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Abstract. The uncertainty management problem is one of the key is-
sues associated with moving objects (MOs). Minimizing the uncertainty
region size can increase both query accuracy and system performance.
In this paper, we propose an uncertainty model called the Truncated
Tornado model as a significant advance in minimizing uncertainty re-
gion sizes. The Truncated Tornado model removes uncertainty region
sub-areas that are unreachable due to the maximum velocity and accel-
eration of the MOs. To make indexing of the uncertainty regions more
tractable we utilize an approximation technique called T ilted Minimum
Bounding Box (TMBB) approximation. Through experimental evalu-
ations we show that Truncated Tornado in TMBB results in orders of
magnitude reduction in volume compared to a recently proposed model
called the Tornado model and to the standard “Cone” model when ap-
proximated by axis-parallel MBB.

1 Introduction

In recent years, there is an increasing number of location-aware spatiotemporal
applications that manage continuously changing data. Tracking systems, mobile
services and sensor-based systems now track millions of GPS and RFIDs that
can report the positions of the moving objects. These applications require new
strategies for modeling, updating and querying spatiotemporal databases.

To be able to answer location-based queries, it is necessary to maintain the
locations of a large number of moving objects over time. It is infeasible to store
the object’s exact continuously changing location since this would require more
updates than can be managed by the MO database. This is a first cause of
MO location inaccuracy. A second cause is that devices are limited in ability to



report accurate locations. As a result of these inaccuracies, MO spatiotemporal
data often require uncertainty management algorithms.

A common model of spatiotemporal query processing is to divide the query
into a filtering step and a refinement step [3]. The performance of the filtering
step is improved when there is a lower rate of false-hits, i.e., objects that are
returned in the filtering step but subsequently are discarded by the refinement
step. In spatiotemporal queries, minimizing the size of uncertainty regions and
any used region approximations will result in improving the filtering step effi-
ciency. Minimizing these regions and their approximations is the main goal of
this work.

2 Related Work

Many uncertainty models for moving objects have been proposed based on the
underlying applications. Uncertainty regions of moving objects in [10] are pre-
sented in 3D as cylindrical bodies which represent all the possible positions
between two reported past locations. The authors in [7] proposed one of the
most common uncertainty models showing that when the maximum velocity of
an object is known, the uncertainty region between any two reported locations
can be represented as an error ellipse. Another popular model is found in [5].
It represents the uncertainty region as an intersection of two half cones. Each
cone constrains the maximum deviation from two known locations in one move-
ment direction. Recently in [12], a non-linear extension of the funnel model [11],
named Tornado was presented. This higher degree model reduces the size of
the uncertainty region by taking into account higher order derivatives, such as
velocity and acceleration.

There is a lack of research in investigating the effect of different object approx-
imations on the false-hit rate. In [3], the authors investigated six different types
of static spatial objects approximations. Their results indicated that depending
on the complexity of the objects and the type of queries, the approximations five-
corner, ellipse and rotated bounding box outperform the axis-parallel bounding
box. The authors in [1] presented MBR approximations for three uncertainty
region models, namely, the Cylinder Model, the Funnel Model of Degree 1
which is the Cone model proposed in [5] and the Funnel Model of Degree 2
which is the Tornado model presented in [12].

Research in the field of computational geometry has resulted in several ob-
ject approximation solutions. In [9], the author was able to use the fact that
a minimal area rectangle circumscribing a convex polygon has at least one side
flush with an edge of the polygon to use the “rotating calipers” algorithm to find
all minimal rectangles in linear time. In [6], O’Rourke presented the only algo-
rithm for computing the exact arbitrarily-oriented minimum volume bounding
box of a set of points in R3 which runs in O(n3). The authors in [2], proposed an
efficient solution of calculating a (1 + ε)-approximation of the non axis-parallel
minimum-volume bounding box of n points in R3. The running time of their
algorithm is O(nlogn + n/ε3).



3 The Truncated Tornado

Notation Meaning

P1 a reported position of a moving object

P2 a following reported position

t1 time instance when P1 was reported

t2 time instance when P2 was reported

t any time instance between t1 and t2 inclusively

T time interval between t2 and t1, T = t2 − t1
V1 velocity vector at P1

V2 velocity vector at P2

e instrument and measurement error

Mv maximum velocity of an object

Ma maximum acceleration of an object

tMv time to reach maximum velocity

Table 1. Notations used in this paper

Assuming maximum velocity Mv and maximum acceleration Ma of the mov-
ing object, the Tornado model [12] calculated the uncertainty region defining
functions as shown in Fig. 1 (a). The dotted region is the uncertainty region
defined by the Tornado model and the top and bottom intervals represent the
instrument and measurement error associated with each reported position.

Let displ1 and displ2 be, respectively, a first-degree and second-degree dis-
placement functions defined as follows:
displ1(V, t) = V · t and displ2(V, a, t) =

∫ t

0
(V +a ·x)dx ≈ V · t+(a/2) · t2, where

V is the current velocity of the moving object, a is acceleration and t is time.
The future (past) position fpos (ppos) of a moving object after (before) some
time, t, can be calculated as follows:

f pos(P1, V1,Mv, Ma, t) =
{

P1 + D2 + D1 if tMv < t
P1 + D2 otherwise

p pos(P2, V2, Mv,Ma, t) =
{

P2 −D2 −D1 if tMv < t
P2 −D2 otherwise

D1 = displ1(Mv, t − tMv) and D2 = displ2(V, Ma, tMv), where tMv is the time
the moving object needs to reach Mv. Notice that the above functions define the
dotted uncertainty region in Fig. 1 (a). gmin(t) and gmax(t) are produced by the
fpos function, and fmin(t) and fmax(t) are produced by the ppos function.

Objects moving with momentum cannot make extreme changes in their ve-
locity. Hence they need some time to change their velocities from one direction
to the opposite direction, thus, the right and left corners Pmax and Pmin shown



in Fig. 1 (a) are impossible to be reached by the moving object unless we assume
infinite acceleration. Our proposed Truncated Tornado model removes unreach-
able sub-areas of the uncertainty regions by calculating the furthest point an
object can reach given its maximum acceleration.

Assuming that the two intervals and trajectories are as shown in Fig. 1 (b),
we define the Truncated Tornado model as follows:
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Fig. 1. Calculating uncertainty regions of Truncated Tornado

We say that Ps is the point of no safe return for g if Ps is the rightmost point
on the trajectory g such that when the object (car) starts changing direction at
Ps then it will touch the trajectory f (at point R), i.e., the object is within the
boundary of the maximum possible deviation.

Since any realizable trajectory between the two intervals must remain within
the boundary defined by f and g, it is clear that the point C (which is the
rightmost point on the decelerating trajectory started at Ps) can be used as
a cut point for the right boundary of the MBR encompassing the uncertainty
region. This boundary is indicated in the figure by the dotted line.

The question is how to calculate the points Ps and C. We show the case when
both f , g are parabolas. Upon turning the situation by 90 degrees counterclock-
wise, f , g are parabolas given by f(x) = ax2 + b1x + c1, g(x) = ax2 + b2x + c2.
(We use the same quadratic coefficient a since the maximal acceleration Ma is
the same for f and g.) Note that b1 6= b2 since the parabolas f , g are not nested.

Let x0 be the x-coordinate of the point Ps. The deceleration trajectory
started at Ps is a parabola, and it can be given by h(x) = −ax2+ux+v. To deter-
mine u, v and x0, we want h to stay below f at all times and hence−ax2+ux+v ≤
ax2 + b1x + c1 for every x. Equivalently, k(x) = 2ax2 + (b1 − u)x + (c1 − v) ≥ 0
for every x. Since h needs to touch f , we want k to be a parabola that touches
the x-axis. Equivalently, the discriminant (b1 − u)2 − 4(2a)(c1 − v) needs to be



equal to 0. This yields
v = c1 − (b1 − u)2/(8a) (1)

Analogously, we want h to stay below g at all times and hence −ax2+ux+v ≤
ax2 + b2x + c2 for every x. Equivalently, k(x) = 2ax2 + (b2 − u)x + (c2 − v) ≥ 0
for every x. Since h needs to touch g, we want k to be a parabola that touches
the x-axis. Equivalently, the discriminant (b2 − u)2 − 4(2a)(c2 − v) needs to be
equal to 0. This yields

v = c2 − (b2 − u)2/(8a) (2)

The parabola h must satisfy both (1) and (2), therefore, we can set (1) = (2),
eliminate v from the equation, solve for u and then substitute to find v. Solving
for u with the observation that b1 6= b2 we get

u = 4a
c2 − c1

b1 − b2
+

1
2
(b1 + b2) (3)

It is now easy to find the cut point C, as this is the vertex of the parabola
h. Notice that we only need to calculate u to find C since C = u

2a .
Finally, the reverse time problem (going from P2 to P1) is precisely the for-

ward time problem: we are looking for a parabola that stays below and touches
both f and g, hence the reverse time parabola coincides with the forward time
parabola.

The same technique needs to be applied to find the cut point C ′ on the
left boundary of the calculated MBR, i.e., the minimum extreme point of the
uncertainty region (see Fig. 1 (a)). In this case, upon turning the situation by 90
degrees counterclockwise, we see that f , g are parabolas given by f(x) = −ax2+
b1x+c1, g(x) = −ax2+b2x+c2 and h is a parabola given by h(x) = ax2+ux+v
and we need h to stay above f and g at all times and touches them.

The uncertainty region example shown in Fig. 1 (a) is generated by this
model when both Ps and R for the minimum and maximum calculations lie on
curved part of g and f , respectively. Obviously, there are three other cases that
need to be considered when calculating C and C ′, depending on the locations of
Ps, R and P ′s, R′, respectively. We leave these cases to the reader.

4 The TMBB Approximation

The uncertainty regions of MOs are rather “tilted” in shape in which traditional
(axis-parallel) Minimum Bounding Boxes MBBs are most likely not close to the
optimal approximations of the regions. The advantage of Truncated Tornado
can be strengthened by a more accurate approximation that takes the tilted
shape of the regions into account and not only the extreme points of the un-
certainty region. We investigate Tilted Minimum Bounding Boxes (TMBBs)
as approximations of the uncertainty regions generated by Truncated Tornado.
When compared with axis-parallel MBBs in 3D, TMBBs, which are minimum
volume bounding boxes that relax the axis-aligned property of MBBs, generally
allow geometries to be bounded more tightly with a fewer number of boxes [4].



To calculate TMBB of the uncertainty region of Fig. 1 (a), we identify all
the extreme points that need to be considered as follows:
R, C and Ps of the maximum direction (upper boundary) in the x-dimension
need to be calculated and the corresponding y-values (at specific time instance
when the x-values are calculated) are assigned to these points. Similarly, R, C
and Ps in the y-dimension need to be calculated and the corresponding x-values
(at specific time instance when the y-values are calculated) are assigned to these
points. This results in 6 points calculated in 3D. The same calculation set needs
to be done for the minimum direction (lower boundary) by calculating R′, C ′

and P ′s in both the x and y dimensions which results in 6 other points. The other
extreme points are P1 − e, P1 + e, P2 − e and P2 + e.

Given 6 points in 3D calculated for the upper boundary, 6 points in 3D
calculated for the lower boundary and finally 4 points in 3D (2 top and 2 bottom),
we calculate TMBB enclosing the uncertainty region of Truncated Tornado
using the approximation method of [2].

5 Experiments

All velocities in this section are in meters/second (m/s), all accelerations are
in meters/second2 (m/s2) and all volumes are in meters2 · second (volumes in
3D are generated by moving objects in 2D with time being the 3rd dimension).
Our synthetic datasets were generated using the “Generate Spatio Temporal
Data” (GSTD) algorithm [8].

datasets reported records parameters
AVG Vel. MAX Vel. MAX Acc. Mv Ma

synthetic Dataset 17.76 20.61 6.41 55 8

real San Diego 11.44 36.25 6.09 38.89 6.5

Table 2. Synthetic and real datasets and system parameters

Our synthetic dataset was generated by 200 objects moving with the velocity
in the x direction greater than the velocity in the y direction with an average
velocity of 17.76 m/s. Each object in the synthetic dataset reported its position
and velocity every second for an hour. The real data set was collected using a
GPS device while driving a car in the city of San Diego in California, U.S.A.
The actual positions and velocities were reported every one second and the
average velocity was 11.44 m/s. Although each moving object in both datasets
reported its position every second, we used different time interval (T.I) values
(e.g., T.I=10) to simulate various update frequencies. The range queries’ sizes
in our experiments are calculated using certain percentages of the universe area
combined with specific time extents. Table 2 shows the datasets and system
parameters used in our experiments.



We first compared the volume of TMBBs approximating the Truncated
Tornado uncertainty regions to the volume of the axis-parallel MBBs of Tornado
and Cone using the real and synthetic datasets. Fig. 2 (a) and (b) show the
average volume of TMBBs generated by Truncated Tornado and the average
volume of MBBs generated by the other two models using the synthetic and real
datasets, respectively. Truncated Tornado combined with TMBB resulted in
an average reduction of 93% and 97% over the axis-parallel MBB of Tornado
and Cone, respectively, using the real dataset. The reduction when using the
synthetic dataset was 99% over both Tornado and Cone.
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Fig. 2. Truncated in TMBB Vs. Tornado and Cone in MBB

Next, we generated and evaluated 5000 random queries to TMBBs and
MBBs calculated in the previous result for the real dataset. Fig. 2 (c) and
(d) show the number of intersecting TMBBs of Truncated Tornado and the
number of intersecting MBBs of Tornado and Cone. TMBBs of Truncated
resulted in much less number of intersections compared to MBBs of the other
models since Truncated Tornado results in much smaller uncertainty regions
compared to Tornado and Cone. Also, TMBBs result in significantly smaller
average volumes compared to MBBs as they more accurately approximate the
uncertainty regions. The reduction in the number of intersections of Truncated
Tornado TMBBs was 42% over Tornado MBBs and 62% over Cone MBBs
when T.I=10. When T.I=20, the reduction over Tornado MBBs was 47% and
was 68% over Cone MBBs.



6 Conclusions

In this paper we proposed the Truncated Tornado model that minimizes the
moving object uncertainty regions. The model takes advantage of the fact that
changes in the velocities of moving objects that move with momentum are limited
by maximum acceleration values. This fact is used to identify and eliminate un-
reachable object locations, thus significantly reducing uncertainty region size. We
then showed how to combine this model with the Tilted Minimum Bounding
Box (TMBB), in order to achieve another order of magnitude reduction in un-
certainty region size when compared to approximation bounding via traditional
MBBs. Experiments on both synthetic and real datasets showed an order of
magnitude improvement over previously proposed uncertainty models in terms
of I/O accesses.
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