classify. The group with triality G associated with a
simple Moufang loop L must be S-simple. Moreover, when L is nonassocia-
tive G must be simple. This is the moment when we use results of Liebeck
concerning the classi�cation of �nite simple groups with triality. His work
is based on the classi�cation of �nite simple groups. The fact that there
are no other nonassociative �nite simple Moufang loops besides �nite Paige
loops then follows easily.

Building on the geometric understanding we have obtained so far, we
determine the automorphism groups of all Paige loops constructed over
perfect �elds. We conclude the paper with several results concerning the
generators of �nite Paige loops and integral Cayley numbers. All these re-
sults are mentioned because they point once again towards classical groups.
Several problems and conjectures are pondered in the last section.

A few words concerning the notation: As is the habit among many
loop theorists, we write maps to the right of their arguments, and therefore
compose maps from left to right. The only exception to this rule are some
traditional maps, such as the determinant det. A subloop generated by S
will be denoted by 〈S〉. The symmetric group on n points is denoted by Sn.

2 Loops and nets
We now give a brief overview of de�nitions and results concerning loops
and nets. Nets (also called webs in the literature) form the foundations of
the geometric loop theory. All material covered in 2.1�2.3 can be found in
[4] and [25], with proofs. We refer the reader to [25, Ch. II ] and [8, Ch.
VIII, X ] for further study of nets.

2.1 Quasigroups and loops
Let Q = (Q, ·) be a groupoid. Then Q is a quasigroup if the equation
x · y = z has a unique solution in Q whenever two of the three elements
x, y, z ∈ Q are speci�ed. Quasigroups are interesting in their own right,
but also appear in combinatorics under the name latin squares (more pre-
cisely, multiplication tables of �nite quasigroups are exactly latin squares),
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and in universal algebra, where subvarieties of quasigroups are often used
to provide an instance of some universal algebraic notion that cannot be
demonstrated in groups or other rigid objects. We ought to point out that
in order to de�ne the variety of quasigroups equationally, one must intro-
duce additional operations \ and / for left and right division, respectively.

A quasigroup Q that possesses an element e satisfying e · x = x · e = x
for every x ∈ Q is called a loop with neutral element e. The vastness of the
variety of loops dictates to focus on some subvariety, usually de�ned by an
identity approximating the associative law. (Associative loops are exactly
groups.) In this paper, we will be concerned with Moufang loops, which are
loops satisfying any one of the three equivalent Moufang identities

((xy)x)z = x(y(xz)), ((xy)z)y = x(y(zy)), (xy)(zx) = (x(yz))x, (1)

and in particular with simple Moufang loops (see below). Every element
x of a Moufang loop is accompanied by its two-sided inverse x−1 satisfy-
ing xx−1 = x−1x = e. Any two elements of a Moufang loop generate a
subgroup, and thus (xy)−1 = y−1x−1.

Each element x of a loop Q gives rise to two permutations on Q, the
left translation Lx : y 7→ xy and the right translation Rx : y 7→ yx. The
group MltQ generated by all left and right translations is known as the
multiplication group of Q. The subloop Inn Q of MltQ generated by all
maps LxLyL

−1
yx , RxRyR

−1
xy and RxL−1

x , for x, y ∈ Q, is called the inner
mapping group of Q. It consists of all ϕ ∈ MltQ such that eϕ = e.

A subloop S of Q is normal in Q if Sϕ = S for every ϕ ∈ InnQ. The
loop Q is said to be simple if the only normal subloops of Q are Q and {e}.

In any loop Q, the commutator of x, y ∈ Q is the unique element
[x, y] ∈ Q satisfying xy = (yx)[x, y], and the associator of x, y, z ∈ Q
is the unique element [x, y, z] ∈ Q satisfying (xy)z = (x(yz))[x, y, z]. We
prefer to call the subloop C(Q) of Q consisting of all elements x such that
[x, y] = [y, x] = e for every y ∈ Q the commutant of Q. (Some authors use
the name centrum or Moufang center.) The subloop N(Q) consisting of all
x ∈ Q such that [x, y, z] = [y, x, z] = [y, z, x] = e holds for every y, z ∈ Q
is known as the nucleus of Q. Then Z(Q) = C(Q) ∩N(Q) is the center of
Q, which is always a normal subloop of Q.

2.2 Isotopisms versus isomorphisms
Quasigroups and loops can be classi�ed up to isomorphism or up to iso-
topism. When Q1, Q2 are quasigroups, then the triple (α, β, γ) of bijections
from Q1 onto Q2 is an isotopism of Q1 onto Q2 if xα · yβ = (x · y)γ holds
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for every x, y ∈ Q1. An isotopism with Q1 = Q2 is called an autotopism.
Every isomorphism α gives rise to an isotopism (α, α, α). The notion of
isotopism is super�uous in group theory, as any two groups that are isotopic
are already isomorphic.

In terms of multiplication tables, Q1 and Q2 are isotopic if the multi-
plication table of Q2 can be obtained from the multiplication table of Q1

by permuting the rows (by α), the columns (by β), and by renaming the
elements (by γ). Isotopisms are therefore appropriate morphisms for the
study of quasigroups and loops. On the other hand, every quasigroup is
isotopic to a loop, which shows that the algebraic properties of isotopic
quasigroups can di�er substantially. Fortunately, the classi�cation of �nite
simple Moufang loops is the same no matter which kind of equivalence (iso-
topism or isomorphism) we use. This is because (as we shall see) there is
at most one nonassociative �nite simple Moufang loop of a given order, up
to isomorphism.

A loop L is a G-loop if every loop isotopic to L is isomorphic to L. So,
�nite simple Moufang loops are G-loops.

2.3 Loops and 3-nets
Let k > 2 be an integer, P a set, and L1, . . . ,Lk disjoint sets of subsets
of P. Put L =

⋃Li. We call the elements of P and L points and lines,
respectively, and use the common geometric terminology, such as �all lines
through the point P �, etc. For ` ∈ Li, we also speak of a line of type i or
an i-line. Lines of the same type are called parallel.

The pair (P,L) is a k-net if the following axioms hold:

1) Distinct lines of the same type are disjoint.

2) Two lines of di�erent types have precisely one point in common.

3) Through any point, there is precisely one line of each type.

Upon interchanging the roles of points and lines, we obtain dual k-nets.
In that case, the points can be partitioned into k classes so that:

1′) Distinct points of the same type are not connected by a line.

2′) Two points of di�erent types are connected by a unique line.

3′) Every line consists of k points of pairwise di�erent types.
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There is a natural relation between loops and 3-nets. Let us �rst start
from a loop L and put P = L× L. De�ne the line classes

L1 = {{(x, c) | x ∈ L} | c ∈ L},
L2 = {{(c, y) | y ∈ L} | c ∈ L},
L3 = {{(x, y) | x, y ∈ L, xy = c} | c ∈ L}.

Then, (P,L = L1 ∪ L2 ∪ L3) is a 3-net. The lines of these classes are
also called horizontal, vertical and transversal lines, respectively. The point
O = (e, e) is the origin of the net.

Let us now consider a 3-net (P,L = L1 ∪ L2 ∪ L3). Let O ∈ P be
an arbitrary point, and let `, k be the unique horizontal and vertical lines
through O, respectively. Then the construction of Figure 1 de�nes a loop
operation on ` with neutral element O.

b
b

b
b

b
b

bb

b
b

b
b

b
b

bb

s(x, y)

s
x y x · y `

y

k

(e, e) = O

Figure 1: The geometric de�nition of the coordinate loop.

Since the parallel projections are bijections between lines of di�erent
type, we can index the points of k by points of `, thus obtaining a bijection
between P and `×`. The three line classes are determined by the equations
X = c, Y = c, XY = c, respectively, where c is a constant. We say that
(`,O) is a coordinate loop of the 3-net (P, L).

2.4 Collineations and autotopisms
Let N = (P,L) be a 3-net. Collineations are line preserving bijective
maps P → P. The group of collineations of N is denoted by CollN . A
collineation induces a permutation of the line classes. There is therefore a
group homomorphism from CollN to the symmetric group S3. The kernel
of this homomorphism consists of the direction preserving collineations.

Let L be the coordinate loop of N = (P, L) with respect to some origin
O ∈ P. Let ϕ : P → P be a bijection. Then ϕ preserves the line classes
1 and 2 if and only if it has the form (x, y) 7→ (xα, yβ) for some bijections
α, β : L → L. Moreover, if ϕ preserves the line classes 1 and 2 then ϕ also
preserves the third class if and only if there is a bijection γ : L → L such
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that the triple (α, β, γ) is an autotopism of L. Automorphisms of L can be
characterized in a similar way (see Lemma 7.2).

2.5 Bol re�ections

Let N be a 3-net and `i ∈ Li, for some i. We de�ne a certain permutation
σ`i on the point set P (cf. Figure 2). For P ∈ P, let aj and ak be the
lines through P such that aj ∈ Lj , ak ∈ Lk, and {i, j, k} = {1, 2, 3}.
Then there are unique intersection points Qj = aj ∩ `i, Qk = ak ∩ `i. We
de�ne Pσ`i

= bj ∩ bk, where bj is the unique j-line through Qk, and bk

the unique k-line through Qj . The permutation σ`i is clearly an involution
satisfying Ljσ`i

= Lk, Lkσ`i
= Lj . If it happens to be the case that σ`i

is
a collineation, we call it the Bol re�ection with axis `i.

s s

s s

"
"

"
"

"
"

"" "
"

"
"

"
"

""
P

P ′ = Pσ`i

`i

ak

aj

bk

bj

Qk

Qj

Figure 2: The Bol re�ection with axis `i.

Obviously, every Bol re�ection �xes a line pointwise (namely its axis)
and interchanges the other two line classes. In fact, it is easy to see that any
collineation with this property is a Bol re�ection. Then for any γ ∈ CollN
and ` ∈ L we must have γ−1σ`γ = σ`γ , as γ−1σ`γ is a collineation �xing
the line `γ pointwise. In words, the set of Bol re�ections of N is invariant
under conjugations by elements of the collineation group of N .

Let `i ∈ Li, i = 1, 2, 3, be the lines through some point P of N . As we
have just seen, σ`1σ`2σ`1 = σ`3 , since `3σ`1 = `2. Therefore (σ`1σ`2)

3 = id
and 〈σ`1 , σ`2 , σ`3〉 is isomorphic to S3. This fact will be of importance later.

A 3-net N is called a Moufang 3-net if σ` is a Bol re�ection for every
line `. The terminology is justi�ed by Bol, who proved that N is a Moufang
3-net if and only if all coordinate loops of N are Moufang [4, p. 120].
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Figure 3: The 2-Bol con�guration.

The con�guration in Figure 3 is called the 2-Bol con�guration. Using
the other two directions of axes, we obtain 1- and 3-Bol con�gurations.
With these con�gurations at hand, we see that the net N is Moufang if and
only if all its Bol con�gurations close (i.e., Rσ` and Pσ` are collinear). See
[25, Sec. II.3] for more on closures of net con�gurations.

3 Composition algebras
The most famous nonassociative Moufang loop is the multiplicative loop of
real octonions. Recall that octonions are built up from quaternions in a
way analogous to the construction of quaternions from complex numbers,
or complex numbers from real numbers. Following Springer and Veldkamp
[22], we will imitate this procedure over any �eld. We then construct a
countable family of �nite simple Moufang loops, one for every �nite �eld
GF (q).

Let F be a �eld and V a vector space over F . A map N : V → F is a
quadratic form if 〈 , 〉 : V ×V → F de�ned by 〈u, v〉 = (u+v)N−uN−vN
is a bilinear form, and if (λu)N = λ2(uN) holds for every u ∈ V and λ ∈ F .

When f : V × V → F is a bilinear form, then u, v ∈ V are orthogo-
nal (with respect to f) if (u, v)f = 0. We write u ⊥ v. The orthogonal
complement W⊥ of a subspace W ≤ V is the subspace {v ∈ V ; v ⊥ w for
every w ∈ W}. The bilinear form f is said to be non-degenerate if V ⊥ = 0.
A quadratic form N is non-degenerate if the bilinear form 〈 , 〉 associated
with N is non-degenerate. When N is non-degenerate, the vector space V
is said to be nonsingular. A subspace W of (V,N) is totally isotropic if
uN = 0 for every u ∈ W . All maximal totally isotropic subspaces of (V, N)
have the same dimension, called the Witt index. If N is non-degenerate and
dimV ≤ ∞ then the Witt index cannot exceed dimV/2.

In this paper, an algebra over F is a vector space over F with bilinear
multiplication. Speci�cally, we do not assume that multiplication in an
algebra is associative.
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A composition algebra C = (C,N) over F is an algebra with a mul-
tiplicative neutral element e such that the quadratic form N : C → F is
non-degenerate and

(uv)N = uNvN (2)

holds for every u, v ∈ C. In this context, the quadratic form N is called a
norm.

When 〈 , 〉 is the bilinear form associated with the norm N , the con-
jugate of x ∈ C is the element x = 〈x, e〉e − x. Every element x ∈ C
satis�es

x2 − 〈x, e〉x + (xN)e = 0

(cf. [22, Prop. 1.2.3]), and thus also xx = xx = (xN)e. In particular,
the multiplicative inverse of x is x−1 = (xN)−1x, as long as xN 6= 0.
Furthermore, 0 6= x ∈ C is a zero divisor if and only if xN = 0.

3.1 The Cayley-Dickson process
Let C = (C,N) be a composition algebra over F and λ ∈ F ∗ = F \ {0}.
De�ne a new product on D = C × C by

(x, y)(u, v) = (xu + λvy, vx + yu),

where x, y, u, v are elements of C. Also de�ne the norm M on D by

(x, y)M = xN − λ(yN),

where x, y ∈ C. By [22, Prop. 1.5.3], if C is associative then D = (D, M)
is a composition algebra. Moreover, D is associative if and only if C is
commutative and associative. The above procedure is known as the Cayley-
Dickson process.

We would now like to construct all composition algebras by iterating the
Cayley-Dickson process starting with F . However, there is a twist when F
is of characteristic 2. Namely, when charF = 2 then F is not a composition
algebra since 〈x, x〉 = (x + x)N − xN − xN = 0 for every x ∈ F , thus
〈x, y〉 = 〈x, λx〉 = λ〈x, x〉 = 0 for every x, y ∈ F , and N is therefore
degenerate. The situation looks as follows:

Theorem 3.1 (Thm. 1.6.2. [22]). Every composition algebra over F is
obtained by iterating the Cayley-Dickson process, starting from F if charF
is not equal to 2, and from a 2-dimensional composition algebra when charF
is equal to 2. The possible dimensions of a composition algebra are 1, 2,
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4 and 8. Composition algebras of dimension 1 or 2 are commutative and
associative, those of dimension 4 are associative but not commutative, and
those of dimension 8 are neither commutative nor associative.

A composition algebra of dimension 2 over F is either a quadratic �eld
extension of F or is isomorphic to F ⊕ F .

For a generalization of composition algebras into dimension 16 we refer
the reader to [26].

3.2 Split octonion algebras
Composition algebras of dimension 8 are known as octonion algebras. Since
there is a parameter λ in the Cayley-Dickson process, it is conceivable (and
sometimes true) that there exist two octonion algebras over F that are not
isomorphic.

A composition algebra (C,N) is called split if there is 0 6= x ∈ C such
that xN = 0. By [22, Thm. 1.8.1], over any �eld F there is exactly one split
composition algebra in dimension 2, 4 and 8, up to isomorphism. As we
have already noticed, split composition algebras are precisely composition
algebras with zero divisors. The unique split octonion algebra over F will
be denoted by O(F ). (It is worth mentioning that when F is �nite then
every octonion algebra over F is isomorphic to O(F ), cf. [22, p. 22].)

All split octonion algebras O(F ) were known already to Zorn, who con-
structed them using the vector matrices

x =
(

a α
β b

)
, (3)

where a, b ∈ F and α, β are vectors in F 3. The norm N is given as the
�determinant� det x = ab− α · β, where α · β is the usual dot product

(α1, α2, α3) · (β1, β2, β3) = α1β1 + α2β2 + α3β3.

The conjugate of x is

x =
(

b −α
−β a

)
, (4)

and two vector matrices are multiplied according to
(

a α
β b

) (
c γ
δ d

)
=

(
ac + α · δ aγ + dα− β × δ

cβ + bδ + α× γ β · γ + bd

)
, (5)
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where β × δ is the usual vector product

(β1, β2, β3)× (δ1, δ2, δ3) = (β2δ3 − β3δ2, β3δ1 − β1δ3, β1δ2 − β2δ1).

The reader can think of this Zorn vector algebra anytime we speak of
O(F ).

It turns out that every composition algebra satis�es the alternative laws

(xy)x = x(yx), x(xy) = x2y, (xy)y = xy2.

This is an easy corollary of the (not so easy) fact that composition algebras
satisfy the Moufang identities (1), cf. [22, Prop. 1.4.1].

4 A class of classical simple Moufang loops
4.1 Paige loops
Although the octonion algebra O(F ) satis�es the Moufang identities, it
is not a Moufang loop yet, since it is not even a quasigroup (0 · x = 0
for every x ∈ O(F )). Denote by M(F ) the subset of O(F ) consisting of
all elements of norm (determinant) 1. We have det xdet y = detxy since
O(F ) is a composition algebra, which means that M(F ) is closed under
multiplication. The neutral element of M(F ) is

e =
(

1 (0, 0, 0)
(0, 0, 0) 1

)
,

and the two-sided inverse of x ∈ M(F ) is x−1 = x, where x is as in (3) and
x is as in (4).

Let Z be the center of the Moufang loop M(F ). We have Z = {e} when
charF = 2, and Z = {e,−e} when charF 6= 2. Denote by M∗(F ) the
Moufang loop M(F )/Z.

Theorem 4.1 (Paige [23]). Let F be a �eld and M∗(F ) the loop of Zorn
vector matrices of norm one modulo the center, multiplied according to (5).
Then M∗(F ) is a nonassociative simple Moufang loop. When F = GF (q)
is �nite, the order of M∗(F ) is 1

dq3(q4 − 1), where d = (2, q − 1).

The noncommutative loops M∗(F ) of Theorem 4.1 are sometimes called
Paige loops.

In the remaining part of this section, we investigate the multiplication
groups of loops M(F ) and M∗(F ) constructed over an arbitrary �eld F .
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4.2 Orthogonal groups
Let V be a vector space over F with a non-degenerate quadratic form N :
V → F . A linear transformation f : V → V is orthogonal with respect to N
if it preserves N , i.e., if (xf)N = xN for all x ∈ V . Then f preserves the
associated bilinear form 〈 , 〉 as well:

〈xf, yf〉 = (xf + yf)N − (xf)N − (yf)N
= (x + y)N − (x)N − (y)N
= 〈x, y〉.

The group consisting of all orthogonal transformations of (V, N) is known as
the orthogonal group O(V ) = O(V, N). The determinant of an orthogonal
transformation is ±1. Orthogonal transformations with determinant 1 form
the special orthogonal group SO(V ). The elements of SO(V ) are called
rotations. One usually denotes by Ω(V ) the commutator subgroup O′(V )
of O(V ). By de�nition, every element of Ω(V ) is a rotation, and we would
like to see which rotations belong to Ω(V ).

Take an element g ∈ SO(V ) and consider the map 1− g : x 7→ x− xg.
De�ne the bilinear form χg on V (1− g) by (u, v)χg = 〈u,w〉, where w is an
arbitrary vector from V satisfying w(1−g) = v. Then χg is well-de�ned and
non-degenerate, by [27, Thm. 11.32]. Recall that the discriminant discr(f)
of a bilinear form f with respect to some basis is the determinant of its
matrix. Whether or not the discriminant of χg is a square in F does not
depend on the choice of the basis in V (1− g). This property characterizes
elements of Ω(V ).
Lemma 4.2 (11.50 Thm. [27]). The rotation g ∈ SO(V ) belongs to Ω(V )
if and only if discr(χg) ∈ F 2.

Pick any element σ ∈ O(V ) with σ2 = id. The two subspaces
U = V (σ − 1) = {xσ − x | x ∈ V },
W = V (σ + 1) = {xσ + x | x ∈ V }

are orthogonal to each other. Indeed,
〈xσ − x, yσ + y〉 = 〈xσ, y〉 − 〈x, yσ〉 = 〈xσ, y〉 − 〈xσ, yσ2〉 = 0.

The subspace W consists of vectors invariant under σ. If W is a non-
singular hyperplane (that is, a subspace of dimension dimV − 1) then σ
is called a symmetry with respect to W . (If char(F ) = 2 then σ is usually
called a transvection.) If σ is a symmetry with respect to W and g ∈ O(V ),
the conjugate σg = g−1σg is a symmetry with respect to Wg.
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4.3 Multiplication groups of Paige loops
Let now V = O(F ) be the split octonion algebra over F . We identify the
vector matrix

x =
(

x0 (x1, x2, x3)
(x4, x5, x6) x7

)

with the column vector (x0, . . . , x7)t, and we use the canonical basis of F 8

as the basis of V . Since 〈x, y〉 = det(x + y)− det x− det y = x7y0 − x4y1 −
x5y2 − x6y3 − x1y4 − x2y5 − x3y6 + x0y7, the bilinear from 〈x, y〉 can be
expressed as xtJy, where

J =




0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0




. (6)

Recall that M(F ) consists of all elements of O(F ) that are of norm 1.

Lemma 4.3. For every a ∈ M(F ), we have La, Ra ∈ Ω(V ).

Proof. We only deal with the case La. Since aN = 1, we have La ∈ O(V ),
by (2). Let a = (a0, . . . , a7)t and write matrix maps to the left of their
arguments. Then La can be identi�ed with




a0 0 0 0 a1 a2 a3 0
0 a0 0 0 0 a6 −a5 a1

0 0 a0 0 −a6 0 a4 a2

0 0 0 a0 a5 −a4 0 a3

a4 0 −a3 a2 a7 0 0 0
a5 a3 0 −a1 0 a7 0 0
a6 −a2 a1 0 0 0 a7 0
0 a4 a5 a6 0 0 0 a7




.

Routine calculation yields det(La) = (aN)4, and La ∈ SO(V ) follows.
By Lemma 4.2, it su�ces to show discr(χLa) ∈ F 2.

Assume �rst that (e− a)N 6= 0. Then V (1− La) = V (e− a) = V , and
((e−a)−1v)(1−La) = v for every v ∈ V . Thus (u, v)χLa = 〈u, vL−1

e−a〉, and
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the matrix of χLa is JL−1
e−a, where J is as in (6). Therefore discr(χLa) =

det(J) det(Le−a)−1 = ((e− a)N)−4 ∈ F 2.
Suppose now (e−a)N = 0 and exclude the trivial case e−a ∈ F . De�ne

the elements

e0 =
(

1 (0, 0, 0)
(0, 0, 0) 0

)
, e1 =

(
0 (1, 0, 0)

(0, 0, 0) 0

)
,

e2 =
(

0 (0, 1, 0)
(0, 0, 0) 0

)
, e3 =

(
0 (0, 0, 1)

(0, 0, 0) 0

)

and
f0 = (e− a)e0 =

(
1− a0 (0, 0, 0)

(−a4,−a5,−a6) 0

)
,

f1 = (e− a)e1 =
(

0 (1− a0, 0, 0)
(0,−a3, a2) −a4

)
,

f2 = (e− a)e2 =
(

0 (0, 1− a0, 0)
(a3, 0,−a1) −a5

)
,

f3 = (e− a)e3 =
(

0 (0, 0, 1− a0)
(−a2, a1, 0) −a6

)
.

The vectors ei span a totally isotropic subspace of V and fi ∈ (e − a)V .
Since 〈(e− a)x, (e− a)y〉 = (e− a)N〈x, y〉 = 0, (e− a)V is totally isotropic
as well. In particular, dim((e− a)V ) ≤ 4.

Assume a0 6= 1. Then, the vectors fi are linearly independent and hence
form a basis of (e− a)V . The matrix M = (mij) of χLa with respect to the
basis {f0, f1, f2, f3} satis�es mij = (fi, fj)χLa = 〈fi, ej〉, which yields

M =




0 a4 a5 a6

−a4 0 a3 −a2

−a5 −a3 0 a1

−a6 a2 −a1 0


 ,

by calculation. Then discr(χLa) = detM = (a1a4 + a2a5 + a3a6)2 ∈ F 2.
The special case a0 = 1 can be calculated similarly.

For the rest of this section, let ι denote the conjugation map x 7→ x.
Note that ι ∈ O(V ) and eι = e.

Lemma 4.4. Any element g ∈ O(V ) with eg = e commutes with ι.

Proof. We have xg = (〈x, e〉e − x)g = 〈x, e〉eg − xg = 〈xg, eg〉eg − xg =
〈xg, e〉e− xg = xg.
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Lemma 4.5. For an arbitrary element g ∈ O(V ), we de�ne ιg = g−1ιg.
Put a = eg. Then aN = 1 and xιg = axa holds for all x ∈ V .
Proof. On the one hand, aN = (eg)N = eN = 1, therefore aa = e and
a−1 = a. On the other hand, g = hLa for some h with eh = e. By the
previous lemma, ιg = L−1

a ιLa and xιg = ((xL−1
a )ι)La = a(a−1x) = axa.

The map −ι : x 7→ −x̄ is a symmetry with respect to the 7-dimensional
nonsingular hyperplane

H =

{(
x0 (x1, x2, x3)

(x4, x5, x6) −x0

) ∣∣∣∣∣ xi ∈ F

}
.

The conjugate −ιg is a symmetry with respect to Hg. This means that
C = {−ιg | g ∈ O(V )} = {−L−1

a ιLa | a ∈ M(F )}
is a complete conjugacy class consisting of symmetries.
Theorem 4.6. The multiplication group of M(F ) is Ω(O(F ), N).
Proof. By Lemma 4.3, Mlt(M(F )) ≤ Ω(V ). We have (ax)ι = xι ā, which
implies

ιιg = ιL−1
a ιLa = RaLa

and
ιgιh = (ιιg)−1(ιιh) = (RaLa)−1(RbLb) ∈ Mlt(M(F ))

for g, h ∈ O(V ). Let us denote by D the set consisting of ιgιh, g, h ∈ O(V ).
D is clearly an invariant subset of O(V ). By [1, Thm. 5.27], D generates
Ω(V ), which proves Mlt(M(F )) = Ω(O(F ), N).

Finally, we determine the multiplication groups of Paige loops.
Corollary 4.7. The multiplication group of the Paige loop M∗(F ) is the
simple group PΩ(O(F ), N) = PΩ+

8 (F ).
Proof. The surjective homomorphism ϕ : M(F ) → M∗(F ), x 7→ ±x in-
duces a surjective homomorphism Φ : Mlt(M(F )) → Mlt(M∗(F )). On
the one hand, the kernel of Φ contains ±id. On the other hand PΩ(V ) =
Ω(V )/{±id} is a simple group, cf. [1, Thm. 5.27]. Since Mlt(M∗(F )) is
not trivial, we must have Mlt(M∗(F )) = PΩ(V ). Finally, the norm N has
maximal Witt index 4, therefore the notation PΩ+

8 (F ) is justi�ed.

Remark 4.8. The result of Theorem 4.6 is folklore, that is, most of the au-
thors (Freudenthal, Doro, Liebeck, etc.) use it as a well-known fact without
making a reference. The authors of the present paper are not aware of any
reference, however, especially one that would handle all �elds at once.
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5 Groups with triality
5.1 Triality
Let G be a group. We use the usual notation xy = y−1xy and [x, y] =
x−1y−1xy = x−1xy for x, y ∈ G. Let α be an automorphism of G, then xα
will be denoted by xα as well, and [x, α] will stand for x−1xα. The element
αy ∈ AutG maps x to xy−1αy = ((xy−1

)α)y.
Let Sn be the symmetric group on {1, . . . , n}. G ×H and G oH will

stand for the direct and semidirect product of G and H, respectively. In
the latter case, H acts on G.

We have the following de�nition due to Doro [10].

De�nition 5.1. The pair (G,S) is called a group with triality, if G is a
group, S ≤ AutG, S = 〈σ, ρ| σ2 = ρ3 = (σρ)2 = 1〉 ∼= S3, and for all g ∈ G
the triality identity

[g, σ] [g, σ]ρ [g, σ]ρ
2

= 1

holds.

The principle of triality was introduced by Cartan [6] in 1938 as a prop-
erty of orthogonal groups in dimension 8, and his examples motivated Tits
[28]. Doro was the �rst one to de�ne the concept of an abstract group with
triality, away from any context of a given geometric or algebraic object.

De�nition 5.2. Let (Gi, 〈σi, ρi〉), i = 1, 2 be groups with triality. The
homomorphism ϕ : G1 → G2 is an S-homomorphism if gσ1ϕ = gϕσ2 and
gρ1ϕ = gϕρ2 hold for all g ∈ G1. The kernel of an S-homomorphism is
an S-invariant normal subgroup. The group with triality G is said to be
S-simple if it has no proper S-invariant normal subgroups.

The following examples of groups with triality are of fundamental im-
portance. They are adopted from Doro [10].

Example 5.3. Let A be a group, G = A3, and let σ, ρ ∈ AutG be de�ned
by σ : (a1, a2, a3) 7→ (a2, a1, a3) and ρ : (a1, a2, a3) 7→ (a2, a3, a1). Then G
is a group with triality with respect to S = 〈σ, ρ〉.

Example 5.4. Let A be a group with ϕ ∈ AutA, ϕ 6= idA, satisfying
xxϕ xϕ2

= 1 for all x ∈ A. Put G = A × A, σ : (a1, a2) 7→ (a2, a1) and
ρ : (a1, a2) 7→ (aϕ

1 , aϕ−1

2 ). Then G is a group with triality with respect to
S = 〈σ, ρ〉.
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If A is of exponent 3 and ϕ = idA then G is a group with triality in
a wider sense, meaning that the triality identity is satis�ed but S is not
isomorphic to S3.
Example 5.5. Let V be a two-dimensional vector space over a �eld of
characteristic di�erent from 3. Let S be the linear group generated by the
matrices

ρ =
( −1 −1

1 0

)
and σ =

(
0 1
1 0

)
.

Then the additive group of V and S form a group with triality.
Remark 5.6. If A is a simple group then the constructions in Examples 5.3
and 5.4 yield S-simple groups with triality. Obviously, if (G,S) is a group
with triality and G is simple (as a group) then (G,S) is S-simple. Below,
we are concerned with the converse of this statement.

5.2 Triality of Moufang nets
In the following, (G,S) stands for a group G with automorphism group S
isomorphic to S3. Let σ, ρ ∈ S be such that σ2 = ρ3 = id. Let the three
involutions of S be σ1 = σ, σ2 = σρ and σ3 = ρσ = σρ2. Finally, the
conjugacy class σG

i will be denoted by Ci.
The following lemma gives a more conceptual reformulation of Doro's

triality. (It is similar to Lemma 3.2 of [17], attributed by Liebeck to Richard
Parker.)
Lemma 5.7. The pair (G,S) is a group with triality if and only if (τiτj)3 =
id for every τi ∈ Ci, τj ∈ Cj, where i, j ∈ {1, 2, 3} and i 6= j. In this case,
(G, 〈τi, τj〉) is a group with triality as well.
Proof. The condition of the �rst statement claims something about the
conjugacy classes Ci, which do not change if we replace S by 〈τi, τj〉. This
means that the �rst statement implies the second one.

For the �rst statement, it su�ces to investigate the case i = 1, j = 3,
τ1 = σg and τ3 = σρ2, with arbitrary g ∈ G. Then the following equations
are equivalent for every g ∈ G:

1 = (σg(σρ2))3,
1 = σg(σρ2) · σg(σρ2) · σg(σρ2),
1 = [g, σ]ρ2 · [g, σ]ρ2 · [g, σ]ρ2,

1 = [g, σ] · ρ−1[g, σ]ρ · ρ[g, σ]ρ2,

1 = [g, σ] [g, σ]ρ [g, σ]ρ
2
.
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This �nishes the proof.

The next lemma already foreshadows the relation between Moufang 3-
nets and groups with triality.

Lemma 5.8. Let P be a point of the Moufang 3-net N . Denote by `1, `2

and `3 the three lines through P with corresponding Bol re�ections σ1, σ2,
σ3. Then the collineation group S = 〈σ1, σ2, σ3〉 ∼= S3 acts faithfully on the
set {`1, `2, `3}. This action is equivalent to the induced action of S on the
parallel classes of N .

Proof. As we have demonstrated in Section 2, the conjugate of a Bol re�ec-
tion is a Bol re�ection. Thus σ1σ2σ1 = σ3 = σ2σ1σ2, which proves the �rst
statement. The rest is trivial.

Using these lemmas, we can prove two key propositions.

Proposition 5.9. Let N be a Moufang 3-net and let M be the group of
collineations generated by all Bol re�ections of N . Let M0 ≤ M be the
direction preserving subgroup of M . Let us �x an arbitrary point P of N
and denote by S the group generated by the Bol re�ections with axes through
P . Then M0 / M , M = M0S, and the pair (M0, S) is a group with triality.

Proof. M0 / M = M0S is obvious. Thus S is a group of automorphism of
M0 by conjugation. By Lemma 5.7, it is su�cient to show 〈σg

i , σh
j 〉 ∼= S3

for all g, h ∈ M0, where σi and σj are the re�ections on two di�erent lines
through P . Since g, h preserve directions, the axes of σg

i and σh
j intersect

in some point P ′. Hence 〈σg
1 , σ

h
2 〉 ∼= S3, by Lemma 5.8.

The converse of the proposition is true as well.

Proposition 5.10. Let (G,S) be a group with triality. The following con-
struction determines a Moufang 3-net N (G,S). Let the three line classes
be the conjugacy classes C1, C2 and C3. By de�nition, three mutually non-
parallel lines τi ∈ Ci (i = 1, 2, 3) intersect in a common point if and only
if

〈τ1, τ2, τ3〉 ∼= S3.

Moreover, if G1 = [G,S]S = 〈C1, C2, C3〉, then the group M(N ) generated
by the Bol re�ections of N is isomorphic to G1/Z(G1).
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Proof. By de�nition, parallel lines do not intersect. When formulating the
triality identity as in Lemma 5.7, we see that two non-parallel lines have a
point in common such that there is precisely one line from the third parallel
class incident with this point. This shows that N (G,S) is a 3-net indeed.

The Moufang property follows from the construction immediately, since
one can naturally associate an involutorial collineation to any line τi ∈ Ci,
namely the one induced by τi on G. This induced map τ̄i interchanges the
two other parallel classes Cj , Ck and �xes the points on its axis, that is, it
normalizes the S3 subgroups containing τi.

Finally, since a Bol re�ection acts on the line set in the same way that
the associated Ci-element acts on the set ∪Cj by conjugation, we have the
isomorphism M(N ) ∼= G1/Z(G1).

Remark 5.11. From the point of view of dual 3-nets, the point set is the
union of the three classes Ci, and lines consist of the intersections of an S3

subgroup with each of the three classes.

Remark 5.12. One �nds another construction of groups with triality using
the geometry of the associated 3-net in P. O. Mikheev's paper [18]. A
di�erent approach to groups with triality is given in J. D. Phillips' paper
[24].

5.3 Triality collineations in coordinates
At this point, we �nd it useful to write down the above maps in the coordi-
nate system of the 3-net. If we denote by σ

(v)
m , σ

(h)
m , σ

(t)
m the Bol re�ections

with axes X = m, Y = m, XY = m, respectively, then we have

σ(v)
m : (x, y) 7→ (m(x−1m),m−1(xy)),

σ(h)
m : (x, y) 7→ ((xy)m−1, (my−1)m),

σ(t)
m : (x, y) 7→ (my−1, x−1m).

This yields

σ(v)
m σ

(v)
1 : (x, y) 7→ (m−1(xm−1),my),

σ(h)
m σ

(h)
1 : (x, y) 7→ (xm, (m−1y)m−1),

σ
(t)
m−1σ

(t)
1 : (x, y) 7→ (mx, ym).

These are direction preserving collineations generating G.
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They can be written in the form σ
(v)
m σ

(v)
1 = (L−1

m R−1
m , Lm), σ

(h)
m σ

(h)
1 =

(Rm, L−1
m R−1

m ) and σ
(t)
m σ

(t)
1 = (Lm, Rm) as well. The associated autotopisms

are

(L−1
m R−1

m , Lm, L−1
m ), (Rm, L−1

m R−1
m , R−1

m ), (Lm, Rm, LmRm),

respectively. By the way, the fact that these triples are autotopisms is
equivalent with the Moufang identities (1).

6 The classi�cation of nonassociative �nite simple
Moufang loops

6.1 Simple 3-nets
The classi�cation of �nite simple Moufang loops is based on the classi�cation
of �nite simple groups with triality. Using the results of the previous section,
the classi�cation can be done in the following steps.

Proposition 6.1. Let ϕ : N1 → N2 be a map between two 3-nets that
preserves incidence and directions.

(i) Suppose that ϕ(P1) = P2 holds for the points P1 ∈ N1, P2 ∈ N2. Then
ϕ de�nes a homomorphism ϕ̄ : L1 → L2 in a natural way, where Li

is the coordinate loop of the 3-net Ni with origin Pi. Conversely, the
loop homomorphism ϕ̄ : L1 → L2 uniquely determines a collineation
N1 → N2, namely ϕ.

(ii) Suppose that the 3-nets Ni (i = 1, 2) are Moufang and ϕ is a col-
lineation onto. Let us denote by (Mi, S) the group with triality that
corresponds to the 3-net Ni. Then the maps σ` 7→ σ`ϕ induce a surjec-
tive S-homomorphism ϕ̃ : M1 → M2, where σ` is the Bol re�ection in
N1 with axis `. Conversely, an S-homomorphism M1 → M2 de�nes
a direction preserving collineation between the 3-nets N (M1, S) and
N (M2, S).

Proof. The �rst part of statement (i) follows from the geometric de�nition
of the loop operation in a coordinate loop; the second part is trivial. For
the (ii) statement, it is su�cient to see that a relation of the re�ections σ`

corresponds to a point-line con�guration of the 3-net, and that the ϕ-image
of the con�guration induces the same relation on the re�ections σϕ(`). The
converse follows from Proposition 5.10.
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In the sense of the proposition above, we can speak of simple 3-nets,
that is, of 3-nets having only trivial homomorphisms. The next proposition
follows immediately.

Proposition 6.2. If L is a simple Moufang loop, then the associated 3-net
N is simple as well. That is, the group (M0, S) with triality determined by
N is S-simple.

6.2 S-simple groups with triality
The structure of S-simple groups with triality is rather transparent. It is
clear that G is S-simple if and only if it has no S-invariant proper nontrivial
normal subgroups.

Let G be such a group and let N / G be an arbitrary proper normal
subgroup of G. Let us denote by Ni the images of N under the elements of
S, i = 1, . . . , 6.

Since the union and the intersection of the groups Ni is an S-invariant
normal subgroup of G, we have G = N1 · · ·N6 and {1} = N1 ∩ . . . ∩ N6.
If Ni ∩ Nj is a proper subgroup of Ni for some i, j = 1, . . . , 6, then
we replace Ni by Ni ∩ Nj . We can therefore assume that the groups Ni

intersect pairwise trivially. Since S acts transitively on the groups Ni, one
of the following cases must occur:
Case A. G is a simple group. In this case, there is no proper normal
subgroup N .
Case B. The number of distinct groups Ni is 2. Then N = Nρ, M = Nσ,
G = NM , N ∩ M = {1} and elements of N and M commute. Every
element g ∈ G can be written as g = abσ. ρ induces an automorphism ϕ on
N . Then, gσ = aσb = baσ and gρ = aρbσρ = aρbρ−1σ = aϕbϕ−1σ.

Moreover, applying the triality identity on a ∈ N , we obtain

(aϕ2
aϕa)−1(aaϕaϕ2

)σ = 1,

which is equivalent with the identity aaϕaϕ2
= 1. This means that the map

N × N → G, (a, b) 7→ abσ de�nes an S-isomorphism between G and the
construction in Example 5.4.

However, a result of Khukhro claims that the existence of the automor-
phism ϕ of N implies that N is nilpotent of class at most 3 (see [16, p.
223], [20, Thm. 3.3]). Therefore, no S-simple group with triality can be
constructed in this case.
Case C. The number of distinct groups Ni is 3: N = N1, Nρ = N2,
Nρ2

= N3. We can assume Nσ
1 = N1 and Nσ

2 = N3.
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Case C/1. Assume that M = N1 ∩ (N2N3) is a proper subgroup of N1.
Then Mρ ∈ Nρ

1 = N2 ⊆ N2N3, similarly Mρ2 ∈ N2N3. Moreover, Mσ =
Nσ

1 ∩ (Nσ
2 Nσ

2 ) = M . Hence, MMρMρ2 is a proper S-invariant normal
subgroup of G, a contradiction.
Case C/2. Assume N1 ∩ (N2N3) = {1}. Then G = N1 ×N2 ×N3

∼= N3.
By the triality identity, we have a−1aσ ∈ N1∩ (N2N3) for any a ∈ N1, thus,
aσ = a. Consider the map Φ : N3 → G, Φ(a, b, c) = abρcρ2 . By

(abρcρ2
)σ = acρbρ2 and (abρcρ2

)ρ = caρbρ2
,

Φ de�nes an S-isomorphism between G and the group with triality in Ex-
ample 5.3.
Case C/3. Assume N1 ⊆ N2N3, G noncommutative. We have G =
N1 × N2

∼= N2. Since G is S-simple, we must have Z(G) = {1} and
Z(N) = {1}. Let us assume that aρ = a1a2 with 1 6= a1 ∈ N1, a2 ∈ N2 for
some element a ∈ N1 = N . Take b ∈ N with a1b 6= ba1. Every element of
N1 commutes with every element of N2. This implies

1 6= [a1a2, b] = [aρ, b] ∈ N ∩Nρ,

a contradiction.
Case C/4. If G is commutative and S-simple, then we are in the situation
of Example 5.5. The proof is left to the reader.

We summarize these results in the following proposition. In the �nite
case the result was proved by S. Doro [10]. In the in�nite case, it is due to
G. P. Nagy and M. Valsecchi [20].

Proposition 6.3. Let G be a noncommutative S-simple group with triality.
Then either G is simple or G = A×A×A, where A is a simple group and
the triality automorphisms satisfy (a, b, c)ρ = (c, a, b), (a, b, c)σ = (a, c, b).

6.3 The classi�cation
Lemma 6.4. Let G = A×A×A be an S-simple group with triality. Then
the associated loop is isomorphic to the group A.

Proof. We leave to the reader to check that an associative simple Moufang
loop A has G = A × A × A as a group with triality. Since the group with
triality determines the 3-net uniquely, and since groups are G-loops, that
is, the coordinate loop does not depend on the choice of the origin, we are
done.
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Also the following result is due to Doro, but the way of proving is based
on the geometric approach, hence new.

Lemma 6.5 (Doro). Assume that G is a group with triality such that ρ is
an inner automorphism. Then the associated Moufang loop has exponent 3.

Proof. Let ρ be an inner automorphism of G. We assume G to be a group
of direction preserving collineations of the 3-net N associated with L. We
consider ρ as a collineation of N permuting the directions cyclicly. We
denote by Γ+ the collineation group ofN generated by G and ρ. Γ+ consists
of collineations which induce an even permutation on the set of directions.

Let α ∈ G be a direction preserving collineation which induces ρ on G
and put r = α−1ρ. Obviously, Γ+ = 〈G, r〉, hence r ∈ Z(Γ+). Moreover,
since Γ+ is invariant under σ, we have rσ ∈ Z(Γ+).

Let τ be a Bol re�ection whose axis is parallel to the axis of σ. On the
one hand, στ ∈ G and

στ = r−1στr = (σrσ)(στ r)

holds. On the other hand, σrσ = r−1rσ ∈ Z(Γ+) and στ r ∈ Γ+. Therefore,

(στ)3 = (σrσ)3 (στ r)3 = id

by the modi�ed triality property, cf. Lemma 5.7.
Assume now that the axis of the Bol re�ections σ and τ are vertical with

equation X = e and X = a. As we have seen in Section 5.3, the coordinate
forms of these maps are (x, y)σ = (x−1, xy) and (x, y)τ = (ax−1a, a−1(xy)).
This implies (x, y)στ = (axa, a−1y) and (x, y)(στ)3 = (a3xa3, a−3y). By
(στ)3 = id, we have a3 = 1. Since we chose τ arbitrarily, L must be of
exponent 3.

Corollary 6.6. If G is a �nite group with triality which determines a non-
commutative simple Moufang loop then all triality automorphisms are outer.

Proof. Assume that σ is an inner automorphism. Then so are σρ and ρ =
σρσ. We have the same implication if we suppose σρ or ρσ to be inner. In
any case, ρ will be inner and L will be a �nite Moufang loop of exponent 3.
By [13, Thm. 4], L is either not simple or commutative.

Theorem 6.7 (Liebeck's Theorem [17]). The only �nite simple groups
with triality are the simple groups (PΩ+

8 (q), S). The triality automorphisms
are uniquely determined up to conjugation. (They are the so called graph
automorphisms of PΩ+

8 (q).)
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Corollary 6.8 (Thm. [17]). The only nonassociative �nite simple Mo-
ufang loops are the Paige loops M∗(q) = M∗(GF (q)), where q is a prime
power.

7 Automorphism groups of Paige loops over per-
fect �elds

Now that we have found all nonassociative �nite simple Moufang loops,
we will determine their automorphism groups. In fact, we will determine
AutM∗(F ) whenever F is perfect. Recall that a �eld of characteristic p
is perfect if the Frobenius map x 7→ xp is an automorphism of F . The
approach here is based on [21].

7.1 The automorphisms of the split octonion algebras
Let C be a composition algebra over F . A map α : C → C is a linear
automorphism (resp. semilinear automorphism) of C if it is a bijective F -
linear (resp. F -semilinear) map preserving the multiplication, i.e., satisfying
(uv)α = (uα)(vα) for every u, v ∈ C. It is well known that the group of
linear automorphisms of O(F ) is isomorphic to the Chevalley group G2(F ),
cf. [11, Sec. 3], [22, Ch. 2]. The group of semilinear automorphisms of O(F )
is therefore isomorphic to G2(F )oAutF .

Since every linear automorphism of a composition algebra is an isometry
[22, Sec. 1.7], it induces an automorphism on the loops M(F ) and M∗(F ).
The following result�that is interesting in its own right�shows that every
element of O(F ) is a sum of two elements of norm one. Consequently,
AutO(F ) ≤ AutM∗(F ).

Theorem 7.1 (Thm. 3.3 [29]). Let F be any �eld and O(F ) the split
octonion algebra over F . Then every element of O(F ) is a sum of two
elements of norm one.

Proof. As before, we identify O(F ) with the Zorn vector matrix algebra
over F , where the norm is given by the determinant. Let

x =
(

a α
β b

)

be an element of O(F ). First assume that β 6= 0. Note that for every
λ ∈ F there is γ ∈ F 3 such that γ · β = λ. Pick γ ∈ F 3 so that γ · β =
a + b − ab + α · β. Then choose δ ∈ γ⊥ ∩ α⊥ 6= 0. This choice guarantees
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that (a− 1)(b− 1)− (α− γ) · (β − δ) = ab− a− b + 1− α · β + γ · β = 1.
Thus (

a α
β b

)
=

(
1 γ
δ 1

)
+

(
a− 1 α− γ
β − δ b− 1

)

is the desired decomposition of x into a sum of two elements of norm 1.
Note that the above procedure works for every α.

Now assume that β = 0. If α 6= 0, we use a symmetrical argument as
before to decompose x. It remains to discuss the case when α = β = 0.
Then the equality

(
a 0
0 b

)
=

(
a (1, 0, 0)

(−1, 0, 0) 0

)
+

(
0 (−1, 0, 0)

(1, 0, 0) b

)

does the job.

An automorphism f ∈ AutM∗(F ) will be called (semi)linear if it is
induced by a (semi)linear automorphism of O(F ).

7.2 Geometric description of loop automorphisms
By considering extensions of automorphisms of M∗(F ), it was proved in
[29] that AutM∗(2) is isomorphic to G2(2). The aim of this section is to
generalize this result (although using di�erent techniques) and prove that
every automorphism of AutM∗(F ) is semilinear, provided F is perfect. We
reach this aim by identifying AutM∗(F ) with a certain subgroup of the
automorphism group of the group with triality associated with M∗(F ).

To begin with, we recall the geometrical characterization of automor-
phisms of a loop, as promised in Subsection 2.4.

Lemma 7.2 (Thm. 10.2 [3]). Let L be a loop and N its associated 3-
net. Any direction preserving collineation which �xes the origin of N is
of the form (x, y) 7→ (xα, yα) for some α ∈ AutL. Conversely, the map
α : L → L is an automorphism of L if and only if (x, y) 7→ (xα, yα) is a
direction preserving collineation of N .

We will denote the map (x, y) 7→ (xα, yα) by ϕα. Before reading any
further, recall Propositions 5.9 and 5.10.

Proposition 7.3. Let L be a Moufang loop and N its associated 3-net. Let
M be the group of collineations generated by the Bol re�ections of N , M0 the
direction preserving part of M , and S ∼= S3 the group generated by the Bol
re�ections whose axis contains the origin of N . Then AutL ∼= CAut M0(S).
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Proof. As the set of Bol re�ections of N is invariant under conjugations
by collineations, every element ϕ ∈ CollN normalizes the group M0 and
induces an automorphism ϕ̂ of M . It is not di�cult to see that ϕ �xes
the three lines through the origin of N if and only if ϕ̂ centralizes (the
involutions of) S.

Pick α ∈ AutL, and let ϕ̂α be the automorphism of M0 induced by the
collineation ϕα. As ϕα �xes the three lines through the origin, ϕ̂α belongs
to CAut M0(S), by the �rst paragraph.

Conversely, an element ψ ∈ CAut M0(S) normalizes the conjugacy class
of σ in M0S and preserves the incidence structure de�ned by the embedding
of N . This means that ψ = ϕ̂ for some collineation ϕ ∈ CollN . Now, ψ
centralizes S, therefore ϕ �xes the three lines through the origin. Thus ϕ
must be direction preserving, and there is α ∈ AutL such that ϕ = ϕα, by
Lemma 7.2.

7.3 The automorphisms of Paige loops
Theorem 7.4. Let F be a perfect �eld. Then the automorphism group
of the nonassociative simple Moufang loop M∗(F ) constructed over F is
isomorphic to the semidirect product G2(F )oAutF . Every automorphism
of M∗(F ) is induced by a semilinear automorphism of the split octonion
algebra O(F ).

Proof. We �x a perfect �eld F , and assume that all simple Moufang loops
and Lie groups mentioned below are constructed over F .

The group with triality associated with M∗ is the multiplicative group
MltM∗ ∼= D4, and the graph automorphisms of D4 are exactly the triality
automorphisms of M∗ (cf. [11], [10]). To be more precise, Freudenthal
proved this for the reals and Doro for �nite �elds, however they based their
arguments only on the root system and parabolic subgroups, and that is
why their result is valid over any �eld.

By [11], CD4(σ) = B3, and by [17, Lemmas 4.9, 4.10 and 4.3 ], CD4(ρ) =
G2. As G2 < B3, by [14, p. 28], we have CD4(S3) = G2.

Since F is perfect, AutD4 is isomorphic to ∆o(AutF ×S3), by a result
of Steinberg (cf. [7, Chapter 12]). Here, ∆ is the group of the inner and
diagonal automorphisms of D4, and S3 is the group of graph automorphisms
of D4. When charF = 2 then no diagonal automorphisms exist, and ∆ =
InnD4. When charF 6= 2 then S3 acts faithfully on ∆/ InnD4

∼= C2 × C2.
Hence, in any case, C∆(S3) = CD4(S3). Moreover, for the �eld and graph
automorphisms commute, we have CAut D4(S3) = CD4(S3)oAutF .
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We have proved AutM∗ ∼= G2 o AutF . The last statement follows
from the fact that the group of linear automorphisms of the split octonion
algebra is isomorphic to G2.

8 Related results, prospects and open problems
We conclude with a few results and open problems concerning simple Mo-
ufang loops.

8.1 Generators for �nite Paige loops
It is well known that every �nite simple group is generated by at most 2
elements. This result requires the classi�cation of �nite simple groups, and
was �nalized in [2]. Since any two elements of a Moufang loop generate
a subgroup, no nonassociative Moufang loop can be 2-generated. The fol-
lowing theorem can be proved using some classical results on generators of
groups SL(2, q), cf. [31]:

Theorem 8.1. Every Paige loop M∗(q) is 3-generated. When q > 2, the
generators can be chosen as

(
0 e1

−e1 λ

)
,

(
0 e2

−e2 λ

)
,

(
λ 0
0 λ−1

)
,

where λ is a primitive element of GF (q), and ei is the 3-vector whose only
nonzero coordinate is in position i and is equal to 1. When q = 2, the
generators can be chosen as

(
1 e1

e1 0

)
,

(
1 e2

e2 0

)
,

(
0 e3

e3 1

)
.

8.2 Generators for integral Cayley numbers of norm one
Let C = (C, N) be a real composition algebra. The set of integral elements
of C is the maximal subset of C containing 1, closed under multiplication
and subtraction, and such that both aN and a + a are integers for each a
in the set.

Let R, C, H, O be the classical real composition algebras, i.e., those
obtained from R by the Cayley-Dickson process with parameter λ = −1.
The real octonions O are often called Cayley numbers. For C ∈ {R, C, H},
there is a unique set of integral elements of C. (For instance, when C = C
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this set is known as the Gaussian integers.) When C = O, there are seven
such sets, all isomorphic, as Coxeter showed in [9].

We use the notation of [9] here. Let J be one of the sets of integral
elements in O, and let J ′ = {x ∈ J | xN = 1}. Then |J ′| = 240, and
J ′/{1, −1} is isomorphic to M∗(2). (This may seem strange, however,
M∗(2) is a subloop of any M∗(q), too.) Hence, by Theorem 8.1, J ′/{1, −1}
must be 3-generated. Let i, j, k be the usual units in H, and let e be
the unit that is added to H when constructing O. Following Dickson and
Coxeter, let h = (i + j + k + e)/2. Then one can show that i, j and h
generate J ′/{1, −1} (multiplicatively). Since i2 = −1, it follows that every
set of integral elements of unit norm in O is 3-generated, too. See [30] for
details.

8.3 Problems and Conjectures
Problem 8.2. Find a presentation for M∗(q) in the variety of Moufang
loops, possibly based on the generators of Theorem 8.1.

Problem 8.3. Find (necessarily in�nite) nonassociative simple Moufang
loops that are not Paige loops.

Conjecture 8.4. Let L be a nonassociative simple Moufang loop and let
H = Mlt(L)e be the stabilizer of the neutral element in the multiplication
group of L. Then H is simple.

Problem 8.5. Find a function f : N → N such that the order of the
multiplication group of a Moufang loop of order n is less that f(n).

For the �nite Paige loop M∗(q), we have

|M∗(q)| =
1
d
q3(q4 − 1),

|PΩ+
8 (q)| =

1
d2

q12(q2 − 1)(q4 − 1)2(q6 − 1),

where d = (2, q − 1). Hence |Mlt(M∗(q))| < 4|M∗(q)|4 holds. This moti-
vated us to state:

Conjecture 8.6. The function f(n) = 4n4 solves Problem 8.5.
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