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Loops

Translations

(Q, ·) a groupoid.
Lx : Q → Q, y 7→ xy a left translation.
Rx : Q → Q, y 7→ yx a right translation.

Quasigroups and loops

Quasigroup = groupoid where all translations are bijections.
Loop = quasigroup with neutral element 1.

Example

1 2 3 4 5
1 1 2 3 4 5
2 2 1 4 5 3
3 3 4 5 1 2
4 4 5 2 3 1
5 5 3 1 2 4
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Aleš Drápal and Petr Vojtěchovský∗ Code loops of both parities



Application of code loops

Constructing the Monster group M (Conway)

H = Hamming code of length 7
↓
G = extended binary Golay code
↓
P = Parker loop, the code loop of G, is a Moufang loop,
satisfies x(y(xz)) = ((xy)x)z
↓
N = group with triality of P, contains a Sylow 2-subgroup of M
↓ “add” the lattice Λ24

M
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Even code loops

Theorem (Griess)

For every doubly even binary code U there exists a unique (up
to equivalence) θ : U × U → F2 such that:

θ(u, u) = |u|
4 mod 2,

θ(u, v) − θ(v , u) = |u∩v |
2 mod 2,

θ(u, v) + θ(u + v , w) − θ(v , w) − θ(u, v + w) = |u ∩ v ∩ w |
mod 2.

Definition

U(θ) = F2 × U with multiplication

(a, u)(b, v) = (a + b + θ(u, v), u + v)

is the even code loop associated with U.
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Commutators and associators

Definition

Commutator: xy = (yx)C(x , y).
Associator: (xy)z = (x(yz))A(x , y , z).

In U(θ),

(a, u)(a, u) = (a + a + θ(u, u), u + u) = (θ(u, u), 0),

C(x , y) = C((a, u), (b, v)) = (θ(u, v) − θ(v , u), 0),

A(x , y , z) = (θ(u, v) + θ(u + v , w) − θ(v , w) − θ(u, v + w), 0)
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Polarization of codewords

Example

Define P : U → F2, u 7→ |u|/4. Then

P(u + v) − P(u) − P(v) = |u ∩ v |/2.

P(u + v + w)− P(u + v) − P(u + w)− P(v + w) + P(u) +
P(v) + P(w) = |u ∩ v ∩ w |.
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Combinatorial polarization

Definition

V vector space over F , P : V → F , P(0) = 0. For n > 0 define:

∆nP(u1, . . . , un) =
∑

1≤i1<···<im≤n

(−1)n−mP(ui1 + · · · + uim).

∆nP(u, v , w , . . . ) =
∆n−1P(u + v , w , . . . ) − ∆n−1P(u, w , . . . ) − ∆n−1P(v , w , . . . ).

Definition

cdeg(P) = least n such that ∆nP 6= 0 and ∆n+1P = 0.

Over prime fields, cdeg(P) = n iff ∆nP is symmetric n-linear.
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Characterization of code loops by polarization

Theorem (Aschbacher, Chein, Goodaire, Griess, Hsu)

Let U be doubly even, θ : U × U → F2 a cocycle. Let U(θ) be
as above, with commutator C and associator A. Then TFAE:

U(θ) is an even code loop.

There is P : U → F2 such that C = ∆2P, A = ∆3P (can
take P(u) = θ(u, u)).

Q = U(θ) is a Moufang loop with Frattini subloop of order
dividing 2.

Theorem (Hsu)

Nonassociative symplectic Moufang p-loops exist only for
p ≤ 3.
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Aleš Drápal and Petr Vojtěchovský∗ Code loops of both parities



Characterization of code loops by polarization

Theorem (Aschbacher, Chein, Goodaire, Griess, Hsu)

Let U be doubly even, θ : U × U → F2 a cocycle. Let U(θ) be
as above, with commutator C and associator A. Then TFAE:

U(θ) is an even code loop.

There is P : U → F2 such that C = ∆2P, A = ∆3P (can
take P(u) = θ(u, u)).

Q = U(θ) is a Moufang loop with Frattini subloop of order
dividing 2.

Theorem (Hsu)

Nonassociative symplectic Moufang p-loops exist only for
p ≤ 3.
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The coding construction required for p = 2

Given U with basis {u1, . . . , un}, P : U → F2, cdeg(P) ≤ 3, find
V doubly even with basis {e1, . . . , en} such that

P(ui) = |ei |/4,

∆2P(ui , uj) = |ei ∩ ej |/2,

∆3P(ui , uj , uk ) = |ei ∩ ej ∩ ek |.

Theorem (P.V.)

Can be done for any cdeg(P) ≤ r and codes of level r − 1.
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Odd p: Results of Richardson

In Richardson’s thesis:

constructed large p-subgroups of M for p = 3, 5, 7.

started with self-orthogonal codes over Fp

noticed connection to polarization

defined odd code loops
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Narrow definition of odd code loops

Definition

U self-orthogonal code over Fp

z ∈ U such that zi 6= 0 for every i and z is invariant under
all permutation matrices in Aut U

θ(u, v) =
∑

i z−1
i u2

i vi

U(θ) is odd code loop
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General definition of odd code loops

f (u, v , w) =
∑

i z−1
i uiviwi is symmetric trilinear,

f (u, u, v) = θ(u, v).

Definition

U self-orthogonal code over Fp

f : U × U × U → Fp symmetric trilinear form

θ(u, v) = f (u, u, v)

U(θ) is general odd code loop
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Middle ground: Characteristic forms

Definition (Characteristic forms)

Call a symmetric form f : V n → Fp characteristic if

f (u1, . . . , un) = 0

whenever an argument is repeated at least p times, p = char F .

Theorem

Let P : V → F, f = ∆nP : V n → F. Then f is characteristic.
Conversely, every characteristic form g : V n → F is of the form
∆nR for some R : V → F.

Think of quadratic forms and the associated symmetric bilinear
forms.
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Odd code loops

Definition

U self-orthogonal code over Fp

f : U × U × U → Fp characteristic trilinear form

θ(u, v) = f (u, u, v)

U(θ) is odd code loop
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Characterizations of odd code loops

Theorem

The following concepts are equivalent:

odd code loops

loops U(θ) where C(u,−v) = ∆2P, A(u, v , w) = ∆3P,
P(λu) = λ3P(u),

conjugacy closed loops (L−1
x LyLx is a left translation,

R−1
x RyRx is a right translation) with certain properties

When p > 3, there is a unique choice for P already to satisfy
∆3P = A.
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Aleš Drápal and Petr Vojtěchovský∗ Code loops of both parities



Characterizations of odd code loops

Theorem

The following concepts are equivalent:

odd code loops

loops U(θ) where C(u,−v) = ∆2P, A(u, v , w) = ∆3P,
P(λu) = λ3P(u),

conjugacy closed loops (L−1
x LyLx is a left translation,

R−1
x RyRx is a right translation) with certain properties

When p > 3, there is a unique choice for P already to satisfy
∆3P = A.
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The coding construction in the odd case

Let {e1, . . . , en} be a basis of V .
Given a characteristic trilinear form f : V 3 → Fp, find
self-orthogonal U with basis {u1, . . . , un} such that

f (ei , ej , ek ) =
∑

r

ui ,ruj ,ruk ,r .

We need to control
∑

uiviwi ,
∑

u2
i vi ,

∑

u3
i at the same time.
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One variable

Problem

Given b1, . . . , bp−1 ∈ Fp, find x ∈ F
n
p such that

∑

i

xλ
i = bλ

for every 1 ≤ λ ≤ p − 1.
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One variable continued

Set aj = |{i ; xi = j}|.

Then
∑

i

xλ
i = bλ

becomes

a1 · 1λ + a2 · 2λ + · · · + ap−1 · (p − 1)λ = bλ.
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One variable continued

A =











11 21 · · · (p − 1)1

12 22 · · · (p − 1)2

...
. . .

1p−1 2p−1 · · · (p − 1)p−1











(Vandermonde) There is a unique solution subject to the
constraints 0 ≤ ai < p.
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Multiple variables

Problem

Given bλ1,...,λd ∈ Fp for every 1 ≤ λi ≤ p − 1, find x1, . . . ,
xd ∈ (Fp)n such that

∑

r

x1,r
λ1 · · · xd ,r

λd = bλ1,...,λd .

Proof boils down to showing that |A⊗d | 6= 0.

Theorem (Determinant of Kronecker product)

Let A be an n × n and B an m × m matrix. Then

|A ⊗ B| = |A|m|B|n.
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Multiple variables with nonnegative exponents

Problem

Given bλ1,...,λd ∈ Fp for every 0 ≤ λi ≤ p − 1, find x1, . . . ,
xd ∈ (Fp)n such that

∑

r

x1,r
λ1 · · · xd ,r

λd = bλ1,...,λd .

Proof by disjunction trick. The code is no more of optimal
length.
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