Loops with commuting inner mappings and of nilpotency class three

Aleš Drápal and Petr Vojtěchovský

Department of Algebra Charles University in Prague and Department of Mathematics University of Denver

Aug 23, 2007 / Loops '07, Prague

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Notation

Q loop $M(Q) = \langle L_x, R_x; x \in Q \rangle$ multiplication group $I(Q) = \{ \varphi \in M(Q); \ \varphi(1) = 1 \}$ inner mapping group $Z_1(Q) = Z(Q)$ $Z_{i+1}(Q)/Z_i(Q) = Z(Q/Z_i(Q))$ iterated centra $cl(Q) = min\{m; Z_m(Q) = 1\}$ nilpotency class $N(Q), N_o(Q), A(Q), T_x, L(x, y)$ as usual

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Main problem

Is Q nilpotent when I(Q) is?

Restricted problem

Is Q nilpotent when I(Q) is abelian?

Remark

 $Q/Z(Q) \cong I(Q)$ when Q is a group.

Main problem

Is Q nilpotent when I(Q) is?

Restricted problem

Is Q nilpotent when I(Q) is abelian?

Remark $Q/Z(Q) \cong I(Q)$ when Q is a group

Main problem

Is Q nilpotent when I(Q) is?

Restricted problem

Is Q nilpotent when I(Q) is abelian?

Remark

 $Q/Z(Q) \cong I(Q)$ when Q is a group.

・ロト ・ 同ト ・ ヨト ・ ヨト

Partial answers

Below, Q is finite and I(Q) is abelian.

- Q nilpotent (Kepka, Niemenmaa)
- $Q CML \Rightarrow cl(Q) \le 2$ (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Partial answers

Below, Q is finite and I(Q) is abelian.

- Q nilpotent (Kepka, Niemenmaa)
- $Q CML \Rightarrow cl(Q) \le 2$ (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Q nilpotent (Kepka, Niemenmaa)
- $Q CML \Rightarrow cl(Q) \le 2$ (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Q nilpotent (Kepka, Niemenmaa)
- Q CML \Rightarrow cl(Q) \leq 2 (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

▲掃♪ ▲ 国 ▶ ▲ 国 ▶ 二 国

- Q nilpotent (Kepka, Niemenmaa)
- Q CML \Rightarrow cl(Q) \leq 2 (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

- Q nilpotent (Kepka, Niemenmaa)
- Q CML \Rightarrow cl(Q) \leq 2 (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

- Q nilpotent (Kepka, Niemenmaa)
- $Q CML \Rightarrow cl(Q) \le 2$ (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

- Q nilpotent (Kepka, Niemenmaa)
- $Q CML \Rightarrow cl(Q) \le 2$ (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

- Q nilpotent (Kepka, Niemenmaa)
- $Q CML \Rightarrow cl(Q) \le 2$ (Bruck)
- $Q \text{ LCC} \Rightarrow cl(Q) \leq 2$ (Csörgő, Drápal)
- Q Moufang *p*-loop, $p > 3 \Rightarrow cl(Q) \le 2$ (G. Nagy, V.)
- $\exists Q, cl(Q) = 3, |Q| = 2^7$ (Csörgő)
- ∃ Q Buchsteiner, cl(Q) = 3, |Q| = 2⁷ (Csörgő, Drápal, Kinyon)
- there are many loops Q with cl(Q) = 3 (Drápal, V.)
- \exists Q Moufang, cl(Q) = 3, $|Q| = 2^{14}$ (G. Nagy, V.)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

Example

Loop C constructed by Csörgő using loop folder (G, H, T), $|G| = 2^{13}$, $|H| = 2^6$, $|T| = 2^7$,

 $N(C) = N_{
ho}(C)$ elementary abelian group of order 16, $|N_{\lambda}(C)| = |N_{\mu}(C)| = 32,$

Z(C) = A(C) cyclic group of order 2, C/Z(C) a group (not abelian, of course), C/N(C) is an elementary abelian group

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆

Definition

Q is an *extension* of K by F if $K \leq Q$ and $Q/K \cong F$. The extension is *central* if $K \leq Z(Q)$.

Theorem (Central extensions)

Let Q be a loop and K an abelian group. Then Q is a central extension of K by F = Q/K iff there exists a cocycle $\theta : F \times F \to K$ such that $(K \times F, *)$ given by

$$(a, x) * (b, y) = (a + b + \theta(x, y), xy)$$

is isomorphic to Q.

The above theorem is of no use when $cl(Q) \ge 3$.

イロト イポト イヨト イヨト

Definition

Q is an *extension* of K by F if $K \leq Q$ and $Q/K \cong F$. The extension is *central* if $K \leq Z(Q)$.

Theorem (Central extensions)

Let Q be a loop and K an abelian group. Then Q is a central extension of K by F = Q/K iff there exists a cocycle $\theta : F \times F \to K$ such that $(K \times F, *)$ given by

$$(a, x) * (b, y) = (a + b + \theta(x, y), xy)$$

is isomorphic to Q.

The above theorem is of no use when ${
m cl}({\sf Q})\geq 3.$

イロト イポト イヨト イヨト

Definition

Q is an *extension* of K by F if $K \trianglelefteq Q$ and $Q/K \cong F$. The extension is *central* if $K \le Z(Q)$.

Theorem (Central extensions)

Let Q be a loop and K an abelian group. Then Q is a central extension of K by F = Q/K iff there exists a cocycle $\theta : F \times F \to K$ such that $(K \times F, *)$ given by

$$(a, x) * (b, y) = (a + b + \theta(x, y), xy)$$

is isomorphic to Q.

The above theorem is of no use when $cl(Q) \ge 3$.

Nuclear extensions

Definition

Extension Q of K by F is nuclear if $K \leq N(Q)$.

Lemma (Leong)

Let Q be a loop with a normal subloop $K \leq N(Q)$. For each $x \in Q$, define $\varphi_x = T_x|_K$. Then $\varphi_x \in Aut(K)$, and the mapping $\varphi : Q \to Aut(K)$, $x \mapsto \varphi_x$ is a homomorphism.

Theorem (Nuclear extensions of loops)

Let K be an abelian group and Q, F loops. Then Q is a nuclear extension of K by F iff there exists $\theta : F \times F \to K$ and a homomorphism $\varphi : F \to Aut(K)$ such that $(K \times F, *)$ given by

$$(a, x) * (b, y) = (a + \varphi_x(b) + \theta(x, y), xy)$$

is isomorphic to Q.

Nuclear extensions

Definition

Extension Q of K by F is nuclear if $K \leq N(Q)$.

Lemma (Leong)

Let Q be a loop with a normal subloop $K \leq N(Q)$. For each $x \in Q$, define $\varphi_x = T_x|_K$. Then $\varphi_x \in Aut(K)$, and the mapping $\varphi : Q \to Aut(K)$, $x \mapsto \varphi_x$ is a homomorphism.

Theorem (Nuclear extensions of loops)

Let K be an abelian group and Q, F loops. Then Q is a nuclear extension of K by F iff there exists θ : $F \times F \rightarrow K$ and a homomorphism φ : $F \rightarrow Aut(K)$ such that ($K \times F$,*) given by

$$(a, x) * (b, y) = (a + \varphi_x(b) + \theta(x, y), xy)$$

is isomorphic to Q.

Nuclear extensions

Definition

Extension Q of K by F is nuclear if $K \leq N(Q)$.

Lemma (Leong)

Let Q be a loop with a normal subloop $K \leq N(Q)$. For each $x \in Q$, define $\varphi_x = T_x|_K$. Then $\varphi_x \in Aut(K)$, and the mapping $\varphi : Q \rightarrow Aut(K)$, $x \mapsto \varphi_x$ is a homomorphism.

Theorem (Nuclear extensions of loops)

Let K be an abelian group and Q, F loops. Then Q is a nuclear extension of K by F iff there exists $\theta : F \times F \to K$ and a homomorphism $\varphi : F \to Aut(K)$ such that $(K \times F, *)$ given by

$$(a, x) * (b, y) = (a + \varphi_x(b) + \theta(x, y), xy)$$

is isomorphic to Q.

- $A(C) = Z(C) = \{1, h\}$
- split Cayley table of C into blocks according to N(C)
- try to replace xy with xyh in two diagonally opposite blocks
- keep the change that minimizes the number of nonassociating triples
- repeat

The algorithm results in a loop \overline{C} that is more symmetric than *C*.

伺き くほき くほう

- $A(C) = Z(C) = \{1, h\}$
- split Cayley table of C into blocks according to N(C)
- try to replace xy with xyh in two diagonally opposite blocks
- keep the change that minimizes the number of nonassociating triples
- repeat

The algorithm results in a loop \overline{C} that is more symmetric than *C*.

- $A(C) = Z(C) = \{1, h\}$
- split Cayley table of C into blocks according to N(C)
- try to replace xy with xyh in two diagonally opposite blocks
- keep the change that minimizes the number of nonassociating triples
- repeat

The algorithm results in a loop \overline{C} that is more symmetric than *C*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $A(C) = Z(C) = \{1, h\}$
- split Cayley table of C into blocks according to N(C)
- try to replace xy with xyh in two diagonally opposite blocks
- keep the change that minimizes the number of nonassociating triples

repeat

The algorithm results in a loop \overline{C} that is more symmetric than *C*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $A(C) = Z(C) = \{1, h\}$
- split Cayley table of C into blocks according to N(C)
- try to replace xy with xyh in two diagonally opposite blocks
- keep the change that minimizes the number of nonassociating triples

repeat

The algorithm results in a loop \overline{C} that is more symmetric than C.

- $A(C) = Z(C) = \{1, h\}$
- split Cayley table of C into blocks according to N(C)
- try to replace xy with xyh in two diagonally opposite blocks
- keep the change that minimizes the number of nonassociating triples
- repeat

The algorithm results in a loop \overline{C} that is more symmetric than *C*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Second example

$$\begin{split} \mathbb{F}_2 &= \{0, 1\} \\ \mathcal{K} &= (\mathbb{F}_2)^3 \\ \mathcal{D}_8 &= \langle \sigma, \rho; \sigma^2 = \rho^4 = (\sigma \rho)^2 = 1 \rangle \\ \mathcal{F} &= \mathbb{F}_2 \times \mathcal{D}_8 \end{split}$$

$$arphi: \mathcal{F}
ightarrow \operatorname{Aut}(\mathcal{K}) \ arphi_{(\ell, \,
ho^{2i}\sigma^j(\sigma
ho)^k)}(a, b, c) = (a + kb + jc, \, b, \, c)$$

$$\begin{array}{l} \theta: \mathcal{F} \times \mathcal{F} \to \mathcal{K} \\ \theta((\ell, \, \rho^{2i} \sigma^{j} (\sigma \rho)^{k}), \, (\ell', \, \rho^{2i'} \sigma^{j'} (\sigma \rho)^{k'})) = (\ell' i, \, \ell' j, \, \ell' k) \end{array}$$

$$\overline{C} = (K \times F, *)$$

(a, x) * (b, y) = (a + $\varphi_x(b) + \theta(x, y), xy$)

◆□▶ ◆圖▶ ◆目▶ ◆目▶ ─目 − のへぐ

• G a group

- *K* ⊴ G
- μ : $G/K \times G/K \rightarrow G$ with $\mu(K, xK) = \mu(xK, K) = 1$

 $\mathbf{x} * \mathbf{y} = \mathbf{x} \mathbf{y} \mu(\mathbf{x} \mathbf{K}, \mathbf{y} \mathbf{K})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- G a group
- *K* ⊴ *G*
- μ : $G/K \times G/K \rightarrow G$ with $\mu(K, xK) = \mu(xK, K) = 1$

 $\mathbf{x} * \mathbf{y} = \mathbf{x} \mathbf{y} \mu(\mathbf{x} \mathbf{K}, \mathbf{y} \mathbf{K})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- G a group
- K ⊴ G
- μ : $G/K \times G/K \rightarrow G$ with $\mu(K, xK) = \mu(xK, K) = 1$

 $\mathbf{x} * \mathbf{y} = \mathbf{x} \mathbf{y} \mu(\mathbf{x} \mathbf{K}, \mathbf{y} \mathbf{K})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- G a group
- *K* ⊴ *G*

•
$$\mu$$
 : $G/K \times G/K \rightarrow G$ with $\mu(K, xK) = \mu(xK, K) = 1$

 $\mathbf{x} * \mathbf{y} = \mathbf{x} \mathbf{y} \mu(\mathbf{x} \mathbf{K}, \mathbf{y} \mathbf{K})$

・ロン・(理)・ ・ ヨン・ モン・

= 990

• $Z \leq K \leq N \leq G$ (think: *N* is nucleus, *Z* is center)

- *N* is abelian, G/N is abelian
- $Z \leq Z(G)$, $K \leq G$, and $N/K \leq Z(G/K)$
- $\mu: \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$
- Q = (G, *).

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $(L(x, y), R(x, y); x, y \in G)$ is abelian.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $Z \leq K \leq N \leq G$ (think: *N* is nucleus, *Z* is center)
- N is abelian, G/N is abelian
- $Z \leq Z(G), K \leq G$, and $N/K \leq Z(G/K)$
- $\mu: \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$
- Q = (G, *).

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $(L(x, y), R(x, y); x, y \in G)$ is abelian.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $Z \leq K \leq N \leq G$ (think: N is nucleus, Z is center)
- N is abelian, G/N is abelian
- $Z \leq Z(G)$, $K \leq G$, and $N/K \leq Z(G/K)$
- $\mu: \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$
- Q = (G, *).

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $(L(x, y), R(x, y); x, y \in G)$ is abelian.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

- $Z \leq K \leq N \leq G$ (think: N is nucleus, Z is center)
- N is abelian, G/N is abelian
- $Z \leq Z(G)$, $K \leq G$, and $N/K \leq Z(G/K)$
- $\mu: \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$
- Q = (G, *).

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $(L(x, y), R(x, y); x, y \in G)$ is abelian.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

- $Z \leq K \leq N \leq G$ (think: N is nucleus, Z is center)
- N is abelian, G/N is abelian
- $Z \leq Z(G), K \leq G$, and $N/K \leq Z(G/K)$
- $\mu : \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$
- Q = (G, *).

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $(L(x, y), R(x, y); x, y \in G)$ is abelian.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

- $Z \leq K \leq N \leq G$ (think: N is nucleus, Z is center)
- N is abelian, G/N is abelian
- $Z \leq Z(G)$, $K \leq G$, and $N/K \leq Z(G/K)$
- $\mu: \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$

•
$$Q = (G, *).$$

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $\langle L(x, y), R(x, y); x, y \in G \rangle$ is abelian.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $Z \leq K \leq N \leq G$ (think: N is nucleus, Z is center)
- N is abelian, G/N is abelian
- $Z \leq Z(G)$, $K \leq G$, and $N/K \leq Z(G/K)$
- $\mu: \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$

•
$$Q = (G, *).$$

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $\langle L(x, y), R(x, y); x, y \in G \rangle$ is abelian.

- $Z \leq K \leq N \leq G$ (think: N is nucleus, Z is center)
- N is abelian, G/N is abelian
- $Z \leq Z(G)$, $K \leq G$, and $N/K \leq Z(G/K)$
- $\mu: \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$

•
$$Q = (G, *).$$

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $\langle L(x, y), R(x, y); x, y \in G \rangle$ is abelian.

- $Z \leq K \leq N \leq G$ (think: N is nucleus, Z is center)
- N is abelian, G/N is abelian
- $Z \leq Z(G)$, $K \leq G$, and $N/K \leq Z(G/K)$
- $\mu: \mathbf{G}/\mathbf{K} \times \mathbf{G}/\mathbf{K} \to \mathbf{Z}$

•
$$Q = (G, *).$$

Theorem

We have:

- Q is a loop,
- $Z \leq Z(G) \cap Z(Q)$ and $G/Z \cong Q/Z$ is a group,
- the subgroup $\langle L(x, y), R(x, y); x, y \in G \rangle$ is abelian.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

Consider

$$\mu(xy, z) = \mu(x, z)\mu(y, z) \text{ if } \{x, y, z\} \cap N \neq \emptyset,$$
(1)
$$\mu(x, yz) = \mu(x, y)\mu(x, z) \text{ if } \{x, y, z\} \cap N \neq \emptyset,$$
(2)
$$z^{yx}\delta([z, y], x) = z^{xy}\delta([z, x], y),$$
(3)

where $\delta(x, y) = \mu(x, y)\mu(y, x)^{-1}$.

Theorem

 If (1), (2) hold then N ≤ N(Q) and T_x commute with L(u, v), R(u, v).

• If (1), (2) hold then I(Q) is commutative iff (3) holds.

Consider

$$\mu(xy, z) = \mu(x, z)\mu(y, z) \text{ if } \{x, y, z\} \cap N \neq \emptyset,$$
(1)
$$\mu(x, yz) = \mu(x, y)\mu(x, z) \text{ if } \{x, y, z\} \cap N \neq \emptyset,$$
(2)
$$z^{yx}\delta([z, y], x) = z^{xy}\delta([z, x], y),$$
(3)

where
$$\delta(\mathbf{x}, \mathbf{y}) = \mu(\mathbf{x}, \mathbf{y})\mu(\mathbf{y}, \mathbf{x})^{-1}$$
.

Theorem

- If (1), (2) hold then N ≤ N(Q) and T_x commute with L(u, v), R(u, v).
- If (1), (2) hold then I(Q) is commutative iff (3) holds.

<ロ> (四) (四) (三) (三) (三) (三)

Consider

$$\mu(xy, z) = \mu(x, z)\mu(y, z) \text{ if } \{x, y, z\} \cap N \neq \emptyset,$$
(1)
$$\mu(x, yz) = \mu(x, y)\mu(x, z) \text{ if } \{x, y, z\} \cap N \neq \emptyset,$$
(2)
$$z^{yx}\delta([z, y], x) = z^{xy}\delta([z, x], y),$$
(3)

where
$$\delta(\mathbf{x}, \mathbf{y}) = \mu(\mathbf{x}, \mathbf{y})\mu(\mathbf{y}, \mathbf{x})^{-1}$$
.

Theorem

- If (1), (2) hold then N ≤ N(Q) and T_x commute with L(u, v), R(u, v).
- If (1), (2) hold then I(Q) is commutative iff (3) holds.

◆□> ◆□> ◆豆> ◆豆> □ 豆一

Consider

$$\mu(\mathbf{x}\mathbf{y}, \mathbf{z}) = \mu(\mathbf{x}, \mathbf{z})\mu(\mathbf{y}, \mathbf{z}) \text{ if } \{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \cap \mathbf{N} \neq \emptyset, \tag{1}$$

$$\mu(\mathbf{x}, \mathbf{y}\mathbf{z}) = \mu(\mathbf{x}, \mathbf{y})\mu(\mathbf{x}, \mathbf{z}) \text{ if } \{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \cap \mathbf{N} \neq \emptyset, \tag{2}$$

$$\mathbf{z}^{\mathbf{y}\mathbf{x}}\delta([\mathbf{z}, \mathbf{y}], \mathbf{x}) = \mathbf{z}^{\mathbf{x}\mathbf{y}}\delta([\mathbf{z}, \mathbf{x}], \mathbf{y}), \tag{3}$$

where
$$\delta(x, y) = \mu(x, y)\mu(y, x)^{-1}$$
.

Theorem

- If (1), (2) hold then N ≤ N(Q) and T_x commute with L(u, v), R(u, v).
- If (1), (2) hold then I(Q) is commutative iff (3) holds.

ヘロン 人間 とくほ とくほ とう

3

Structure of δ

Lemma

If (3) holds then both G and Q are of nilpotency class \leq 3.

_emma

Assume that (1)–(3) hold. Then Q is of nilpotency class three and G is of nilpotency class two if and only if $\delta([x, y], z) = \delta([x, z], y)$ for every x, y, $z \in G$, and $\delta([x, y], z) \neq 1$ for some x, y, $z \in G$.

Theorem

Assume that (1)–(3) hold, G is of nilpotency class two and Q is of nilpotency class three. Then there exists a subgroup $A \le Z$ of exponent two and a nontrivial symmetric triadditive mapping $f : (G/N)^3 \rightarrow A$ such that $\delta([x, y], z) = f(xN, yN, zN)$ for all x, $y, z \in G$.

Lemma

If (3) holds then both G and Q are of nilpotency class \leq 3.

Lemma

Assume that (1)–(3) hold. Then Q is of nilpotency class three and G is of nilpotency class two if and only if $\delta([x, y], z) = \delta([x, z], y)$ for every x, y, $z \in G$, and $\delta([x, y], z) \neq 1$ for some x, y, $z \in G$.

Theorem

Assume that (1)–(3) hold, G is of nilpotency class two and Q is of nilpotency class three. Then there exists a subgroup $A \le Z$ of exponent two and a nontrivial symmetric triadditive mapping $f : (G/N)^3 \rightarrow A$ such that $\delta([x, y], z) = f(xN, yN, zN)$ for all x, y, $z \in G$.

æ

Lemma

If (3) holds then both G and Q are of nilpotency class \leq 3.

Lemma

Assume that (1)–(3) hold. Then Q is of nilpotency class three and G is of nilpotency class two if and only if $\delta([x, y], z) = \delta([x, z], y)$ for every x, y, $z \in G$, and $\delta([x, y], z) \neq 1$ for some x, y, $z \in G$.

Theorem

Assume that (1)–(3) hold, G is of nilpotency class two and Q is of nilpotency class three. Then there exists a subgroup $A \le Z$ of exponent two and a nontrivial symmetric triadditive mapping $f : (G/N)^3 \rightarrow A$ such that $\delta([x, y], z) = f(xN, yN, zN)$ for all x, y, $z \in G$.

ロンスロンス モンスモン

- *H* a group satisfying H' = Z(H) boolean, H/H' boolean
- H/H' has basis $\{e_i H'; 1 \le i \le n\}$
- *H*['] has basis {[*e_i*, *e_j*]; 1 ≤ *i* < *j* ≤ *n*}
- $f: (H/H')^3 \to \mathbb{F}_2$ symmetric trilinear alternating form
- construct δ : H × H → A so that f(xH', yH', zH') = δ([x, y], z)
- construct μ : H × H → A so that δ(x, y) = μ(x, y)μ(y, x)⁻¹ and (1)–(3) hold
- let $G = \mathbb{F}_2 \times H = \mathcal{C}(H, \mu)$, say.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *H* a group satisfying H' = Z(H) boolean, H/H' boolean
- H/H' has basis $\{e_i H'; 1 \le i \le n\}$
- *H'* has basis $\{[e_i, e_j]; 1 \le i < j \le n\}$
- $f: (H/H')^3 \to \mathbb{F}_2$ symmetric trilinear alternating form
- construct δ : H × H → A so that f(xH', yH', zH') = δ([x, y], z)
- construct μ : H × H → A so that δ(x, y) = μ(x, y)μ(y, x)⁻¹ and (1)–(3) hold
- let $G = \mathbb{F}_2 \times H = \mathcal{C}(H, \mu)$, say.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

- *H* a group satisfying H' = Z(H) boolean, H/H' boolean
- H/H' has basis $\{e_i H'; 1 \le i \le n\}$
- *H*' has basis {[*e_i*, *e_j*]; 1 ≤ *i* < *j* ≤ *n*}
- $f: (H/H')^3 \to \mathbb{F}_2$ symmetric trilinear alternating form
- construct $\delta : H \times H \to A$ so that $f(xH', yH', zH') = \delta([x, y], z)$
- construct μ : H × H → A so that δ(x, y) = μ(x, y)μ(y, x)⁻¹ and (1)–(3) hold
- let $G = \mathbb{F}_2 \times H = \mathcal{C}(H, \mu)$, say.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

- *H* a group satisfying H' = Z(H) boolean, H/H' boolean
- H/H' has basis $\{e_i H'; 1 \le i \le n\}$
- *H*' has basis {[*e_i*, *e_j*]; 1 ≤ *i* < *j* ≤ *n*}
- $f: (H/H')^3 \to \mathbb{F}_2$ symmetric trilinear alternating form
- construct $\delta : H \times H \to A$ so that $f(xH', yH', zH') = \delta([x, y], z)$
- construct μ : H × H → A so that δ(x, y) = μ(x, y)μ(y, x)⁻¹ and (1)–(3) hold
- let $G = \mathbb{F}_2 \times H = \mathcal{C}(H, \mu)$, say.

- *H* a group satisfying H' = Z(H) boolean, H/H' boolean
- H/H' has basis $\{e_i H'; 1 \le i \le n\}$
- *H*' has basis {[*e_i*, *e_j*]; 1 ≤ *i* < *j* ≤ *n*}
- $f: (H/H')^3 \to \mathbb{F}_2$ symmetric trilinear alternating form
- construct δ : H × H → A so that f(xH', yH', zH') = δ([x, y], z)
- construct μ : H × H → A so that δ(x, y) = μ(x, y)μ(y, x)⁻¹ and (1)–(3) hold
- let $G = \mathbb{F}_2 \times H = \mathcal{C}(H, \mu)$, say.

- *H* a group satisfying H' = Z(H) boolean, H/H' boolean
- H/H' has basis $\{e_i H'; 1 \le i \le n\}$
- *H*' has basis {[*e_i*, *e_j*]; 1 ≤ *i* < *j* ≤ *n*}
- $f: (H/H')^3 \to \mathbb{F}_2$ symmetric trilinear alternating form
- construct δ : H × H → A so that f(xH', yH', zH') = δ([x, y], z)
- construct μ : H × H → A so that δ(x, y) = μ(x, y)μ(y, x)⁻¹ and (1)–(3) hold
- let $G = \mathbb{F}_2 \times H = \mathcal{C}(H, \mu)$, say.

- *H* a group satisfying H' = Z(H) boolean, H/H' boolean
- H/H' has basis $\{e_i H'; 1 \le i \le n\}$
- *H*' has basis {[*e_i*, *e_j*]; 1 ≤ *i* < *j* ≤ *n*}
- $f: (H/H')^3 \to \mathbb{F}_2$ symmetric trilinear alternating form
- construct δ : H × H → A so that f(xH', yH', zH') = δ([x, y], z)
- construct μ : H × H → A so that δ(x, y) = μ(x, y)μ(y, x)⁻¹ and (1)–(3) hold
- let $G = \mathbb{F}_2 \times H = \mathcal{C}(H, \mu)$, say.

• to have nontrivial f, need dim(H/H') = 3

• then dim(H') = 3

There are 10 such groups *H*, and 2^{28} ways to obtain μ for each of them.

Example

Let $f : (\mathbb{F}_2^3)^3 \to \mathbb{F}_2$ be the determinant, *H* the first loop in the GAP libraries with the above properties (of order 64), all parameters for δ and μ trivial. Then $\mathcal{C}(H, \mu) \cong C$.

Remark

We were not able to find two sets of parameters yielding isomorphic loops.

- to have nontrivial f, need dim(H/H') = 3
- then $\dim(H') = 3$

There are 10 such groups *H*, and 2^{28} ways to obtain μ for each of them.

Example

Let $f : (\mathbb{F}_2^3)^3 \to \mathbb{F}_2$ be the determinant, *H* the first loop in the GAP libraries with the above properties (of order 64), all parameters for δ and μ trivial. Then $\mathcal{C}(H, \mu) \cong C$.

Remark

We were not able to find two sets of parameters yielding isomorphic loops.

- to have nontrivial f, need dim(H/H') = 3
- then $\dim(H') = 3$

There are 10 such groups *H*, and 2^{28} ways to obtain μ for each of them.

Example

Let $f : (\mathbb{F}_2^3)^3 \to \mathbb{F}_2$ be the determinant, *H* the first loop in the GAP libraries with the above properties (of order 64), all parameters for δ and μ trivial. Then $\mathcal{C}(H, \mu) \cong C$.

Remark

We were not able to find two sets of parameters yielding isomorphic loops.

・ロト ・ 同ト ・ ヨト ・ ヨト

- to have nontrivial f, need dim(H/H') = 3
- then $\dim(H') = 3$

There are 10 such groups *H*, and 2^{28} ways to obtain μ for each of them.

Example

Let $f : (\mathbb{F}_2^3)^3 \to \mathbb{F}_2$ be the determinant, *H* the first loop in the GAP libraries with the above properties (of order 64), all parameters for δ and μ trivial. Then $\mathcal{C}(H, \mu) \cong C$.

Remark

We were not able to find two sets of parameters yielding isomorphic loops.

ヘロン 人間 とくほ とくほ とう

- to have nontrivial f, need dim(H/H') = 3
- then $\dim(H') = 3$

There are 10 such groups *H*, and 2^{28} ways to obtain μ for each of them.

Example

Let $f : (\mathbb{F}_2^3)^3 \to \mathbb{F}_2$ be the determinant, *H* the first loop in the GAP libraries with the above properties (of order 64), all parameters for δ and μ trivial. Then $\mathcal{C}(H, \mu) \cong C$.

Remark

We were not able to find two sets of parameters yielding isomorphic loops.

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

Lemma

 $I(C(H, \mu))$ is an elementary abelian 2-group.

Observation

It appears that $|M(C(H, \mu))| \ge 2^{13}$ when |H| = 64.

Aleš Drápal and Petr Vojtěchovský Loops with commuting inner mappings

Lemma

 $I(C(H, \mu))$ is an elementary abelian 2-group.

Observation

It appears that $|M(C(H, \mu))| \ge 2^{13}$ when |H| = 64.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Let A be an associative algebra over any ring, B a subspace of A such that xy = -yx for every x, $y \in B$. Let B_n be the subspace of A generated by products of at most n elements of B. Define multiplication on $Q = B \times B_2 \times B_3$ by

$$(a, b, c) * (a', b', c') = (a + a', b + b' + aa', c + c' + ba').$$

- [(a, b, c), (a', b', c'), (a'', b'', c'')] = (0, 0, aa'a'')
- [[x, y], z] = 2[x, y, z]
- L(x, y)z = R(x, y)z = z + [x, y, z]
- generators of I(Q) commute, except possibly for two conjugations
- $(T_x T_y(z))(T_y T_x(z))^{-1} = -4[x, y, z].$

Let A be an associative algebra over any ring, B a subspace of A such that xy = -yx for every x, $y \in B$. Let B_n be the subspace of A generated by products of at most n elements of B. Define multiplication on $Q = B \times B_2 \times B_3$ by

$$(a, b, c) * (a', b', c') = (a + a', b + b' + aa', c + c' + ba').$$

- [(a, b, c), (a', b', c'), (a'', b'', c'')] = (0, 0, aa'a'')
- [[x, y], z] = 2[x, y, z]
- L(x, y)z = R(x, y)z = z + [x, y, z]
- generators of I(Q) commute, except possibly for two conjugations
- $(T_x T_y(z))(T_y T_x(z))^{-1} = -4[x, y, z].$

Let A be an associative algebra over any ring, B a subspace of A such that xy = -yx for every x, $y \in B$. Let B_n be the subspace of A generated by products of at most n elements of B. Define multiplication on $Q = B \times B_2 \times B_3$ by

$$(a,b,c)*(a^\prime,b^\prime,c^\prime)=(a+a^\prime,b+b^\prime+aa^\prime,c+c^\prime+ba^\prime).$$

- [(a, b, c), (a', b', c'), (a'', b'', c'')] = (0, 0, aa'a'')
- [[x, y], z] = 2[x, y, z]
- L(x, y)z = R(x, y)z = z + [x, y, z]
- generators of I(Q) commute, except possibly for two conjugations
- $(T_x T_y(z))(T_y T_x(z))^{-1} = -4[x, y, z].$

Let A be an associative algebra over any ring, B a subspace of A such that xy = -yx for every x, $y \in B$. Let B_n be the subspace of A generated by products of at most n elements of B. Define multiplication on $Q = B \times B_2 \times B_3$ by

$$(a,b,c)*(a^\prime,b^\prime,c^\prime)=(a+a^\prime,b+b^\prime+aa^\prime,c+c^\prime+ba^\prime).$$

- [(a, b, c), (a', b', c'), (a'', b'', c'')] = (0, 0, aa'a'')
- [[x, y], z] = 2[x, y, z]
- L(x, y)z = R(x, y)z = z + [x, y, z]
- generators of I(Q) commute, except possibly for two conjugations
- $(T_x T_y(z))(T_y T_x(z))^{-1} = -4[x, y, z].$

Let A be an associative algebra over any ring, B a subspace of A such that xy = -yx for every x, $y \in B$. Let B_n be the subspace of A generated by products of at most n elements of B. Define multiplication on $Q = B \times B_2 \times B_3$ by

$$(a,b,c)*(a^\prime,b^\prime,c^\prime)=(a+a^\prime,b+b^\prime+aa^\prime,c+c^\prime+ba^\prime).$$

- [(a, b, c), (a', b', c'), (a'', b'', c'')] = (0, 0, aa'a'')
- [[x, y], z] = 2[x, y, z]
- L(x, y)z = R(x, y)z = z + [x, y, z]
- generators of I(Q) commute, except possibly for two conjugations
- $(T_x T_y(z))(T_y T_x(z))^{-1} = -4[x, y, z].$

Let A be an associative algebra over any ring, B a subspace of A such that xy = -yx for every $x, y \in B$. Let B_n be the subspace of A generated by products of at most n elements of B. Define multiplication on $Q = B \times B_2 \times B_3$ by

$$(a,b,c)*(a^\prime,b^\prime,c^\prime)=(a+a^\prime,b+b^\prime+aa^\prime,c+c^\prime+ba^\prime).$$

Then Q is a Moufang loop, and

• [(a, b, c), (a', b', c'), (a'', b'', c'')] = (0, 0, aa'a'')

•
$$[[x, y], z] = 2[x, y, z]$$

- L(x, y)z = R(x, y)z = z + [x, y, z]
- generators of I(Q) commute, except possibly for two conjugations

•
$$(T_x T_y(z))(T_y T_x(z))^{-1} = -4[x, y, z].$$

Exterior algebras

We need a suitable algebra A for Bruck's construction.

Definition (Exterior algebra)

Let *R* be a ring, n > 0. *Exterior algebra* $\mathcal{E}_n(R)$ on *n*-generators over *R* is a vector space over *R* with basis

 $\{a(S); S \subseteq \{1,\ldots,n\}\}$

with multiplication

a(S)a(T)=0

if $S \cap T \neq \emptyset$, and

 $a(S)a(T) = \operatorname{sgn}(\pi)a(S \cup T)$

otherwise, where π is a permutation that reorders *S*, *T* into $S \cup T$.

Exterior algebras

We need a suitable algebra A for Bruck's construction.

Definition (Exterior algebra)

Let *R* be a ring, n > 0. *Exterior algebra* $\mathcal{E}_n(R)$ on *n*-generators over *R* is a vector space over *R* with basis

 $\{a(S); S \subseteq \{1, \ldots, n\}\}$

with multiplication

$$a(S)a(T)=0$$

if $S \cap T \neq \emptyset$, and

$$a(S)a(T) = \operatorname{sgn}(\pi)a(S \cup T)$$

otherwise, where π is a permutation that reorders *S*, *T* into $S \cup T$.

Theorem

Let R be a ring satisfying $2R \neq 0$, 4R = 0. Let $A = \mathcal{E}_n(R)$, where $n \geq 3$. Then Bruck's construction applied to A yields a Moufang loop Q with abelian I(Q) and of nilpotency class 3.

Aleš Drápal and Petr Vojtěchovský Loops with commuting inner mappings

・ 同 ト ・ ヨ ト ・ ヨ ト …

Moufang loop in detail

Example (Smallest known Moufang example)

 $R = \mathbb{Z}_4$, n = 3 yields Q of order $2^{14} = 4^7$. Here is the multiplication table for nonidentity basis elements in $\mathcal{E}_3(R)$:

	a ₁	a 2	a 3	a ₁₂	a ₁₃	a ₂₃	a ₁₂₃
<i>a</i> ₁	0	a ₁₂	a ₁₃	0	0	a ₁₂₃	0
a 2	- <i>a</i> ₁₂	0	a ₂₃	0	- <i>a</i> ₁₂₃	0	0
a_3	- a ₁₃	- <i>a</i> ₂₃	0	a ₁₂₃	0	0	0
a ₁₂	0	0	a ₁₂₃	0	0	0	0.
a ₁₃	0	- <i>a</i> ₁₂₃	0	0	0	0	0
a ₂₃	a ₁₂₃	0	0	0	0	0	0
a ₁₂₃	0	0	0	0	0	0	0

Thus $B = \langle a_1, a_2, a_3 \rangle$, $B_2 = \langle a_{12}, a_{13}, a_{23} \rangle$, $B_3 = \langle a_{123} \rangle$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Is there a loop of Csörgő type with cl(Q) > 3?
- Is the nilpotency class of a loop of Csörgő type bounded?
- Is there a loop of Csörgő type with |Q| < 128?
- Is there a p-loop of Csörgő for some p > 2?
- Is there a Moufang 3-loop of Csörgő type?

伺き くほき くほう

- Is there a loop of Csörgő type with cl(Q) > 3?
- Is the nilpotency class of a loop of Csörgő type bounded?
- Is there a loop of Csörgő type with |Q| < 128?</p>
- Is there a p-loop of Csörgő for some p > 2?
- Is there a Moufang 3-loop of Csörgő type?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- Is there a loop of Csörgő type with cl(Q) > 3?
- Is the nilpotency class of a loop of Csörgő type bounded?
- Is there a loop of Csörgő type with |Q| < 128?</p>
- Is there a p-loop of Csörgő for some p > 2?
- Is there a Moufang 3-loop of Csörgő type?

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

- Is there a loop of Csörgő type with cl(Q) > 3?
- Is the nilpotency class of a loop of Csörgő type bounded?
- Is there a loop of Csörgő type with |Q| < 128?
- Is there a p-loop of Csörgő for some p > 2?
- Is there a Moufang 3-loop of Csörgő type?

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

- Is there a loop of Csörgő type with cl(Q) > 3?
- Is the nilpotency class of a loop of Csörgő type bounded?
- Is there a loop of Csörgő type with |Q| < 128?
- Is there a p-loop of Csörgő for some p > 2?
- Is there a Moufang 3-loop of Csörgő type?

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Is there a loop of Csörgő type with cl(Q) > 3?
- Is the nilpotency class of a loop of Csörgő type bounded?
- Is there a loop of Csörgő type with |Q| < 128?
- Is there a p-loop of Csörgő for some p > 2?
- Is there a Moufang 3-loop of Csörgő type?

・ 同 ト ・ ヨ ト ・ ヨ ト …