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Abstract. A (left) quandle is connected if its left translations generate a group that acts
transitively on the underlying set. In 2014, Eisermann introduced the concept of quandle
coverings, corresponding to constant quandle cocycles of Andruskiewitsch and Graña. A
connected quandle is simply connected if it has no nontrivial coverings, or, equivalently, if
all its second constant cohomology sets with coefficients in symmetric groups are trivial.

In this paper we develop a combinatorial approach to constant cohomology. We prove
that connected quandles that are affine over cyclic groups are simply connected (extending
a result of Graña for quandles of prime size) and that finite doubly transitive quandles of
order different from 4 are simply connected. We also consider constant cohomology with
coefficients in arbitrary groups.

1. Introduction

Quandles were introduced by Joyce [13] in 1982 as algebraic objects whose elements can
be used to color oriented knots. In more detail, let K be an oriented knot and X = (X, ., .)
a set with two binary operations. Given a diagram of K, an assignment of elements of X to
arcs of K is consistent if the relations

x y

x . y

y x

x . y

are satisfied at every crossing of the diagram. If, in addition, the assignment remains con-
sistent when Reidemeister moves are applied to the diagram of K in all possible ways, we
say that the assignment is a coloring of K. We denote by colX(K) the number of colorings
of K by elements of X in which more than one element is used.

Whether colX(K) 6= 0 is a delicate question that depends on both K and X = (X, ., .).
However, when the consistency conditions imposed by Reidemeister moves are universally
quantified, they force . to be the inverse operation to . (in the sense that x. (x . y) = y and
x . (x . y) = y) and they force precisely the quandle axioms onto .. In particular, if (X, .) is
a quandle and there is a consistent assignment of elements of X to arcs of a diagram of K, it
is also a coloring of K. It is therefore customary to color arcs of oriented knots by elements
of quandles.
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For an oriented knot K, the knot quandle of K is the quandle freely generated by the
oriented arcs of K subject only to the above crossing relations. It was shown early on by
Joyce [13] and Matveev [17] that knot quandles are complete invariants of oriented knots up
to mirror image and reversal of orientation.

It has been conjectured that for any finite collection K of oriented knots there exists a
finite collection of finite quandlesX1, . . . , Xn such that the n-tuples (colX1(K), . . . , colXn(K))
distinguish the knots of K up to mirror image and reversal of orientation. (See [4] for a more
precise formulation.) This conjecture has been verified in [4] for all prime knots with at
most 12 crossings, using a certain collection of 26 quandles. Many oriented knots can be
distinguished by a coarser invariant, namely by merely checking whether colX(K) 6= 0 [8, 14].

Whenever an oriented knot K is colored by a quandle X, the elements of X actually used in
the coloring form a connected subquandle of X. Consequently, for the purposes of quandle
colorings, it is sufficient to consider connected quandles. Although far from settled, the
theory of connected quandles is better understood than the general case [11], and connected
quandles have been classified up to size 47 [11, 19].

Our work is primarily concerned with simply connected quandles which can be defined in
several equivalent ways.

In a long paper [6], Eisermann developed the theory of quandle coverings and offered a com-
plete categorical characterization of coverings for a given quandle. In [1], Andruskiewitsch
and Graña introduced an extension theory for quandles. Their (dynamical) quandle cocycles
can be used to color arcs of oriented knots, giving rise to knot invariants [2]. (These were
first defined in [3] as an analog of the Dijkgraaf-Witten invariants for 3-manifolds [10].) The
quandle cocycle condition (see Definition 2.6) is rather difficult to work with, involving a
3-parameter mapping. Constant quandle cocycles are precisely those quandle cocycles in
which one parameter is superfluous (see Definition 2.14). Even constant quandle cocycles
yield powerful knot invariants [2, Section 5].

The following conditions are equivalent for a connected quandle X (see Proposition 2.16):

• the fundamental group of X is trivial,
• every covering of X is equivalent to the trivial covering of X over some set S,
• for every set S, the second constant cohomology set of X with coefficients in the

symmetric group SS is trivial.

If a connected quandle X satisfies any of these equivalent conditions, we say that X is simply
connected.

In this paper we develop a combinatorial approach to constant cohomology with emphasis
on simply connected quandles. From an algebraic point of view, our main result is as follows:

Theorem 1.1. Let X be a finite connected quandle that is affine over a cyclic group, or a
finite doubly transitive quandle of size different from 4. Then X is simply connected.

We offer two proofs of Theorem 1.1. The first proof is combinatorial in nature and mostly
self-contained. The second proof (whose main idea was suggested to us by the referee of
an earlier version of this paper) is much shorter and relies on an explicit description of the
fundamental group of affine quandles from an unpublished note of Clauwens [5].

We also investigate constant cohomology with coefficients in arbitrary groups and we
prove:
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Theorem 1.2. Let X be a latin quandle. Then the following conditions are equivalent:

(i) X is simply connected,
(ii) H2

c (X,G) = 1 for every group G.

We can then easily obtain the following knot-theoretical corollary:

Corollary 1.3. Let X be a simply connected latin quandle. Then every conjugacy quandle
cocycle invariant based on X is trivial.

The paper is organized as follows. Basic results about quandles and their extensions,
coverings, cohomology and constant cohomology are recalled in Section 2. Let X be a
latin quandle, u ∈ X, and let S be a nonempty set. Every constant quandle cocycle β :
X ×X → SS with coefficients in the symmetric group SS is cohomologous to a normalized
(constant) quandle cocycle βu satisfying βu(x, u) = 1 for every x ∈ X, as is recalled in
Section 3. In Section 4 we introduce three bijections f , g, h of X ×X under which every u-
normalized cocycle βu is invariant, that is, βu(k(x, y)) = βu(x, y) for k ∈ {f, g, h}. To prove
that a given connected quandle is simply connected, it then suffices to show that for every
(x, y) ∈ X ×X there exists some (x0, y0) ∈ X ×X and k ∈ 〈f, g, h〉 such that βu(x0, y0) = 1
and k(x0, y0) = (x, y). We therefore study the orbits of f , g, h in Section 5, and again in
Section 6 in the restricted case of connected affine quandles. Theorem 1.1 is proved in Section
7. Clauwens’ explicit description of the fundamental group of affine quandles is recalled in
Section 8 and then Theorem 1.1 is proved once more. Finally, constant cohomology with
coefficients in arbitrary groups is introduced in Section 9, where we also prove Theorem 1.2
and Corollary 1.3.

2. Basic results and quandle extensions

2.1. Quandles. For a groupoid (X, ·) and x ∈ X, let

Lx : X → X, x 7→ x · y,
Rx : X → X, x 7→ y · x

be the left translation by x and the right translation by x, respectively.
We will often suppress the binary operation while talking about groupoids and denote

them by X rather than by (X, ·). We denote by Aut(X) the automorphism group of X.
When X is merely a set, then Aut(X) = SX , the symmetric group on X.

Definition 2.1. A groupoid (X, .) is a quandle if it is a left quasigroup that is left distribu-
tive and idempotent. That is, (X, .) is a quandle if it satisfies the following axioms:

Lx ∈ SX ,(2.1)

x . (y . z) = (x . y) . (x . z),(2.2)

x . x = x(2.3)

for every x, y, z ∈ X.

Note that the identity (2.1) is equivalent to X having a left division operation defined by

x\y = L−1x (y),

and that the two identities (2.1) and (2.2) jointly state that Lx ∈ Aut(X) for every x ∈ X.
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Every quandle is flexible, indeed, x . (y . x) = (x . y) . (x . x) = (x . y) . x, and it is
therefore safe to write x . y . x.

For any groupoid X and ϕ ∈ Aut(X) we have ϕLxϕ
−1 = Lϕ(x) for every x ∈ X. In

particular, if X is a quandle then

(2.4) LyLxL
−1
y = Ly.x for every x, y ∈ X.

Example 2.2. Quandles appear naturally as the following examples illustrate.

(i) The one element groupoid is called the trivial quandle. More generally, any projection
groupoid on a set X (that is, a groupoid satisfying x . y = y for every x, y ∈ X) is a
quandle, the projection quandle PX over X.

(ii) Let G be a group and H a union of (some) conjugacy classes of G. For x, y ∈ H, let
x . y = xyx−1. Then (H, .) is a quandle, the conjugation quandle on H.

(iii) Let G be a group, α ∈ Aut(G) and H ≤ Fix(α) = {x ∈ G | α(x) = x}. Let G/H be
the set of left cosets {xH | x ∈ G}. Then G/H with multiplication

xH . yH = xα(x−1y)H

is a quandle Q(G,H, α) = (G/H, .), called the coset quandle (also known as homo-
geneous quandle or Galkin quandle).

(iv) A coset quandle Q(G,H, α) with H = 1 is called principal and will be denoted by
Q(G,α). If, in addition, G is an abelian group, then Q(G,α) is an affine quandle.

Definition 2.3. For a quandle X, we call the set

LX = {Lx | x ∈ X}
the left section of X, and the group

LMlt(X) = 〈LX〉 ≤ Aut(X)

the left multiplication group of X. The group LMlt(X) is often denoted by Inn(X) and
called the inner automorphism group of X.

The left section LX is closed under conjugation by (2.4), and the corresponding conjugation
quandle on LX will be denoted by L(X). Note that the mapping X → L(X), x 7→ Lx is a
homomorphism of quandles.

Definition 2.4. A quandle X is latin if Rx ∈ SX for every x ∈ X.

In a latin quandle we can define right division by x/y = R−1y (x). A latin quandleX is there-
fore a quasigroup (X, ., \, /) in which the multiplication . is left distributive and idempotent.
As in any quasigroup, a homomorphism of a latin quandle (X, .) is automatically a homo-
morphism of (X, ., \, /). For instance, x . (y/z) = Lx(y/z) = Lx(y)/Lx(z) = (x/y) . (x/z)
holds in any latin quandle.

Definition 2.5. A quandle X is connected (or, sometimes, transitive) if LMlt(X) acts
transitively on X, and doubly transitive if LMlt(X) acts doubly transitively on X.

All latin quandles are connected. Indeed, if X is a latin quandle and x, y ∈ X, then
Lx/y(y) = x. All finite quandles can be built from connected quandles but the extension
theory is not well understood, cf. [1, Proposition 1.17] or [12].

In order to simplify notation, we will from now on denote the quandle multiplication by ·
or by juxtaposition rather than by ..
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2.2. Quandle extensions. The notion of quandle extensions was introduced in [1]. Let
X be a groupoid, S a nonempty set, and suppose that (X × S, ·) is a groupoid. Then the
canonical projection π : X×S → X, (x, s) 7→ x is a homomorphism of groupoids if and only
if there is a mapping β : X ×X × S × S → S such that

(x, s) · (y, t) = (xy, β(x, y, s, t)).

We will then denote (X × S, ·) by X ×β S.
Suppose now that X is a quandle. It is then easy to see that X ×β S is also a quandle if

and only if β(x, y, s) : S → S, t 7→ β(x, y, s, t) is a bijection for every x, y ∈ X, s ∈ S, and
the quandle cocycle conditions

β(xy, xz, β(x, y, s)(t))β(x, z, s) = β(x, yz, s)β(y, z, t),(2.5)

β(x, x, s)(s) = s(2.6)

hold for every x, y, z ∈ X and every s, t ∈ S. In the context of quandles, we will therefore
consider β as a mapping X ×X × S → SS.

Definition 2.6 ([1, Definition 2.2]). Let X be a quandle and S a nonempty set. A mapping
β : X × X × S → SS is a quandle cocycle if (2.5) and (2.6) hold. The set of all quandle
cocycles X ×X × S → SS will be denoted by Z2(X, SS).

Proposition 2.7 ([1]). The following conditions are equivalent for quandles X, Y :

(i) Y is a quandle defined on X×S for some set S and the canonical projection Y → X
is a quandle homomorphism.

(ii) Y ∼= X ×β S for some set S and some quandle cocycle β ∈ Z2(X, SS).
(iii) X ∼= Y/α for a uniform congruence α of Y , that is, a congruence α of Y such that

all blocks of α have the same cardinality.

Proof. We have already shown above that (i) and (ii) are equivalent. Suppose that (ii) holds
and Y = X×β S for some β ∈ Z2(X, SS). Then X ∼= Y/ker(π), where π : X×β S → X is the
canonical projection. Clearly, ker(π) is a uniform congruence, each block having cardinality
|S|. Conversely, let α be a uniform congruence on Y , X = Y/α, and let S be a set of the
same cardinality as any of the blocks of α. Let {h[x] : [x] → S | [x] ∈ X} be a family of
bijections indexed by the blocks of α. Then the mapping β : X ×X × S → SS defined by

β([x], [y], s) = h[xy]Lh−1
[x]

(s)h
−1
[y]

is a quandle cocycle and the mapping

Y → X ×β S, x 7→ ([x], h[x](x))

is an isomorphism of quandles. �

We therefore define:

Definition 2.8. Let X, Y be quandles. Then Y is an extension of X if X ∼= Y/α for some
uniform congruence α of Y .

For a quandle X, let H(X) denote the class of all homomorphic images of X. We have:

Proposition 2.9. Let Y be a connected quandle. Then the following conditions are equiva-
lent for a quandle X:

(i) X ∈ H(Y ),
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(ii) Y is an extension of X.

Proof. By the Fundamental Homomorphism Theorem, X ∈ H(Y ) if and only if X ∼= Y/α
for some congruence α of Y . Since Y is connected, it is easy to show that every congruence
of Y is uniform. �

The following equivalence relation partitions Z2(X, SS) so that any two cocycles in the
same block give rise to isomorphic quandles. In a suitably defined category of quandle
extensions (see [1] or Proposition 2.11), two cocycles belong to the same block of this partition
if and only if the two quandle extensions are isomorphic.

Definition 2.10. Let X be a quandle and S a nonempty set. We say that β, β′ ∈ Z2(X, SS)
are cohomologous, and we write β ∼ β′, if there exists a mapping

γ : X → SS
such that

β′(x, y, s) = γ(xy)β(x, y, γ(x)−1(s))γ(y)−1

holds for every x, y ∈ X and s ∈ S. The factor set

H2(X, SS) = Z2(X, SS)/ ∼
is the second (non-abelian) cohomology set of X with coefficients in SS.

The following result makes clear the relationship between cohomologous cocycles and
isomorphisms of quandle extensions.

Proposition 2.11 ([1, pp. 194–195]). The following conditions are equivalent for a quandle
X, a set S and cocycles β, β′ ∈ Z2(X, SS):

(i) β ∼ β′,
(ii) there exists an isomorphism φ : X ×β S −→ X ×β′ S such that the following diagram

is commutative
X ×β S

π //

φ

��

X

X ×β′ S

π

77 .

2.3. Quandle coverings and constant cocycles. We are interested in a special class of
quandle extensions, so-called quandle coverings.

Definition 2.12 ([6, Definition 1.4]). A connected quandle Y is a covering of a quandle X
if there is a surjective quandle homomorphism f : Y → X such that the left translations Lx,
Ly of Y coincide whenever f(x) = f(y).

For a quandle Y , let ker(LY ) denote the equivalence relation on Y induced by equality in
the left section LY , that is, (x, y) ∈ ker(LY ) if and only if Lx = Ly. Then ker(LY ) is in fact
a congruence on Y , thanks to (2.4). Moreover, if Y is a connected quandle then ker(LY ) is
a uniform congruence, and hence Y is an extension of Y/ker(LY ). Therefore, a connected
quandle Y is a covering of a quandle X if and only if X ∼= Y/α, where α is some uniform
congruence of Y that refines ker(LY ). Here, we say that a congruence α refines a congruence
β if (x, y) ∈ β whenever (x, y) ∈ α.

Here are some nontrivial examples of quandle coverings:
6



Proposition 2.13. Let X1 = Q(G,H1, α) and X2 = Q(G,H2, α) be two coset quandles such
that H1 ≤ H2. Then X1 is a covering of X2.

Proof. Define ψ : X1 → X2 by ψ(xH1) = xH2. The mapping ψ is surjective and every block
of ker(ψ) has the same cardinality as H2/H1. For x, y ∈ G we have

ψ(xH1 · yH1) = ψ(xα(x−1y)H1) = xα(x−1y)H2 = xH2 · yH2 = ψ(xH1) · ψ(yH1),

so ψ is a homomorphism.
Suppose that ψ(xH1) = ψ(yH1), i.e., x = yh for some h ∈ H2 ≤ Fix(α). Then xα(x−1) =

yhα(h−1y−1) = yα(y−1) and thus

xH1 · zH1 = xα(x−1z)H1 = yα(y−1z)H1 = yH1 · zH1

for every z ∈ G. This shows that LxH1 = LyH1 in X1, so X1 is a covering of X2. �

We proceed to identify those quandle cocycles that correspond to quandle coverings.

Definition 2.14 ([1, Definition 2.2]). Let X be a quandle and S a nonempty set. A quandle
cocycle β ∈ Z2(X, SS) is a constant quandle cocycle if

β(x, y, r) = β(x, y, s)

for every x, y ∈ X and r, s ∈ S. Since the value of β(x, y, s) is then independent of s ∈ S,
we will think of constant cocycles as mappings β : X ×X → SS.

The set of all constant quandle cocycles X ×X → SS will be denoted by Z2
c (X, SS). The

equivalence relation ∼ on Z2(X, SS) induces an equivalence relation on Z2
c (X, SS), and we

define
H2
c (X, SS) = Z2

c (X, SS)/ ∼,
the second constant cohomology set of X with coefficients in SS.

We see immediately from (2.5) and (2.6) that a mapping β : X ×X → SS is a constant
quandle cocycle if and only if it satisfies

β(xy, xz)β(x, z) = β(x, yz)β(y, z),(CC)

β(x, x) = 1(CQ)

for every x, y, z ∈ X.
Note that (CC) implies

(WCC) β(xy, xz) = β(x, yz) ⇔ β(x, z) = β(y, z)

for every x, y, z ∈ X. We will call (WCC) the weaker cocycle condition.
Just as quandle cocycles parametrize quandle extensions, the constant cocycles parame-

trize quandle coverings.

Proposition 2.15 ([2, Lemma 5.1]). Let X, Y be connected quandles. Then the following
conditions are equivalent:

(i) Y is a covering of X,
(ii) Y ∼= X ×β S for some set S and β ∈ Z2

c (X, SS).

Proof. Let Y be an extension of X, say Y = X ×β S for β ∈ Z2(X, SS). Then (x, r) · (y, t) =
(x, s) · (y, t) for every x, y ∈ X, r, s, t ∈ S if and only if β(x, y, r) = β(x, y, s) for every x,
y ∈ X, r, s ∈ S, which is equivalent to β ∈ Z2

c (X, SS). �
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Let X be a quandle and S a nonempty set. The mapping defined by

X ×X −→ SS, (x, y) 7→ 1

is a constant cocycle, called the trivial cocycle and denoted by 1. It is easy to see that X×1S
is the direct product of X and the projection quandle over S. The covering Y = X ×1 S is
called a trivial covering of X.

Two coverings f : Y → X, f ′ : Y ′ → X of X are said to be equivalent if there is a quandle
isomorphism φ : Y → Y ′ such that f ′ ◦ φ = f .

Let X = (X, ·) be a quandle. The adjoint group Adj(X) of X is the group with generators
{ex | x ∈ X} and presenting relations {ex·y = e−1x eyex | x, y ∈ X}. Following [6, Definitions
1.7, 1.10], let ε : Adj(X) → Z be the unique homomorphism such that ε(ex) = 1 for every
x ∈ X. Let Adj(X)◦ be the kernel of ε. The fundamental group of X based at x ∈ X
is defined as π1(X, x) = {g ∈ Adj(X)◦ | xg = x}. By [6, Proposition 5.8], π1(X, x) is
conjugate to π1(X, y) whenever x, y are in the same orbit of LMlt(X). In particular, if X is
a connected quandle then the isomorphism type of π1(X, x) is independent of the base point
x, and it is safe to write π1(X) instead of π1(X, x).

Proposition 2.16. The following conditions are equivalent for a connected quandle X:

(i) π1(X) is trivial,
(ii) every covering Y → X is equivalent to the trivial covering of X over some set S,

(iii) H2
c (X, SS) is trivial for every set S.

Proof. The equivalence of (i) and (ii) is established in [6, Proposition 5.15]. Let us prove the
equivalence of (ii) and (iii).

By Proposition 2.15, any covering of X is of the form π : X ×β S → S for some nonempty
set S. If X ×β S → S, X ×β′ S ′ → S ′ are two equivalent coverings of X, then S and S ′

have the same cardinality. It therefore suffices to investigate two coverings X ×β S → S
and X ×β′ S → S with β, β′ ∈ Z2

c (X, SS). By Proposition 2.11, these two coverings are
equivalent if and only if β ∼ β′. �

3. Normalized constant cocycles

In this section we start computing the constant cohomology set H2
c (X, SS) of a latin

quandle X. The situation is greatly simplified in the latin case because every cocycle of
H2
c (X, SS) can be assumed to be normalized:

Definition 3.1 (compare [9, Lemma 5.1]). Let X be a latin quandle, S a nonempty set and
u ∈ X. Then β ∈ Z2

c (X, SS) is said to be u-normalized if

β(x, u) = 1

for every x ∈ X.

For β ∈ Z2
c (X, SS) and σ ∈ SS define βσ ∈ Z2

c (X, SS) by βσ(x, y) = σβ(x, y)σ−1.

Proposition 3.2. Let X be a latin quandle, S a nonempty set and u ∈ X. For β ∈ Z2
c (X, SS)

define βu ∈ Z2
c (X, SS) by

βu(x, y) = β((xy)/u, u)−1β(x, y)β(y/u, u).

Then {βσu | σ ∈ SS} is the set of all u-normalized cocycles cohomologous to β.
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Proof. We have δ ∼ β if and only if δ(x, y) = γ(xy)β(x, y)γ(y)−1 for some γ : X → SS.
The following conditions are then equivalent for δ: δ is u-normalized, 1 = δ(x, u) =
γ(xu)β(x, u)γ(u)−1 for every x ∈ X, γ(xu) = γ(u)β(x, u)−1 for every x ∈ X,

(3.1) γ(x) = γ(u)β(x/u, u)−1

for every x ∈ X, where we have used the latin property in the last step. Conversely, given
σ = γ(u) ∈ SS, the formula (3.1) defines a map γ : X → SS (it is well defined since
γ(u)β(u/u, u)−1 = γ(u)β(u, u)−1 = γ(u) by (CQ)). Then

δ(x, y) = γ(xy)β(x, y)γ(y)−1 = σβ((xy)/u, u)−1β(x, y)β(y/u, u)σ−1 = σβu(x, y)σ−1,

so δ = βσu . �

Corollary 3.3. Let X be a latin quandle, S a nonempty set, and u ∈ X. Let β, β′ ∈
Z2
c (X, SS), and let δ, δ′ be u-normalized cocycles such that δ ∼ β and δ′ ∼ β′. Then β ∼ β′

if and only if δ′ = δσ for some σ ∈ SS. Moreover, the following conditions are equivalent:

(i) H2
c (X, SS) is trivial,

(ii) if β ∈ Z2
c (X, SS), δ ∼ β and δ is u-normalized then δ = 1,

(iii) βu = 1 for every β ∈ Z2
c (X, SS).

Proof. The first statement follows immediately from Proposition 3.2. Suppose that (i) holds,
let β ∈ Z2

c (X, SS), and let δ ∼ β be u-normalized. Since 1 is also u-normalized and 1 ∼ β by
triviality of H2

c (X, SS), we have δ = 1 by the first statement, establishing (ii). Clearly, (ii)
implies (iii). Finally, if (iii) holds then β ∼ βu = 1 for every β ∈ Z2

c (X, SS), so H2
c (X, SS) is

trivial. �

Many identities for normalized cocycles can be derived from (CC) and (CQ). We will later
need:

Lemma 3.4. Let X be a latin quandle and let β be a u-normalized cocycle. Then

β (u/ (u/x) , x) = β (u/x, x)

for every x ∈ X. Moreover u/(u/x) · x = u if and only if x = u.

Proof. Setting x = u/y and y = u/z in (CC), we get β(u/(u/z), z) = β(u/z, z) for every
z ∈ X. Moreover,

u/(u/x) · x = u ⇔ u/(u/x) = u/x ⇔ u/x = u ⇔ x = u.

�

4. Three bijections on X ×X that preserve normalized cocycles

Given a mapping α : A → B and a bijection ` : A → A, we say that α is `-invariant if
α(x) = α(`(x)) for every x ∈ A.

In this section we introduce three bijections of X ×X (where X is a latin quandle) under
which all normalized cocycles are invariant. We will use these bijections throughout the rest
of the paper.
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Let X be a latin quandle and u ∈ X. Define

f : X ×X → X ×X, (x, y) 7→ (x · y/u, xu),

g : X ×X → X ×X, (x, y) 7→ (ux, uy),(4.1)

h : X ×X → X ×X, (x, y) 7→ (y/(x\u) · x, y).

The element u on which f , g, h depend will always be understood from the context.

Proposition 4.1. Let X be a latin quandle and u ∈ X. Then f ∈ SX×X and every u-
normalized cocycle is f -invariant.

Proof. It is easy to see that f has an inverse, namely the mapping (x, y) 7→ (y/u, (y/u)\x ·u).
Let β be a u-normalized cocycle. Then (WCC) implies β(xy, xu) = β(x, yu) for every
x, y ∈ X. With z = yu, we obtain β(x, z) = β(x, yu) = β(xy, xu) = β(x(z/u), xu) =
β(f(x, z)). �

Lemma 4.2. Let X be a latin quandle, u ∈ X and β a constant cocycle. Then the following
conditions are equivalent:

(i) β(u, x) = 1 for every x ∈ X,
(ii) β is g-invariant.

Proof. If (i) holds, then

β(ux, uy)
(i)
= β(ux, uy)β(u, y)

(CC)
= β(u, xy)β(x, y)

(i)
= β(x, y)

for every x, y ∈ X. Conversely, if (ii) holds, let x = u/y and verify

β(u, y)
(CC)
= β(u · u/y, uy)−1β(u, u/y · y)β(u/y, y)

= β(u · u/y, uy)−1β(u, u)β(u/y, y)

(CQ)
= β(u · u/y, uy)−1β(u/y, y)

(ii)
= 1

for every y ∈ X. �

We remark that (i) implies (ii) in Lemma 4.2 even if X is an arbitrary quandle, not
necessarily latin.

Proposition 4.3. Let X be a latin quandle and u ∈ X. Then g ∈ SX×X and every u-
normalized cocycle is g-invariant.

Proof. Since g = Lu × Lu, we obviously have g ∈ SX×X for any quandle X. Suppose now
that β is a u-normalized cocycle. In view of Lemma 4.2, it suffices to prove that β(u, x) = 1
for every x ∈ X. Now,

β(u, xu) = β(u, xu)β(x, u)
(CC)
= β(ux, u)β(u, u) = 1,

and we are done because Ru is a bijection. �

Lemma 4.4. The following identities hold in a latin quandle:

(xy)/z = x(y/(x\z)),(4.2)

(x/y)(zy) = ((x/y)z)x.(4.3)
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Proof. For (4.2), substitute x\z for z in x(y/z) = (xy)/(xz). The identity (4.3) follows
immediately from left distributivity and (x/y)y = x. �

Proposition 4.5. Let X be a latin quandle and u ∈ X. Then h ∈ SX×X and every u-
normalized cocycle is h-invariant.

Proof. We will show that

k(x, y) = (u/((xy/u)\y), y)

is the inverse of h. (The mapping k was found by automated deduction [18].) It suffices
to show that h, k are inverse to each other in the first coordinate. We will freely use the
quasigroup identities x/(y\x) = y and (x/y)\x = y.

The first coordinate of h(k(x, y)) is equal to

y/[(u/((xy/u)\y))\u] · u/((xy/u)\y)

= y/[(xy/u)\y] · u/((xy/u)\y)

= (xy/u) · u/((xy/u)\y),

which is an expression of the form a · b/(a\c) and therefore, by (4.2), equal to ((xy/u)u)/y =
xy/y = x.

The first coordinate of k(h(x, y)) is equal to

(4.4) u/[(((y/(x\u) · x)y)/u)\y].

Since (y/(x\u) · x)y is of the form (a/b)c · a, it is by (4.3) equal to (y/(x\u))(x · x\u) =
y/(x\u) · u, and substituting this back into (4.4) yields

u/[((y/(x\u) · u)/u)\y] = u/[(y/(x\u))\y] = u/(x\u) = x.

We have proved that k is the inverse of h.
Let β be a u-normalized cocycle. Then we have

β(u/y, y) = β(u/y · x, u)β(u/y, y) = β(u/y · x, u/y · y)β(u/y, y)
(CC)
= β(u/y, xy)β(x, y),

and also

β(u/y, y) = β(x, u)β(u/y, y) = β(x, u/y · y)β(u/y, y)
(CC)
= β(x · u/y, xy)β(x, y).

Therefore β(u/y, xy) = β(x ·u/y, xy), and with u/y = z, xy = v we have x = v/y = v/(z\u)
and β(z, v) = β(v/(z\u) · z, v) = β(h(z, v)). �

5. Orbits of the three bijections on X ×X

For ` ∈ SA and a ∈ A let O`(a) be the orbit of a under the natural action of 〈`〉 on A, and
let O` = {O`(a) | a ∈ A} be the collection of all `-orbits.

In this section we study the orbits of the bijections f , g, h on X ×X defined in (4.1), and
also the orbits of the induced action of 〈f, h〉 on Og.

Let X be a quandle. Denote by p the product mapping

p : X ×X → X, (x, y) 7→ xy.

For z ∈ X, the fiber p−1(z) is equal to

p−1(z) = {(x, y) ∈ X ×X | xy = z} = {(x, x\z) | x ∈ X}
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and hence has cardinality |X|. Moreover, since p(f(x, y)) = p(x · y/u, xu) = (x · y/u)(xu) =
x(y/u · u) = xy = p(x, y), every fiber is a union of f -orbits.

We have Og(u, u) = {(u, u)}, and we collect some additional orbits of g by setting

Ofg = {Og(x, xu) | u 6= x ∈ X},
Oug = {Og(x, x\u) | u 6= x ∈ X}.

The notation is explained as follows. By Lemma 5.7 below,
⋃
Ofg = {(x, xu) | u 6= x ∈ X}

and
⋃
Oug = {(x, x\u) | u 6= x ∈ X}. By Proposition 5.2 then, {(u, u)}∪

⋃
Ofg are precisely

the fixed points of f , while {(u, u)} ∪
⋃
Oug is the fiber p−1(u).

We will ultimately prove that certain quandles are simply connected by the following
strategy, exploiting the invariance under f , g and h of u-normalized cocycles (see Propositions
4.1, 4.3 and 4.5). For a u-normalized cocycle β, we first partition its domain X × X into
g-orbits Og on which 〈f, h〉 acts by Proposition 5.5. By Corollary 5.8, f acts on both Oug
and Ofg , while h most definitely does not. The bijection h is much easier to understand in
affine connected quandles, cf. Lemma 6.6. The affine-over-cyclic case of Theorem 1.1 then
easily follows. In the doubly transitive case, we will show that there are at most five orbits
of 〈f, g, h〉, namely Og(u, u),

⋃
Oug ,

⋃
Ofg and certain sets

⋃
O1
g ,
⋃
O2
g introduced later.

(We note that Ofg , Oug need not be disjoint, but their intersection is easy to understand, cf.

Lemma 5.7.) A careful analysis of the orbit sizes of h then shows that the four sets Oug , Ofg ,

O1
g and O2

g must be linked by h (as long as |X| 6= 4), establishing the main result.

Lemma 5.1. Let X be a latin quandle. Then for every x, y ∈ X and every k ∈ Z we have

fk(x, y) = (fk(x, y), fk−1(x, y)u),

where

(5.1) fk(x, y) =

{
(LxLy/u)

k
2 (x), if k is even,

(LxLy/u)
k+1
2 (y/u), if k is odd.

Proof. Fix x, y ∈ X. Let ϕ = LxLy/u and define fk, f
′
k by fk(x, y) = (fk, f

′
k). Then

(fk+1, f
′
k+1) = f(fk, f

′
k) = (fk · fk/u, fku), so f ′k+1 = fku and fk+1 = fk · f ′k/u = fkfk−1 for

every k. Note that we have ϕk+1(y/u) = ϕk(ϕ(y/u)) = ϕk(x(y/u · y/u)) = ϕk(x · y/u).
For the base step, we will show that (5.1) holds for k ∈ {0, 1}. Indeed, f0 = x = ϕ0(x)

and f1 = x · y/u = x(y/u · y/u) = ϕ(y/u).
For the ascending induction, suppose that (5.1) holds for k − 1 and k. If k is even, we

have

fk+1 = fkfk−1 = ϕk/2(x)ϕk/2(y/u) = ϕk/2(x · y/u) = ϕ(k+2)/2(y/u).

If k is odd, we have

fk+1 = fkfk−1 = ϕ(k+1)/2(y/u)ϕ(k−1)/2(x) = ϕ(k−1)/2(x · y/u)ϕ(k−1)/2(x)

= ϕ(k−1)/2((x · y/u)x) = ϕ(k−1)/2(x(y/u · x)) = ϕ(k+1)/2(x),

where we have used flexibility.
For the descending induction, suppose that (5.1) holds for k and k + 1. If k is even then

fk−1 = fk\fk+1 = ϕk/2(x)\ϕk/2(x · y/u) = ϕk/2(x\(x · y/u)) = ϕk/2(y/u).
12



If k is odd then

fk−1 = fk\fk+1 = ϕ(k+1)/2(y/u)\ϕ(k+1)/2(x)

= ϕ(k+1)/2((y/u)\x) = ϕ(k−1)/2ϕ((y/u)\x) = ϕ(k−1)/2(x),

finishing the proof. �

Proposition 5.2. Let X be a latin quandle and x, y ∈ X. Then, using the notation
of Lemma 5.1, the following conditions are equivalent: fk(x, y) = (x, y), fk(x, y) = x,
fk−1(x, y) = y/u. In particular,

(i) |Of (x, y)| = 1 if and only if y = xu,
(ii) |Of (x, y)| 6= 2,

(iii) |Of (x, y)| ≤ |X|.

Proof. Fix x, y ∈ X and let fk = fk(x, y). Clearly, fk(x, y) = (x, y) holds if and only if both
fk = x and fk−1 = y/u hold. Since xy = p(x, y) = p(fk(x, y)) = p(fk, fk−1u) = fk · fk−1u,
we have fk = x if and only if fk−1u = y.

Part (i) now follows. Suppose that f 2(x, y) = (x, y). The equality x = f2 says x =
x · (y/u · x), which implies x = x · y/u, x = y/u, y = xu. But then |Of (x, y)| = 1 by (i).
Finally, (iii) follows from the above-mentioned fact that every fiber of p has cardinality |X|
and is a union of f -orbits. �

Proposition 5.3. Let X be a finite latin quandle and x, y ∈ X. Then |Og(x, y)| =
lcm(|OLu(x)|, |OLu(y)|). Moreover, |Og(x, y)| = 1 if and only if (x, y) = (u, u).

Proof. This follows immediately from gk(x, y) = (Lku(x), Lku(y)). �

Lemma 5.4. Let X be a latin quandle and x, y ∈ X. Then the following conditions are
equivalent:

(i) |Oh(x, y)| = 1,
(ii) p(h(x, y)) = p(x, y),

(iii) y = u.

Proof. Each of (i), (ii) is equivalent to y/(x\u) · x = x, which is equivalent to y/(x\u) = x,
that is, to y = u. �

The action of 〈f, h〉 on X ×X in fact induces an action on Og, the orbits of g:

Proposition 5.5. Let X be a latin quandle. Then

k(Og(x, y)) = Og(k(x, y))

for every k ∈ 〈f, h〉.

Proof. It suffices to show that f and h commute with g. Let x, y ∈ X. Since Lu ∈ Aut(X),
we have

f(g(x, y)) = f(ux, uy) = (ux · (uy)/u, uxu) = (u · (x · (y/u)), u · xu) = g(f(x, y))

and

h(g(x, y)) = h(ux, uy) = (uy/(ux\u) · ux, uy) = (u · (y/(x\u) · x), u · y) = g(h(x, y)).

�
13



Remark 5.6. The mappings f and h never commute on a nontrivial latin quandle. More
precisely, fh(x, y) = hf(x, y) if and only if x = y = u. Indeed, we certainly have f(u, u) =
(u, u) = h(u, u), so fh(u, u) = hf(u, u). Suppose now that

fh(x, y) = f(y/(x\u) · x, y) = ((y/(x\u) · x)(y/u), (y/(x\u) · x)u)

is equal to

hf(x, y) = h(x · y/u, xu) = (xu/((x · y\u)\u) · x(y\u), xu).

By comparing the second coordinates we see that y = u, and substituting this into the first
coordinates we arrive at xu = xu/(xu\u) · xu, that is, x = u.

Lemma 5.7. Let X be a latin quandle and x ∈ X. Then

(i) Og(x, xu) = {(y, yu) | y ∈ OLu(x)},
(ii) Og(x, x\u) = {(y, y\u) | y ∈ OLu(x)}.

In particular, Og(x, y) ∈ Oug ∩ Ofg if and only if y = xu and x · xu = u.

Proof. We have g(x, xu) = (ux, uxu), g−1(x, xu) = (u\x, u\(xu)) = (u\x, (u\x)u), and (i)
follows by induction. Similarly, g(x, x\u) = (ux, u · x\u) = (ux, (ux)\u) and g−1(x, x\u) =
(u\x, u\(x\u) = (u\x, (u\x)\u) prove (ii). Hence Og(x, y) ∈ Oug ∩ Ofg if and only if (x, y) =
(z, zu) = (w,w\u) for some z, w ∈ X, which is equivalent to z = w = x, y = xu = x\u. �

Corollary 5.8. Let X be a latin quandle. Then

(i) h(Oug ) ∩ Oug = ∅,
(ii) h(Ofg ) ∩ Ofg = ∅,

(iii) f(Og(x, xu)) = Og(x, xu) for every x ∈ X, in particular, f(Ofg ) = Ofg ,
(iv) f(Oug ) = Oug .

Proof. For (i), suppose that h(Og(x, x\u)) ∈ Oug for some x 6= u. By Lemma 5.7, h(x, x\u) =
(y, y\u) for some y ∈ X. But then x = y, h(x, x\u) = (x, x\u), and thus x = u by Lemma
5.4, a contradiction.

The proof of (ii) is similar: If h(Og(x, xu)) ∈ Ofg for some x 6= u, then h(x, xu) = (y, yu)
for some y by Lemma 5.7, hence x = y, h(x, xu) = (x, xu), xu = u, x = u, a contradiction.

For (iii), recall that f(x, xu) = (x, xu) by Proposition 5.2.
Finally, for (iv), note that p(f(x, x\u)) = p(x, x\u) = u, hence f(x, x\u) must be equal

to some (y, y\u). Moreover, when x 6= u then y 6= u because f fixes (u, u). �

A permutation is said to be semiregular if all its nontrivial cycles are of the same finite
length. A quandle X is semiregular if there is a positive integer s such that every nontrivial
cycle of any left translation Lx has length s.

Clearly, if X is a connected quandle and Lu is semiregular for some u ∈ X, then X is
semiregular. In particular, a latin quandle is semiregular if and only if Lu is semiregular for
some u ∈ X.

Let us denote a typical orbit of the induced action of f on Og by Of (Og(x, y)), cf. Propo-
sition 5.5. Then |Of (Og(x, y))| ≤ |Of (x, y)| and the strict inequality can occur in examples.

Lemma 5.9. Let X be a latin semiregular quandle. Then |Of (Og(x, y))| = |Of (x, y)| and
|Oh(Og(x, y))| = |Oh(x, y)| for every x, y ∈ X. Hence f(Og(x, y)) = Og(x, y) if and only if
Og(x, y) ∈ Ofg .
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Proof. Suppose that fk(Og(x, y)) = Og(x, y) and k > 0 is smallest possible. Then fk(x, y) =
(Lru(x), Lru(y)) for some r ∈ Z. Therefore, xy = p(x, y) = p(Lru(x), Lru(y)) = Lru(xy). But
then semiregularity implies that |Lu| divides r, fk(x, y) = (x, y), and |Of (Og(x, y))| ≥
|Of (x, y)|.

Similarly, suppose that hk(Og(x, y)) = Og(x, y) and k > 0 is smallest possible. Then
hk(x, y) = (z, y) = (Lru(x), Lru(y)) for some r ∈ Z and some z ∈ X. Then Lru(y) = y, hence
Lru(x) = x by semiregularity, hk(x, y) = (x, y), and |Oh(Og(x, y))| ≥ |Oh(x, y)|. �

6. The orbits on connected affine quandles

In this section we take advantage of the affine representation to arrive at explicit expres-
sions for the mappings f and h in terms of the underlying group and the automorphism α.
Moreover, we compute the orbit lengths for f and h.

We will use additive notation for the underlying groups and set u = 0 in affine quandles.
We therefore also write O0

g for Oug .
The results from previous sections apply to finite affine connected quandles thanks to the

following, well-known result.

Proposition 6.1 ([15, Proposition 1]). Let X = Q(A,α) be a finite affine quandle. Then
the following conditions are equivalent:

(i) X is latin,
(ii) X is connected,

(iii) 1− α ∈ Aut(A).

Note that Proposition 6.1 implies that in any finite connected affine quandle X = Q(A,α)
we have L0(y) = (1− α)(0) + α(y) = α(y), that is, L0 = α.

Proposition 6.2. Let A be an abelian group and let α ∈ Aut(A) be such that 1−α ∈ Aut(A).
Then for every x ∈ A and every positive integer n we have

αn(x) = x ⇔
n−1∑
k=0

αk(x) = 0.

Proof. We have 1−αn = (1−α)
∑n−1

k=0 α
k. Since 1−α ∈ Aut(A), we deduce that αn(x) = x

if and only if
∑n−1

k=0 α
k(x) = 0. �

Lemma 6.3. Let X = Q(A,α) be an affine quandle. Then for every x, y ∈ X and k ≥ 0,
the element fk(x, y) from (5.1) is equal to

(6.1) fk(x, y) = x+
k∑
j=1

(−1)jαj(x− y/0).

Proof. Fix x, y ∈ X and let fk = fk(x, y). The formula (5.1) yields f0 = x and f1 =
x · (y/0) = x − α(x) + α(y/0), in agreement with (6.1). Suppose that (6.1) holds for k − 1
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and k, and recall that fk+1 = fkfk−1. Then with z = x− y/0 we have

fk+1 = (x+
k∑
j=1

(−1)jαj(z)) · (x+
k−1∑
j=1

(−1)jαj(z))

= x− α(x) +
k∑
j=1

(−1)jαj(z)−
k∑
j=1

(−1)jαj+1(z) + α(x) +
k−1∑
j=1

(−1)jαj+1(z)

= x+
k∑
j=1

(−1)jαj(z)− (−1)kαk+1(z) = x+
k+1∑
j=1

(−1)jαj(z).

�

Proposition 6.4. Let X = Q(A,α) be a finite connected affine quandle. Then for every x,
y ∈ X we have

(i) |Of (x, y)| = min{n ∈ N |
∑n

j=1(−1)jαj(x− y/0) = 0},
(ii) (−1)|Of (x,y)|α|Of (x,y)|(x− y/0) = x− y/0,

(iii) if n = |Of (x, y)| then |OL0(x− y/0)| divides (2n)/gcd(2, n),
(iv) if 2(x− y/0) = 0 then |Of (x, y)| = |OL0(x− y/0)|.

Proof. (i) By Proposition 5.2, |Of (x, y)| is the smallest positive k such that fk(x, y) = x, or,

equivalently, fk−1(x, y) = y/0. By Lemma 6.3, fk(x, y) = x if and only if
∑k

j=1(−1)jαj(x−
y/0) = 0.

(ii) Let z = y/0 and n = |Of (x, y)|. By Lemma 6.3 and the above remarks, we have

x = fn(x, y) = x+
n∑
j=1

(−1)jαj(x− z) and z = fn−1(x, y) = x+
n−1∑
j=1

(−1)jαj(x− z).

Taking the difference of these two equations yields (−1)nαn(x− z) = x− z.
(iii) Since L0 = α, part (ii) shows that |OL0(x − z)| divides 2n. If n is even, (ii) in fact

shows that |OL0(x− z)| divides n.
(iv) Suppose that 2(x − z) = 0. Then 2αj(x − z) = 0 for every j. Part (i) then yields

0 =
∑n

j=1(−1)jαj(x − z) =
∑n

j=1 α
j(x − z) =

∑n−1
j=0 α

j(x − z), and Proposition 6.2 implies

αn(x−z) = x−z. As n is minimal with 0 =
∑n−1

j=0 α
j(x−z), we deduce |OL0(x−z)| = n. �

We will now express |Of (x, y)| as a function of |OL0(x − y/0)| and the order of a certain
element of A. We present only the case when |OL0(x − y/0)| is even (since that is all we
need later), but the argument in the odd case is similar.

Lemma 6.5. Let X = Q(A,α) be a finite connected affine quandle and let x, y ∈ X.
Suppose that ` = |OL0(x− y/0)| is even. Then

|Of (x, y)| =
{
k`, if |Of (x, y)| is even,
k′`/2, otherwise,

where k = |
∑`−1

j=0(−1)jαj(x− y/0)| and k′ = |
∑`/2−1

j=0 (−1)jαj(x− y/0)|.
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Proof. Let z = x− y/0, ` = |OL0(z)| and n = |Of (x, y)|. Suppose that n is even. Then, by
Proposition 6.4(iii), n = r` for some r. By Proposition 6.4(i), we have

0 =
r∑̀
j=1

(−1)jαj(z) =
r`−1∑
j=0

(−1)jαj(z) = r

`−1∑
j=0

(−1)jαj(z),

where we have used r` even in the second equality and (−1)`α`(z) = z (due to ` even) in the

third equality. Moreover, |
∑`−1

j=0(−1)jαj(z)| = r because r` is the smallest positive integer

for which
∑r`

j=1(−1)jαj(z) = 0.

Suppose now that n is odd. Then, by Proposition 6.4(iii), n = (2s+1)`/2 for some s. Since
n is odd, we have `/2 odd and Proposition 6.4(iii) yields −z = αn(z) = α(2s+1)`/2(z) = α`/2(z)
and therefore (−1)`/2α`/2(z) = z. Using these observations, Proposition 6.4(i) implies

0 =

(2s+1)`/2∑
j=1

(−1)jαj(z) =

(2s+1)`/2−1∑
j=0

(−1)jαj(z) = (2s+ 1)

`/2−1∑
j=0

(−1)jαj(z).

We again have |
∑`/2−1

j=0 (−1)jαj(z)| = 2s+ 1. �

We conclude this section by explicitly calculating h and |Oh(x, y)| in a connected affine
quandle.

Lemma 6.6. Let X = Q(A,α) be a connected affine quandle and let β be a 0-normalized
cocycle. Then

h(x, y) = (y + x, y),(6.2)

β(ny + x, y) = β(x, y),(6.3)

β(nx, x) = 1(6.4)

for every integer n and every x, y ∈ X. In particular, |Oh(x, y)| = |y|.

Proof. Let x, y ∈ X, set z = x\0 and note that z = x− α−1(x). Then

h(x, y) = (y/(x\0) · x, y) = (y/z · x, y)

= ((z + (1− α)−1(y − z)) · x, y) = ((1− α)(z) + y − z + α(x), y)

= (−α(z) + y + α(x), y) = (−α(x) + x+ y + α(x), y)

= (y + x, y).

The h-invariance of β (cf. Proposition 4.5) then yields (6.3). With y = x, (6.3) yields
β((n + 1)x, x) = β(x, x) = 1, which is (6.4). Finally, |Oh(x, y)| = |y| is an immediate
consequence of (6.2). �

7. Two classes of simply connected quandles

In this section we show that every finite connected affine quandle over a cyclic group is
simply connected (extending a result of Graña for connected quandles of prime order), and
that every finite doubly transitive quandle of order different from 4 is simply connected.
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7.1. Connected affine quandles over cyclic groups. Graña showed:

Proposition 7.1 ([9, Lemma 5.1]). Let q be a prime and X = Q(Zq, α) an affine quandle.
Then X is simply connected.

Proof. Let x, y ∈ X be nonzero elements and let β be a 0-normalized cocycle. Then y = nx
for a suitable n and (6.4) yields β(y, x) = β(nx, x) = 1. �

It is known that every connected quandle of prime order q is isomorphic to an affine
quandle of the form Q(Zq, α), cf. [7]. Proposition 7.1 therefore states that every connected
quandle of prime order is simply connected.

Every automorphism of Zm is of the form λn for some n with gcd(m,n) = 1, where
λn(x) = nx. Suppose that gcd(m,n) = 1. As an immediate consequence of Proposition 6.1,
we see that the affine quandle Q(Zm, λn) is connected if and only if gcd(m, 1−n) = 1. Note
that the conditions gcd(m,n) = 1 = gcd(m,n− 1) imply that m is odd.

Let U(Zm) denote the group of units in the ring of integers modulo m.

Proposition 7.2. Let X = Q(Zm, λn) be a connected affine quandle and let β be a 0-
normalized cocycle. Then β is u-normalized for every u ∈ U(Zm), that is, β(x, u) = 1 for
every x ∈ X and u ∈ U(Zm). In addition, β(u, x) = 1 and β(u · x, u · y) = β(x, y) for every
x, y ∈ X and u ∈ U(Zm).

Proof. Let u ∈ U(Zm) and x ∈ X. Then x = nu for a suitable n and we have β(x, u) =
β(nu, u) = 1 by (6.4), showing that β is u-normalized. By Proposition 4.3, β(u · x, u · y) =
β(x, y) for every x, y ∈ X. Then by Lemma 4.2, β(u, x) = 1 for every x ∈ X. �

Lemma 7.3. Let X = Q(Zm, α) be a connected affine quandle with m odd. Then for every
x ∈ X there are u, v ∈ U(Zm) such that x = u · v.

Proof. Since u + v = (1− α)−1(u) · α−1(v) and α and 1− α are automorphisms of (Zm,+),
it suffices to prove that for every x ∈ Zm there are u, v ∈ U(Zm) such that x = u+ v. This
is well-known and can be established as follows:

Let m = pn1
1 · · · pnrr , where p1, . . . , pr are distinct primes. By the Chinese remainder

theorem, Zm ∼= Zpn11
× · · · × Zpnrr and also U(Zm) ∼= U(Zpn11

) × · · · × U(Zpnrr ). It therefore
suffices to prove the claim when m = pn for a prime p. Consider x = ap+b, where 0 ≤ b < p.
If x is invertible (that is, b 6= 0), then so is 2x (since m is odd), and x = 2x+ (−x) does the
job. If x is not invertible, then x = ap = (ap+ 1) + (−1) finishes the proof. �

Theorem 7.4. Let X = Q(Zm, λn) be a connected affine quandle. Then X is simply con-
nected.

Proof. Let x, y ∈ X and let β be a 0-normalized cocycle. By Proposition 7.3, we can write
x = u · v for some invertible elements u, v. By Proposition 7.2, β(x, y) = β(u · v, u · u\y) =
β(v, u\y) = 1. �

7.2. Doubly transitive quandles. Finite doubly transitive quandles can be characterized
as follows:

Theorem 7.5 ([20, Corollary 4]). Let X be a finite quandle. Then LMlt(X) is doubly
transitive if and only if X ∼= Q(Znq , α) for some prime q, some n > 0 and α ∈ Aut(Znq ) with
|α| = |X| − 1.
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Lemma 7.6. Let X be a finite idempotent groupoid with a doubly transitive automorphism
group. Then X is semiregular and the parameter s (length of any nontrivial orbit of any left
translation) is a divisor of |X| − 1.

Proof. For any x ∈ X we have Lx(x) = x by idempotence. Given x 6= y with Lkx(y) = y and
some v 6= w, let ϕ ∈ Aut(X) be such that ϕ(x) = v, ϕ(y) = w. Then w = ϕ(y) = ϕLkx(y) =
Lkϕ(x)(ϕ(y)) = Lkv(w). Hence X is semiregular, and the rest follows. �

Combining Theorem 7.5 and Lemma 7.6, we see that if X ∼= Q(Znq , α) is a finite doubly
transitive quandle, then α is an (|X| − 1)-cycle (since α cannot be trivial by Proposition
6.1).

Proposition 7.7. Let X be a finite doubly transitive quandle. Then there is an integer
F > 1 such that

|Of (x, y)| =
{

1, if x = y/0,
F, otherwise.

Proof. By Proposition 5.2, |Of (y/0, y)| = 1. Suppose that x, y, v, w ∈ X are such that
x 6= y/0 and v 6= w/0. Let ϕ ∈ LMlt(X) ≤ Aut(X) be such that ϕ(x) = v and ϕ(y/0) =
w/0. Suppose that |Of (x, y)| = k is even, the odd case being similar. By Lemma 5.1
and Proposition 5.2, we have (LxLy/u)

k/2(x) = x. Then v = ϕ(x) = ϕ(LxLy/0)
k/2(x) =

(LvLw/0)
k/2(v), and thus |Of (v, w)| ≤ k. �

Corollary 7.8. Let X = Q(Znq , α) be a doubly transitive quandle. Then

(i) O0
g and Ofg are singletons,

(ii) (
⋃
O0
g) ∩ (

⋃
Ofg ) = ∅ if |X| > 3,

(iii) if q = 2 then F = |X| − 1,
(iv) if q > 2 then F = |X| − 1 if it is even and F = (|X| − 1)/2 if it is odd.

Proof. (i) Since α = L0 is an (|X| − 1)-cycle, we have |Og(x, y)| = |X| − 1 whenever (x, y) 6=
(0, 0) by Proposition 5.3. The claim follows by Lemma 5.7.

(ii) By Lemma 5.7, (x, y) ∈ (
⋃
O0
g)∩ (

⋃
Ofg ) if and only if x · (x · 0) = 0 and y = x · 0. We

have x · (x · 0) = (1 + α)(1− α)(x). Since 1− α ∈ Aut(A), we have x · (x · 0) = 0 if and only
if α(x) = −x. Then α2(x) = x, so |X| − 1 = |α| ≤ 2.

(iii) According to Proposition 7.7, it suffices to compute the length of an f -orbit for some
(x, y) with y 6= x ·0. We have 2x = 0 for every x ∈ X, and hence F = |X|−1 by Proposition
6.4(iv).

(iv) Since q > 2, |OL0(x)| = |X| − 1 is even for every x ∈ X. By Proposition 5.2,
F ≤ |X| − 1. If F is even then F = k(|X| − 1) by Lemma 6.5 and thus F = |X| − 1. If F is
odd then the same lemma yields F = k(|X| − 1)/2, the case F = |X| − 1 cannot occur since
|X| − 1 is even, and thus F = (|X| − 1)/2. �

Lemma 7.9. Let X = Q(Znq , α) be a doubly transitive quandle and β a 0-normalized cocycle.

(i) If F = |X| − 1 then β(x, y) = 1 for every (x, y) 6∈
⋃

(Ofg ∪ O0
g).

(ii) If β(x, y) = 1 for every (x, y) 6∈
⋃

(Ofg ∪ O0
g) and, in addition, there is 0 6= z ∈ X

such that β(z, z\0) = 1, then β = 1.

Proof. (i) We have β(x, x) = 1 for any x ∈ X. Suppose that (0, 0) 6= (x, y) ∈ (X × X) \⋃
(Ofg ∪O0

g). Then (x, y) is not a fixed point of f , and neither is (xy, xy), since xy 6= 0. The
19



fiber p−1(xy) contains both (x, y) and (xy, xy), and it is a union of f -orbits. By assumption,
one of the orbits has size |F | − 1, forcing the remaining element of p−1(xy) to be a fixed
point of f . Hence (x, y) ∈ Of (xy, xy). Then β(xy, xy) = 1 implies β(x, y) = 1.

(ii) Suppose that β(x, y) = 1 for every (x, y) 6∈
⋃

(Ofg ∪ O0
g), and β(z, z\0) = 1 for some

0 6= z ∈ X. Then β = 1 on
⋃
O0
g since O0

g is a singleton by Corollary 7.8. Finally, let

(x, y) ∈
⋃
Ofg . By Corollary 5.8, h(x, y) 6∈

⋃
Ofg and thus β(x, y) = β(h(x, y)) = 1. �

Lemma 7.10. Let X = Q(A,α) be a latin affine quandle and 0 6= x ∈ X. Then

(i) h(x, x\0) ∈
⋃
Ofg if and only if 2x = 0,

(ii) Og(0/(0/x), x) ∈ Ofg if and only if (α2 + α− 1)(x) = 0.

Proof. (i) Recall that (x, y) ∈
⋃
Ofg if and only if y = x·0. We have h(x, x\0) = (x+x\0, x\0)

and x\0 = (1 − α−1)(x). Then h(x, x\0) ∈ Ofg if and only if (x + x\0) · 0 = x\0, which is

equivalent to (1− α)((1− α−1)(x) + x) = (1− α−1)(x). This is easily seen to be equivalent
to (1− α)(2x) = 0. Since 1− α ∈ Aut(A), the last condition is equivalent to 2x = 0.

(ii) Note that (0/(0/x)) · 0 = x is equivalent to x/0 · 0/x = 0. Also note that x/0 =
(1− α)−1(x) and 0/x = −α(1− α)−1(x). Then x/0 · 0/x = 0 holds if and only if x− α2(1−
α)−1(x) = 0, which is equivalent to (α2 + α− 1)(x) = 0. �

Theorem 7.11. Let X = Q(Znq , α) be a doubly transitive quandle with q ≥ 3. Then X is
simply connected.

Proof. If n = 1 then X is simply connected by Theorem 7.4. Suppose that n > 1 and let β
be a 0-normalized cocycle. Recall that X is semiregular with α an (|X| − 1)-cycle. Hence
|Og(x, y)| = |X| − 1 for every (0, 0) 6= (x, y) ∈ X × X. By Lemma 5.9 and Corollary 7.8,
|Of (Og(x, y))| = |Of (x, y)| ∈ {1, F} and F ∈ {|X| − 1, (|X| − 1)/2}. By Lemmas 5.9 and
6.6, |Oh(Og(x, y))| = |Oh(x, y)| = |y| ∈ {1, q} for any x, y ∈ X. Moreover, by Corollary 5.8,
O0
g and Ofg are disjoint singletons.

Suppose that F = |X|−1. By Lemma 7.9(i), β = 1 on the complement of O =
⋃

(O0
g∪Ofg ).

Let 0 6= z ∈ X. By Lemma 7.9(ii), we will be done if we show that β(z, z\0) = 1. By
Corollary 5.8, h(z, z\0) /∈

⋃
O0
g . Since q ≥ 3, Lemma 7.10(i) yields h(z, z\0) 6∈

⋃
Ofg . Hence

h(z, z\0) ∈ O and β(z, z\0) = β(h(z, z\0)) = 1.
For the rest of the proof suppose that F = (|X| − 1)/2. The sets Og(u, u), Ofg and O0

g

account for 1 + 2(|X| − 1) = 2|X| − 1 elements of X × X and for all fixed points of f ,
leaving |X|2 − (2|X| − 1) = (|X| − 1)2 points unaccounted for. The unaccounted points
thus form two 〈f, g〉-orbits, each of size F (|X| − 1), say O1

g and O2
g . We can certainly take

O1
g = Of (Og(0, x)) for some 0 6= x. Since β(0, x) = 1 by Lemma 4.2, we have β = 1 on

O1
g . If we can show that β = 1 on O2

g , too, then we can finish as in the case F = |X| − 1,
completing the proof.

We will now show that if q 6= 3 then the induced action of h on Og has only two orbits,
namely {Og(0, 0)} and its complement. This will finish the proof for q 6= 3. Since h has no
fixed points in the set O0

g ∪ Ofg of size 2, it suffices to consider the following situations:

(a) Suppose that h acts on Ofg ∪O1
g and thus also on O0

g ∪O2
g , both sets of size F + 1. Let

0 6= x ∈ X. Since Og(x, 0) is fixed by h and belongs to one of these sets, we see that h acts
on a set of size F , hence q divides F = (|X| − 1)/2, hence q (being odd) divides |X| − 1, a
contradiction. We reach a similar contradiction if h acts on Ofg ∪ O2

g and O0
g ∪ O1

g .
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(b) Suppose that h acts on O0
g ∪ Ofg ∪ O1

g and thus also on O2
g , sets of size F + 2 and F ,

respectively. Since O2
g contains no fixed-points of h, we reach a contradiction as in (a).

(c) Suppose that h acts on O0
g ∪ Ofg ∪ O2

g and thus also on O1
g , sets of size F + 2 and

F , respectively. Once we account for Og(x, 0) ∈ O1
g , we see that h acts on a set of size

F + 2 = (|X|+ 3)/2 and on a set of size F − 1 = (|X| − 3)/2, forcing q = 3.
For the rest of the proof we can therefore assume that q = 3. Let 0 6= x ∈ X. Setting

x = z and y = 0 in (CC) yields β(x · 0, x) = β(x, 0 · x). We also have (x · 0, x), (x, 0 · x) 6∈ O.
Suppose for a while that (x · 0, x) and (x, 0 · x) are in the same f -orbit, that is,

(x · 0, x) = fk(x, 0 · x) = (fk(x, 0 · x), fk−1(x, 0 · x) · 0)

for some k ≥ 1. Note that (0 · x)/0 = (1 − α)−1α(x). Comparing coordinates, Lemma 6.3
yields

(1− α)(x) = x · 0 = fk(x, 0 · x) = x+
k∑
j=1

(−1)jαj(x− (1− α)−1α(x)),

x = fk−1(x, 0 · x) · 0 = (1− α)(x+
k−1∑
j=1

(−1)jαj(x− (1− α)−1α(x))).

Applying 1− α to the first identity and using q = 3 then yields

(1−α)2(x) = (1−α)(x)+
k∑
j=1

(−1)jαj((1−α)(x)−α(x)) = (1−α)(x)+
k∑
j=1

(−1)jαj(1+α)(x),

while the second identity can be rewritten as

x = (1− α)(x) +
k−1∑
j=1

(−1)jαj((1− α)(x)− α(x)) = (1− α)(x) +
k−1∑
j=1

(−1)jαj(1 + α)(x).

Subtracting the two last identities now gives (1 − α)2(x) − x = (−1)kαk(1 + α)(x). Since
(1−α)2 = 1−2α+α2 = 1 +α+α2, we can rewrite this as α(1 +α)(x) = (−1)kαk(1 +α)(x).
Noting that 1 + α ∈ Aut(A) (if α(x) = −x then α2 = 1 and |X| = 3) and, canceling, we
finally get x = (−1)kαk−1(x). If k is even, we deduce k ≡ 1 (mod |X| − 1), thus also k ≡ 1
(mod F ), but then (x ·0, x) = fk(x, x ·0) = (x, x ·0) implies x ·0 = x, x = 0, a contradiction.
If k is odd, we deduce 2(k − 1) ≡ 0 (mod |X| − 1), therefore k ≡ 1 (mod F ), and we reach
the same contradiction.

Consequently, the elements (x, x · 0) and (x · 0, x) are not in the same f -orbit, hence one
of them lies in

⋃
O1
g while the other in

⋃
O2
g , and we see that β = 1 on O2

g . �

Theorem 7.12. Let X = Q(Zn2 , α) be a doubly transitive quandle with n 6= 2. Then X is
simply connected.

Proof. By Corollary 7.8(i), F = |X|−1. Then by Lemma 7.9, β(x, y) = 1 for every Og(x, y) 6∈
O0
g ∪ Ofg and it suffices to show that β(z, z\0) = 1 for some z 6= 0. Note that any element

(z, z\0) can be written as (0/y, y) by setting y = z\0. By Proposition 3.4, β(0/y, y) =
β(0/(0/y), y) and Og(0/(0/y), y) /∈ O0

g . If we show that Og(0/(0/y), y) 6∈ Ofg for some y 6= 0,
then β(0/y, y) = β(0/(0/y), y) = 1 and we are through.
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By Lemma 7.10(ii), it suffices to show that (α2 + α + 1)(y) = (α2 + α− 1)(y) 6= 0, which
is equivalent to α3(y) 6= y, and this follows from the fact that α is an (|X| − 1)-cycle (here
we use |X| 6= 4). �

We have now proved Theorem 1.1. We will show in Section 8 that a doubly transitive
quandle of order 4 is not simply connected.

8. A short proof of Theorem 1.1

In this section we prove Theorem 1.1 once more, this time using results of Clauwens [5]
on the fundamental group of affine quandles.

Clauwens showed how to explicitly calculate the fundamental groups of affine quandles.
Following [5, Definition 1], let G = (G,+) be an abelian group andQ(G,α) an affine quandle.
Let

I(G,α) = 〈x⊗ y − y ⊗ α(x) | x, y ∈ G〉,
S(G,α) = (G⊗G)/I(G,α),

F (G,α) = Z×G× S(G,α),

where the operation on F (G,α) is given by

(k, x, a)(m, y, b) = (k +m, αm(x) + y, a+ b+ (αm(x)⊗ y + I(G,α))).

Then we have:

Theorem 8.1 ([5, Theorem 1 and page 4]). Let G = (G,+, 0) be an abelian group and
Q(G,α) an affine quandle. Then the groups Adj(Q(G,α)) and F (G,α) are isomorphic, and
the groups π1(Q(G,α), 0) and S(G,α) are isomorphic.

We are ready to prove Theorem 1.1. Let X = Q(G,α) be a finite connected affine quandle.
By Proposition 2.16 and Theorem 8.1, X is simply connected if and only if S(G,α) is trivial.

Suppose first that G = Zn is cyclic. Then G⊗G = Zn ⊗ Zn ∼= Zn is generated by 1⊗ 1.
For y ∈ G we have 1 ⊗ (1 − α)(y) = 1 ⊗ y − 1 ⊗ α(y) = y ⊗ 1 − 1 ⊗ α(y) ∈ I(G,α). Since
X is connected, the homomorphism 1 − α is bijective by Proposition 6.1. In particular,
1⊗ 1 ∈ I(G,α) and S(G,α) is trivial.

Now suppose that X = Q(G,α) is doubly transitive, G is not cyclic, and |X| 6= 4. By the
argument given in Subsection 7.2, G = Znp for some prime p and n > 1, and α is a cycle of
length |X| − 1.

Let us write u ≡ v if u, v ∈ G⊗G coincide modulo I(G,α). For every x ∈ G we have

0 ≡ x⊗ (x+ α(x))− (x+ α(x))⊗ α(x)

= x⊗ x+ x⊗ α(x)− x⊗ α(x)− α(x)⊗ α(x) = x⊗ x− α(x)⊗ α(x).

Therefore x⊗ x ≡ α(x)⊗α(x) for every x. Since α is a cycle of length |X| − 1, we conclude
that there is e ∈ G such that

(8.1) x⊗ x ≡ e for every 0 6= x ∈ G.

If x, y ∈ G are such that x 6= 0 6= y and x 6= y, equation (8.1) implies

e ≡ (x− y)⊗ (x− y) = x⊗ x− x⊗ y − y ⊗ x+ y ⊗ y ≡ 2e− x⊗ y − y ⊗ x.
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Therefore

(8.2) x⊗ y + y ⊗ x ≡ e for every x 6= 0 6= y with x 6= y.

We proceed to show that e ≡ 0.
Suppose that p 6= 2. Since |X| > 4, there are x, y ∈ G such that x 6= 0 6= y and x 6= ±y.

Then (8.1) implies

e ≡ (x+ y)⊗ (x+ y) = x⊗ x+ x⊗ y + y ⊗ x+ y ⊗ y ≡ 2e+ x⊗ y + y ⊗ x

and we deduce x⊗ y + y ⊗ x ≡ −e. But (8.2) holds for our choice of x, y as well, and thus
e ≡ 0.

Suppose now that p = 2. Since |X| > 4, there are distinct and nonzero x, y, z ∈ G such
that x+ y + z 6= 0. Then (8.1) and (8.2) imply

e ≡ (x+ y + z)⊗ (x+ y + z) = x⊗ x+ y ⊗ y + z ⊗ z
+ (x⊗ y + y ⊗ x) + (x⊗ z + z ⊗ x) + (y ⊗ z + z ⊗ y) ≡ 6e ≡ 0,

and we again conclude that e ≡ 0.
Let us continue the proof with p arbitrary. We have shown that x⊗x ≡ 0 for every x. The

calculations leading to (8.2) can now be repeated for any x, y, and we obtain x⊗y ≡ −y⊗x
for every x, y. Hence

(8.3) 0 ≡ x⊗ y − y ⊗ α(x) ≡ x⊗ y + α(x)⊗ y = (x+ α(x))⊗ y

for every x, y ∈ G. We claim that 1 +α is bijective. Indeed, suppose that (1 +α)(x) = 0 for
some x 6= 0. Then α(x) = −x and α2(x) = x, a contradiction with α being a cycle of length
|X| − 1 (using |X| > 3). Now (8.3) shows that x⊗ y ≡ 0 for every x, y ∈ G, and Theorem
1.1 is proved.

Example 8.2. This example shows that a doubly transitive quandle Q(G,α) of order 4 is
not simply connected. We will calculate I(G,α). Let {e1, e2} with e1 =

(
1
0

)
and e2 =

(
0
1

)
be a

basis of G = Z2
2, and suppose without loss of generality that α =

(
1 1
1 0

)
. Then α(e1) = e1+e2,

α(e2) = e1 and α(e1 + e2) = e2. Calculating in G⊗G, we get

e1 ⊗ e1 + e1 ⊗ α(e1) = e1 ⊗ e2,
e2 ⊗ e1 + e1 ⊗ α(e2) = e1 ⊗ e1 + e2 ⊗ e1,
e1 ⊗ e2 + e2 ⊗ α(e1) = e1 ⊗ e2 + e2 ⊗ e1 + e2 ⊗ e2,
e2 ⊗ e2 + e2 ⊗ α(e2) = e2 ⊗ e1 + e2 ⊗ e2.

Hence I(G,α) is the span of e1⊗e1 +e2⊗e1, e2⊗e1 +e2⊗e2 and e1⊗e2. Since G⊗G ∼= Z4
2,

the quandle Q(G,α) is not simply connected.

9. Constant cocycles with coefficients in arbitrary groups

Following [1], we have defined constant quandle cocycles as mappings β : X × X → SS
but the definition makes sense for any group G.

Definition 9.1. Let X be a quandle and G a group. Let

Z2
c (X,G) = {β : X ×X → G | β satisfies (CC) and (CQ)}.
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For β, β′ ∈ Z2
c (X,G), we write β ∼ β′ if there exists a mapping γ : X → G such that

β′(x, y) = γ(xy)β(x, y)γ(y)−1

holds for every x, y ∈ X. Then H2
c (X,G) = Z2

c (X,G)/ ∼ is the second constant cohomology
set of X with coefficients in G.

A careful look at all our results shows that all calculations can be carried out over an
arbitrary group G, not just over symmetric groups.

Proposition 9.2. Let X be a quandle and G a group. Then Z2
c (X,G) embeds into Z2

c (X, SG).

Proof. Let λG : G→ SG, λG(g)(h) = gh be the left regular representation of G. Define

(9.1) j : Z2
c (X,G)→ Z2

c (X, SG), j(β)(x, y) = λG(β(x, y)).

Then it is easy to see that j is injective. �

Let us show that the embedding j in (9.1) induces a map j : H2
c (X,G) → H2

c (X, SG).
Suppose that β, β′ ∈ Z2

c (X,G) are cohomologous and let γ : X → G be such that
γ(xy)β(x, y)γ(y)−1 = β′(x, y) for every x, y ∈ X. We claim that j(β), j(β′) ∈ Z2

c (X, SG) are
cohomologous via j(γ), defined by j(γ)(x) = λG(γ(x)). Indeed, for every a ∈ G and every
x, y ∈ X we have

j(γ)(xy)j(β)(x, y)(j(γ)(y))−1(a) = γ(xy)β(x, y)γ(y)−1a = β′(x, y)a = j(β′)(x, y)(a).

However, the induced map j : H2
c (X,G)→ H2

c (X, SG) is not necessarily an embedding as
we shall see in Example 9.5. We start by having another look at 4-element doubly transitive
quandles.

Example 9.3. Let X = Q(Z2
2, α) be a doubly transitive quandle and G a group. Suppose

that α, e1, e2 are as in Example 8.2. We claim that

(9.2) H2
c (X,G) = {[βa]∼ | a ∈ G, a2 = 1},

where βa is given by

(9.3)

0 e1 e1 + e2 e2
0 1 1 1 1
e1 1 1 a a

e1 + e2 1 a 1 a
e2 1 a a 1

,

and, moreover, βa ∼ βb if and only if a and b are conjugate in G.
To see this, first recall that x · y = x+α(−x+ y) = x+α(x+ y) and check that βa defined

by (9.3) is a 0-normalized cocycle. Conversely, suppose that β ∈ Z2
c (X,G) is 0-normalized.

Then β(x, 0) = 1 for every x ∈ X. Since β is g-invariant by Proposition 4.3, we also have
β(0, x) = 1 for every x ∈ X by Lemma 4.2, and β(x, y) = β(g(x, y)) = β(0 · x, 0 · y) =
β(α(x), α(y)) for every x, y ∈ X. By Proposition 4.5, β is h-invariant, and by Lemma 6.6
we have h(x, y) = (y + x, y), so β(x, y) = (y + x, y) for every x, y ∈ X. Applying g, h as
indicated, we get

β(e1, e2)
g
= β(e1 + e2, e1)

g
= β(e2, e1 + e2)

h
= β(e1, e1 + e2)

g
= β(e1 + e2, e2)

g
= β(e2, e1),
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so there is a ∈ G such that β = βa. Setting x = z in (CC) yields β(xy, x) = β(x, yx)β(y, x)
and thus

1 = β(0, e1) = β(e1·(e1+e2), e1) = β(e1, (e1+e2)·e1)β(e1+e2, e1) = β(e1, e2)β(e1+e2, e1) = a2.

Finally, by Proposition 3.2, βa ∼ βb if and only if a and b are conjugate in G.

Remark 9.4. In [16], the second cohomology of X = Q(Z2
2, α) was calculated when G is

the additive group of a finite field or G ∈ {Z,Q}. Since G is abelian here, H2
c (X,G) is also

an abelian group under the operation (β + δ)(a, b) = β(a, b) + δ(a, b). Our calculations in
Example 9.3 agree with those of [16, Example 2 and Corollary 1.1]. We have H2

c (X,G) = 1
if G ∈ {Z,Q} or G = Zkp with p odd, and H2

c (X, Zk2) ∼= Zk2.

Example 9.5. Let X = Q(Z2
2, α) be a doubly transitive quandle and let G = Z2

2. By
Example 9.3, every a ∈ G yields βa ∈ Z2

c (X,G), and βa ∼ βb if and only if a = b since G is
abelian. Example 9.3 also shows that every σ ∈ SG with σ2 = 1 yields βσ in Z2

c (X, SG), and
βσ = βτ if and only if σ, τ have the same cycle structure.

Consider now the embedding j : Z2
c (X,G) → Z2

c (X, SG) and note that for every a ∈ G
we have j(βa) = βλG(a). If a, b ∈ G are distinct nonzero elements of G then βa 6∼ βb, but
j(βa) ∼ j(βb) because λG(a), λG(b) have the same cycle structure. We conclude that j does
not induce an embedding of H2

c (X,G) into H2
c (X, SG).

If X is latin, the embedding j commutes with the normalization procedure described in
Proposition 3.2.

Proposition 9.6. Let X be a latin quandle, G a group and β ∈ H2
c (X,G). Then j(βu) =

j(β)u for every u ∈ X.

Proof. We have

j(βu)(x, y) = λG(βu(x, y)) = λG(β((xy)/u, u)−1β(x, y)β(y/u, u)) =

= λG(β((xy)/u, u))−1λG(β(x, y))λG(β(y/u, u))) =

= j(β)u(x, y)

for every x, y ∈ X. �

We can now prove Theorem 1.2. By Proposition 2.16, a connected quandle X is simply
connected if and only if H2

c (X, SS) = 1 for every set S. Let X be a latin quandle. If
H2
c (X,G) = 1 for every group G, then certainly H2

c (X, SS) = 1 for every set S. Conversely,
suppose that H2

c (X, SS) = 1 for every set S, let G be a group and let β ∈ Z2
c (X,G). Let

u ∈ X. Since H2
c (X, SG) = 1 and j(β) ∈ Z2

c (X, SG), Corollary 3.3 implies j(β)u = 1. By
Proposition 9.6, λG(βu(x, y)) = j(βu)(x, y) = j(β)u(x, y) = 1 and therefore βu(x, y) = 1 for
every x, y ∈ X. By Corollary 3.3, H2

c (X,G) = 1.

Problem 9.7. Let X be a connected quandle. Are the following conditions equivalent?

(i) X is simply connected,
(ii) H2

c (X,G) = 1 for every group G.
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9.1. Conjugacy quandle cocycle invariants. We conclude the paper by establishing
Corollary 1.3.

In [2, Section 5], a new family of knot invariants was defined by using constant quandle
cocycles. Let X be a quandle, G a group and β ∈ Z2

c (X,G). Let (τ1, . . . , τk) be all the
crossings of an oriented knot K encountered while traveling around K starting from some
base point and following the orientation of K. For a crossing τ and coloring C ∈ colX(K),
let B(τ, C) = β(xτ , yτ )

ετ , where xτ is the color on the understrand, yτ is the color on the

overstrand, and ετ is the sign of the crossing. Let ϕ(K, C) =
∏k

i=1B(τi, C). For g ∈ G, let
[g] be the conjugacy class of g in G. Then

ϕX,G,β(K) = {[ϕ(K, C)] | C ∈ colX(K)}
is a conjugacy quandle cocycle invariant of K. According to [2, Theorem 5.5], this is indeed
an invariant of oriented knots.

Let us prove Corollary 1.3. Let X be a simply connected latin quandle, G a group and
β ∈ Z2

c (X,G). By [2, Proposition 5.6], if β is cohomologous to the trivial constant cocycle,
then ϕX,G,β(K) is trivial. It therefore suffices to show that H2

c (X,G) = 1 and this follows
from Theorem 1.2.
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