
Ramki Thurimella © 9/21/2005  1 

. . . . . . . . . 

L E C T U R E  3  

Context-Free Grammars 

1 Where are Context-Free Grammars (CFGs) Used? 

CFGs are a more powerful formalism than regular expressions.  They are more 
powerful in the sense that whatever can be expressed using regular expressions 
can be expressed using grammars (short for context-free grammars here), but they 
can also express languages that do not have regular expressions. An example of 
such a language is the set of well-matched parenthesis.  Grammars are used to 
express syntactic rules. These rules are used by the compiler to take a steam of 
tokens (the output from a scanner/lexical analyzer) and parse it for syntactic 
correctness, e.g. checking that each construct is well formed, all parentheses are 
matched, or all keywords are spelled correctly.  This process is known as parsing.  

2 Definitions 

A context-free grammar G is a 4-tuple <N,T,P,S> where N is a set of nonterminals, 

T is a set of terminals, P is a set of production rules of the form A→α, A is an 

element of set N, i.e. A∈N, and α∈(N∪ T)*, and S is a specific non-terminal called 

the start symbol.  Sometimes, the set of terminals is also referred to as the alphabet. 

Recall that for a set of strings I, the notation I*, Kleene closure, refers to the set of all 
strings obtained by concatenation of zero or more elements taken from the set I in 
any order.  For example, if I={a,b,A,B}, then the set I* is 

{ε, a, b, A, B, aa, bb, AA, BB, ab, ba, aA, Aa,aB, Ba, bA, Ab, bB, Bb,...} 

where ε is the empty string. 

Here are other definitions related to context-free grammars and languages: 

A derivation using the rule A→α is the process of obtaining a new string from a 

string w by replacing an occurrence of A in w with α. 

A sentence is a string consisting of only terminal symbols.  A valid sentence with 
respect to grammar G is a sentence that can be derived using the production rules 
of G starting from S and ending with a sentence.  A leftmost (rightmost) derivation is 
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one in which at every step the leftmost (resp. rightmost) nonterminal is replaced.  
For a grammar G, the language generated by G (denoted L(G)) is the set of all valid 
sentences with respect to G. A grammar is said to be ambiguous if L(G) contains a 
string w such that w has two or more leftmost or rightmost derivations. Sometimes it 
is possible to rewrite a grammar so that the new grammar produces the same 
language as the original, but it is not ambiguous. When all grammars for a language 
are ambiguous, then that language is said to be inherently ambiguous. There are 
languages that are inherently ambiguous. This is a mathematically established fact 
the proof of which is beyond the scope of this course. 

A tree is a parse tree for a sentence w of L(G) if every node of the tree has a label 

from N∪ T and it further satisfies the following conditions.  

• The root of the tree is labeled S. 

• All the leaves are labeled with terminal symbols which when concatenated 
from left to right will give w. 

• All interior nodes are labeled with a nonterminal symbol. 

• If an interior node is labeled A and its children from left to right are labeled X1, 
X2... Xk where each Xi is either a terminal or a nonterminal symbol, then G 

must contain production rule of the form A→X1X2...Xk.  

3 Examples 

3.1 Equal Number of a’s and b’s 

Implicit in the question is the fact that T={a,b}. Here is a grammar for it: 

N = {S} 
S = S 

P = {S → aSb, S → bSa, S → SS, S → ε } 

For brevity, we write the above grammar as S → aSb | bSa | SS | ε, and leave out 
the details.  Our convention is to assume that the left-side nonterminal of the first 
production rule is the start symbol.  Uppercase letters stand for nonterminals.  
Numbers and lowercase letters constitute the terminals.  

3.2 Set of Balanced Parenthesis 

Here T = {(, )}. The grammar is S → ( S ) | SS | ε.  
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Figure 3-1 A parse tree for the string (())() 

Here is an example of a leftmost derivation: 

S → SS → (S)S → ((S))S→ (())S→ (())(S) → (())() 

3.3 Ambiguity 

Consider the grammar for arithmetic expressions involving addition and 
multiplication operators: 

E → E+E 

E → E*E 

E → ID 

It is easy to see that this grammar produces all arithmetic expressions consisting of 
+ and *.  Consider the sentence ID+ID*ID.  This can be parsed in two different ways: 

 
 

Figure 3-2 Ambiguous way to parse ID+ID*ID 

In the figure above, the parse tree to the left gives the addition operator precedence 
over multiplication.  In other words, an expression such as 3+5*9 is evaluated as 
(3+5)*9 with a result of 72.  Whereas, the tree to the right, does what is considered 
the standard practice in programming languages, i.e. giving * precedence over +.  
The previous example would be evaluated as 3+(5*9) resulting in 48.  

The above grammar can be rewritten so that the new grammar produces the same 
language as the original at the same time every string in the language would have a 
unique parse tree.  For example, the following grammar produces parse trees that 
give * precedence over +: 
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E → E+T | T 

T → T*ID | ID 

In general, this is not always possible.  As mentioned before, some languages don’t 
have unambiguous grammars.  

The ambiguity in the grammar for arithmetic expressions exists even if we had only 
one operator.  Consider 

E → E+E | ID 

This grammar is ambiguous as well.  The sentence ID+ID+ID has two parse trees 
as shown below: 

 

Figure 3-3 The Associativity Problem 

The parse tree to the left interprets ID+ID+ID as (ID+ID)+ID while the one to the 
right treats it as ID+(ID+ID).  In mathematics, since addition is associative, both 
interpretations yield identical results.  However, in programming languages, owing to 
the limited precision of floating point numbers, the addition operator is not strictly 
associative.  To avoid confusion, many programming languages specify the operator 
evaluation order when two operators of equal precedence are encountered.  
Typically, + and * are left associative.  That is, the interpretation used by the first 
tree is used.  An example of an operator that is right associative is the 
exponentiation operator.  The grammar above can also made unambiguous with 
left-to-right associativity as 

E → E+ID | ID 

As an exercise, try to come up with an unambiguous grammar for arithmetic 
expressions involving +, * and ^ (exponentiation) operators so that ^ has 
precedence over * which has precedence over +.  Make the ^ operator right 
associative and the other two operators left associative. 

3.4 A Language that is not Context-Free 

Consider the language {anbncm | m, n ≥ 1}.  A grammar for this language is  

S → PQ 

P → aPb | ab 

Q → cQ | c 
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However, a slight variation of this language {anbncn | n ≥ 1} can shown to be not 
context free! 

3.5 Chomsky Hierarchy 

The language {anbncn | n ≥ 1} can be captured by context-sensitive grammar (CSG).  
These grammars are a more powerful formalism than CFGs. There are languages 
that cannot be expressed using CSGs.  For these, we use unrestricted grammars.  

The hierarchical relationship between various formalisms in language theory is 
shown as a Venn diagram.  This is called the Chomsky hierarchy. 

 

Figure 3-4 Chomsky Hierarchy.  

As is clear from the figure above that if a language is regular, then it is also context-

free.  The converse is not true.  For example, {anbn | n ≥ 1} is context-free, but not 
regular. Similarly, if a language is context-free, then it is context-sensitive. Again, 

the inclusion is strict. As mentioned before {anbncn | n ≥ 1} is not context-free, but 
context-sensitive.  This behavior continues for another level to unrestricted 
grammars.  The discussion involving the last two sets is beyond the scope of this 
course.  

It should be noted however that the fact that some languages do not have CFGs 
has an impact on programming-language translation.  That is, certain syntactic 
constraints cannot be enforced during the parsing phase using context-free 
grammars.  Some examples are 

• Checking that a variable is declared before it is used, 

• Ensuring that an array declared to have two dimensions is referenced with 
exactly two subscripts, 

• Making sure that no identifier is declared twice within the same block, 

• Verifying that the number and the order of parameters in a function call 
match those in the signature of the function, and  
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• Type checking. 

These are typically enforced as a separate phase after parsing. This check is known 
as the static-semantic check; despite the name, it should be noted that the checks 
enforced in this phase are strictly syntactic and have nothing to do with semantics. 

4 Equivalent Syntactic Formalisms 

There are two formalisms that are commonly used to express the syntax of 
programming languages: Extended BNF (EBNF) notation and syntax graphs. It 
should be noted that these formalisms only provide convenience and are not any 
more powerful than context-free grammars.  

In EBNF, the nonterminals are enclosed between angular brackets. The production 
rules use the symbol ::= instead of an arrow. Recursive production rules can be 
simplified by using Kleene closure. Square brackets are used indicate an optional 
element that can be used at most once. Zero or more uses of an element is 
expressed by enclosing that element within curly braces. Vertical bar, as shown in 
the examples before, gives the alternatives for a production. 

Here is an example grammar in EBNF for assignment statements: 

〈 assignment 〉  ::= 〈 variable 〉 = 〈 expression 〉  

〈 expression 〉  ::= 〈 term 〉 { [+ | -] 〈 term 〉 }* 

〈 term 〉  ::= 〈 primary 〉 {[×  | /] 〈 primary 〉 }* 

〈 primary 〉  ::= 〈 variable 〉  | 〈 number 〉  | ( 〈 expression 〉 ) 

〈 variable 〉  ::= 〈 identifier 〉  | 〈 identifier 〉 [ 〈 subscript list 〉 ] 
〈 subscript list 〉  ::= 〈 expression 〉 {, 〈 expression 〉 }* 

In the grammar above, choices on the right side are enclosed between regular 
square brackets whereas the terminal symbol for square bracket that is used to 
enclose array indices is shown in bold. This grammar can be shown graphically 
using syntax charts as in the figure below:  
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Figure 3--5 Syntax graph corresponding to the example EBNF grammar 

Exercises 

1. Give context-free grammars generating the following sets: 

(a) The set of palindromes (strings that read the same forward as backward) 
over {a,b}. 

(b) The complement of {anbn | n≥0} 

2. Show that CFGs are closed under concatenation, union, and Kleene closure. (A 
set S is closed under an operation, if the result of applying that operator also 
belongs to the set S. For example, the set of integers are closed under addition, 
but not under division.) 

Problems 

1. Give context-free grammars generating the following sets: 

(a) {aibjck | i≠ j or j≠ k}. 
(b) The set of all valid regular expressions over {0,1,|,(,),*} 
(c) {w | w contains more 1s than 0s} 

2. Consider the following unambiguous grammar for arithmetic expressions: 



L E C T U R E  3  

Ramki Thurimella © 9/21/2005  8 

E →  E + T | T 

T →  T * F | F 

F →  (E) | ID 

Change it to an unambiguous grammar that produces all arithmetic expressions 
with no redundant parentheses. Note that a set of parentheses is redundant if its 
removal does not change the expression, e.g., the parentheses are redundant in 
ID+(ID*ID) but not in (ID+ID)*ID. 

3. Is the following grammar ambiguous? 

S →  aB | bA 

A →  a | aS | bAA 

B →  b | bS | aBB 

4. Show using mathematical induction that the strings in the language produced by 
the following grammar do not contain ba. 

S →  aS | Sb | a | b 

5. Give a simple English description of the language generated by the following 
grammar: 

S →  aSb | bY | Ya 

Y →  bY | aY | ε 

Answers to Exercises 

1. (a) S →  aSa | bSb | a | b | ε 

(b) The desired set consists of two subsets: One consisting of all strings that have ba as a 

substring, and the other {ambn | m≠n}. Producing them separately and taking a union, we get 

 S → S1 | S2 

 S1 → X ba X 

 X → aX | bX | ε 
 

 S2 → a S2 b | A | B 

 A → aA | a 

 B → bB | b 

2. We will show CFGs are closed under concatenation. Let G1 and G2 be two 
context-free grammars. Let S1 and S2 be the start of the production rules in G1 
and G2 respectively. Now, we can create new grammar G3 from G1 and G2 that 
produces L(G1)L(G2). Introduce a new start symbol S3 and the production rule S3 

→ S1S2 to G3. Also, add all production rules of G1 and G2 to G3. It is easy to see that G3 
is a context-free grammar that produces L(G1)L(G2). Proofs for other operations 
are similar. 


