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Notation

Q loop

M(Q) = 〈Lx , Rx ; x ∈ Q〉 multiplication group

I(Q) = {ϕ ∈ M(Q); ϕ(1) = 1} inner mapping group

Z1(Q) = Z (Q)
Zi+1(Q)/Zi(Q) = Z (Q/Zi(Q)) iterated centra

cl(Q) = min{m; Zm(Q) = 1} nilpotency class

N(Q), Nρ(Q), A(Q), Tx , L(x , y) as usual
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Questions

Main problem

Is Q nilpotent when I(Q) is?

Restricted problem

Is Q nilpotent when I(Q) is abelian?

Remark

Q/Z (Q) ∼= I(Q) when Q is a group.
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Aleš Drápal and Petr Vojtěchovský Loops with commuting inner mappings



Partial answers

Below, Q is finite and I(Q) is abelian.

Q nilpotent (Kepka, Niemenmaa)

Q CML ⇒ cl(Q) ≤ 2 (Bruck)

Q LCC ⇒ cl(Q) ≤ 2 (Csörgő, Drápal)

Q Moufang p-loop, p > 3 ⇒ cl(Q) ≤ 2 (G. Nagy, V.)

∃ Q, cl(Q) = 3, |Q| = 27 (Csörgő)

∃ Q Buchsteiner, cl(Q) = 3, |Q| = 27 (Csörgő, Drápal,
Kinyon)

there are many loops Q with cl(Q) = 3 (Drápal, V.)

∃ Q Moufang, cl(Q) = 3, |Q| = 214 (G. Nagy, V.)
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The first example

Example

Loop C constructed by Csörgő using loop folder (G, H, T ),
|G| = 213, |H| = 26, |T | = 27,

N(C) = Nρ(C) elementary abelian group of order 16,
|Nλ(C)| = |Nµ(C)| = 32,

Z (C) = A(C) cyclic group of order 2,
C/Z (C) a group (not abelian, of course),
C/N(C) is an elementary abelian group
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Central extensions

Definition

Q is an extension of K by F if K E Q and Q/K ∼= F . The
extension is central if K ≤ Z (Q).

Theorem (Central extensions)

Let Q be a loop and K an abelian group. Then Q is a central
extension of K by F = Q/K iff there exists a cocycle
θ : F × F → K such that (K × F , ∗) given by

(a, x) ∗ (b, y) = (a + b + θ(x , y), xy)

is isomorphic to Q.

The above theorem is of no use when cl(Q) ≥ 3.
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Nuclear extensions

Definition

Extension Q of K by F is nuclear if K ≤ N(Q).

Lemma (Leong)

Let Q be a loop with a normal subloop K ≤ N(Q). For each
x ∈ Q, define ϕx = Tx |K . Then ϕx ∈ Aut(K ), and the mapping
ϕ : Q → Aut(K ), x 7→ ϕx is a homomorphism.

Theorem (Nuclear extensions of loops)

Let K be an abelian group and Q, F loops. Then Q is a nuclear
extension of K by F iff there exists θ : F × F → K and a
homomorphism ϕ : F → Aut(K ) such that (K × F , ∗) given by

(a, x) ∗ (b, y) = (a + ϕx (b) + θ(x , y), xy)

is isomorphic to Q.
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Aleš Drápal and Petr Vojtěchovský Loops with commuting inner mappings



Nuclear extensions

Definition

Extension Q of K by F is nuclear if K ≤ N(Q).

Lemma (Leong)

Let Q be a loop with a normal subloop K ≤ N(Q). For each
x ∈ Q, define ϕx = Tx |K . Then ϕx ∈ Aut(K ), and the mapping
ϕ : Q → Aut(K ), x 7→ ϕx is a homomorphism.

Theorem (Nuclear extensions of loops)

Let K be an abelian group and Q, F loops. Then Q is a nuclear
extension of K by F iff there exists θ : F × F → K and a
homomorphism ϕ : F → Aut(K ) such that (K × F , ∗) given by

(a, x) ∗ (b, y) = (a + ϕx (b) + θ(x , y), xy)

is isomorphic to Q.
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Greedy algorithm

Let’s go back to the loop C:

A(C) = Z (C) = {1, h}

split Cayley table of C into blocks according to N(C)

try to replace xy with xyh in two diagonally opposite blocks

keep the change that minimizes the number of
nonassociating triples

repeat

The algorithm results in a loop C that is more symmetric than
C.
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Aleš Drápal and Petr Vojtěchovský Loops with commuting inner mappings



Greedy algorithm

Let’s go back to the loop C:

A(C) = Z (C) = {1, h}

split Cayley table of C into blocks according to N(C)

try to replace xy with xyh in two diagonally opposite blocks

keep the change that minimizes the number of
nonassociating triples

repeat

The algorithm results in a loop C that is more symmetric than
C.
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Second example

F2 = {0, 1}
K = (F2)

3

D8 = 〈σ, ρ;σ2 = ρ4 = (σρ)2 = 1〉
F = F2 × D8

ϕ : F → Aut(K )
ϕ(ℓ, ρ2iσj (σρ)k )(a, b, c) = (a + kb + jc, b, c)

θ : F × F → K
θ((ℓ, ρ2iσj(σρ)k ), (ℓ′, ρ2i ′σj ′(σρ)k ′

)) = (ℓ′i , ℓ′j , ℓ′k)

C = (K × F , ∗)
(a, x) ∗ (b, y) = (a + ϕx (b) + θ(x , y), xy)
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Group modifications

G a group

K E G

µ : G/K × G/K → G with µ(K , xK ) = µ(xK , K ) = 1

x ∗ y = xyµ(xK , yK )
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The setup

Z ≤ K ≤ N E G (think: N is nucleus, Z is center)

N is abelian, G/N is abelian

Z ≤ Z (G), K E G, and N/K ≤ Z (G/K )

µ : G/K × G/K → Z

Q = (G, ∗).

Theorem
We have:

Q is a loop,

Z ≤ Z (G) ∩ Z (Q) and G/Z ∼= Q/Z is a group,

the subgroup 〈L(x , y), R(x , y); x, y ∈ G〉 is abelian.
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Aleš Drápal and Petr Vojtěchovský Loops with commuting inner mappings



The setup

Z ≤ K ≤ N E G (think: N is nucleus, Z is center)

N is abelian, G/N is abelian

Z ≤ Z (G), K E G, and N/K ≤ Z (G/K )

µ : G/K × G/K → Z

Q = (G, ∗).

Theorem
We have:

Q is a loop,

Z ≤ Z (G) ∩ Z (Q) and G/Z ∼= Q/Z is a group,

the subgroup 〈L(x , y), R(x , y); x, y ∈ G〉 is abelian.
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To make I(Q) commutative

Consider

µ(xy , z) = µ(x , z)µ(y , z) if {x , y , z} ∩ N 6= ∅, (1)

µ(x , yz) = µ(x , y)µ(x , z) if {x , y , z} ∩ N 6= ∅, (2)

zyxδ([z, y ], x) = zxyδ([z, x ], y), (3)

where δ(x , y) = µ(x , y)µ(y , x)−1.

Theorem

If (1), (2) hold then N ≤ N(Q) and Tx commute with
L(u, v), R(u, v).

If (1), (2) hold then I(Q) is commutative iff (3) holds.
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Structure of δ

Lemma

If (3) holds then both G and Q are of nilpotency class ≤ 3.

Lemma

Assume that (1)–(3) hold. Then Q is of nilpotency class three
and G is of nilpotency class two if and only if
δ([x , y ], z) = δ([x , z], y) for every x, y, z ∈ G, and
δ([x , y ], z) 6= 1 for some x, y, z ∈ G.

Theorem

Assume that (1)–(3) hold, G is of nilpotency class two and Q is
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Constructing many examples

H a group satisfying H ′ = Z (H) boolean, H/H ′ boolean

H/H ′ has basis {eiH ′; 1 ≤ i ≤ n}

H ′ has basis {[ei , ej ]; 1 ≤ i < j ≤ n}

f : (H/H ′)3 → F2 symmetric trilinear alternating form

construct δ : H × H → A so that
f (xH ′, yH ′, zH ′) = δ([x , y ], z)

construct µ : H × H → A so that δ(x , y) = µ(x , y)µ(y , x)−1

and (1)–(3) hold

let G = F2 × H = C(H, µ), say.
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Aleš Drápal and Petr Vojtěchovský Loops with commuting inner mappings



Constructing many examples

H a group satisfying H ′ = Z (H) boolean, H/H ′ boolean

H/H ′ has basis {eiH ′; 1 ≤ i ≤ n}

H ′ has basis {[ei , ej ]; 1 ≤ i < j ≤ n}

f : (H/H ′)3 → F2 symmetric trilinear alternating form

construct δ : H × H → A so that
f (xH ′, yH ′, zH ′) = δ([x , y ], z)

construct µ : H × H → A so that δ(x , y) = µ(x , y)µ(y , x)−1

and (1)–(3) hold

let G = F2 × H = C(H, µ), say.
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Minimal situation

to have nontrivial f , need dim(H/H ′) = 3

then dim(H ′) = 3

There are 10 such groups H, and 228 ways to obtain µ for each
of them.

Example

Let f : (F3
2)

3 → F2 be the determinant, H the first loop in the
GAP libraries with the above properties (of order 64), all
parameters for δ and µ trivial. Then C(H, µ) ∼= C.

Remark

We were not able to find two sets of parameters yielding
isomorphic loops.
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Inner mapping groups

Lemma

I(C(H, µ)) is an elementary abelian 2-group.

Observation

It appears that |M(C(H, µ))| ≥ 213 when |H| = 64.
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Bruck’s construction

Theorem (Bruck, G. Nagy, V.)

Let A be an associative algebra over any ring, B a subspace of
A such that xy = −yx for every x, y ∈ B. Let Bn be the
subspace of A generated by products of at most n elements of
B. Define multiplication on Q = B × B2 × B3 by

(a, b, c) ∗ (a′, b′, c′) = (a + a′, b + b′ + aa′, c + c′ + ba′).

Then Q is a Moufang loop, and

[(a, b, c), (a′, b′, c′), (a′′, b′′, c′′)] = (0, 0, aa′a′′)

[[x , y ], z] = 2[x , y , z]

L(x , y)z = R(x , y)z = z + [x , y , z]

generators of I(Q) commute, except possibly for two
conjugations

(TxTy(z))(Ty Tx(z))−1 = −4[x , y , z].
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Exterior algebras

We need a suitable algebra A for Bruck’s construction.

Definition (Exterior algebra)

Let R be a ring, n > 0. Exterior algebra En(R) on n-generators
over R is a vector space over R with basis

{a(S); S ⊆ {1, . . . , n}}

with multiplication
a(S)a(T ) = 0

if S ∩ T 6= ∅, and

a(S)a(T ) = sgn(π)a(S ∪ T )

otherwise, where π is a permutation that reorders S, T into
S ∪ T .
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Moufang loop

Theorem

Let R be a ring satisfying 2R 6= 0, 4R = 0. Let A = En(R),
where n ≥ 3. Then Bruck’s construction applied to A yields a
Moufang loop Q with abelian I(Q) and of nilpotency class 3.
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Moufang loop in detail

Example (Smallest known Moufang example)

R = Z4, n = 3 yields Q of order 214 = 47.
Here is the multiplication table for nonidentity basis elements in
E3(R):

a1 a2 a3 a12 a13 a23 a123

a1 0 a12 a13 0 0 a123 0
a2 −a12 0 a23 0 −a123 0 0
a3 −a13 −a23 0 a123 0 0 0
a12 0 0 a123 0 0 0 0
a13 0 −a123 0 0 0 0 0
a23 a123 0 0 0 0 0 0
a123 0 0 0 0 0 0 0

.

Thus B = 〈a1, a2, a3〉, B2 = 〈a12, a13, a23〉, B3 = 〈a123〉.
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Open problems

Call a loop Q with I(Q) abelian and of nilpotency class at least
3 a loop of Csörgő type.

Is there a loop of Csörgő type with cl(Q) > 3?

Is the nilpotency class of a loop of Csörgő type bounded?

Is there a loop of Csörgő type with |Q| < 128?

Is there a p-loop of Csörgő for some p > 2?

Is there a Moufang 3-loop of Csörgő type?
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Is there a loop of Csörgő type with |Q| < 128?
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Is there a loop of Csörgő type with cl(Q) > 3?
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Aleš Drápal and Petr Vojtěchovský Loops with commuting inner mappings



Open problems

Call a loop Q with I(Q) abelian and of nilpotency class at least
3 a loop of Csörgő type.
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Is there a loop of Csörgő type with |Q| < 128?
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