
Ramki Thurimella © 9/21/2005 1

.

L E C T U R E 3

Context-Free Grammars

1 Where are Context-Free Grammars (CFGs) Used?

CFGs are a more powerful formalism than regular expressions. They are more
powerful in the sense that whatever can be expressed using regular expressions
can be expressed using grammars (short for context-free grammars here), but they
can also express languages that do not have regular expressions. An example of
such a language is the set of well-matched parenthesis. Grammars are used to
express syntactic rules. These rules are used by the compiler to take a steam of
tokens (the output from a scanner/lexical analyzer) and parse it for syntactic
correctness, e.g. checking that each construct is well formed, all parentheses are
matched, or all keywords are spelled correctly. This process is known as parsing.

2 Definitions

A context-free grammar G is a 4-tuple <N,T,P,S> where N is a set of nonterminals,

T is a set of terminals, P is a set of production rules of the form A→α, A is an

element of set N, i.e. A∈N, and α∈(N∪ T)*, and S is a specific non-terminal called

the start symbol. Sometimes, the set of terminals is also referred to as the alphabet.

Recall that for a set of strings I, the notation I*, Kleene closure, refers to the set of all
strings obtained by concatenation of zero or more elements taken from the set I in
any order. For example, if I={a,b,A,B}, then the set I* is

{ε, a, b, A, B, aa, bb, AA, BB, ab, ba, aA, Aa,aB, Ba, bA, Ab, bB, Bb,...}

where ε is the empty string.

Here are other definitions related to context-free grammars and languages:

A derivation using the rule A→α is the process of obtaining a new string from a

string w by replacing an occurrence of A in w with α.

A sentence is a string consisting of only terminal symbols. A valid sentence with
respect to grammar G is a sentence that can be derived using the production rules
of G starting from S and ending with a sentence. A leftmost (rightmost) derivation is

L E C T U R E 3

Ramki Thurimella © 9/21/2005 2

one in which at every step the leftmost (resp. rightmost) nonterminal is replaced.
For a grammar G, the language generated by G (denoted L(G)) is the set of all valid
sentences with respect to G. A grammar is said to be ambiguous if L(G) contains a
string w such that w has two or more leftmost or rightmost derivations. Sometimes it
is possible to rewrite a grammar so that the new grammar produces the same
language as the original, but it is not ambiguous. When all grammars for a language
are ambiguous, then that language is said to be inherently ambiguous. There are
languages that are inherently ambiguous. This is a mathematically established fact
the proof of which is beyond the scope of this course.

A tree is a parse tree for a sentence w of L(G) if every node of the tree has a label

from N∪ T and it further satisfies the following conditions.

• The root of the tree is labeled S.

• All the leaves are labeled with terminal symbols which when concatenated
from left to right will give w.

• All interior nodes are labeled with a nonterminal symbol.

• If an interior node is labeled A and its children from left to right are labeled X1,
X2... Xk where each Xi is either a terminal or a nonterminal symbol, then G

must contain production rule of the form A→X1X2...Xk.

3 Examples

3.1 Equal Number of a’s and b’s

Implicit in the question is the fact that T={a,b}. Here is a grammar for it:

N = {S}
S = S

P = {S → aSb, S → bSa, S → SS, S → ε }

For brevity, we write the above grammar as S → aSb | bSa | SS | ε, and leave out
the details. Our convention is to assume that the left-side nonterminal of the first
production rule is the start symbol. Uppercase letters stand for nonterminals.
Numbers and lowercase letters constitute the terminals.

3.2 Set of Balanced Parenthesis

Here T = {(,)}. The grammar is S → (S) | SS | ε.

L E C T U R E 3

Ramki Thurimella © 9/21/2005 3

Figure 3-1 A parse tree for the string (())()

Here is an example of a leftmost derivation:

S → SS → (S)S → ((S))S→ (())S→ (())(S) → (())()

3.3 Ambiguity

Consider the grammar for arithmetic expressions involving addition and
multiplication operators:

E → E+E

E → E*E

E → ID

It is easy to see that this grammar produces all arithmetic expressions consisting of
+ and *. Consider the sentence ID+ID*ID. This can be parsed in two different ways:

Figure 3-2 Ambiguous way to parse ID+ID*ID

In the figure above, the parse tree to the left gives the addition operator precedence
over multiplication. In other words, an expression such as 3+5*9 is evaluated as
(3+5)*9 with a result of 72. Whereas, the tree to the right, does what is considered
the standard practice in programming languages, i.e. giving * precedence over +.
The previous example would be evaluated as 3+(5*9) resulting in 48.

The above grammar can be rewritten so that the new grammar produces the same
language as the original at the same time every string in the language would have a
unique parse tree. For example, the following grammar produces parse trees that
give * precedence over +:

L E C T U R E 3

Ramki Thurimella © 9/21/2005 4

E → E+T | T

T → T*ID | ID

In general, this is not always possible. As mentioned before, some languages don’t
have unambiguous grammars.

The ambiguity in the grammar for arithmetic expressions exists even if we had only
one operator. Consider

E → E+E | ID

This grammar is ambiguous as well. The sentence ID+ID+ID has two parse trees
as shown below:

Figure 3-3 The Associativity Problem

The parse tree to the left interprets ID+ID+ID as (ID+ID)+ID while the one to the
right treats it as ID+(ID+ID). In mathematics, since addition is associative, both
interpretations yield identical results. However, in programming languages, owing to
the limited precision of floating point numbers, the addition operator is not strictly
associative. To avoid confusion, many programming languages specify the operator
evaluation order when two operators of equal precedence are encountered.
Typically, + and * are left associative. That is, the interpretation used by the first
tree is used. An example of an operator that is right associative is the
exponentiation operator. The grammar above can also made unambiguous with
left-to-right associativity as

E → E+ID | ID

As an exercise, try to come up with an unambiguous grammar for arithmetic
expressions involving +, * and ^ (exponentiation) operators so that ^ has
precedence over * which has precedence over +. Make the ^ operator right
associative and the other two operators left associative.

3.4 A Language that is not Context-Free

Consider the language {anbncm | m, n ≥ 1}. A grammar for this language is

S → PQ

P → aPb | ab

Q → cQ | c

L E C T U R E 3

Ramki Thurimella © 9/21/2005 5

However, a slight variation of this language {anbncn | n ≥ 1} can shown to be not
context free!

3.5 Chomsky Hierarchy

The language {anbncn | n ≥ 1} can be captured by context-sensitive grammar (CSG).
These grammars are a more powerful formalism than CFGs. There are languages
that cannot be expressed using CSGs. For these, we use unrestricted grammars.

The hierarchical relationship between various formalisms in language theory is
shown as a Venn diagram. This is called the Chomsky hierarchy.

Figure 3-4 Chomsky Hierarchy.

As is clear from the figure above that if a language is regular, then it is also context-

free. The converse is not true. For example, {anbn | n ≥ 1} is context-free, but not
regular. Similarly, if a language is context-free, then it is context-sensitive. Again,

the inclusion is strict. As mentioned before {anbncn | n ≥ 1} is not context-free, but
context-sensitive. This behavior continues for another level to unrestricted
grammars. The discussion involving the last two sets is beyond the scope of this
course.

It should be noted however that the fact that some languages do not have CFGs
has an impact on programming-language translation. That is, certain syntactic
constraints cannot be enforced during the parsing phase using context-free
grammars. Some examples are

• Checking that a variable is declared before it is used,

• Ensuring that an array declared to have two dimensions is referenced with
exactly two subscripts,

• Making sure that no identifier is declared twice within the same block,

• Verifying that the number and the order of parameters in a function call
match those in the signature of the function, and

L E C T U R E 3

Ramki Thurimella © 9/21/2005 6

• Type checking.

These are typically enforced as a separate phase after parsing. This check is known
as the static-semantic check; despite the name, it should be noted that the checks
enforced in this phase are strictly syntactic and have nothing to do with semantics.

4 Equivalent Syntactic Formalisms

There are two formalisms that are commonly used to express the syntax of
programming languages: Extended BNF (EBNF) notation and syntax graphs. It
should be noted that these formalisms only provide convenience and are not any
more powerful than context-free grammars.

In EBNF, the nonterminals are enclosed between angular brackets. The production
rules use the symbol ::= instead of an arrow. Recursive production rules can be
simplified by using Kleene closure. Square brackets are used indicate an optional
element that can be used at most once. Zero or more uses of an element is
expressed by enclosing that element within curly braces. Vertical bar, as shown in
the examples before, gives the alternatives for a production.

Here is an example grammar in EBNF for assignment statements:

〈 assignment 〉 ::= 〈 variable 〉 = 〈 expression 〉

〈 expression 〉 ::= 〈 term 〉 { [+ | -] 〈 term 〉 }*

〈 term 〉 ::= 〈 primary 〉 {[× | /] 〈 primary 〉 }*

〈 primary 〉 ::= 〈 variable 〉 | 〈 number 〉 | (〈 expression 〉)

〈 variable 〉 ::= 〈 identifier 〉 | 〈 identifier 〉 [〈 subscript list 〉]
〈 subscript list 〉 ::= 〈 expression 〉 {, 〈 expression 〉 }*

In the grammar above, choices on the right side are enclosed between regular
square brackets whereas the terminal symbol for square bracket that is used to
enclose array indices is shown in bold. This grammar can be shown graphically
using syntax charts as in the figure below:

L E C T U R E 3

Ramki Thurimella © 9/21/2005 7

Figure 3--5 Syntax graph corresponding to the example EBNF grammar

Exercises

1. Give context-free grammars generating the following sets:

(a) The set of palindromes (strings that read the same forward as backward)
over {a,b}.

(b) The complement of {anbn | n≥0}

2. Show that CFGs are closed under concatenation, union, and Kleene closure. (A
set S is closed under an operation, if the result of applying that operator also
belongs to the set S. For example, the set of integers are closed under addition,
but not under division.)

Problems

1. Give context-free grammars generating the following sets:

(a) {aibjck | i≠ j or j≠ k}.
(b) The set of all valid regular expressions over {0,1,|,(,),*}
(c) {w | w contains more 1s than 0s}

2. Consider the following unambiguous grammar for arithmetic expressions:

L E C T U R E 3

Ramki Thurimella © 9/21/2005 8

E → E + T | T

T → T * F | F

F → (E) | ID

Change it to an unambiguous grammar that produces all arithmetic expressions
with no redundant parentheses. Note that a set of parentheses is redundant if its
removal does not change the expression, e.g., the parentheses are redundant in
ID+(ID*ID) but not in (ID+ID)*ID.

3. Is the following grammar ambiguous?

S → aB | bA

A → a | aS | bAA

B → b | bS | aBB

4. Show using mathematical induction that the strings in the language produced by
the following grammar do not contain ba.

S → aS | Sb | a | b

5. Give a simple English description of the language generated by the following
grammar:

S → aSb | bY | Ya

Y → bY | aY | ε

Answers to Exercises

1. (a) S → aSa | bSb | a | b | ε

(b) The desired set consists of two subsets: One consisting of all strings that have ba as a

substring, and the other {ambn | m≠n}. Producing them separately and taking a union, we get

 S → S1 | S2

 S1 → X ba X

 X → aX | bX | ε

 S2 → a S2 b | A | B

 A → aA | a

 B → bB | b

2. We will show CFGs are closed under concatenation. Let G1 and G2 be two
context-free grammars. Let S1 and S2 be the start of the production rules in G1
and G2 respectively. Now, we can create new grammar G3 from G1 and G2 that
produces L(G1)L(G2). Introduce a new start symbol S3 and the production rule S3

→ S1S2 to G3. Also, add all production rules of G1 and G2 to G3. It is easy to see that G3
is a context-free grammar that produces L(G1)L(G2). Proofs for other operations
are similar.

