Code loops of both parities

Aleš Drápal and Petr Vojtěchovský*

Department of Algebra Charles University in Prague and Department of Mathematics University of Denver

Apr 6, 2008 / Bloomington

(4 個) (4 回) (4 回)

э

Loops

Translations

 (Q, \cdot) a groupoid. $L_x : Q \to Q, y \mapsto xy$ a left translation. $R_x : Q \to Q, y \mapsto yx$ a right translation.

Quasigroups and loops

Quasigroup = groupoid where all translations are bijections. Loop = quasigroup with neutral element 1.

Example

Loops

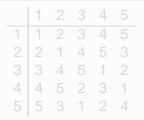
Translations

 (Q, \cdot) a groupoid. $L_x : Q \to Q, y \mapsto xy$ a left translation. $R_x : Q \to Q, y \mapsto yx$ a right translation.

Quasigroups and loops

Quasigroup = groupoid where all translations are bijections. Loop = quasigroup with neutral element 1.

Example



Loops

Translations

 (Q, \cdot) a groupoid. $L_x : Q \to Q, y \mapsto xy$ a left translation. $R_x : Q \to Q, y \mapsto yx$ a right translation.

Quasigroups and loops

Quasigroup = groupoid where all translations are bijections. Loop = quasigroup with neutral element 1.

Example

Constructing the Monster group M (Conway)

```
 \begin{array}{l} \mathcal{H} = \text{Hamming code of length 7} \\ \downarrow \\ \mathcal{G} = \text{extended binary Golay code} \\ \downarrow \\ \mathcal{P} = \text{Parker loop, the code loop of } \mathcal{G}, \text{ is a Moufang loop,} \\ \text{satisfies } x(y(xz)) = ((xy)x)z \\ \downarrow \\ N = \text{group with triality of } \mathcal{P}, \text{ contains a Sylow 2-subgroup of } M \\ \downarrow \text{ "add" the lattice } \Lambda_{24} \\ M \end{array}
```

For every doubly even binary code U there exists a unique (up to equivalence) $\theta : U \times U \rightarrow \mathbb{F}_2$ such that:

- $\theta(u, u) = \frac{|u|}{4} \mod 2$,
- $\theta(u,v) \theta(v,u) = \frac{|u \cap v|}{2} \mod 2$,
- $\theta(u, v) + \theta(u + v, w) \theta(v, w) \theta(u, v + w) = |u \cap v \cap w|$ mod 2.

Definition

 $U(\theta) = \mathbb{F}_2 \times U$ with multiplication

$$(a, u)(b, v) = (a + b + \theta(u, v), u + v)$$

ヘロト 人間 とくほ とくほ とう

э

For every doubly even binary code U there exists a unique (up to equivalence) $\theta : U \times U \rightarrow \mathbb{F}_2$ such that:

- $\theta(u, u) = \frac{|u|}{4} \mod 2$,
- $\theta(u,v) \theta(v,u) = \frac{|u \cap v|}{2} \mod 2$,
- $\theta(u, v) + \theta(u + v, w) \theta(v, w) \theta(u, v + w) = |u \cap v \cap w|$ mod 2.

Definition

 $U(\theta) = \mathbb{F}_2 \times U$ with multiplication

$$(a, u)(b, v) = (a + b + \theta(u, v), u + v)$$

ヘロン 人間 とくほ とくほ とう

э

For every doubly even binary code U there exists a unique (up to equivalence) $\theta : U \times U \rightarrow \mathbb{F}_2$ such that:

- $\theta(u, u) = \frac{|u|}{4} \mod 2$,
- $\theta(u,v) \theta(v,u) = \frac{|u \cap v|}{2} \mod 2$,
- $\theta(u, v) + \theta(u + v, w) \theta(v, w) \theta(u, v + w) = |u \cap v \cap w|$ mod 2.

Definition

 $U(\theta) = \mathbb{F}_2 \times U$ with multiplication

$$(a, u)(b, v) = (a + b + \theta(u, v), u + v)$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

э

For every doubly even binary code U there exists a unique (up to equivalence) $\theta : U \times U \rightarrow \mathbb{F}_2$ such that:

•
$$\theta(u, u) = \frac{|u|}{4} \mod 2$$
,

•
$$\theta(u,v) - \theta(v,u) = \frac{|u \cap v|}{2} \mod 2$$

•
$$\theta(u, v) + \theta(u + v, w) - \theta(v, w) - \theta(u, v + w) = |u \cap v \cap w|$$

mod 2.

Definition

 $U(\theta) = \mathbb{F}_2 \times U$ with multiplication

$$(a, u)(b, v) = (a + b + \theta(u, v), u + v)$$

・ロット 御マ キョット キョット ヨ

For every doubly even binary code U there exists a unique (up to equivalence) $\theta : U \times U \rightarrow \mathbb{F}_2$ such that:

•
$$\theta(u, u) = \frac{|u|}{4} \mod 2$$
,

•
$$\theta(u,v) - \theta(v,u) = \frac{|u \cap v|}{2} \mod 2$$
,

•
$$\theta(u, v) + \theta(u + v, w) - \theta(v, w) - \theta(u, v + w) = |u \cap v \cap w|$$

mod 2.

Definition

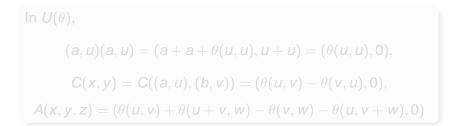
 $U(\theta) = \mathbb{F}_2 \times U$ with multiplication

$$(a, u)(b, v) = (a + b + \theta(u, v), u + v)$$

э

Definition

Commutator: xy = (yx)C(x, y). Associator: (xy)z = (x(yz))A(x, y, z).



▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

Definition

Commutator: xy = (yx)C(x, y). Associator: (xy)z = (x(yz))A(x, y, z).

In $U(\theta)$,

$$(a, u)(a, u) = (a + a + \theta(u, u), u + u) = (\theta(u, u), 0),$$
$$C(x, y) = C((a, u), (b, v)) = (\theta(u, v) - \theta(v, u), 0),$$
$$A(x, y, z) = (\theta(u, v) + \theta(u + v, w) - \theta(v, w) - \theta(u, v + w), 0)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Example

Define $P: U \to \mathbb{F}_2$, $u \mapsto |u|/4$. Then

•
$$P(u + v) - P(u) - P(v) = |u \cap v|/2$$
.

•
$$P(u+v+w) - P(u+v) - P(u+w) - P(v+w) + P(u) + P(v) + P(w) = |u \cap v \cap w|.$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Example

Define $P: U \to \mathbb{F}_2$, $u \mapsto |u|/4$. Then

•
$$P(u+v) - P(u) - P(v) = |u \cap v|/2$$
.

• $P(u + v + w) - P(u + v) - P(u + w) - P(v + w) + P(u) + P(v) + P(w) = |u \cap v \cap w|.$

Example

Define $P: U \to \mathbb{F}_2$, $u \mapsto |u|/4$. Then

•
$$P(u + v) - P(u) - P(v) = |u \cap v|/2$$

•
$$P(u + v + w) - P(u + v) - P(u + w) - P(v + w) + P(u) + P(v) + P(w) = |u \cap v \cap w|.$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Definition

V vector space over *F*, *P* : *V* \rightarrow *F*, *P*(0) = 0. For *n* > 0 define:

$$\Delta_n P(u_1,\ldots,u_n) = \sum_{1\leq i_1<\cdots< i_m\leq n} (-1)^{n-m} P(u_{i_1}+\cdots+u_{i_m}).$$

$$\Delta_n P(u, v, w, \dots) = \\\Delta_{n-1} P(u+v, w, \dots) - \Delta_{n-1} P(u, w, \dots) - \Delta_{n-1} P(v, w, \dots).$$

Definition

 $cdeg(P) = least n such that \Delta_n P \neq 0 and \Delta_{n+1} P = 0.$

Over prime fields, cdeg(P) = n iff $\Delta_n P$ is symmetric *n*-linear.

ヘロト 人間 とくほとくほとう

Definition

V vector space over *F*, *P* : *V* \rightarrow *F*, *P*(0) = 0. For *n* > 0 define:

$$\Delta_n P(u_1,\ldots,u_n) = \sum_{1\leq i_1<\cdots< i_m\leq n} (-1)^{n-m} P(u_{i_1}+\cdots+u_{i_m}).$$

$$\Delta_n P(u, v, w, \dots) = \Delta_{n-1} P(u+v, w, \dots) - \Delta_{n-1} P(u, w, \dots) - \Delta_{n-1} P(v, w, \dots).$$

Definition

 $cdeg(P) = least n such that \Delta_n P \neq 0 and \Delta_{n+1} P = 0.$

Over prime fields, cdeg(P) = n iff $\Delta_n P$ is symmetric *n*-linear.

ヘロト 人間 とくほとくほとう

Definition

V vector space over *F*, *P* : *V* \rightarrow *F*, *P*(0) = 0. For *n* > 0 define:

$$\Delta_n P(u_1,\ldots,u_n) = \sum_{1\leq i_1<\cdots< i_m\leq n} (-1)^{n-m} P(u_{i_1}+\cdots+u_{i_m}).$$

$$\Delta_n P(u, v, w, \dots) = \Delta_{n-1} P(u+v, w, \dots) - \Delta_{n-1} P(u, w, \dots) - \Delta_{n-1} P(v, w, \dots).$$

Definition

 $\operatorname{cdeg}(P) = \operatorname{least} n \operatorname{such} \operatorname{that} \Delta_n P \neq 0 \operatorname{and} \Delta_{n+1} P = 0.$

Over prime fields, cdeg(P) = n iff $\Delta_n P$ is symmetric *n*-linear.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

э

Definition

V vector space over F, $P: V \rightarrow F$, P(0) = 0. For n > 0 define:

$$\Delta_n P(u_1,\ldots,u_n) = \sum_{1\leq i_1<\cdots< i_m\leq n} (-1)^{n-m} P(u_{i_1}+\cdots+u_{i_m}).$$

$$\Delta_n P(u, v, w, \dots) = \Delta_{n-1} P(u+v, w, \dots) - \Delta_{n-1} P(u, w, \dots) - \Delta_{n-1} P(v, w, \dots).$$

Definition

 $\operatorname{cdeg}(P) = \operatorname{least} n \operatorname{such} \operatorname{that} \Delta_n P \neq 0 \operatorname{and} \Delta_{n+1} P = 0.$

Over prime fields, cdeg(P) = n iff $\Delta_n P$ is symmetric *n*-linear.

ヘロト 人間 とくほ とくほ とう

э

Let U be doubly even, $\theta : U \times U \to \mathbb{F}_2$ a cocycle. Let $U(\theta)$ be as above, with commutator C and associator A. Then TFAE:

- $U(\theta)$ is an even code loop.
- There is $P: U \to \mathbb{F}_2$ such that $C = \Delta_2 P$, $A = \Delta_3 P$ (can take $P(u) = \theta(u, u)$).
- Q = U(θ) is a Moufang loop with Frattini subloop of order dividing 2.

Theorem (Hsu)

Nonassociative symplectic Moufang p-loops exist only for $p \leq 3$.

ヘロト 人間 とくほとくほとう

Let U be doubly even, $\theta : U \times U \to \mathbb{F}_2$ a cocycle. Let $U(\theta)$ be as above, with commutator C and associator A. Then TFAE:

- $U(\theta)$ is an even code loop.
- There is $P : U \to \mathbb{F}_2$ such that $C = \Delta_2 P$, $A = \Delta_3 P$ (can take $P(u) = \theta(u, u)$).
- Q = U(θ) is a Moufang loop with Frattini subloop of order dividing 2.

Theorem (Hsu)

Nonassociative symplectic Moufang p-loops exist only for $p \leq 3$.

ヘロト 人間 とくほとくほとう

Let U be doubly even, $\theta : U \times U \to \mathbb{F}_2$ a cocycle. Let $U(\theta)$ be as above, with commutator C and associator A. Then TFAE:

- $U(\theta)$ is an even code loop.
- There is $P : U \to \mathbb{F}_2$ such that $C = \Delta_2 P$, $A = \Delta_3 P$ (can take $P(u) = \theta(u, u)$).
- Q = U(θ) is a Moufang loop with Frattini subloop of order dividing 2.

Theorem (Hsu)

Nonassociative symplectic Moufang p-loops exist only for $p \leq 3$.

イロト 不得 トイヨト イヨト 三日

Let U be doubly even, $\theta : U \times U \to \mathbb{F}_2$ a cocycle. Let $U(\theta)$ be as above, with commutator C and associator A. Then TFAE:

- $U(\theta)$ is an even code loop.
- There is $P : U \to \mathbb{F}_2$ such that $C = \Delta_2 P$, $A = \Delta_3 P$ (can take $P(u) = \theta(u, u)$).
- Q = U(θ) is a Moufang loop with Frattini subloop of order dividing 2.

Theorem (Hsu)

Nonassociative symplectic Moufang p-loops exist only for $p \leq 3$.

イロト 不得 トイヨト イヨト 三日

Let U be doubly even, $\theta : U \times U \to \mathbb{F}_2$ a cocycle. Let $U(\theta)$ be as above, with commutator C and associator A. Then TFAE:

- $U(\theta)$ is an even code loop.
- There is $P : U \to \mathbb{F}_2$ such that $C = \Delta_2 P$, $A = \Delta_3 P$ (can take $P(u) = \theta(u, u)$).
- Q = U(θ) is a Moufang loop with Frattini subloop of order dividing 2.

Theorem (Hsu)

Nonassociative symplectic Moufang p-loops exist only for $p \leq 3$.

ヘロト 人間 とくほとくほとう

э

- $P(u_i) = |e_i|/4,$
- $\Delta_2 P(u_i, u_j) = |e_i \cap e_j|/2,$
- $\Delta_3 P(u_i, u_j, u_k) = |e_i \cap e_j \cap e_k|.$

Theorem (P.V.)

Can be done for any $cdeg(P) \leq r$ and codes of level r - 1.

- $P(u_i) = |e_i|/4$,
- $\Delta_2 P(u_i, u_j) = |e_i \cap e_j|/2,$
- $\Delta_3 P(u_i, u_j, u_k) = |e_i \cap e_j \cap e_k|.$

Theorem (P.V.)

Can be done for any $cdeg(P) \leq r$ and codes of level r - 1.

•
$$P(u_i) = |e_i|/4$$
,

•
$$\Delta_2 P(u_i, u_j) = |e_i \cap e_j|/2,$$

•
$$\Delta_3 P(u_i, u_j, u_k) = |e_i \cap e_j \cap e_k|.$$

Theorem (P.V.)

Can be done for any $cdeg(P) \leq r$ and codes of level r - 1.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

• $P(u_i) = |e_i|/4$,

•
$$\Delta_2 P(u_i, u_j) = |e_i \cap e_j|/2,$$

•
$$\Delta_3 P(u_i, u_j, u_k) = |e_i \cap e_j \cap e_k|.$$

Theorem (P.V.)

Can be done for any $cdeg(P) \leq r$ and codes of level r - 1.

•
$$P(u_i) = |e_i|/4$$
,

•
$$\Delta_2 P(u_i, u_j) = |e_i \cap e_j|/2,$$

•
$$\Delta_3 P(u_i, u_j, u_k) = |e_i \cap e_j \cap e_k|.$$

Theorem (P.V.)

Can be done for any $cdeg(P) \leq r$ and codes of level r - 1.

<ロト < 同ト < 回ト < 回ト = 三

- constructed large *p*-subgroups of *M* for p = 3, 5, 7.
- started with self-orthogonal codes over Fp
- noticed connection to polarization
- defined odd code loops

・ 同 ト ・ ヨ ト ・ ヨ ト …

- constructed large *p*-subgroups of *M* for p = 3, 5, 7.
- started with self-orthogonal codes over Fp
- noticed connection to polarization
- defined odd code loops

▲撮 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- constructed large *p*-subgroups of *M* for p = 3, 5, 7.
- started with self-orthogonal codes over 𝔽_p
- noticed connection to polarization
- defined odd code loops

▲撮 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- constructed large *p*-subgroups of *M* for p = 3, 5, 7.
- started with self-orthogonal codes over 𝔽_p
- noticed connection to polarization
- defined odd code loops

<ロト < 同ト < 回ト < 回ト = 三

- constructed large *p*-subgroups of *M* for p = 3, 5, 7.
- started with self-orthogonal codes over 𝔽_p
- noticed connection to polarization
- defined odd code loops

・ 同 ト ・ ヨ ト ・ ヨ ト …

Narrow definition of odd code loops

Definition

- U self-orthogonal code over F_p
- *z* ∈ *U* such that *z_i* ≠ 0 for every *i* and *z* is invariant under all permutation matrices in Aut *U*

•
$$\theta(u,v) = \sum_i z_i^{-1} u_i^2 v_i$$

U(θ) is odd code loop

ヘロト 人間 とくほ とくほ とう

э

Narrow definition of odd code loops

Definition

- U self-orthogonal code over \mathbb{F}_p
- *z* ∈ *U* such that *z_i* ≠ 0 for every *i* and *z* is invariant under all permutation matrices in Aut *U*

•
$$\theta(u, v) = \sum_i z_i^{-1} u_i^2 v_i$$

U(θ) is odd code loop

ヘロン 人間 とくほ とくほ とう

Narrow definition of odd code loops

Definition

- U self-orthogonal code over \mathbb{F}_p
- *z* ∈ *U* such that *z_i* ≠ 0 for every *i* and *z* is invariant under all permutation matrices in Aut *U*
- $\theta(u,v) = \sum_i z_i^{-1} u_i^2 v_i$
- *U*(θ) is odd code loop

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Narrow definition of odd code loops

Definition

- U self-orthogonal code over \mathbb{F}_p
- *z* ∈ *U* such that *z_i* ≠ 0 for every *i* and *z* is invariant under all permutation matrices in Aut *U*

•
$$\theta(u, v) = \sum_i z_i^{-1} u_i^2 v_i$$

U(θ) is odd code loop

<ロト < 同ト < 回ト < 回ト = 三

Narrow definition of odd code loops

Definition

- U self-orthogonal code over \mathbb{F}_p
- *z* ∈ *U* such that *z_i* ≠ 0 for every *i* and *z* is invariant under all permutation matrices in Aut *U*

•
$$\theta(u, v) = \sum_i z_i^{-1} u_i^2 v_i$$

U(θ) is odd code loop

ヘロト 人間 とくほ とくほ とう

э

$$f(u, v, w) = \sum_i z_i^{-1} u_i v_i w_i$$
 is symmetric trilinear,
 $f(u, u, v) = \theta(u, v)$.

Definition

- U self-orthogonal code over \mathbb{F}_{ρ}
- $f: U \times U \times U \rightarrow \mathbb{F}_p$ symmetric trilinear form
- $\theta(u, v) = f(u, u, v)$
- $U(\theta)$ is general odd code loop

$$f(u, v, w) = \sum_{i} z_{i}^{-1} u_{i} v_{i} w_{i}$$
 is symmetric trilinear,
$$f(u, u, v) = \theta(u, v).$$

Definition

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \to \mathbb{F}_{\rho}$ symmetric trilinear form

•
$$\theta(u, v) = f(u, u, v)$$

• $U(\theta)$ is general odd code loop

・ロト ・個ト ・ヨト ・ヨト ・ヨー

$$f(u, v, w) = \sum_{i} z_{i}^{-1} u_{i} v_{i} w_{i}$$
 is symmetric trilinear,
$$f(u, u, v) = \theta(u, v).$$

Definition

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \rightarrow \mathbb{F}_{p}$ symmetric trilinear form
- $\theta(u, v) = f(u, u, v)$
- $U(\theta)$ is general odd code loop

$$f(u, v, w) = \sum_i z_i^{-1} u_i v_i w_i$$
 is symmetric trilinear,
 $f(u, u, v) = \theta(u, v)$.

Definition

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \to \mathbb{F}_p$ symmetric trilinear form
- $\theta(u, v) = f(u, u, v)$
- $U(\theta)$ is general odd code loop

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

$$f(u, v, w) = \sum_i z_i^{-1} u_i v_i w_i$$
 is symmetric trilinear,
 $f(u, u, v) = \theta(u, v)$.

Definition

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \to \mathbb{F}_p$ symmetric trilinear form

•
$$\theta(u, v) = f(u, u, v)$$

• $U(\theta)$ is general odd code loop

$$f(u, v, w) = \sum_i z_i^{-1} u_i v_i w_i$$
 is symmetric trilinear,
 $f(u, u, v) = \theta(u, v)$.

Definition

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \to \mathbb{F}_{p}$ symmetric trilinear form

•
$$\theta(u, v) = f(u, u, v)$$

• $U(\theta)$ is general odd code loop

ヘロン 人間 とくほ とくほ とう

Middle ground: Characteristic forms

Definition (Characteristic forms)

Call a symmetric form $f: V^n \to \mathbb{F}_p$ characteristic if

$$f(u_1,\ldots,u_n)=0$$

whenever an argument is repeated at least p times, $p = \operatorname{char} F$.

Theorem

Let $P: V \to F$, $f = \Delta_n P: V^n \to F$. Then f is characteristic. Conversely, every characteristic form $g: V^n \to F$ is of the form $\Delta_n R$ for some $R: V \to F$.

Think of quadratic forms and the associated symmetric bilinear forms.

<ロト < 同ト < 回ト < 回ト = 三日

Middle ground: Characteristic forms

Definition (Characteristic forms)

Call a symmetric form $f: V^n \to \mathbb{F}_p$ characteristic if

$$f(u_1,\ldots,u_n)=0$$

whenever an argument is repeated at least p times, $p = \operatorname{char} F$.

Theorem

Let $P: V \to F$, $f = \Delta_n P: V^n \to F$. Then f is characteristic. Conversely, every characteristic form $g: V^n \to F$ is of the form $\Delta_n R$ for some $R: V \to F$.

Think of quadratic forms and the associated symmetric bilinear forms.

ヘロト 人間 とくほとくほとう

Э

Middle ground: Characteristic forms

Definition (Characteristic forms)

Call a symmetric form $f: V^n \to \mathbb{F}_p$ characteristic if

$$f(u_1,\ldots,u_n)=0$$

whenever an argument is repeated at least p times, $p = \operatorname{char} F$.

Theorem

Let $P: V \to F$, $f = \Delta_n P: V^n \to F$. Then f is characteristic. Conversely, every characteristic form $g: V^n \to F$ is of the form $\Delta_n R$ for some $R: V \to F$.

Think of quadratic forms and the associated symmetric bilinear forms.

- U self-orthogonal code over

 P p
- $f: U \times U \times U \to \mathbb{F}_p$ characteristic trilinear form
- $\theta(u, v) = f(u, u, v)$
- $U(\theta)$ is odd code loop

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \to \mathbb{F}_p$ characteristic trilinear form
- $\theta(u, v) = f(u, u, v)$
- $U(\theta)$ is odd code loop

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \to \mathbb{F}_p$ characteristic trilinear form
- $\theta(u, v) = f(u, u, v)$
- *U*(θ) is odd code loop

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \to \mathbb{F}_p$ characteristic trilinear form

•
$$\theta(u, v) = f(u, u, v)$$

U(θ) is odd code loop

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- U self-orthogonal code over \mathbb{F}_p
- $f: U \times U \times U \to \mathbb{F}_p$ characteristic trilinear form
- $\theta(u, v) = f(u, u, v)$
- $U(\theta)$ is odd code loop

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Characterizations of odd code loops

Theorem

The following concepts are equivalent:

- odd code loops
- loops $U(\theta)$ where $C(u, -v) = \Delta_2 P$, $A(u, v, w) = \Delta_3 P$, $P(\lambda u) = \lambda^3 P(u)$,
- conjugacy closed loops $(L_x^{-1}L_yL_x)$ is a left translation, $R_x^{-1}R_yR_x$ is a right translation) with certain properties

When p > 3, there is a unique choice for *P* already to satisfy $\Delta_3 P = A$.

ヘロト 人間 とくほ とくほ とう

Characterizations of odd code loops

Theorem

The following concepts are equivalent:

- odd code loops
- loops $U(\theta)$ where $C(u, -v) = \Delta_2 P$, $A(u, v, w) = \Delta_3 P$, $P(\lambda u) = \lambda^3 P(u)$,
- conjugacy closed loops $(L_x^{-1}L_yL_x)$ is a left translation, $R_x^{-1}R_yR_x$ is a right translation) with certain properties

When p > 3, there is a unique choice for *P* already to satisfy $\Delta_3 P = A$.

ヘロト 人間 とくほ とくほ とう

Theorem

The following concepts are equivalent:

- odd code loops
- loops $U(\theta)$ where $C(u, -v) = \Delta_2 P$, $A(u, v, w) = \Delta_3 P$, $P(\lambda u) = \lambda^3 P(u)$,
- conjugacy closed loops $(L_x^{-1}L_yL_x)$ is a left translation, $R_x^{-1}R_yR_x$ is a right translation) with certain properties

When p > 3, there is a unique choice for *P* already to satisfy $\Delta_3 P = A$.

ヘロン 人間 とくほ とくほ とう

Theorem

The following concepts are equivalent:

- odd code loops
- loops $U(\theta)$ where $C(u, -v) = \Delta_2 P$, $A(u, v, w) = \Delta_3 P$, $P(\lambda u) = \lambda^3 P(u)$,
- conjugacy closed loops $(L_x^{-1}L_yL_x$ is a left translation, $R_x^{-1}R_yR_x$ is a right translation) with certain properties

When p > 3, there is a unique choice for *P* already to satisfy $\Delta_3 P = A$.

ヘロン 人間 とくほ とくほ とう

Theorem

The following concepts are equivalent:

- odd code loops
- loops $U(\theta)$ where $C(u, -v) = \Delta_2 P$, $A(u, v, w) = \Delta_3 P$, $P(\lambda u) = \lambda^3 P(u)$,
- conjugacy closed loops $(L_x^{-1}L_yL_x$ is a left translation, $R_x^{-1}R_yR_x$ is a right translation) with certain properties

When p > 3, there is a unique choice for *P* already to satisfy $\Delta_3 P = A$.

ヘロト 人間 とくほ とくほ とう

Let $\{e_1, \ldots, e_n\}$ be a basis of *V*. Given a characteristic trilinear form $f: V^3 \to \mathbb{F}_p$, find self-orthogonal *U* with basis $\{u_1, \ldots, u_n\}$ such that

$$f(\mathbf{e}_i,\mathbf{e}_j,\mathbf{e}_k)=\sum_r u_{i,r}u_{j,r}u_{k,r}.$$

We need to control $\sum u_i v_i w_i$, $\sum u_i^2 v_i$, $\sum u_j^3$ at the same time.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Let $\{e_1, \ldots, e_n\}$ be a basis of *V*. Given a characteristic trilinear form $f: V^3 \to \mathbb{F}_p$, find self-orthogonal *U* with basis $\{u_1, \ldots, u_n\}$ such that

$$f(\mathbf{e}_i,\mathbf{e}_j,\mathbf{e}_k)=\sum_r u_{i,r}u_{j,r}u_{k,r}.$$

We need to control $\sum u_i v_i w_i$, $\sum u_i^2 v_i$, $\sum u_j^3$ at the same time.

★@ ▶ ★ 理 ▶ ★ 理 ▶ …

Given $b_1, \ldots, b_{p-1} \in \mathbb{F}_p$, find $x \in \mathbb{F}_p^n$ such that

$$\sum_i x_i^\lambda = b_\lambda$$

for every $1 \le \lambda \le p - 1$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

One variable continued

Set
$$a_j = |\{i; x_i = j\}|$$
.

$$\sum_i x_i^{\lambda} = b_{\lambda}$$

becomes

$$a_1 \cdot 1^{\lambda} + a_2 \cdot 2^{\lambda} + \cdots + a_{p-1} \cdot (p-1)^{\lambda} = b_{\lambda}.$$

Aleš Drápal and Petr Vojtěchovský* Code loops of both parities

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Set
$$a_j = |\{i; x_i = j\}|$$
.

Then

$$\sum_{i} \mathbf{x}_{i}^{\lambda} = \mathbf{b}_{\lambda}$$

becomes

$$a_1 \cdot 1^{\lambda} + a_2 \cdot 2^{\lambda} + \cdots + a_{p-1} \cdot (p-1)^{\lambda} = b_{\lambda}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

One variable continued

$$A = \begin{pmatrix} 1^{1} & 2^{1} & \cdots & (p-1)^{1} \\ 1^{2} & 2^{2} & \cdots & (p-1)^{2} \\ \vdots & & \ddots & \\ 1^{p-1} & 2^{p-1} & \cdots & (p-1)^{p-1} \end{pmatrix}$$

(Vandermonde) There is a unique solution subject to the constraints $0 \le a_i < p$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

One variable continued

$$A = \begin{pmatrix} 1^{1} & 2^{1} & \cdots & (p-1)^{1} \\ 1^{2} & 2^{2} & \cdots & (p-1)^{2} \\ \vdots & & \ddots & \\ 1^{p-1} & 2^{p-1} & \cdots & (p-1)^{p-1} \end{pmatrix}$$

(Vandermonde) There is a unique solution subject to the constraints $0 \le a_i < p$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

Given $b_{\lambda_1,...,\lambda_d} \in \mathbb{F}_p$ for every $1 \le \lambda_i \le p - 1$, find $x_1, ..., x_d \in (\mathbb{F}_p)^n$ such that

$$\sum_{r} \mathbf{x}_{1,r}^{\lambda_{1}} \cdots \mathbf{x}_{d,r}^{\lambda_{d}} = \mathbf{b}_{\lambda_{1},\ldots,\lambda_{d}}.$$

Proof boils down to showing that $|A^{\otimes d}| \neq 0$.

Theorem (Determinant of Kronecker product)

Let A be an $n \times n$ and B an $m \times m$ matrix. Then

 $|A\otimes B|=|A|^m|B|^n.$

<ロト < 同ト < 回ト < 回ト = 三

Given $b_{\lambda_1,...,\lambda_d} \in \mathbb{F}_p$ for every $1 \le \lambda_i \le p - 1$, find $x_1, ..., x_d \in (\mathbb{F}_p)^n$ such that

$$\sum_{r} \mathbf{x}_{1,r}^{\lambda_{1}} \cdots \mathbf{x}_{d,r}^{\lambda_{d}} = \mathbf{b}_{\lambda_{1},\dots,\lambda_{d}}.$$

Proof boils down to showing that $|A^{\otimes d}| \neq 0$.

Theorem (Determinant of Kronecker product)

Let A be an $n \times n$ and B an $m \times m$ matrix. Then

 $|A\otimes B|=|A|^m|B|^n.$

Given $b_{\lambda_1,...,\lambda_d} \in \mathbb{F}_p$ for every $1 \le \lambda_i \le p - 1$, find $x_1, ..., x_d \in (\mathbb{F}_p)^n$ such that

$$\sum_{r} \mathbf{x}_{1,r}^{\lambda_{1}} \cdots \mathbf{x}_{d,r}^{\lambda_{d}} = \mathbf{b}_{\lambda_{1},\ldots,\lambda_{d}}.$$

Proof boils down to showing that $|A^{\otimes d}| \neq 0$.

Theorem (Determinant of Kronecker product)

Let A be an $n \times n$ and B an $m \times m$ matrix. Then

 $|A\otimes B|=|A|^m|B|^n.$

Multiple variables with nonnegative exponents

Problem

Given $b_{\lambda_1,...,\lambda_d} \in \mathbb{F}_p$ for every $0 \le \lambda_i \le p-1$, find $x_1, ..., x_d \in (\mathbb{F}_p)^n$ such that

$$\sum_{r} \mathbf{x}_{1,r}^{\lambda_1} \cdots \mathbf{x}_{d,r}^{\lambda_d} = \mathbf{b}_{\lambda_1,\dots,\lambda_d}.$$

Proof by disjunction trick. The code is no more of optimal length.

Multiple variables with nonnegative exponents

Problem

Given $b_{\lambda_1,...,\lambda_d} \in \mathbb{F}_p$ for every $0 \le \lambda_i \le p-1$, find $x_1, ..., x_d \in (\mathbb{F}_p)^n$ such that

$$\sum_{r} \mathbf{x}_{1,r}^{\lambda_1} \cdots \mathbf{x}_{d,r}^{\lambda_d} = \mathbf{b}_{\lambda_1,\dots,\lambda_d}.$$

Proof by disjunction trick. The code is no more of optimal length.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで