Code loops of both parities

AleS Drapal and Petr Vojtéchovsky*

Department of Algebra
Charles University in Prague
and
Department of Mathematics
University of Denver

Apr 6, 2008 / Bloomington

Ales Drapal and Petr Vojtéchovsky™ Code loops of both parities



Translations

(Q, ) a groupoid.
Ly : Q — Q, y — Xxy a left translation.
Ry : Q — Q, y — yx aright translation.
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Translations

(Q,-) a groupoid.

Ly : Q — Q,y — xy a left translation.
Ry : Q — Q,y — yx aright translation.

Quasigroups and loops

Quasigroup = groupoid where all translations are bijections.
Loop = quasigroup with neutral element 1.
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Loops

Translations

(Q, ) a groupoid.

Ly : Q — Q,y — xy a left translation.
Ry : Q — Q,y — yx aright translation.

Quasigroups and loops

Quasigroup = groupoid where all translations are bijections.
Loop = quasigroup with neutral element 1.

1 2 3 45
11 2 3 4 5
212 1 4 5 3
3/3 45 1 2
414 5 2 3 1
5(56 31 2 4
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Application of code loops

Constructing the Monster group M (Conway)

'H = Hamming code of length 7
!

G = extended binary Golay code

!

‘P = Parker loop, the code loop of G, is a Moufang loop,
satisfies x(y(xz)) = ((xy)x)z

!

N = group with triality of 7, contains a Sylow 2-subgroup of M
| “add” the lattice Ay,

M
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Even code loops

Theorem (Griess)

For every doubly even binary code U there exists a unique (up
to equivalence) 6 : U x U — [F, such that:
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Even code loops

Theorem (Griess)

For every doubly even binary code U there exists a unique (up
to equivalence) 6 : U x U — [F, such that:

@ A(u,u) = ‘%‘ mod 2,

Ales Drapal and Petr Vojtéchovsky™* Code loops of both parities



Even code loops

Theorem (Griess)

For every doubly even binary code U there exists a unique (up
to equivalence) 6 : U x U — [F, such that:

@ A(u,u) = ‘%‘ mod 2,

® O(u,v) —0(v,u) = '“T”"‘ mod 2,
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Even code loops

Theorem (Griess)

For every doubly even binary code U there exists a unique (up
to equivalence) 6 : U x U — [F, such that:

@ A(u,u) = ‘%‘ mod 2,
n
® O(u,v) —0(v,u) = '“T"‘ mod 2,

@ 0(u,v)+0(u+v,w)—0(v,w)—6(u,v+w)=|unvnNw|
mod 2.
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Even code loops
Theorem (Griess)

For every doubly even binary code U there exists a unique (up
to equivalence) 6 : U x U — [F, such that:

@ A(u,u) = ‘%‘ mod 2,
n
® O(u,v) —0(v,u) = '“T"‘ mod 2,

@ 0(u,v)+0(u+v,w)—0(v,w)—6(u,v+w)=|unvnNw|
mod 2.

Definition
U(6) = IF, x U with multiplication

| A\

(a,u)(b,v) =(a+b+6(u,v), u+v)

is the even code loop associated with U.

A\
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Commutators and associators

Definition

Commutator: xy = (yx)C(x,y).
Associator: (xy)z = (x(yz))A(X,Y,z).
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Commutators and associators

Definition
Commutator: xy = (yx)C(x,y).

Associator: (xy)z = (x(yz))A(X,Y,z).

InU(6),

(a,u)(a,u) =(a+a+6(u,u),u+u)=(0(u,u),0),

C(Xay) = C((&,U), (b,V)) = (G(U,V) _ H(V,U),O),
-A(x,y,z) =(f(u,v) +0(u-+v,w)—0(v,w)—60(u,v+w),0) )

Code loops of both parities
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Polarization of codewords

Define P : U — FF,, u — |u|/4. Then
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Polarization of codewords

Define P : U — FF,, u — |u|/4. Then
@ Plu+v)—P(u)—P(v)=|unv|/2.
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Polarization of codewords

Define P : U — FF,, u — |u|/4. Then
@ Plu+v)—P(u)—P(v)=|unv|/2.

@ Pu+v+w)—Pu+v)—Plu+w)—P(v+w)+P(u)+
P(v) +P(w)=[unvnw|.
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Combinatorial polarization

Definition
V vector space over F, P : V — F, P(0) = 0. For n > 0 define:

AnP(Ul,...,Un): Z (_1)n_mP(Uil+---+Uim).

1<i;<--<im<n
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Combinatorial polarization

V vector space over F, P : V — F, P(0) = 0. For n > 0 define:

AnP(Ul,...,Un): Z (_1)n_mP(Uil+---+Uim).

1<i;<--<im<n

AnP(u,v,w,...) =
An_iPu+v,w,...)—An_1P(u,w,...) —A_1P(v,w,...).
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Combinatorial polarization

V vector space over F, P : V — F, P(0) = 0. For n > 0 define:

AnP(Ul,...,Un): Z (_1)n_mP(Uil+---+Uim).

1<i;<--<im<n

AnP(u,v,w,...) =
An_iPu+v,w,...)—An_1P(u,w,...) —A_1P(v,w,...).

Definition
cdeg(P) = least n such that A,P # 0 and AP = 0.
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Combinatorial polarization

V vector space over F, P : V — F, P(0) = 0. For n > 0 define:

AnP(Ul,...,Un): Z (_1)n_mp(uil+"'+Uim).

1<iy < <im<n

A\

AnP(u,v,w,...) =
An_iPu+v,w,...)—An_1P(u,w,...) —A_1P(v,w,...).

>

Definition
cdeg(P) = least n such that A,P # 0 and AP = 0.

Over prime fields, cdeg(P) = n iff AyP is symmetric n-linear. |
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Characterization of code loops by polarization

Theorem (Aschbacher, Chein, Goodaire, Griess, Hsu)

Let U be doubly even, 6 : U x U — F, a cocycle. Let U(6) be
as above, with commutator C and associator A. Then TFAE:
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Characterization of code loops by polarization

Theorem (Aschbacher, Chein, Goodaire, Griess, Hsu)

Let U be doubly even, 6 : U x U — F, a cocycle. Let U(6) be
as above, with commutator C and associator A. Then TFAE:

@ U(#) is an even code loop.
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Characterization of code loops by polarization

Theorem (Aschbacher, Chein, Goodaire, Griess, Hsu)

Let U be doubly even, 6 : U x U — F, a cocycle. Let U(6) be
as above, with commutator C and associator A. Then TFAE:
@ U(#) is an even code loop.
@ Thereis P : U — F, such that C = AP, A = A3P (can
take P(u) = 6(u,u)).
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Characterization of code loops by polarization

Theorem (Aschbacher, Chein, Goodaire, Griess, Hsu)
Let U be doubly even, 6 : U x U — F, a cocycle. Let U(6) be
as above, with commutator C and associator A. Then TFAE:
@ U(#) is an even code loop.
@ Thereis P : U — F, such that C = AP, A = A3P (can
take P(u) = 6(u,u)).
@ Q = U(#) is a Moufang loop with Frattini subloop of order
dividing 2.
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Characterization of code loops by polarization

Theorem (Aschbacher, Chein, Goodaire, Griess, Hsu)

Let U be doubly even, 6 : U x U — F, a cocycle. Let U(6) be
as above, with commutator C and associator A. Then TFAE:
@ U(#) is an even code loop.
@ Thereis P : U — F, such that C = AP, A = A3P (can
take P(u) = 6(u,u)).
@ Q = U(#) is a Moufang loop with Frattini subloop of order
dividing 2.

| A\

Theorem (Hsu)

Nonassociative symplectic Moufang p-loops exist only for
p<3.
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The coding construction required for p = 2

Given U with basis {uy,...,un}, P : U — FF,, cdeg(P) < 3, find
V doubly even with basis {ey, ..., en} such that
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The coding construction required for p = 2

Given U with basis {uy,...,un}, P : U — FF,, cdeg(P) < 3, find
V doubly even with basis {ey, ..., en} such that

® P(u) = [eil/4,
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The coding construction required for p = 2

Given U with basis {uy,...,un}, P : U — FF,, cdeg(P) < 3, find
V doubly even with basis {ey, ..., en} such that

o P(Ui) = |ei|/4,
("] AZP(Ui,Uj) = \ei ﬁej]/Z,

Ales Drapal and Petr Vojtéchovsky™* Code loops of both parities



The coding construction required for p = 2

Given U with basis {uy,...,un}, P : U — FF,, cdeg(P) < 3, find
V doubly even with basis {ey, ..., en} such that

@ P(ui) = lei|/4,
@ AyP(uj,up) = |ej Nejl/2,
® AP (ui,uj,uk) = [ei NejNexl.
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The coding construction required for p = 2

Given U with basis {uy,...,un}, P : U — FF,, cdeg(P) < 3, find
V doubly even with basis {ey, ..., en} such that

® P(u) = leil/4,
@ AP (ui,u) = lej Negjl/2,
® AP (ui,uj,uk) = [ei NejNexl.

Theorem (P.V.)
Can be done for any cdeg(P) < r and codes of level r — 1.
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Odd p: Results of Richardson

In Richardson’s thesis:
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Odd p: Results of Richardson

In Richardson’s thesis:

@ constructed large p-subgroups of M forp = 3, 5, 7.
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Odd p: Results of Richardson

In Richardson’s thesis:

@ constructed large p-subgroups of M forp = 3, 5, 7.
@ started with self-orthogonal codes over I,
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Odd p: Results of Richardson

In Richardson’s thesis:

@ constructed large p-subgroups of M forp = 3, 5, 7.
@ started with self-orthogonal codes over I,
@ noticed connection to polarization
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Odd p: Results of Richardson

In Richardson’s thesis:

@ constructed large p-subgroups of M forp = 3, 5, 7.
@ started with self-orthogonal codes over I,

@ noticed connection to polarization

@ defined odd code loops
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Narrow definition of odd code loops
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Narrow definition of odd code loops

@ U self-orthogonal code over [,
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Narrow definition of odd code loops

@ U self-orthogonal code over [,

@ z € U such that z; # 0 for every i and z is invariant under
all permutation matrices in AutU
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Narrow definition of odd code loops

@ U self-orthogonal code over [,

@ z € U such that z; # 0 for every i and z is invariant under
all permutation matrices in AutU

0 9(u,v) =z tuy;
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Narrow definition of odd code loops

@ U self-orthogonal code over [,

@ z € U such that z; # 0 for every i and z is invariant under
all permutation matrices in AutU

0 9(u,v) =z tuy;
@ U(0) is odd code loop
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General definition of odd code loops

flu,v,w)=>" zi_luiviwi is symmetric trilinear,
f(u,u,v) =6(u,v).
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General definition of odd code loops

flu,v,w)=>" zi_luiviwi is symmetric trilinear,
f(u,u,v) =6(u,v).
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General definition of odd code loops

flu,v,w)=>" zi_luiviwi is symmetric trilinear,
f(u,u,v) =6(u,v).

@ U self-orthogonal code over Fp

Ales Drapal and Petr Vojtéchovsky™* Code loops of both parities



General definition of odd code loops

flu,v,w)=>" zi_luiviwi is symmetric trilinear,
f(u,u,v) =6(u,v).

@ U self-orthogonal code over Fp

o f:UxUxU — I, symmetric trilinear form
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General definition of odd code loops

flu,v,w)=>" zi_luiviwi is symmetric trilinear,
f(u,u,v) =6(u,v).

@ U self-orthogonal code over Fp

o f:UxUxU — I, symmetric trilinear form
® f(u,v) ="f(u,u,v)
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General definition of odd code loops

flu,v,w)=>" zi_luiviwi is symmetric trilinear,
f(u,u,v) =6(u,v).

@ U self-orthogonal code over Fp

o f:UxUxU — I, symmetric trilinear form
® f(u,v) ="f(u,u,v)
@ U(#) is general odd code loop
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Middle ground: Characteristic forms

Definition (Characteristic forms)
Call a symmetric form f : V" — F,, characteristic if

f(uy,...,un) =0

whenever an argument is repeated at least p times, p = charF.
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Middle ground: Characteristic forms

Definition (Characteristic forms)
Call a symmetric form f : V" — F,, characteristic if

f(uy,...,un) =0

whenever an argument is repeated at least p times, p = charF.

Theorem

LetP:V — F,f =A,P : V" — F. Then f is characteristic.
Conversely, every characteristic form g : V" — F is of the form
AnR forsomeR :V — F.
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Middle ground: Characteristic forms

Definition (Characteristic forms)
Call a symmetric form f : V" — F,, characteristic if

f(uy,...,un) =0

whenever an argument is repeated at least p times, p = charF.

Theorem

LetP:V — F,f =A,P : V" — F. Then f is characteristic.
Conversely, every characteristic form g : V" — F is of the form
AnR forsomeR :V — F.

Think of quadratic forms and the associated symmetric bilinear
forms.
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Odd code loops

Definition
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Odd code loops

Definition
@ U self-orthogonal code over Iy,
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Odd code loops

Definition
@ U self-orthogonal code over Iy,
o f: U x U x U — I, characteristic trilinear form
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Odd code loops

Definition
@ U self-orthogonal code over Iy,
o f: U x U x U — I, characteristic trilinear form
@ f(u,v) ="f(u,u,v)
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Odd code loops

Definition

@ U self-orthogonal code over Iy,

o f: U x U x U — I, characteristic trilinear form
@ f(u,v) ="f(u,u,v)

@ U(0) is odd code loop
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Characterizations of odd code loops

The following concepts are equivalent:
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Characterizations of odd code loops

The following concepts are equivalent:
@ odd code loops
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Characterizations of odd code loops

The following concepts are equivalent:
@ odd code loops
@ loops U(#) where C(u, —v) = AP, A(u,v,w) = A3P,
P(Au) = A3P(u),
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Characterizations of odd code loops

The following concepts are equivalent:
@ odd code loops
@ loops U(#) where C(u, —v) = AP, A(u,v,w) = A3P,
P(Au) = A3P(u),
@ conjugacy closed loops (L;lLy Ly is a left translation,
Rx‘lRy Ry is a right translation) with certain properties
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Characterizations of odd code loops

Theorem
The following concepts are equivalent:
@ odd code loops
@ loops U(#) where C(u, —v) = AP, A(u,v,w) = A3P,
P(Au) = A3P(u),
@ conjugacy closed loops (L;lLy Ly is a left translation,
Rx‘lRy Ry is a right translation) with certain properties

When p > 3, there is a unique choice for P already to satisfy
AP = A.
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The coding construction in the odd case

Let {e1,...,en} be abasisof V.
Given a characteristic trilinear form f : V3 — F,, find
self-orthogonal U with basis {us,...,uy} such that

elaejaek Zull’ujl’ukl’
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The coding construction in the odd case

Let {e1,...,en} be abasisof V.
Given a characteristic trilinear form f : V3 — F,, find
self-orthogonal U with basis {us,...,uy} such that

elaejaek Zulrujl’ukl’

We need to control >_ ujviw;, Y u?v;, > u? at the same time.
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One variable

Given by, ..., bp_1 € Fp, find x € IFB such that

in)\ = b,
i

foreveryl1 < A <p-1.
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One variable continued

Seta; = [{i; xi =]}/ J
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One variable continued

Seta; = |{i; x =i}l. J

Then

becomes

a -1 +ap- 2+ +ap 1 (p—1)* = b,
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One variable continued

11 21 . (p - 1)1
12 22 ... —1)2
A _ | (p—1)
1P;1 op—1 (p — 1)P*1
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One variable continued

11 21 . (p - 1)1
12 22 ... —1)2
A _ (p—1)
1P;1 op—1 . (p — 1)P*1

(Vandermonde) There is a unique solution subject to the
constraints 0 < aj < p.
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Multiple variables

Problem

Given by, », €Fpforeveryl <)\ <p-—1,findxg, ...,
Xq € (Fp)" such that

A A
E X1t X =Dy g
-
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Multiple variables

Problem

Given by, », €Fpforeveryl <)\ <p-—1,findxg, ...,
Xq € (Fp)" such that

A A
E X1t X =Dy g
-

Proof boils down to showing that |A®9| = 0. J
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Multiple variables

Problem

Given by, ., €Fpforeveryl < )\ <p—1,findxq, ...
Xq € (Fp)" such that

A A
E X1t X =Dy g
-

Proof boils down to showing that |A®9| = 0. J

Theorem (Determinant of Kronecker product)

Let Abe ann x nand B an m x m matrix. Then

A®B| = |A"B"
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Multiple variables with nonnegative exponents

Problem

Given by, ., €Fpforevery0 <\ <p—1,findxy, ...,
X4 € (Fp)" such that
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Multiple variables with nonnegative exponents

Problem
Given by, ., €Fpforevery0 <\ <p—1,findxy, ...,
X4 € (Fp)" such that

A A
E X1 e X =Dy -
-

Proof by disjunction trick. The code is no more of optimal
length.
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