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• Bracket polynomial

D : an unoriented link (or knot) diagram

The bracket polynomial 〈D〉 is a Laurent polynomial in a variable

A defined by the following rules.

1. 〈©〉 = 1, where © denotes the unknot with no crossings.

2. 〈D ⊔©〉 = δ〈D〉, where δ = −A−2 −A2.

3. 〈D〉 = A〈D∞〉+A−1〈D0〉.
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If D is an oriented diagram of a link L and

|D| is D with its orientation ignored,

then the normalized bracket polynomial

VL(A) = (−A−3)w(D)〈|D|〉

is a link invariant.

(Here w(D) is the writhe of D.)

When A = t−
1
4, VL(t) is the Jones polynomial.
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A choice of marker for every crossing of an unoriented diagram

D is called a state.

The result of a splitting is a disjoint union of state circles.

|s| : the number of state circles for a state s

p(s) : the number of + markers in s

n(s) : the number of − markers in s

〈D〉 =
∑

s

Ap(s)(A−1)n(s)δ|s|−1
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• Adequate diagrams

D : an unoriented link diagram

s+ : the state of D in which all markers are +

s− : the state of D in which all markers are −

D is +adequate if, at each crossing, the two strands of

the + splitting of s+ belong to different state circles.

Similarly, −adequate is defined. (− splitting of s−)

D is adequate if it is both +adequate and −adequate.
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• A reduced alternating diagram is adequate.

• An r-fold parallel of an adequate diagram is adequate.

• maxdeg〈D〉 = c(D) + 2|s+| − 2.

• mindeg〈D〉 = −c(D)− 2|s−|+2.

• An adequate diagram has minimal crossing number.

(∃ non-adequate minimal crossing diagrams,

e.g. some pretzel links.)
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• 2-tangle diagrams

T : an unoriented 2-tangle diagram

s+ : the state of T in which all markers are +

s− : the state of T in which all markers are −
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• Adequate 2-tangle diagrams

T is +adequate if the following holds.

1. The splitting of s+ connects NW to SW and NE to SE.

2. At each crossing of T , the two strands of the + splitting of

s+ belong to different state circle or arc components.

Similarly, −adequate is defined. (NW to NE and SW to SE)

T is adequate if it is both +adequate and −adequate.
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• 2-tangle replacements

We replace a chosen crossing of D by T so that the labels match,

and it is called a 2-tangle replacement, denoted by DT .

Motivation: Y. Bae considered a link diagram D ⊗ T

obtained by replacing every crossing of D by T ,

called a link diagram with local symmetry.
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• Main results

Theorem

If a link diagram D and a 2-tangle diagram T are adequate, then

the diagram DT of a 2-tangle replacement is also adequate.

This gives a way to obtain infinitely many new minimal crossing

diagrams.
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Sketch of proof)

We show that DT is +adequate. (−adequate is similar.)

Let B′ be a 3-ball defining the tangle T .

Consider a crossing c of DT .
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Case 1. c is in T .

Case 1.1. Both strands of the + splitting at c belong to state

circle components in B′. (∵ T is +adequate.)

Case 1.2. Both strands of the + splitting at c belong to properly

embedded arc components in B′.

Case 1.3. One strand of the + splitting at c belongs to a state

circle in B′ and the other belongs to a properly embedded arc in

B′.
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Case 2. c is not in T .

Case 2.1. Both strands of the + splitting at c belong to state

circle components in the complement of B′.

Case 2.2. Both strands of the + splitting at c belong to properly

embedded arc components in the complement of B′.

Case 2.3. One strand of the + splitting at c belongs to a state

circle in the complement of B′ and the other belongs to a properly

embedded arc in the complement of B′.
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Thank you for your attention.
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