
Basic Introduction to UNIX/linux

Claude Cantin (claude.cantin@nrc.ca)

http://www.nrc.ca/imsb/rcsg

Research Computing Support Group
Information Management Services Branch

National Research Council

April 9, 2006

2

This page intentionally left blank.

3

This document was produced by Claude Cantin of the National Research
Council of Canada. Reproductions are permitted for non-profit purposes
provided the origin of the document is acknowledged.

Claude Cantin
National Research Council of Canada

4

History of printing:

Date Copies

March 2003 200
March 2001 200
June 1999 200
November 1997 200
July 1996 200
November 1995 150
March 1995 150
February 1994 150
October 1993 100
August 1993 75
February 1993 75
November 1992 35
September 1992 40
February 1992 50
December 1991 50
April 1991 50
September 1990 40
January 1990 40

Table 1: Printings.

Contents

1 Introduction 3

1.1 History . 4

1.1.1 BSD: Berkeley System Distribution 5

1.1.2 XENIX . 5

1.1.3 Linux . 5

1.1.4 System V (formerly known as “AT&T” System V) . . 6

1.2 History (continued) . 6

1.3 The UNIX Operating System 9

1.3.1 Multi-tasking, Time Sharing 9

1.3.2 Multi-user . 11

1.3.3 Network Capabilities 11

1.3.4 Portability . 11

1.3.5 Flexibility . 11

1.3.6 Software Available . 12

1.3.7 Virtual Memory . 13

1.3.8 Case Sensitivity . 13

1.4 UNIX Philosophy . 13

1.5 Exercises . 13

2 File System 15

2.1 File and Directory Names . 15

2.1.1 Length . 15

2.1.2 Conventions . 15

2.2 Structure of Directories, Files 16

2.3 Permissions/File Access Modes 16

2.3.1 chmod: Change Mode (Permissions) 18

2.4 Exercises . 20

i

ii CONTENTS

3 Tour of the File system 21
3.1 /: Root . 21
3.2 /bin and /usr/bin: Commands 21
3.3 /dev: Devices . 22
3.4 /etc and /usr/etc: Management 22
3.5 Home Directories . 22
3.6 /lib and /usr/lib: Libraries 23
3.7 /tmp: Temporary Directories 23
3.8 /var: Directories . 23

3.8.1 /var/adm: Administration 23
3.8.2 /var/mail: System Mailboxes 24
3.8.3 /var/spool: Spooling Areas 24
3.8.4 /var/tmp: Temporary Directory 24

3.9 /usr: Directories . 24
3.9.1 /usr/bsd: Berkeley Binaries 24
3.9.2 /usr/demos: Demonstration 24
3.9.3 /usr/include: Include Files 25
3.9.4 /usr/local: Local Programs 25
3.9.5 /usr/sbin: More Binaries 25
3.9.6 /usr/share: Shareable Directories 25

/usr/share/lib/dict: Dictionary 25
/usr/share/lib/Insight: Documentation 26
/usr/share/doc: Linux Documentation 26
/usr/share/lib/spell: Speller 26
/usr/share/lib/terminfo: Terminal Database 26
/usr/share/man and /usr/share/catman: Manuals . 26

3.9.7 /usr/tmp: Temporary 26
3.10 Exercises . 27

4 Shells 29
4.1 Input/Output Redirection . 30

4.1.1 <: Input Redirection 30
4.1.2 >, >>: Standard Output 31
4.1.3 2>, >&: Standard Diagnostic (Error) Output 31

4.2 |: Pipes . 32
4.3 Pipes and Redirections . 33
4.4 &: Background Processing . 33
4.5 Metacharacters (Wildcards) 34

CONTENTS iii

4.5.1 ∗: Any Character(s) 34
4.5.2 [,]: List of Characters 34
4.5.3 ?: Any Single Character 35
4.5.4 {,}: Alternatives (except Korn Shell) 35
4.5.5 \: Escape . 35

4.6 Shell/Job Control . 35
4.6.1 jobs: list background jobs 36
4.6.2 CTL-Z: suspend a job 36
4.6.3 bg: send a job in the backgroup 37
4.6.4 fg: bring a job in the foreground 37
4.6.5 CTL-C: kill a job . 37
4.6.6 Sample session . 37

4.7 C Shell . 38
4.7.1 path: Search Path . 38
4.7.2 history . 39
4.7.3 alias . 40

4.8 Tenex Shell . 40
4.9 Bourne Shell . 41

4.9.1 PATH . 41
4.9.2 history . 42
4.9.3 alias . 42

4.10 Korn Shell . 42
4.10.1 PATH: Search Path . 42
4.10.2 history . 42
4.10.3 aliases . 44
4.10.4 Other Miscellaneous Commands 44

4.11 Bash Shell . 45
4.11.1 PATH: Search Path . 45
4.11.2 history . 45
4.11.3 aliases . 45

4.12 Exercises . 46

5 Basic Security 49
5.1 File Permissions . 49
5.2 Passwords . 49
5.3 Root Password . 50
5.4 SSH . 50
5.5 TCP Wrappers . 51

iv CONTENTS

5.6 Exercises . 51

6 Commands I 53
6.1 A Command is a File . 53
6.2 Syntax . 54
6.3 Login Related Commands . 54

6.3.1 Logging On . 54
6.3.2 Changing Password . 55
6.3.3 Logging Out . 55

6.4 Help . 55
6.4.1 man: Manual Pages . 56
6.4.2 Manuals on CDs . 56

6.5 File system Commands: Directories 58
6.5.1 cd: Change Directory 58
6.5.2 mkdir: Make Directory 58
6.5.3 rmdir: Remove Directory 59
6.5.4 pwd: Print Working Directory 59
6.5.5 cp: Copy . 59
6.5.6 mv: Move . 60

6.6 File system Commands: Files 60
6.6.1 ls: Listing . 61
6.6.2 cp: Copy . 62
6.6.3 mv: Move . 63
6.6.4 ln: Link . 64
6.6.5 touch: Update . 65
6.6.6 rm: Remove . 65
6.6.7 cat: Concatenate . 66
6.6.8 more: Browser . 66
6.6.9 head: Header . 67
6.6.10 tail: Tail End . 67
6.6.11 wc: Word Count . 68
6.6.12 diff: Difference . 68
6.6.13 file: Type of File . 69

6.7 Printer Commands (Berkeley; lpr/lprm) 70
6.7.1 lpr: Line Printer . 70
6.7.2 lpq: Line Printer Queue, Statistics 70
6.7.3 lprm: Line Printer Remove 71

6.8 Printer Commands (System V; lp/cancel) 71

CONTENTS v

6.8.1 lp: Line Printer . 72
6.8.2 lpstat: Line Printer Queue, Statistics 72
6.8.3 cancel: Line Printer Remove 73

6.9 Printer Commands (linux; kprinter) 73
6.10 User Related Commands . 73

6.10.1 who: Who is On . 73
6.10.2 who am i, whoami: Who Am I 75

6.11 Other Miscellaneous Commands 75
6.11.1 date: Display Date . 75
6.11.2 clear: Clear the Screen 76

6.12 Exercises . 76

7 Editors 79
7.1 “ed” Editor . 79

7.1.1 Accessing ed . 80
7.1.2 Moving Within a File 80
7.1.3 Finding a Pattern . 80
7.1.4 “s” Substitute . 81
7.1.5 “c” Change Line . 81
7.1.6 “a” Append Text . 81
7.1.7 “i” Input Text . 81
7.1.8 “.” Current Line . 81
7.1.9 “p” Print Line(s) . 82
7.1.10 “d” Delete . 82
7.1.11 “w” Write . 82
7.1.12 “q” Quit . 83

7.2 “vi” Visual Editor – Introduction 83
7.2.1 Invoking vi . 83
7.2.2 vi, command and input modes 84
7.2.3 “vi” visual Editor – vi mode 84
7.2.4 Moving the Cursor . 84
7.2.5 “^f” Forward One Screen 86
7.2.6 “^b” Backwards One Screen 86
7.2.7 “G” End of File . 86
7.2.8 “x, d” Delete Character 86
7.2.9 “dd” Delete Line . 86
7.2.10 “yy” Copy Line in buffer 86
7.2.11 “p” Put Buffer . 86

vi CONTENTS

7.2.12 “u” Undo . 87
7.2.13 “.” (dot) Repeat . 87
7.2.14 “vi” visual Editor – command mode 87
7.2.15 “:q” Quit . 87
7.2.16 “:w” Write . 87
7.2.17 “:r” Read . 88
7.2.18 “:num” Line Number 88
7.2.19 “/string/” Finding a Pattern 88
7.2.20 “n” Next . 88
7.2.21 :set all . 88
7.2.22 “vi” visual Editor – input mode 88
7.2.23 “i” Insert Mode . 88
7.2.24 “a” Append to Character Mode 89
7.2.25 “A” Append to Line Mode 89
7.2.26 “r” Replace Character 89
7.2.27 “R” Replace Characters 89
7.2.28 “cw” Change Word . 89

7.3 Other Editors . 89
7.3.1 GNU Emacs . 90
7.3.2 textedit . 90
7.3.3 jot . 90
7.3.4 vuepad . 90
7.3.5 nedit . 90
7.3.6 pico . 90

7.4 Exercises . 90

8 Electronic Mail 93
8.1 Mail at NRC . 93
8.2 Internet node: Machine Naming Convention 93
8.3 Mail Forwarders . 94
8.4 Mail Folders . 95
8.5 Signature Files . 95
8.6 Mail Aliases . 96
8.7 MIME: Multi-purpose Internet Mail Extensions 96
8.8 .forward: Forwarding Mail 97
8.9 .vacation: I’m away from my desk 97
8.10 Securely Accessing POP/IMAP Mailboxes 98

8.10.1 SSH tunneling of email from UNIX to UNIX 99

CONTENTS vii

8.10.2 SSH tunneling of email from a Windows application to
UNIX . 101

8.10.3 fetchmail: bring remote mail to local system 101
Manual fetchmail . 103
Automated/daemon fetchmail mode 103

8.11 The Berkely (BSD) Mail Interface 104
8.11.1 Sending Mail . 104

~r filename: Read Filename 105
~v: Invoking the Visual Editor 105

8.11.2 Reading Mail . 106
n: Next . 106
p: Print . 106
num: Print message num 107
s: Save . 107
Sending a file to a printer 107
h: Header . 107
d: Delete . 107
r: Reply . 107
s: Forward . 108
~m: Incorporating current message 108
q: Quit . 108

8.11.3 Configuring Mail Behaviour 108
8.11.4 Mail Folders . 109

Creating a Folder . 109
Reading from a Folder 109
.record, a special folder 109

8.11.5 Mail Aliases . 109
8.11.6 MIME: Multi-purpose Internet Mail Extensions 109

8.12 ELM: ELectronic Mail . 110
8.12.1 Sending Mail . 110

Standalone Mode . 110
Within the Interface 112
Batch Mode . 112

8.12.2 Reading Mail . 112
n: Next . 114
s: Save . 114
p: Printing to a printer 114
d: Delete current message 114

viii CONTENTS

r: Reply to sender . 114

f: Forward . 115

q: Quit . 115

8.12.3 Configuring Mail Behaviour 115

8.12.4 Mail Folders . 118

Creating a Folder . 118

Reading from a Folder 118

Changing Folders . 119

8.12.5 Mail Aliases . 119

8.12.6 MIME: Multi-purpose Internet Mail Extensions 122

MIME and elm: receiving messages. 122

MIME and elm: sending messages. 123

8.13 The Pine mail interface . 123

8.13.1 Sending Mail . 123

Standalone Mode . 123

Within the Interface 126

Batch Mode . 126

8.13.2 Reading Mail . 126

n: Next . 128

s: Save . 128

p: Printing to a printer 128

d: Delete current message 128

r: Reply to sender . 128

f: Forward . 129

q: Quit . 129

8.13.3 Configuring Mail Behaviour 129

8.13.4 Mail Folders . 131

Creating a Folder . 131

Reading from a Folder 131

Changing Folders . 131

8.13.5 Mail Aliases . 132

8.13.6 MIME: Multi-purpose Internet Mail Extensions 133

Sending MIME messages 133

Receiving MIME messages 133

8.14 Exercises . 135

CONTENTS ix

9 Commands II 137
9.1 Location Commands . 137

9.1.1 whereis: Where Is . 137
9.1.2 which: Which Program 138
9.1.3 find: Find . 138
9.1.4 locate: find files . 139

9.2 Process Commands . 140
9.2.1 ps: Process Status . 140
9.2.2 kill: Kill Process . 142

9.3 Verifying System Behaviour 142
9.3.1 df: Disk Space . 142
9.3.2 du: Directory Usage 143
9.3.3 top: Show Top Processes 144
9.3.4 sar: System Activity Report 147
9.3.5 swap/swapon: Virtual memory 148

9.4 Exercises . 150

10 Solutions to Exercises 151
10.1 Introduction . 151
10.2 File System . 153
10.3 Tour of the File system . 154
10.4 Shells . 155
10.5 Security . 158
10.6 Commands I . 160
10.7 Editors . 165
10.8 Electronic Mail . 166
10.9 Commands II . 168

A vi Quick Reference 169

B Bibliography 173

x CONTENTS

List of Tables

1 Printings. 4

1.1 UNIX variants on the market. 12

3.1 HOME directories . 22

4.1 Redirections and Pipes. 33

6.1 Sun, SGI and Linux man page sections. 57
6.2 Tools to read “CD” manual set. 57

7.1 Summary of vi Commands. 85

xi

xii LIST OF TABLES

List of Figures

1.1 History of UNIX . 7
1.2 UNIX Systems . 10

2.1 Structure of File System . 17

6.1 kprinter interface . 74

8.1 elm interface. 111
8.2 elm Interface: Expert User Level Menu. 113
8.3 elm Options Menu. 116
8.4 elm Alias Interface. 120
8.5 Content of .elm/aliases.text 121
8.6 elm Attachments Menu (incoming messages) 122
8.7 elm Attachments Menu (outgoing messages) 123
8.8 pine interface. 124
8.9 pine: Sending Mail. 125
8.10 pine interface. 127
8.11 pine Configuration Menu. 130
8.12 pine ADDRESS BOOK menu structure 132
8.13 pine Attachments Menu . 134

1

2 LIST OF FIGURES

Chapter 1

Introduction

This course is intended for people not familiar with the UNIX/linux operating
system, but familiar with other computer systems such as MS Windows, DOS
or VMS. It is meant as an introduction for beginners to help them understand
concepts behind the UNIX/linux operating system. Intermediate users may
find the course useful as a refresher.

Up to 2003, most of the command examples used throughout the text
were performed using a Silicon Graphics O2, running IRIX 6.5. But since
September 2003, the hands-on portion of the course is done using the linux
(SuSE 8.2, then 9.0) operating system, which means most commands are now
done with linux. SGI systems running IRIX, Sun systems running Solaris,
Hewlett-Packards running HP/UX, IBM RS/6000s running AIX and most
PCs (and other architectures) running linux use most of the commands de-
scribed in this manual. They use the same basic commands, although some
of the options used may vary slightly between the different architectures.

In specific cases, the book uses commands based on linux. The distribu-
tion used was SuSE version 7.3 and newer.

NOTES :

• This book refers to various UNIX derivatives running on “worksta-
tions”.

The author’s definition of “workstation” includes systems such as the
Sun Microsystems SPARCstation family, the Silicon Graphics Personal
IRIS, Indigo, Indigo2, Power Series, Challenge, Power Challenge, Onyx,
Power Onyx, Indy, O2, Octane, Origin and Altix families, the IBM

3

4 CHAPTER 1. INTRODUCTION

RS/6000 series, the HP 9000 model 700 and 800 families, the Com-
paq AXP families (systems running True UNIX), and 500+ MHz PCs
running one of the linux distributions.

• Although most sections refer to UNIX in general, some refer to a specific
architecture. Others may refer to NRC-specific topics. Those sections
are generally clearly indicated.

• This book also refers to various linux distributions, notably SuSE 7.x
and 8.x, and Red Hat 7.x and 8.x.

1.1 History

The UNIX story begins in 1969, when AT&T Bell Labs dropped out of a
joint project between themselves, General Electric, and the Massachusetts
Institute of Technology. Multics, the project in question, was an experi-
mental operating system on the GE 645 (thanks to Tom Van Vleck from
http://www.multicians.org for correcting details from pre-2002 versions of
the course notes).

Ken Thompson and Dennis Ritchie, both from Bell Labs, had been ex-
posed to the Multics project. They ported a game, called ‘Space Travel’,
from the GE 645 running Multics, onto a PDP-7. To help them do the port-
ing, Thompson wrote a “simple file system and some utilities for the PDP-7”
[8, p. 3]. This was the birth of UNIX, in 1970 (“UNIX” was meant to be a
pun on “Multics”).

Late in 1970, a PDP-11/20 was purchased, and UNIX became an official
Bell Labs project. The first UNIX edition “was documented in a manual
authored by Thompson and Ritchie dated November 1971” [1, p. 2]. Most of
the ideas found in today’s UNIX systems were incorporated in this edition.

The second edition, 1972, incorporated the piping concept.
In 1973, UNIX was re-written in C, by Thompson and Ritchie. Note

that Ritchie developed the C language (derived from the B language by
Thompson) at approximately the same time.

UNIX was first distributed in May 1975 for a nominal fee. This was UNIX
Version 6.

In 1979, a more portable version of UNIX (Version 7) was released for
general use; from here, three major UNIX versions emerged: BSD (Berkeley
System Distribution), XENIX, and AT&T’s System V.

1.1. HISTORY 5

1.1.1 BSD: Berkeley System Distribution

The University of California at Berkeley acquired Version 4 of UNIX in 1974.
In 1975, during a sabbatical leave from Bell Labs, Ken Thompson went to
Berkeley and helped install UNIX Version 6 on a PDP-11/70. “The same
year, two graduate students also arrived at Berkeley: Bill Joy and Chuck Ha-
ley” [8, p. 5] : they were to play an important role in the BSD developments.

Joy wrote the vi editor, and the C shell. Bill Joy is also one of the
co-founders of Sun Microsystems.

In 1978, 2BSD was released.
In 1979, a combination of improved 2BSD and UNIX Version 7 was re-

leased as 3BSD.
DARPA (the Defence Advanced Research Project Agency) funded the

development of 4BSD and 4.1BSD. The Fast File System was included in
4.2BSD which was released in 1983.

Finally, 4.3BSD was released in 1987.
Berkeley’s development of its BSD UNIX ended with the release of its last

major version, 4.4BSD, in 1992. Then, late in 1994, it released 4.4BSDlite.
Many UNIX variants are based on that last version, written to run better

on PC’s based on the Intel ’486 and Pentium CPUs, namely FreeBSD, NetBSD,
BSD/OS and OpenBSD. New versions of these versions became available in 1995.

1.1.2 XENIX

XENIX is directly based on UNIX Version 7. Its first version, 2.3, was
released in 1980 by Microsoft for use on microcomputers (IBM PCs or clones).

XENIX 3.0, released in 1983, included new features from 4.1BSD and
from AT&T’s System III.

Finally, the latest version, XENIX 5.0 was released in 1985, and conforms
to the System V Interface Definition.

Xenix is not used anymore.

1.1.3 Linux

linux is a version of UNIX (some would say a “UNIX clone”), based on the
original kernel work by Linus Torvalds in Helsinki, Finland. It runs mostly
on the x86 and Pentium family of micro-processors, but has been ported to
many other architectures.

6 CHAPTER 1. INTRODUCTION

The original kernel work by Linus Torvalds was done in the early 1990s.
Full linux distributions first appeared circa 1993. They were (still are) based
on Torvalds’ kernel, but consisted mostly of software/applications openly
available for anyone wishing to use it.

Different distributions of linux include Red Hat, Slackware, Caldera,
Debian, SuSE, Mandrake and many others.

Although linux may be downloaded at no charge (for free), it has a
copyright. It follows the GNU General Pulic License (GPL), in that it is
freely available, but if sold, a copy of the source code must be provided.

Details on GNU’s GPL is available at
http://www.gnu.org/copyleft/gpl.html.

Today (2003), linux is the fastest growing segment of any UNIX operating
system variant.

1.1.4 System V (formerly known as “AT&T” System
V)

Because of a “1956 consent decree, AT&T was limited in the businesses
that they could engage in and the patents they could licence...” [8, p. 4].
This consent decree delayed the introduction of AT&T’s first commercial
release by a few years. This first official release finally occurred in 1982,
and was called System III. This version did not include “important Berkeley
innovations, such as the C shell and screen editing capabilities” [8, p. 6].

The next version, System V, followed in 1983. This version did include
utilities such as vi and curses from the BSD.

System V Release 2 was released in 1984, and System V Release 3 in
1987.

Finally, System V Release 4 was officially announced on Nov 1, 1989, and
was released in 1990. This version combines System V Release 3, 4.3BSD,
XENIX, SunOS and new features in one operating system.

Figure 1.1 offers a graphical view of the evolution of the UNIX operating
system.

1.2 History (continued)

In 1988, two major competing UNIX groups emerged: the OSF (Open Soft-
ware Foundation) and UI (UNIX International). OSF was lead by IBM,

1.2.
H

IS
T

O
R
Y

(C
O

N
T

IN
U

E
D

)
7

System VR4

System VR3

System VR2

System V

System III Xenix 2.3

4.3BSD

4BSD

3BSD

Xenix 5.0

Xenix 3.0

2.9BSD
Version 7

2BSD
Version 5

BSD
Version 4

UNIX

4.4BSD

(IRIX 6.5)
(Solaris 8)2000

(IRIX 5.3)
(Solaris 2.4)

Linux

OpenBSD...
Slackware
Debian
RedHat
SuSE

1970

1995

NetBSD
FreeBSD
BSD/OS
4.4BSDlite

1990

1974

1979

1981

1983

1985

1987

F
igu

re
1.1:

H
istory

of
U

N
IX

8 CHAPTER 1. INTRODUCTION

Digital, and HP, whereas UI was lead by AT&T and Sun Microsystems.

The OSF was first formed to counter AT&T’s alliance with Sun Microsys-
tems to license and enhance the UNIX Operating system. OSF wanted to
write their own version of UNIX, based on IBM’s AIX.

UNIX International was formed shortly after to promote AT&T’s System
V UNIX system. The “special” alliance between AT&T and Sun Microsys-
tems was reduced to partnerships between all UI members.

In January 1990, UI and its members were applauding the release of UNIX
System V release 4 (SVR4, or V.4), which combines SVR3, BSD, XENIX,
and SunOS.

Early in 1993, Sun was shipping Solaris 2.1, completely based on SVR4.
Silicon Graphics starting shipping IRIX 5.0 in the spring or 1993 and IRIX
5.2 for all their systems in early 1994.

IRIX 6.0, a 64bit version, was shipping for the high-end systems in in the
fall of 1994. IRIX 6.2 is SGI’s “all-platform” newest release, released in the
Spring of 1996.

In January 1993, Novell purchased USL thus taking control of UNIX. In
September 1993, Novell re-organised and formed the UNIX Systems Group
(USG), which took control of UNIX.

In late 1995, Novell sold the control of UNIX (including UnixWare, Sys-
tem V Release 4.2 code) to the Santa Cruz Operation (SCO). In 2001, Caldera
Systems (a linux vendor) purchased SCO’s Server Software Division as well as
SCO’s Professional Services Division and became Caldera International.
What was left of SCO became Tarantella, now mostly a “professional ser-
vices” company.

In 2002, Caldera International, Inc. changed its name to The SCO

Group.

And in 2003, The SCO Group initiated a series of law suits against several
UNIX/linux vendors, claiming UNIX copyrighted code had made its way into
linux. Counter suits soon evolved.

This will likely take years to be resolved (to be followed!).

Most workstation vendors’ current 64 bit Operating Systems: SGI with
IRIX 6.5, Compaq (formerly Digital) with Tru64 UNIX (Compaq was ac-
quired by HP in 2002), HP with HP/UX 11, Sun with Solaris 9.

1.3. THE UNIX OPERATING SYSTEM 9

1.3 The UNIX Operating System

The UNIX system is mainly composed of three different parts: the kernel,
the file system, and the shell.

[The kernel] is that part of the system which manages the re-
sources of whatever computer system it lives on, to keep track
of the disks, tapes, printers, terminals, communication lines and
any other devices.

The file system is the organising structure for data. The file
system is perhaps the most important part of the UNIX operating
system. The file system goes beyond being a simple repository
for data, and provides the means of organizing the layout of the
data storage in complex ways.

The shell is the command interpreter. Although the shell is just
a utility program, and is not properly a part of the system, it is
the part that the user sees. The shell listens to your terminal and
translates your requests into actions on the part of the kernel and
the many utility programs. [7, p. 3]

file systems are discussed in chapters 2 and 3 of this manual, and shells
are discussed in chapter 4.

One can imagine the UNIX system as a series of three concentric circles,
with the inner circle representing the kernel, the second circle representing
the programming shell, and the last one representing application programs.
Figure 1.2 illustrates that concept.

The shell communicates to the kernel, and vice versa. The application
programs can communicate directly with both the shell and the kernel.

1.3.1 Multi-tasking, Time Sharing

UNIX is a multi-tasking operating system, which means that a number of
programs can run at the same time. Those programs (called processes) can
communicate with each other.

For example, a C program could be compiling as mail is being read or a
file is being edited.

Processes that “wake-up” occasionally, and/or regularly, are called dae-
mons. Daemons are used to synchronise disks, send and receive mail, print
documents, and so on.

10 CHAPTER 1. INTRODUCTION

Application
Programs

Shell

Kernel

Figure 1.2: UNIX Systems

1.3. THE UNIX OPERATING SYSTEM 11

1.3.2 Multi-user

UNIX is also multi-user: two, three, or more users are able to use the same
processor to execute their programs.

1.3.3 Network Capabilities

Today’s UNIX workstations come with TCP/IP and ethernet connections.
The same is true for PCs. At NRC the ethernet network connects dozens of
Suns, Silicon Graphics, VAXes, IBM RS/6000s, HPs, and most PCs together.

From any of those nodes, it is simple to logon to a remote machine, send
mail to a user on those machines, or transfer files to or from those nodes.

More on communications in a later chapter.

1.3.4 Portability

Traditionally, most operating systems were written in Assembler, for a spe-
cific architecture. It was therefore VERY painful – if at all possible – to
‘port’ the operating system to other architectures.

UNIX, on the other hand, is mostly written in the C language. This
alone allows UNIX to be portable to many architectures. Today, UNIX/linux
runs on more architectures than any other operating system in the world.
Examples of such architectures/processors are the Motorola 680X0-based
workstations, the 80X86 machines, the RISC based architectures (SPARC,
MIPS, 88000), VAXes, IBM mainframes, Amdahl, Cray, and many more.

And this does not include all the different architectures linux runs on.

Table 1.1 lists different UNIX versions vendors use.

1.3.5 Flexibility

UNIX is also a very flexible operating system, both for system administra-
tors and users. Program names can be changed. aliases can be defined.
Arguments to programs can also be changed. New programs can be built,
and put in the user’s own bin directory, thus allowing further customisation
of the system.

12 CHAPTER 1. INTRODUCTION

UNIX variant Vendor

SunOS Sun Microsystems
Solaris Sun Microsystems
IRIX Silicon Graphics Inc.
AIX IBM
HP-UX Hewlett Packard
OSF/1 HP (Compaq/Digital)
Digital UNIX HP (Digital)
A/UX Apple Computers
SCO Santa Cruz Operation
Destiny AT&T
XENIX Microsoft
UTS Amdahl
UniCos Cray
UXP Fujitsu
Linux Public domain
FreeBSD Public domain
NetBSD Public domain

Table 1.1: UNIX variants on the market.

1.3.6 Software Available

Thousands of application packages [12, p. 2] are available for the UNIX/linux
system.

In addition to the commercial packages, many programs are written and
made available in the public domain. Examples of such packages are the
X Window system, written at the Massachusetts Institute of Technology,
the TEX system produced at Stanford, and many other utilities/applications
written by individuals and organisations, for the benefit of the “Open Source
Community”. For many, it is their way of thanking the “Internet Commu-
nity” for the vast amount of resources available.

Linux is a perfect examples of the incredible amount of software available,
at no cost to individuals. In fact, most open source, freeware, or public
domain packages used in the scientific world are developed and maintained
on a linux platform. The same can be said of any open source, freeware,
or public domain packages developed on any UNIX variant: linux is the

1.4. UNIX PHILOSOPHY 13

platform of choice to develop/write software.

1.3.7 Virtual Memory

The UNIX operating system has virtual memory, or swap space, which means
it can run programs bigger than the amount of RAM the computer actually
has! The amount of virtual memory is decided upon by the system adminis-
trator.

1.3.8 Case Sensitivity

The most common mistake for beginners involves the use of mixed case in
UNIX commands: UNIX is case sensitive, i.e., “a” is different from “A”.

1.4 UNIX Philosophy

UNIX’s philosophy is the same as the C language’s: it assumes users know
what they are doing!!!

1.5 Exercises

1. What is the operating system that covers the widest range of
architectures? Why?

2. What are some of the advantages of running UNIX?

3. What is UNIX’s main philosophy?

4. Name some of the reasons people would install and use linux on their
desktops or servers.

14 CHAPTER 1. INTRODUCTION

Chapter 2

File System

The UNIX File System manages and controls access to files and directories.
It keeps track of opened and closed files, and manages files on the hard disk.

2.1 File and Directory Names

2.1.1 Length

The maximum length of directory and file names varies from system to sys-
tem. Some versions (such as HP’s HP/UX) may restrict the names to 14
characters, whereas most allow much longer file and path names.

For example, Sun and SGI workstations allows file names up to 255 char-
acters long, and path names to be as long as 1023 characters (a path name
is the full length of the file name, beginning at the top – root – of the file
system).

2.1.2 Conventions

Naming files is very simple: any ASCII character can be used. It is, however,
recommended that no metacharacters (∗, {, }, [,], ?, $, \, ~, >, <, |, &)
be used. It is also recommended to simply use letters, digits, underscore (),
hyphen (-) and the dot (.).

By convention, files ending with .c are C language files. File names ending
with .p, .f, .s are respectively PASCAL, FORTRAN, and assembler program
files. Header (include) files usually end with .h.

15

16 CHAPTER 2. FILE SYSTEM

File names beginning with a . (dot) are hidden files: they do not appear
when files are listed. Those files are typically configuration files. Usually,
their name consists of the package they represent followed by the rc (run
command) string. .mailrc and .newsrc are two examples.

Any file name may contain several dots and/or underscores. These are
NOT separators.

2.2 Structure of Directories, Files

The filing structure of the UNIX operating system is hierarchical. It is a
tree structured system, completely open (assuming necessary permissions)
to every user on the system, with everything emerging from / (root) at the
top.

Figure 2.1 illustrates this concept.

Every directory has a parent, and—possibly—one or more children.
Those children can in turn be parents.

A directory is a special type of file. A file and a directory of the same
name within the same directory is therefore impossible.

NOTE that a file is a linear sequence of characters, including line feeds
(\n); there is no specific file structure.

Everything in UNIX is considered a file; a directory is a special kind of file,
and so is the keyboard (/dev/kbd) and the system’s console (/dev/console).

2.3 Permissions/File Access Modes

A permission defines the ownership of a file and the access of all users to
that file (or directory).

Each file and directory has permissions associated with it. Those permis-
sions are made up of three groups of three characters: rwx rwx rwx (read,
write and execute). The first group represents the owner permissions on the
file, the second group represents the group permissions on the file, and the
third group represents the world permissions on the file.

The owner is the user owning the file.

Each user has an internal user number (UID), and an internal group
number (GID), set by the system administrator. Everyone with the same

2.3. PERMISSIONS/FILE ACCESS MODES 17

dev

(root)

bin prog .cshrc

libc.a libm.a class1 cantin podaima vi

passwd hosts lib people bin

etc tmp usr var

mail spoolbsd

talk

tmpfile adm tmp

Figure 2.1: Structure of File System

group number is said to be in the same group. Group permissions apply to
everyone else with the same group number.

world is everyone else.

For example, the file phone.numbers may have permissions set as
rwxrwxr--. This would mean that the owner of the file can read the file,
write to it, and execute it. People in his/her group have the same privileges.
Everyone else can only read the file; they cannot change, or execute it.

The permissions of a file/directory can be changed with the chmod com-
mand.

18 CHAPTER 2. FILE SYSTEM

2.3.1 chmod: Change Mode (Permissions)

The chmod command allows a user to change the permissions of a
file/directory. To use chmod, the user must be the owner of the file.

The syntax of the command is:

chmod [-R] mode filename(s)

-R is an option.

-R (Recursively) will cause all files and directories within (underneath)
the file/directory whose permissions are being changed to take those
permissions.

mode may be specified as three octal values (one for each of the three sets
of permissions): if any of the permission bits r,w, or x is set, the corresponding
permission is enabled: give it a 1. If not, give it a 0. Then, for each of
the three permission groups, interpret the three binary numbers as an octal
number.

Another way to explain it is to give different weighing factors to the
different permissions: 4 to “r”, 2 to “w”, and 1 to “x”. If the permission is
set, add the weighing factor. Otherwise do not add anything to the group
value.

Using the above example of the file phone.numbers, which had the
rwxrwxr-- permissions, it would translate to 111 111 100, or 774, or 4+2+1
4+2+1 4+0+0:

rwx rwx r--

111 111 100

7 7 4

If write permission for world (sometimes called others) is added, mode is
changed to 776 (or 111 111 110, or 4+2+1 4+2+1 4+2+0).

mode may also be specified symbolically as +r which would add read
permissions to everyone, or as -w which would take away write permissions
from everyone (all groups).

filename(s) may be one or more filenames, and/or one or more directories,
separated by blank spaces.

For example, to change the permissions on file phone.numbers, from
rwxrwxr-- to rwxrwxrw-, the command

2.3. PERMISSIONS/FILE ACCESS MODES 19

chmod 776 phone.numbers

or

chmod +w phone.numbers

or (because we are changing it only in the others group)

chmod go+w phone.numbers

which means “group others add write”, could be used.
The general syntax, using the conventional method is

chmod [ugo]+|-[rwx] filename(s)

Where

u : permission for user/owner.

g : permission for group.

o : permission for others.

r : read permission.

w : write permission.

x : execute permission.

Any combination of ugo, rwx may be used. If none is used, then all three
are assumed. One exception: if chmod - is used, the result depends on the
value of umask (umask sets the default permissions on files; usually 022 at
NRC – see man page for details).

It is also acceptable to put a combination of “[ugo]+|-[rwx]”, as long as
they are separated by a comma (,), as in

chmod ug+x,o-x filename

.
Typing the command

chmod --help (linux)
or
chmod (generic UNIX)

by itself will display the usage of the command.
Refer to the UNIX manual of your machine for more options on the

command.

20 CHAPTER 2. FILE SYSTEM

2.4 Exercises

1. My friend just created a file in his/her directory. Can I go and change
permissions on it? Why, or why not ?

2. I just created a new file in my directory, but I would like it to have
rwx permissions for me, and r permissions for everyone else. What
command can I use to change those permissions?

3. I have a file with permissions rwxrwxr-x. I want it to have rwxr-xr-x

permissions. What commands (I want two) can be used to change the
permissions on it?

4. Take the same file. I want to remove all execute permissions for every-
one, except myself. Again, which command can be used to achieve my
goal?

Chapter 3

Tour of the File system

3.1 /: Root

/ by itself is the root or the top, the beginning of the file system. “super
user” is usually the only user allowed to write to that directory. Each direc-
tory contains files (and directories) related to one group of subjects.

Some of those directories are discussed below. For more information on
any of them, please see [3, pp. 17-48].

3.2 /bin and /usr/bin: Commands

The /bin and /usr/bin directories contain public commands. Those com-
mands may be in binary, or in shell format.

Binary format commands are those written in C, C++, FORTRAN, or
any other compiler language. The shell format commands are interpreted by
the C or Bourne shells, whichever executes them (more on shells later).

When UNIX was first written, /bin and /usr/bin physically resided on
two different disks: /bin being on a smaller faster (more expensive) disk, and
/usr/bin on a bigger slower disk. Now, /bin is a symbolic link to /usr/bin:
they are essentially the same directory.

21

22 CHAPTER 3. TOUR OF THE FILE SYSTEM

3.3 /dev: Devices

In UNIX, every output device is referred to as a file. For writing to the
console (the monitor), the file to write to is /dev/console. To write to
tape, the file is /dev/nrst0 (on a Sun SPARCstation 2). Even the keyboard
writes to a file (/dev/kbd) which is read by the operating system.

3.4 /etc and /usr/etc: Management

The /etc and /usr/etc directories are the “management” directories. /etc
and /usr/etc contain programs used by the system administrator to admin-
ister and configure the system to the needs of the users.

One of the most important files of the /etc directory is the passwd (pro-
nounced “password”) file. The passwd file contains basic information about
each user’s account, including the logon and, in some cases, the password
(encrypted) of every user (in the other cases, the encrypted passwords are in
a file called /etc/shadow which only the super user has access).

Again, the commands are in two different directories simply for historical
reasons.

3.5 Home Directories

The HOME directory is the directory in which the user lands when logging
into the system. Different vendors use different conventions for their HOME

directory.

Vendor HOME directory

HP /users/login
IBM /u/login
Linux /home/login
Silicon Graphics /usr/people/login
SUN (SunOS) /home/machine name/login
SUN (Solaris) /users/login

Table 3.1: HOME directories

3.6. /LIB AND /USR/LIB: LIBRARIES 23

login refers to the user’s account name whereas machine name refers to
the name of the system where the account resides.

3.6 /lib and /usr/lib: Libraries

“These areas were originally intended for libraries of compiled subroutines, to
be searched during the linking phase following the compilation of a program”
[3, p. 27]. Those areas now also contain programs not directly available to
users but used by other programs, such as compilers. They also contain
databases (fonts, conversion units, etc.) used by programs.

IRIX 5.2 (from SGI) has 5 files in /lib. /usr/lib has a few thousand. On
other systems, like Suns, /lib points to /usr/lib. Hence, both directories
share the same information.

3.7 /tmp: Temporary Directories

/tmp is a necessary “temporary” directory. It is available to all users to read
from and write into. But, along with /var/tmp and /usr/tmp, it is mostly
used by compilers and by UNIX as temporary storage for intermediate files.

3.8 /var: Directories

The philosophy behind the /var directory structure is that it contains direc-
tories that vary in size and that tend to grow if not maintained properly.

3.8.1 /var/adm: Administration

Administration information is kept in this directory. Logins—who logged on
when and for how long—are also kept here. Messages output to the console,
system crashes and accounting information for each user are kept in specific
files that grow continuously.

The system administrator can monitor which commands are most often
used by referring to database files from this directory. He/she may find out
how much CPU time a specific account uses, even the commands used by
specific users (if the necessary configurations have been made).

24 CHAPTER 3. TOUR OF THE FILE SYSTEM

The system administrator may or may not choose to keep accounting and
administration data.

3.8.2 /var/mail: System Mailboxes

/var/mail contains every user’s system mailbox. /var/mail/user contains
user’s incoming mail, and any mail not moved out of the mailbox.

3.8.3 /var/spool: Spooling Areas

Mail waiting to be sent, and files waiting to be printed are stored in this area
of the file system.

/var/spool/lpd contains files waiting to be printed on the printer.
/var/spool/mqueue contains mail messages waiting to be sent out, or to

be received in the local mailboxes.

3.8.4 /var/tmp: Temporary Directory

Is a temporary directory for users to use at their leisure. It is also used
by programs as temporary storage. Its content is guaranteed only for the
duration of the session.

3.9 /usr: Directories

/usr contains a series of directories containing specific, more permanent in-
formation.

What follows is a description of a number of directories within the /usr

directory.

3.9.1 /usr/bsd: Berkeley Binaries

This directory contains some of the binaries “borrowed” from the UNIX BSD
version.

3.9.2 /usr/demos: Demonstration

Demonstration programs are kept in this directory. Some systems don’t have
it; others don’t make it available to users.

3.9. /USR: DIRECTORIES 25

Sun’s version of that directory is /usr/demo (no “s”).

3.9.3 /usr/include: Include Files

Many C programs have #include <file> statements. This directory con-
tains the files referenced by those statements.

Many of the files contain information on data structure for reading specific
UNIX files, or for getting particular information from the operating system
(such as who is logged on, what is the type of a specific file, etc.). Other
files simply assign a name to an integer value: an example is the EOF string,
defined as (-1) in file /usr/include/stdio.h.

3.9.4 /usr/local: Local Programs

Most sites have their own set of local utilities, programs and applications.
To distinguish those from the system ones, they are placed in a directory
separate from the standard operating system: /usr/local.

By following that convention, operating system upgrades do not affect
“public domain” and “homegrown” software.

3.9.5 /usr/sbin: More Binaries

This directory contains an ever increasing number of binary, or executable,
files.

3.9.6 /usr/share: Shareable Directories

Those are typically directories that can be shared with other systems, allow-
ing a saving of disk space.

The information in those directories are typically independent of the
model of the workstation (for the same vendor).

/usr/share/lib/dict: Dictionary

The file /usr/share/lib/dict/words contains over twenty-four thousand
(24,000) words, in readable ASCII format. It is generally used by speller
utilities.

In linux, that file is /usr/share/dict/words.

26 CHAPTER 3. TOUR OF THE FILE SYSTEM

/usr/share/lib/Insight: Documentation

On Silicon Graphics, the on-line documentation (other than man pages) are
store in this directory.

/usr/share/doc: Linux Documentation

On linux systems, /usr/share/doc contains a wealth of documentation.
This is where most of the linux documentation is kept.

/usr/share/lib/spell: Speller

The files hlista, hlistb, and hstop contain a list of “American-only words,
British-only words, and ‘stop-words’ (words which the program may think
acceptable, but which are not) for the spell command” [3, p. 39]. These
three files are hashed (i.e., we can’t read them).

/usr/share/lib/terminfo: Terminal Database

This directory contains the description of terminals, ranging from the ansi

to the vt100.

/usr/share/man and /usr/share/catman: Manuals

On-line documentation resides in /usr/share/man and /usr/share/catman.
The manual pages are kept in several different directories, depending on what
type of information the “man page” (for manual page) holds. Typically,
section 1 holds documentation for common commands, section 2 contains
information concerning system calls, and so on.

The manual pages are read using the man command.

The /usr/share/catman directory contains the pre-formatted man
pages.

3.9.7 /usr/tmp: Temporary

This is not a real directory. Instead, it is a symbolic link to /var/tmp.

3.10. EXERCISES 27

3.10 Exercises

1. You want to see which demonstration programs you have on your sys-
tem. In which directory are you more likely to find these programs?

2. Where would the most used commands be ?

3. Where would the dictionary be on your system?

4. Where would your home directory be?

28 CHAPTER 3. TOUR OF THE FILE SYSTEM

Chapter 4

Shells

A shell is a program that interprets and runs the commands typed at the
console by the user. The shell sends requests to the kernel, which executes
them.

UNIX comes with various shells, the most common being the C Shell,
the Bourne Shell and the Korn Shell. IRIX adds the Tenex Shell. linux
includes both the Tenex Shell and the Bourne Again Shell. Each shell

can be programmed. Programs containing shell commands, are called C

shell scripts, Bourne shell scripts, Korn shell scripts, etc. They
each have their advantages. “The general consensus of views from users
familiar with both (C and Bourne) shells appears to be that the C shell is
superior for interactive work, because of its process control features, while
the Bourne shell has more powerful language constructs, and so is better for
use in shell scripts” [3, p. 72].

The Tenex shell, also known as the T Shell, is a superset of the C shell, in
that it includes all what the C shell has to offer, plus additional functionalities.
Written in the late 80s, it is in the public domain.

The Korn Shell, also written in the late 80s, incorporates features and
functionality of both the C and Bourne shells, while retaining the speed of
the Bourne shell (with which it is also upward compatible). The same might
be true of the Bourne Again shell as it combines the best of the Korn Shell

and the Tenex Shell.
Typical Linux installations use the bash shell (Bourne Again SHell) as its

default shell. bash contains the same feature as the Bourne and Korn shells,
while retaining the flexibility and the features of the C and Tenex shells.

At the Research Computing Support Group, we tend to use the T shell

29

30 CHAPTER 4. SHELLS

as the default shell on IRIX, and use bash (the Bourne Again SHell) with
linux.

This chapter will first describe the features common to the five shells,
such as input/output redirection, and metacharacters (wildcards). It will
then go on to explain main differences between the various shells introduced.

4.1 Input/Output Redirection

Most UNIX commands expect input to come from a file(s), and produce
output to another file(s). “One of these files is the Standard Input, and is the
place from which a program expects to read its input. Another is called the
Standard Output, and it is the file to which the program writes its results.
The third file is the Diagnostic Output (also called Standard Error), and it
is a file to which the program writes any error responses” [7, p. 85].

Table 4.1 shows a summary on how input/output redirection may be used.
Generally, the standard input is taken to be the keyboard (input is typed

by the user), the standard output is the terminal screen, as is the standard
error. They are known as file descriptor 0, 1 and 2 respectively.

4.1.1 <: Input Redirection

For commands expecting the input to come from the keyboard, < can be
used to get the input from a file instead of having to type it in. A simple
example is

cat < file

This will cause file to be displayed on the screen (the standard output).
Note that it so happens that cat can take a filename as an input parameter,
so

cat file

would result in the exact same response.
A more typical example is the use of a Fortran or C program (say prog)

which takes data from the keyboard. If the user knows in advance what the
data will be, the program could be run this way:

prog < data

where data contains the data to be read by the program.

4.1. INPUT/OUTPUT REDIRECTION 31

4.1.2 >, >>: Standard Output

Just as < is used as the standard input, > is used as the standard output
redirection.

cat file

usually displays the results on the terminal screen.
By concatenating > outfile to the command, as in

cat file > outfile

the output will be redirected to outfile. If outfile did not exist, it is
created. If it does exist, the previous contents are lost, and replaced with
the new output!!

This problem can be avoided by using >>:

cat file >> outfile

where file will be appended to outfile.

4.1.3 2>, >&: Standard Diagnostic (Error) Output

The redirection of the standard diagnostic output is not quite as simple as
for input and output redirections. It is actually different in the C shell and
in the Bourne shell.

In the C shell, >& is used to redirect both the output AND the diagnostic
message(s) to a file. Therefore, using the previous example,

cat file >>& outfile

would cause both the output and the error messages (diagnostic output) to
be appended to outfile.

The standard output and error may be sent to two different files by using

(cat file > outfile) >& errfile

In the Bourne, Korn and Bash shells, it is possible to separate the diag-
nostic output from the standard output:

cat file >> outfile 2> errfile

32 CHAPTER 4. SHELLS

will cause the output of cat to append to outfile, and the error messages
to go to errfile. Note that the redirection is 2>.

In order for the error and output to go to the same place, the following
is used:

cat file >> outfile 2>&1

(the &1 really means the first descriptor, which happens to be the new stan-
dard output). If the error messages are to be ignored:

cat file >> outfile 2> /dev/null

/dev/null is a special file which acts like an infinite sink.

4.2 |: Pipes

The concept of using a command’s output for another command’s input is
called piping. A pipe eliminates the need for temporary files: instead, the
output of one command goes directly to the input of the next.

A pipe is not only faster than creating temporary files, it is faster than
using redirection: when using redirection, the system has to wait until all
data has been redirected to begin the next command, whereas with piping,
the next command is started as soon as data is available to it.

As a pipe example, let’s find out how many users are logged onto the
system:

who | wc -l

where who is the command to display all users on the system (one line per
user), and wc -l is the command to count how many lines the input file
contains (i.e. the number of users).

Without the pipe command, the following would have to be used:

who > /tmp/tempfile
wc -l < /tmp/tempfile

Note that the sign for pipe is a vertical bar |.

4.3. PIPES AND REDIRECTIONS 33

4.3 Pipes and Redirections

When piping a command, only the standard output is sent through the pipe.
To send the standard error as well, we use

cmd1 |& cmd2

in the C and Tenex shells. In the Bourne/Korn/Bash shells,

cmd1 2>&1 | cmd2

Redirection C/Tenex shell Bourne/Korn/Bash shell

standard input cmd < infile cmd < infile
standard output cmd > outfile cmd > outfile
standard error only (cmd > outfile) >& errfile cmd 2> errfile
standard output and error cmd >& outfile cmd > outfile 2>&1
pipe cmd1 | cmd2 cmd1 | cmd2
std output and error to pipe cmd1 |& cmd2 cmd1 2>&1 | cmd2

Table 4.1: Redirections and Pipes.

4.4 &: Background Processing

UNIX is a multitasking operating system. Sure, but how does one run a
number of programs? One answer: use the background process facility!

When typing command names and waiting for the output, the user is said
to be in foreground mode: the user has to wait for the program/command
to finish executing before typing the next one. But if the user types an am-
persand (&) at the end of the command line, that particular command is
executed in the background, and the command prompt immediately reap-
pears, along with a process id number, called pid, as in:

prompt> latex bigfile.tex > tex.out &
[1] 1198

latex bigfile.tex displays messages onto the standard output. But,
in this case, it has been redirected to tex.out. 1198 is the pid of the job.

Upon completion, the message

34 CHAPTER 4. SHELLS

[1] Done latex bigfile.tex > tex.out

will be displayed on the screen.

NOTE : if the terminal used is connected to a serial port on the UNIX
system, then all background processes should be finished before logging out.

If, at logout time, there are still jobs running in background mode, then
this could potentially hang the serial port the terminal is connected to.

In this case, batch (explained in a later chapter) should be used.

4.5 Metacharacters (Wildcards)

All shells use the concept of metacharacters. Metacharacters are special
characters used to specify a set of file names.

4.5.1 ∗: Any Character(s)

An ∗ matches any combination of characters, including the null string. The
∗ could be used to erase all files ending with .log by using

rm ∗.log

where rm is the command to erase a file.

4.5.2 [,]: List of Characters

To express a list of characters, or numbers, [and] are used. The comma is
used as a separator between the characters. If a hyphen is used, a range of
characters is represented.

For example, all files ending with 1, 2, 3, 5, 6, 7, and 9 could be repre-
sented as

∗[1-3,5-7,9]

or all files ending with an upper case letter:

∗[A-Z]

4.6. SHELL/JOB CONTROL 35

4.5.3 ?: Any Single Character

The ? is used to represent any single character. ?? would represent any
combination of two characters.

For example, all files beginning with ar and four characters long are
represented by

ar??

4.5.4 {,}: Alternatives (except Korn Shell)

Consider a directory with most files beginning with fil. Two of those files
are filling, and filler. An easy way to erase those files is to use:

rm fil{ler,ling}

This is equivalent to issuing:

rm filler
rm filling

The shell first interprets the command with the first entry within brackets,
then with the second (then third, fourth...).

4.5.5 \: Escape

Any metacharacter can be represented as a normal ASCII character by pre-
ceding it with the \ (backslash).

For example,

rm fi\∗ler

would delete file name fi∗ler NOT all file names beginning with fi and
ending with ler.

4.6 Shell/Job Control

Usually, when a command is issued, it is automatically executed in “inter-
active” mode, and the prompt comes back only when that command has
finished. In many instances, however, it may be needed that the prompt be
restored prior to the command finishing.

36 CHAPTER 4. SHELLS

This is especially true for GUI-based tools, like xclock, netscape or a
graphing package like xmgrace.

Job control commands are available with most shells.

4.6.1 jobs: list background jobs

The command

jobs

will list the jobs initiated to be sent in the background. In other words, all
jobs, within the current shell, ending with an ampersand (&).

For example, if two commands, xclock & and mozilla & had been is-
sued, followed by jobs, the session would look similar to

prompt> xclock &

[1] 27207

prompt> mozilla &

[2] 27239

prompt> jobs

[1]- Running xclock &

[2]+ Running mozilla &

prompt>

The [1] and [2] are referred to as job numbers. Other commands, namely
bg and fg (seen shortly), may refer to them as %1 or %2 meaning job [1] and
job [2] respectively.

4.6.2 CTL-Z: suspend a job

After issueing a command such as xclock (or most X-based utilities), the
prompt is gone until the program is done. In the case of xclock, and many
other X-based utilities, the tool might be on the desktop all day.

If CTL-Z is pressed (press and hold the CONTROL key, usually labeled
Ctrl, then press the Z key) the currently running job in the shell will be
suspended, which means it will be stopped (not killed, only stopped), and
the command prompt will reappear.

bg (seen next) will resume execution of the command in background
mode, while keeping the prompt active.

4.6. SHELL/JOB CONTROL 37

The best way to prevent this problem is to start all GUI-based programs
in background mode, as is

xclock &

4.6.3 bg: send a job in the backgroup

Used as

bg [%job number]

When a job has been suspended with CTL-Z, it may be resumed with
bg. This resumes execution of that job, from the point where it had been
suspended.

If there are more than one suspended jobs, %job number is used to specify
which job needs to be resumed.

4.6.4 fg: bring a job in the foreground

Used as

fg [%job number]

it is used to bring a specific job in the foreground, getting rid of the prompt.
If there is only one job, it not necessary to use the job number.

4.6.5 CTL-C: kill a job

In most instances, CTL-C will kill the currently running job. It must be
running in foreground mode, which is usually the case when a job is not
submitted with an ampersand (&).

4.6.6 Sample session

The following shows a short session where two jobs, xclock and netscape,
are already running in the background.

jobs is first issued to confirm the two jobs are running.
xclock is then brought in the foreground.

38 CHAPTER 4. SHELLS

xclock is then stopped with CTRL-Z (we cannot see the CONTROL-Z
in the session, except that [1]+ Stopped is displayed, and the prompt now
shows up).

jobs is issued again, to show which jobs are running. Notice that we also
see suspended jobs.

mozilla is then brought in the foreground.
mozilla is then killed, with CTRL-C. The prompt comes back.
jobs shows that there is now only one job running.

prompt> jobs

[1]- Running xclock &

[2]+ Running mozilla &

prompt> fg %1

xclock

<<<<<---- CTRL-Z was pressed here.

[1]+ Stopped xclock

prompt> jobs

[1]+ Stopped xclock

[2]- Running mozilla &

prompt> fg %2

mozilla

<<<<<---- CTRL-C was pressed here.

prompt> jobs

[1]+ Stopped xclock

prompt>

4.7 C Shell

As previously mentioned, the C shell is usually used as an interactive shell,
mostly because of its more flexible command line interpreter.

The default prompt for a C shell is the percent (%) sign.
It is invoked by the command csh.

4.7.1 path: Search Path

When executing a command typed on a line, UNIX searches for the name
of that command in a series of directories. The order and the name of those
directories is found in the path variable.

4.7. C SHELL 39

The path variable should be defined in one of the system-wide login files.
This allows the system administrator to modify one file only when adding
another directory to the path of all users of a system.

To print the contents of a variable, the echo command is used, followed
by the variable whose contents are to be displayed, preceded by a dollar ($)
sign. Hence, to display the contents of the path variable for the user cantin:

prompt> echo $path
. /usr2/people/cantin/bin /usr/local/bin/tex

/usr/local/bin/imtools /usr/local/bin /usr/sbin

/usr/bsd /usr/bin /bin /usr/bin/X11

The first directory defined by $path is . (the current one) followed
by /usr2/people/cantin/bin, then /usr/local/bin/tex, and so on un-
til /usr/bin/X11. As soon as the program is found, it is executed.

When a UNIX command is used for this user, a search begins in the above
directories in the order given.

To add to the path variable,

set path = ($path /new path)

could be added to the user’s own .login file.
Note that $path refers to the current path variable.

4.7.2 history

The history concept provides the user with the capability of calling and
editing previously used commands, modifying others, listing the last com-
mands used, and so on. Here are some of the commands using the C shell
history concept:

• !!: recall the last command and execute it.

• !num where num is a number: recall and execute command number
num.

• ^str1^str2 ^: change str1 into str2 and execute command. The
change is done on the last command.

• !num :s/str1 /str2 /: change str1 into str2 in command num.

40 CHAPTER 4. SHELLS

• history recalls and list the last commands used.

If the user prompt does not include the history number, change the
prompt variable in the .cshrc file to include the history number of the
command by adding an exclamation mark in the definition as in

set prompt = "! cantin>"

4.7.3 alias

The alias mechanism provides the user with the ability to rename a com-
mand, or change the default options of a command.

The list of aliases is usually defined in either the .cshrc file in the
user’s home directory and/or in /etc/cshrc.

alias [command def]

where command is the name of the new command, and def is how it is to be
executed. alias typed on a line by itself will list all current aliases.

To create a new command called erase to work as the rm command:

alias erase rm

From that point on, typing erase will be the same as typing rm.

The unalias command cancels alias.

4.8 Tenex Shell

As mentioned, the T shell is a public domain shell. It contains all features
of the C shell, as well as a few extra ones. Its default prompt is the greater-
than-sign (>).

It is invoked using tcsh.

The main reason many users are using the T shell is that it allows the user
to recall commands and edit them interactively on the command line, which
is not very easily done in the C shell. This is done, as on VAXes, using the
up and down cursor keys. It can also be done using EMACS control sequences
such as

4.9. BOURNE SHELL 41

CTL-P, which recalls the last command executed. Another CTL-
P would recall the command previous to that...
CTL-N, which recalls the next command in the history list.
CTL-F moves the cursor one position to the right.
CTL-B moves the cursor one position to the left.
CTL-E moves the cursor to the end of the line.
CTL-A moves the cursor to the beginning of the line.
CTL-H erases the character directly to the left of the cursor.
CTL-D erases the character directly above the cursor.
TAB (the escape key twice) is a command and filename comple-
tion (allows the system to provide the rest of the command or
filename text if the first characters typed before < TAB > are
unique to that command/file name).

Other extra features include an auto-logout facility. The man page of the
local installation will describe the facilities of the T shell (if present).

4.9 Bourne Shell

The default prompt for the Bourne shell is a dollar sign ($). Typing

sh

would start a Bourne shell.

4.9.1 PATH

In this shell, the PATH variable is in upper case characters. To display the
variable:

$ echo $PATH
.:/usr2/people/cantin/bin:/usr/local/bin/tex:/usr/local/bin/imtools:

/usr/local/bin:/usr/sbin:/usr/bsd:/usr/bin:/bin:/usr/bin/X11

(The above is “one line”).
To add to the PATH variable, make the following change:

PATH=$PATH:/new path; export PATH

in your own .profile file.
In most cases, PATH is defined in /etc/profile by the system adminis-

trator.

42 CHAPTER 4. SHELLS

4.9.2 history

This concept is not found in the Bourne shell.

4.9.3 alias

This concept is also not found in the Bourne shell.

4.10 Korn Shell

The Korn shell (/bin/ksh) was written by David Korn in the 1980’s. It is a
superset of the Bourne shell. As a result many of the commands in the Korn

shell are similar to the Bourne shell. Its prompt is the dollar sign ($), the
same as the Bourne shell.

The login file used by the Korn shell is the same as with the Bourne shell,
/etc/profile and .profile.

4.10.1 PATH: Search Path

PATH is the variable which contains the order in which the shell will look to
find the command(s) to be executed. Directories are separated with a colon
(:).

4.10.2 history

The Korn shell has the ability to remember previously executed commands.
It is possible to recall previously issued commands, and edit them before they
get executed. Commands can be recalled and edited using two methods:

1. emacs editor style:
CTL-P recalls the last command executed. Another CTL-P would
recall the command previous to that...
CTL-N recalls the next command in the history list.
CTL-F moves the cursor one position to the right.
CTL-B moves the cursor one position to the left.
CTL-E moves the cursor to the end of the line.
CTL-A moves the cursor to the beginning of the line.
CTL-H erases the character directly to the left of the cursor.

4.10. KORN SHELL 43

CTL-D erases the character directly above the cursor.
ESC ESC (the escape key twice) is a command completion.

This style of command line editing is enabled with

set -o emacs

either in your .profile file, or manually during your logon session.

2. vi editor style: ESC k will bring the last command on the line, and
put you in vi mode (actually, ESC puts you in vi mode, and k recalls
the last issued command).

l moves the cursor one position to the right.
h moves the cursor one position to the left.
k recalls the previous command.
j recalls the next command.
O moves the cursor to the beginning of the line.
$ moves the cursor to the end of the line.
fc finds next character c on the line.
i puts you in input mode.
a brings the cursor forward one, then puts you in input mode.
A brings the cursor to the end of the line, and puts you in input mode.
ESC takes you out of input mode (or beeps if in vi mode).

This style of command line editing is enabled with

set -o vi

either in your .profile file, or manually during your logon session.

The previous command can be recalled and automatically executed by
typing

r

on a command line.

r [string]

will recall and execute the last command used, that began with string.

44 CHAPTER 4. SHELLS

4.10.3 aliases

A command can be defined using the alias concept. An alias is defined by
issuing a command in the form

alias command=definition

For example, to create a command called erase that would be functionally
the same as rm,

alias erase=”rm”

Note that it is always safe to put the definition of the command between
quotes, as the definition could be a command with specific flags.

aliases can be issued on the command line, or put into the .profile

login file.

The command alias, on its own, lists the defined aliases.

To disable an alias, use

unalias command

4.10.4 Other Miscellaneous Commands

. filename

executes each line from filename within the present shell, without restarting
a new one.

read "var?prompt"

can be used to read variables from the keyboard.

ulimit -a

lists the limits imposed on users by the system.

Among these limits is TMOUT is the time value after which the present
shell will be killed if no keys are touched for that many minutes.

4.11. BASH SHELL 45

4.11 Bash Shell

bash (Bourne-Again SHell) is a superset of the Bourne shell, but also in-
cludes the functionality of the Tenex and Korn shells. It is written by the
Free Software Foundation group under the GNU project, and so is freely
distributed with all Linux distributions.

In fact, it is the default shell on most Linux distributions.

4.11.1 PATH: Search Path

As with the Bourne and Korn shells, the variable containing the search path
is the upper case PATH.

4.11.2 history

bash remembers history the same way the Tenex and Korn shells remember
history. The arrow (cursor) keys may be used to navigate through the history
list.

As with the Korn shell, both the emacs and vi editor styles may be used
to navigate through the history list, using

set -o emacs

or
set -o vi

set -o emacs is, in most cases, the default.
history may also be recalled using the C shell functionality (!!, !num,

etc.).

4.11.3 aliases

aliases are used the same way they are in the Korn shell:

alias command=definition

For example, to create a command called erase that would be function-
ally the same as rm,

alias erase=”rm”

46 CHAPTER 4. SHELLS

And, as with both the Tenex and Korn shell, aliases are removed with

unalias command

4.12 Exercises

1. I have a program, called names, which prompts the user for a series of
names and telephone numbers. But I also have a file containing all that
information, in the right order. How can I run names without having
to type all the information on the keyboard?

2. Take the same program names. Assume that the program usually reads
all the information, then sorts the information by last name, and fi-
nally outputs the sorted information on the screen. But I want it in a
file. How can I do that? What if I want to append it to a file called
sorted.names?

3. I want to get rid of ALL my object files (they all end with .o). What
one command can I use?

4. I want to remove all my files beginning with a number, but also end
with an upper case character. How do I do it in one command?

5. I want to remove all four-character files beginning with z. What com-
mand can I use?

6. List all equivalent commands (no wildcards) to
rm my{fil,cap}e[1-4,7,9].

7. I have a file containing an asterisk (*). How can I remove it?

8. Assume I have a program that displays a list of dates on the screen.
Let’s call it display.dates. I then want to take that information,
and count how many lines have been processed (I am not interested in
seeing the intermediate output – all I want to know is how many lines
were processed). What one-line command can I use?

9. I am working on an ASCII terminal, and I need to run a job that takes
fifteen (15) minutes to execute. But I also have to write and send a
piece of mail to my boss. I have no window system, and I need to leave
in 15 minutes. How can I resolve my problem?

4.12. EXERCISES 47

10. I’m in a C shell. How do I recall the last command I executed? How do
I recall the last command that started with la? How do I change the
54 in my last command to 45? How do I find out which aliases I am
presently using?

11. You are not sure whether you are using the C or Bourne shell. How can
you find out?

12. Why would one use SSH on their system?

48 CHAPTER 4. SHELLS

Chapter 5

Basic Security

In computing and in any operating system, security is becoming more and
more of an issue.

The following few sections will introduce basic security measures every
user and system administrator should take.

5.1 File Permissions

File permissions have already been introduced in the File System chapter.
USE them. If you have a file, or a directory which contains sensitive infor-
mation, close it to everyone but yourself (using chmod 700 file). If a file is to
be run, but the contents should not be seen by any user, do not allow read
permissions to anyone (use chmod 700 file).

Many users completely close their home directory to other users, using
the chmod command.

To system administrators: most files outside of /tmp, /var/tmp and the
user areas should be write protected.

5.2 Passwords

• USE A PASSWORD.

• do not choose a password that exists in the dictionary file
(/usr/share/lib/dict/words).

• change your password regularly.

49

50 CHAPTER 5. BASIC SECURITY

• use a combination of letters and numbers, if possible.

• your password must be longer than five characters.

• do not write your password anywhere.

• do not share your password with everyone who asks for it.

5.3 Root Password

To system administrators:

• use the above rules.

• make sure every user uses a password.

• limit the number of people who know the root password, to at least
one more than yourself, but not too many.

• use the root account only when performing system administration
work.

5.4 SSH

SSH (Secure SHell) is a protocol used to provide secure connections between
two hosts. The secure connection is provided by encrypting the entire session
between the two systems.

Each system has a pair of keys: a private and a public key. The keys are
created at the same time, so they do have a direct relationship between each
other.

The public key is made available to anyone who requests it. It is used to
encrypt messages to be sent to its original owner.

The private key is the only key able to decrypt messages produced by its
own public key. Needless to say, the private key may only be seen/read by
its own owner.

The result is that any system wanting to communicate with your system
must have your public key. And your system must have the public key of any
system you wish to contact.

5.5. TCP WRAPPERS 51

This allows two systems to have private conversations, even if someone is
eavesdropping on their conversation.

SSH is installed on all systems maintained by the Research Computing
Support Group. In fact, as of May 2001, any session requiring a password
with any UNIX system maintained by the Group will be required to be done
using the SSH protocol. This includes file transfers and reading mail using
remote clients.

5.5 TCP Wrappers

Traditionally, UNIX systems allow any host, from anywhere, to connect to
its various services (such as telnetd, ftpd, POP/IMAP). Since the majority of
NRC’s systems are connected directly off the Internet, it means anyone may
have access to the systems and their services.

To restrict who has access to which service, TCP wrappers are used to
control which system has access to which service.

An access control file /etc/hosts.allow (or /etc/hosts.deny) contains
a list of services, and a list of hosts/domains allowed (or denied) access to
those services. Only hosts (and services) listed in /etc/hosts.allow are
allowed execution by remote and local systems. A typical last line in the
access crontrol file is

ALL : ALL : severity auth.crit : deny

which would deny access to all services/systems not mentioned prior to it.
/etc/hosts.deny would also typically have that same last line.
This allows us to greatly enhance our control on who has access to which

service on which system.

5.6 Exercises

1. Why should I use a password on my account?

2. What should my password look like?

3. I am the system administrator for a few workstations. Should I give
the root password to every user? Why, or why not? Should I always
log in as root? Why, or why not?

52 CHAPTER 5. BASIC SECURITY

Chapter 6

Commands I

UNIX was originally written for people using slow and clumsy teletype (hard-
copy) terminals. The fewer the number of characters typed the better. For
that reason, many UNIX commands are very short: two or three letters. The
options, called flags, are also very short: usually one character.

The syntax for some commands will be described in this chapter along
with some of the options, or flags. However, as this is only an introduction
to UNIX, many flags for many commands will NOT be mentioned. It is
the user’s responsibility to verify which flags/options are available on their
machine.

Short commands are usually not very mnemonic. But there are always
tricks to help remember their meaning.

6.1 A Command is a File

A command is a file that can be executed simply by typing the file name.
Most commands are in the /usr/bin, /usr/bsd, /sbin, /usr/sbin, or
/usr/local/bin directories although they may be located anywhere in the
directory structure.

A command is found by looking in the directories defined by the path
environment variable (path or PATH, depending on which shell is used) and
searching this structure.

Commands can be created by users. The only criteria is that the file
(representing the command) be executable.

53

54 CHAPTER 6. COMMANDS I

6.2 Syntax

The general UNIX syntax of a command is

command [-flag(s)] [filename(s)] (generic UNIX)
or
command [-flag(s)] [--longflag(s)] [filename(s)] (linux)

where:

• command is the filename representing the command.

• flag(s) are option(s) to the command. Most start with a minus (-) sign,
followed by a number of single characters, each with a special meaning
for the command.

• longflag(s) are more descriptive options to the command. Used almost
exclusively with the linux distributions, they always start with two
hyphens (--) and offer a better description of the option itself.

• filename(s) are files (input and/or output) to be used by the command.

6.3 Login Related Commands

This section will deal with how to log on to the UNIX system, and how to
log out.

6.3.1 Logging On

Initially, a user needs to get a userid and, optionally, a password. The
userid is typed in at the login prompt, which usually looks like:

login:

Following the logon, the password prompt will appear:

password:

6.4. HELP 55

When the password is typed, it will not be echoed back to the display
terminal for security reasons.

The first time a user logs on, a password may not be required. In this
case, the user will be logged on automatically.

Upon logging on, a number of special files will be executed. These
will be discussed in the Special Files chapter in Book II: Advanced

Introduction (including Internet).

6.3.2 Changing Password

Upon logging onto UNIX for the first time, it is STRONGLY recommended
that the user change his/her password, using the passwd command:

passwd

UNIX will ask for the old password, then the new one (twice), always
with the echo turned off.

Some systems will provide restrictions on the password: IRIX will insist
on a password of at least five characters and at least ones non-alphabetic
character.

Also note that a maximum length of eight characters is used by the pass-
word algorithm: any password longer than eight characters will be truncated
to eight.

6.3.3 Logging Out

Three commands can be used to log out of the UNIX session. These are:
logout, exit, and CTL-D. Some systems may not accept the CTL-D or exit.
They are roughly equivalent when logging out from the console.

6.4 Help

UNIX assumes the user knows what he/she is doing. For that reason, specific
help files do not exist.

There is, however, a set of on-line manual pages which may or may not
be on your particular system. The man-pages are accessed using the man

command.

56 CHAPTER 6. COMMANDS I

6.4.1 man: Manual Pages

man man page
or
man -k key word

where man page is either a command, or a special file. man then displays
documentation on the standard output, one screenful at a time. To see the
next screenful, press the space bar (man works very similarly to the more

command with a reduced functionality).
key word is a keyword that is found in the description of a man page.

When

man -k key word

is issued, all commands which will be listed contain in their description, the
word key word.

man pages are typically divided into eight sections; some Linux distribu-
tions may have a 9th one, specifically for kernel routines (very rarely used;
its man pages even say section 9 is ”obsolete”!).

The following table illustrates most man page sections on a Sun (mostly
Berkeley based), on a Silicon Graphics (System V based) system, and on the
SuSE 7.3 and Red-Hat 7.2 linux distribution:

Table content based on [4, p. 56].

6.4.2 Manuals on CDs

Since early 1993, most vendors include electronic versions of UNIX manuals
with the OS release. Utilities to read them are included in the operating
system.

The table below enumerates the vendor and the name of their on-line
manual utility.

Most Linux distributions do not include such a tool. But the
/usr/share/doc directory contains documentation on many of the packages,
many of which is in HTML so can be read with any Web Browser.

The Linux Documentation Project, located on the web at

http://www.linux.org/docs/

6.4. HELP 57

Content SUN SGI Linux

User commands. 1 1 1
Administrative commands. 1M 1M 8
System calls. 2 2 2
C routines. 3 3C 3
Fortran routines. 3 3F 3
Graphics routines. N/A 3G N/A
Streams routines. 3V 3S 3
X11 routines. 3 3X11 3
Audio routines. N/A 3A N/A
Special files. 4 7 4
Configuration files. 5 4 5
Games. 6 N/A 6
Demos. 6 6D N/A
Maintenance. 8 8 8

Table 6.1: Sun, SGI and Linux man page sections.

offers generic linux documentation on-line.

The Research Computing Support Group also has linux documentation
on their web site at

http://www.nrc.ca/imsb/rcsg/linux/documentation/

(access to that site may be limited to internal NRC only).

Vendor Product Name Command

Hewlett Packard Laserrom lrom

IBM InfoExplorer info

Silicon Graphics Insight insight

Sun Microsystems AnswerBook answerbook

Digital Bookreader bookreader

Table 6.2: Tools to read “CD” manual set.

58 CHAPTER 6. COMMANDS I

6.5 File system Commands: Directories

Now that the UNIX tree-structured file system has been introduced, it would
be useful to know how to find our way through the system and how to create
files, delete them and rename them.

This section deals with commands directly related to directories: how to
create or remove them, and how to move from one to another.

The next section will deal strictly with file manipulations.

6.5.1 cd: Change Directory

To move from one directory to another the cd command is used. Use as:

cd [directory]

directory may be an absolute, or a relative pathname. Or it may
be nothing at all: if cd is used by itself, the user returns to his/her home

directory.
An absolute—or full—pathname starts with /. In other words, the path

taken to get to the directory is given from the top of the tree, through all
the nodes, to the destination directory.

The relative pathname of the directory gives the route taken from the
current directory, to the destination directory. Note that . (dot) means this
current directory, .. (dot dot) means the previous directory, and that ~

(tilde) means the user’s home directory. For example

cd ../testdir

means go up one directory, then down into the testdir directory at that
node.

cd (by itself) is equivalent to cd ˜.

6.5.2 mkdir: Make Directory

To create a new directory, mkdir is used, as

mkdir [-p] directory

-p means create parent directories, if needed. directory may be an
absolute or relative directory name.

The user must have write permission on the parent directory to create a
new directory.

6.5. FILE SYSTEM COMMANDS: DIRECTORIES 59

6.5.3 rmdir: Remove Directory

A directory can be removed with

rmdir directory

and again, directory may be an absolute or relative path name.
The directory being deleted must be empty (i.e., cannot have any child

directories, or files), and the user must have write permission.

6.5.4 pwd: Print Working Directory

The command pwd is used to display the full pathname of the current direc-
tory; the display is always in the absolute format.

Example:

prompt> pwd
/usr/people/cantin/docs/unix

6.5.5 cp: Copy

To copy the contents of a directory into another directory, the following is
used:

cp -r [-ip] directory1 directory2
or
cp -R [-ip] directory1 directory2 (not linux)
or
cp -r [-ipd] directory1 directory2 (linux only)
or
cp --recursive [-ipd] directory1 directory2 (linux only)

where directory1 and directory2 are directories.
The contents of directory1 will be copied into directory2. If directory2

does not exist if will be created. If it exists, a copy of directory1 will be
created as a subdirectory of directory2. In both cases, a new directory will
be created.

-r (recursive) is a recursive copy. When a directory is encountered, its
files are also copied.

60 CHAPTER 6. COMMANDS I

-R (recursive) is a recursive copy. When a directory is encountered, its
files are also copied.

If a file/directory is a symbolic link, the link is copied, not the content
of the file.

-d (preserve link) is used by linux. If the file/directory is a symblic link,
it preserves that link.

-i (interactive) will prompt the user for confirmation if a file will be over-
written during the copy.

-p (preserve) will keep the time-stamps and permissions of the original
files.

6.5.6 mv: Move

In UNIX, mv means move, or rename.

mv [-i] directory1 directory2

where directory1 and directory2 are directories.

This command will simply rename directory1 to directory2. If directory2
exists, the files of directory1 will be moved into directory2.

-i will prompt the user for confirmation if a file is to be overwritten.

6.6 File system Commands: Files

By this time, the user should know how to find his/her way through the file
system. The contents of the major directories should be understood.

The user should also be able to create new directories, and remove them.

This section is concerned with the creation, deletion, and manipulation
of files. By the end of this section, the user should be able to identify all files
within a directory, create new ones, remove others, display the contents of
some, rename others, and more.

6.6. FILE SYSTEM COMMANDS: FILES 61

6.6.1 ls: Listing

The contents of a directory can be displayed using the ls command:

ls [-alRC] filename...

where filename... is one or more file or directory names.

-a list all files, including those beginning with “.” and “..”.

-a may be replaced with --all on linux.

-l produce a long listing.

-R produce a recursive listing.

-R may be replaced with --recursive on linux.

-C force multi-column output.

Examples of the above flags follow.
Note: many more flags are available. For more information, see the doc-

umentation relating to your system or use man ls.
ls by itself lists the content of the current working directory, in alphabet-

ical order:

prompt> ls

course.tex course.toc unixug

The -a (all) option, lists all files, including those beginning with a dot
(.). The current directory is represented as . (dot) and the parent directory,
by .. (dot dot):

prompt> ls -a (general UNIX)
or prompt> ls --all (linux)

. .. course.tex course.toc unixug

The -l (long) flag will produce a long listing:

62 CHAPTER 6. COMMANDS I

prompt> ls -l

total 303

-rw-r--r-- 1 cantin saoscs 19347 Dec 11 10:12 course.tex

-rw-r--r-- 1 cantin saoscs 2520 Dec 11 09:53 course.toc

-rw-r--r-- 1 cantin saoscs 1978 Dec 7 09:14 unixug

The first line of the listing gives the total storage area taken by this
directory, in kilobytes.

The first character of the first field indicates the type of file (- means
an ASCII file, d a directory, l a symbolic link). The next nine characters
indicate the permissions on the file. The next field is the number of links,
i.e. the number of copies of that file on the file system (normally 1). The
third field shows the owner, followed by the group name of the owner; the
fifth, the size of the file (in bytes), the sixth the last modified time, and the
last field the name of the file.

Any combination of flags is allowed:

prompt> ls -la

total 305

drwxr-xr-x 2 cantin saoscs 512 Dec 11 10:14 .

drwxr--r-- 9 cantin saoscs 512 Dec 5 12:09 ..

-rw-r--r-- 1 cantin saoscs 19347 Dec 11 10:12 course.tex

-rw-r--r-- 1 cantin saoscs 2520 Dec 11 09:53 course.toc

-rw-r--r-- 1 cantin saoscs 1978 Dec 7 09:14 unixug

6.6.2 cp: Copy

Files can be copied onto other files using the cp command:

cp [-ipR] filename1 filename2 (not linux)
or
cp [-ipRd] filename1 filename2 (linux only)

where filename1 and filename2 are files, not directories.

-i (interactive) will prompt the user if filename1 will overwrite filename2.

-i may be replaced by --interactive with linux.

6.6. FILE SYSTEM COMMANDS: FILES 63

-p (preserve) will keep the time-stamps and permissions of the original
file.

-R (recursive) is a recursive copy. When a directory is encountered, its
files are also copied.

If a file/directory is a symbolic link, the link is copied, not the content
of the file.

-R may be replaced by --recursive with linux.

-d (preserve link) is used by linux. If the file/directory is a symblic link,
it preserves that link.

filename1 will be copied onto filename2. If filename2 does not exist, it
will be created. If it exists, its contents will be overwritten!

A second method, involving directories, has been discussed in the previous
section.

Files can also be copied using the following syntax:

cp [-ip] filename... directory

where filename may be one or more files. These files will be copied into
directory.

6.6.3 mv: Move

mv [-i] filename1 filename2

means change the name of filename1 to filename2. If filename2 already
exists, mv overwrites the old file, unless the -i (or --interactive with linux)
option is used, in which case a confirmation from the user will be requested.

mv [-i] filename... directory

will move filename..., i.e., a number of files, into directory directory. If a
filename already exists within directory, it will be overwritten unless the -i

option was used, in which case a confirmation by the user will be needed.
Write permission on directory is essential.

64 CHAPTER 6. COMMANDS I

6.6.4 ln: Link

ln [-s] existing file new name

allows you to either give a file a second name (no flags) or to create a new
file pointing to the original file (with the -s option).

When used with no option, ln modifies the inode of existing file adding
a new name to it (an inode is the internal description of a file; it contains
all the file’s attributes including its name(s), access times, ownership, etc).
From that point on, that file may be accessed using either names.

If one of the files is removed using one of its given names, only the file
name is removed, not the file content. For the file content to be removed, all
names listed in the inode must be removed.

A file may have many different names, all of which may be in different
directories. But they must all be within the filesystem.

If one of the files is removed, only its name is removed from the list of
names representing that file. Only when the last name in the list is removed,
is the actual file (content) removed.

This is often refered to as a hard link.

When the -s option is used, a new file is created. Its content is a symbolic
link pointing to existing file.

new name may be removed without any effect to existing file. But if
existing file is removed, new file now points to a non-existing location.

ls -l illustrates some differences between a hard link, and a symbolic
link:

82 nickel,cantin> ls -l

total 320

-rw-r--r-- 4 cantin rcsg 78519 Aug 5 1992 bigcat.ps

lrwxr-xr-x 1 cantin rcsg 21 May 20 14:23 cat.ps -> ../../images/tiger.ps

-rw-r--r-- 4 cantin rcsg 78519 Aug 5 1992 largecat.ps

lrwxr-xr-x 1 cantin rcsg 35 May 20 14:31 lastcat.ps -> /usr2/people/cantin/images/tiger.ps

-rw-r--r-- 4 cantin rcsg 78519 Aug 5 1992 realcat.ps

lrwxr-xr-x 1 cantin rcsg 9 May 20 14:24 wild.ps -> bigcat.ps

83 nickel,cantin>

The files werecreated with the following commands:

6.6. FILE SYSTEM COMMANDS: FILES 65

ln -s ../../images/tiger.ps cat.ps

ln ../../images/tiger.ps bigcat.ps

ln -s bigcat.ps wild.ps

ln bigcat.ps largecat.ps

ln cantin/images/tiger.ps realcat.ps

ln -s cantin/images/tiger.ps lastcat.ps

Note that all file created with the ln command, have the same creation
date as the original tiger.ps file. This is because it IS the same file.

The second column in the ls -l output also shows a “4” for three of the
files. They also have the same attributes (including modification time, size,
permissions). If you were to perform the ls -li command in that directory,
you would notice that all files do indeed have the same inode number. And
that “4” actually represents how many different names are represented by
that file.

If one of the file would be removed, “4” would become “3”.
The files created with the ln -s command are all very small. That is

because their content is the symbolic link seen on the last field of the ls -l

command. Also note that the first character of the listing, for those files, is
a “l”.

That “l” means the file type is a symbolic link.

6.6.5 touch: Update

touch filename...

where filename... is one or more files.

If filename... does not exist touch creates it. Its contents will be the
null string (i.e., no contents).

If filename... already exists, touch will update its time stamp to the
current time.

6.6.6 rm: Remove

rm [-rf] filename...

where filename... is one or more files.

66 CHAPTER 6. COMMANDS I

-r : “remove recursively”. In other words, if the file to be removed is a
directory, it will delete it along with all its files and/or sub-directories
and their contents. Be careful with the -r option.

-f : do not output any error messages; do not prompt and remove even if
file is write-protected (but file must still be owned by user).

6.6.7 cat: Concatenate

cat filename...

where filename... may be one or more files.
cat displays the content of filename... on the standard output. If more

than one file is listed, they are displayed one after the other.
Output redirection may be used to copy the contents of files into another

file. An example is

cat *.c > tot.cprog

This will copy the contents of all files ending with .c, into file tot.cprog.
The order of the files within tot.cprog will be alphabetical.

cat can be used to append one file to another:

cat file2 >> file1

will append file2 to file1.

6.6.8 more: Browser

more filename...

This command displays the named file(s) on the standard output, but
one screenful at a time. At the end of each screenful, the percentage of the
file already shown is displayed. Pressing the space bar displays the next
screenful, while pressing the carriage return key moves forward only one line.
A number followed by a carriage return displays this additional number of
lines.

If more than one file is specified, a heading preceding each file is displayed,
to identify the file that will follow:

6.6. FILE SYSTEM COMMANDS: FILES 67

prompt> more file1 file2
::::::::::::::

file1

::::::::::::::

this is the first line in file1

this is the second line in the file

::::::::::::::

file2

::::::::::::::

this is the beginning of file2

more lines here...

end of file2

To go back one screen, the “b” command is used. To stop (quit), press
“q”.

An alternative command to more is page. Their usage is identical.

6.6.9 head: Header

head [-n] filename...

where the default for n is 10.
head copies the first n lines of each file to the standard output. If file-

name... lists more than one file,

==>filename<==

is displayed before each file:

prompt> head file1 file2
==> file1 <==

this is file1

==> file2 <==

this is file2

6.6.10 tail: Tail End

As head is used to display the heading of a file, tail is used to display the
end of a file.

68 CHAPTER 6. COMMANDS I

tail [+|-n[lbc]] filename

NOTE : only one filename may be used at once.
If + is used, the display starts n lines, characters, or units of blocks

(depending which of l, b, or c is used) after the beginning of the file.
If - is used, the display starts at n lines, characters, or units of blocks

from the end of the file.
The default is for tail to show the last ten lines of the file.

6.6.11 wc: Word Count

wc [-lwc] filename...

The default is to use all three flags:

l – lines.

w – words.

c – characters.

With linux the l, w and c flags may be replaced with the lines, words
and bytes longflags, respectively.

Here is an example:

prompt> wc course.tex course.aux

810 4137 27849 course.tex

51 200 5095 course.aux

861 4337 32944 total

The first field is the line count, the second field is the word count, the
third field is the character count (size of the file) and the last field is the
name of the file (only if more than one file is used).

6.6.12 diff: Difference

diff [-bitw] old file new file

displays the differences between old file and new file on the standard output.

6.6. FILE SYSTEM COMMANDS: FILES 69

-b ignores trailing blanks.

-b may be replaced with --ignore-space-change on linux.

-i ignores the case of the letters (upper is treated the same as lower case).

-i may be replaced with --ignore-case on linux.

-t expands tab characters into blanks.

-t may be replaced with --expand-tabs on linux.

-w ,in UNIX, ignores all blank characters.

-w, in linux, makes an assumption on the current screen’s width.

6.6.13 file: Type of File

file filename... (general UNIX)
or
file [-i] filename... (linux)

where -i (or --mime) would display the mime type string of the file instead
of the file type (ex: text/plain, application/pdf).

file displays the type definition of file filename..., in a two-column for-
mat: the first column shows the file name, and the second shows the file type
(examples are ascii, data, C-shell commands, PostScript document, directory,
commands, text, assembler, etc.).

prompt> file course.tex course.ps
course.tex: ascii text

course.ps: PostScript document

If the parameter to the file command is core, file will return the name
of the executable file which caused the core file to be created (a core file is
a file containing the memory content used by a program that crashed; that
file may be used to debug the program).

70 CHAPTER 6. COMMANDS I

6.7 Printer Commands (Berkeley; lpr/lprm)

There are two types of printer commands: Berkeley based, and System V
based. They are named as such because of the origin of the UNIX version
they were first written for.

Although most systems now support both types, linux tends to use Berke-
ley based printing.

6.7.1 lpr: Line Printer

lpr [-Pprinter] filename...

lpr sends a file to the printer spooling area, where it will be processed
and printed.

The printer referred to by the lpr command may also contain filters (most
of the time, used transparently). A filter is a program that formats data
according to the contents of the file. For example, most PostScript printers,
such as the Sun LaserWriter and the Apple LaserWriter, have a PostScript
filter, which means that any file sent to the printer will be transformed into
PostScript format (this is because the printer ONLY understands PostScript,
a page formatting language). If an actual PostScript file is to be sent to the
printer, a flag would be used to bypass that specific filter.

The default printer destination can be changed by creating an environ-
ment variable called PRINTER. Its content would be the name of the new
default printer. Also, any available printer may be selected on the command
line using the -Pprinter flag.

NOTE : before using the printer connected to your system, contact your
system administrator to find out what type of printer it is, and what type
of file it expects. You may also look at the content of /etc/printcap: it is
a configuration file used by the BSD LPR set of commands used to describe
the various printers on the system.

6.7.2 lpq: Line Printer Queue, Statistics

lpq [-Pprinter] [username]

6.8. PRINTER COMMANDS (SYSTEM V; LP/CANCEL) 71

lpq alone simply displays the queue of the default printer. The output
contains the rank of the file to be printed (First In First Out list), the owner
of the file, the job number, the file name, and the size of the file.

prompt> lpq

lp is ready and printing

Rank Owner Job Files Total Size

active cantin 625 scourse.ps 38467 bytes

1st cantin 626 history.ps 44529 bytes

To list the queue for printer printer, use

prompt> lpq -Pprinter

6.7.3 lprm: Line Printer Remove

To remove a job from the printer queue, simply type:

lprm [-Pprinter] job

where job is the job number in the printer spooler and printer refers to the
spool for printer printer.

To remove the file history.ps from the previous section,

prompt> lprm 626
dfA626neon dequeued

cfA626neon dequeued

The output mean job 626 queued on neon was taken off the print queue.

6.8 Printer Commands (System V;

lp/cancel)

This section refers to printer commands for System V based systems.

72 CHAPTER 6. COMMANDS I

6.8.1 lp: Line Printer

lp [-dprinter] filename...

lp sends a file to the printer spooling area, where it will be processed and
printed.

The printer referred to by the lp command may contain filters. A filter
is a program that formats data according to the contents of the file. For
example, most PostScript printers, such as the Sun LaserWriter and the
Apple LaserWriter, have a PostScript filter, which means that any file sent
to the printer will be transformed into PostScript format (this is because
the printer ONLY understands PostScript, a page formatting language). If
a true PostScript file is to be sent to the printer, a flag would be used to
bypass that specific filter.

The environment variable LPDEST could contain the name of the default
printer. Any available printer is also accessible with the -dprinter flag.

6.8.2 lpstat: Line Printer Queue, Statistics

lpstat [-t] [job]

lpstat displays the queues for the printers defined on the system. The
-t option requires that all status information for all printers on the system
be displayed.

prompt> lpstat -t
scheduler is running

system default destination: laser

device for laser: /dev/null

device for decwriter: /dev/ttyf56

laser accepting requests since Oct 29 13:27

decwriter accepting requests since Nov 20 11:08

printer laser is idle. enabled since Oct 29 13:27

6.9. PRINTER COMMANDS (LINUX; KPRINTER) 73

6.8.3 cancel: Line Printer Remove

To remove a job from the printer queue, simply type:

cancel job

where job is the job number displayed when lpstat was issued.

prompt> lp course.ps
request id is laser-592 (1 file)

prompt> cancel laser-592
request "laser-592" cancelled

6.9 Printer Commands (linux; kprinter)

linux understands both the Berkely lpr and the System V (lp) set of printer
commands. Most distributions include a graphical-based utility allowing
people more flexibility in their printing.

kprinter

allows people to select which printer to use, and which properties to enable,
all with the click of a mouse. It is part of the CUPS (Common Unix Printing
System) package, which also understands the lpr and lp commands.

The SuSE 9.1 version of the kprinter interface looks like that in figure
6.1.

6.10 User Related Commands

Up to now, the commands were file and/or directory related. This section
will treat user related commands: how to find out who is logged on to the
system, how to exchange messages with another user.

6.10.1 who: Who is On

Typing

74 CHAPTER 6. COMMANDS I

Figure 6.1: kprinter interface

who

will display on the standard output the logon names of the users on the
system, and the time at which they logged on.

prompt> who

cantin ttyq1 Jan 12 08:43

cantin ttyq3 Jan 12 08:43

proulxm ttym1 Jan 12 09:08

tells us that user cantin is logged on two times: once on the virtual device
ttyq1 and once in another window, ttyq3.

proulx is logged in from a modem, or serial port.

If the output had included

cantin ttyq0 Jan 12 08:46 (nickel.sao.nrc.ca)

this would mean that cantin is logged onto the current machine remotely,
from a system whose name is nickel.sao.nrc.ca.

6.11. OTHER MISCELLANEOUS COMMANDS 75

6.10.2 who am i, whoami: Who Am I

who am i

tells me who I am.

prompt> who am i

nickel!cantin ttyq0 Jan 12 08:46

On the other hand,

whoami

displays the effective current username.

prompt> whoami
cantin

6.11 Other Miscellaneous Commands

This section deals with a number of miscellaneous commands.

6.11.1 date: Display Date

date

displays the date and time on the standard output.
Example:

prompt> date
Thu Feb 23 14:12:39 EST 1995

date can also be used to display specific fields of the date. The next
example shows how to display the current hour and minute:

prompt> date ”+%H %M”
14 12

76 CHAPTER 6. COMMANDS I

6.11.2 clear: Clear the Screen

This will clear the screen, bringing the cursor to the top left corner of the
monitor.

6.12 Exercises

1. How do you give option(s) to a command?

2. You would like to change your password. How do you do it? Change it
to my pssd. Logout, then log back in to make sure it worked. Change
it back to something only you know.

3. You would like to use the rm command, but do not know how to use
it. You do not have system manuals close by. What command can you
use to get help? Try it.

4. Now that you know how to move within the directory structure of your
system, go and see where the dictionary resides. Which directory is it
in? How big is the words file? Who owns it?

5. How do you find out which directory you are currently in? Issue the
command and see what happens.

6. Assume you are lost. How do you return to your home directory? As-
suming you don’t remember the full pathname of your home directory,
how can you get there?

7. In your account, create a new directory, called temp.dir. Copy the
two files /etc/hosts and /etc/fstab into it as hosts and fstab re-
spectively.

8. Again from your home directory, create a second directory, called
temp2.dir. Copy the content of temp.dir into it.

9. Remove the entire temp.dir and temp2.dir.

10. You have a file called list.names in your directory. How can you find
out the last time you wrote to that file?

6.12. EXERCISES 77

11. Everyone has files beginning with a dot (.). These are called hidden
files. How can you list them?

12. Create a file called myfile, with length zero.

13. Now rename myfile to hisfile.

14. Do a long listing of all files in the /bin directory and place it into file
hisfile.

15. How can you look at the content of the file, one screenful at a time?

16. You want to see the first twenty lines of that file. Which command is
used? Do it.

17. How about the last fifteen lines?

18. Who is logged on to the system at the moment?

19. You want to communicate interactively with one of those users. Which
commands could you use?

20. You would like to print a file. Which command would you use?

21. You send a few files to a printer. You now want to remove your files
from teh print queue. Which commands would you use?

78 CHAPTER 6. COMMANDS I

Chapter 7

Editors

Now that the user is familiar with some of the commands, UNIX standard
editors will be introduced. The first one is ed, a line editor used on line-mode
terminals. For terminals with full-screen capability, vi is more suitable.

NOTE that all UNIX editors use buffers as work areas in which they
manipulate the files. The original file is updated only when the buffer is
written to the file, which is done by the user: if the user simply “quits”, only
the changes prior to the last write will be reflected in the file!!! For that
reason, you must first save the file, then exit the editor.

7.1 “ed” Editor

ed is the most basic UNIX editor, and is found in every UNIX system. It
operates in line-mode, which means that

the basic unit for change is a line (a string of characters ter-
minated by a newline character). You can give commands to
the editor to perform various operations on the lines: lines can
be printed (displayed); lines can be changed; new lines can be
inserted; existing lines can be deleted; lines can be moved or
copied to a different place within the file; substitutions of charac-
ter strings can be made within a line or group of lines [7, p. 186].

Most people use ed only if the terminal they are using at the time cannot
support a screen editor. For this reason, only the most basic commands will
be introduced here. More information can be found in [7, pp. 187-219].

79

80 CHAPTER 7. EDITORS

7.1.1 Accessing ed

ed filename

where filename must exist. If filename does not exist, use the touch com-
mand to create it.

ed will then display the number of characters (num) in the file and wait
(there is no prompt). This means that ed loaded num bytes into the editing
buffer. ed is now sitting at the end of the document, waiting for the user
to tell it what to do.

Changes made while in ed are made to the contents of the buffer and are
not permanent until a w write command is issued.

7.1.2 Moving Within a File

Typing a number followed by a carriage return will bring you to that line
number in the file. Hence, to go to the top of the file, type

1

To go to line 5 of the file, type

5

To go up num lines, type

-num

To go down num lines, type

+num

If ed can’t get you to that line, it will respond with a

?

7.1.3 Finding a Pattern

To find one specific string, use

/string/

where string is the literal to be found. The search starts at the current line
going down in the file to the end, then goes back to the top of the file down
to the current line. The search will stop upon finding string.

7.1. “ED” EDITOR 81

7.1.4 “s” Substitute

To substitute a string for another, the format is

[line b[,line e]]s/string 1/ string 2/

where line b and line e are the range of the operation, and string 1 and
string 2 are the string-to-be-replaced and new-string respectively.

For example, to substitute the word mine for his on the first fifteen lines
of the document, use

1,15s/mine/his/

7.1.5 “c” Change Line

c

will enter input mode, and change the current line to the text that will
be entered. More lines may be added. A dot (.) on a line by itself must be
entered to leave input mode.

7.1.6 “a” Append Text

To append text immediately after the last displayed line, type

a

ed will then wait for the user to input text. It will leave append mode
when a dot (.) is typed as the first and only character on a line, or when
<CTL-D> is typed.

7.1.7 “i” Input Text

i

is the same as append, but puts the text before the current line.
A dot (.) on a line by itself must be typed to leave input mode.

7.1.8 “.” Current Line

Typing a dot (.) will display the current line.

82 CHAPTER 7. EDITORS

7.1.9 “p” Print Line(s)

[line b[,line e]]p

where line b and line e are respectively the beginning line and the end line
to be displayed. line b must be smaller than line e.

So, to print (display) lines 3 to 6, one would use

3,6p

The line numbers are optional. If no line numbers are given, the current
line will be displayed.

To display only one line, the command is simply

nump

A dollar sign ($) is used to represent the last line number. Hence, to
display lines 6 to the end of the file, type

6,$p

NOTE : the l command is similar to p with the addition that it displays
non-printable characters.

7.1.10 “d” Delete

d

will delete the current line. If a range (x,x+y) precedes d, then y+1 lines will
be deleted.

7.1.11 “w” Write

w

writes the content of the buffer into the file being edited, replacing the original
version.

7.2. “VI” VISUAL EDITOR – INTRODUCTION 83

7.1.12 “q” Quit

Typing

q

ends the session, but only if no changes have been made in the buffer since
the last write to the file. This is to remind the user that perhaps the changes
made should be saved. In this case, ed comes back with

?

If q is entered a second time, the command will then be executed. Changes
since the last write will not be saved, and the user will return to the calling
shell.

7.2 “vi” Visual Editor – Introduction

vi is a screen editor

where a portion of the file is displayed on the terminal screen,
and the cursor can be moved around the screen to indicate where
you want to make changes. You can select which part of the file
you want to have displayed. Screen editors are also called display
editors, or visual editors . vi is one of the more popular screen
editors that run on the UNIX system [7, p. 186].

This editor relies heavily on the cursor keys to move around. Again, only
the basic commands will be introduced.

Once in vi, commands must be invoked for anything to happen. These
commands can be anything from :q to i to <CTL-f>. Following the philos-
ophy of UNIX, vi assumes the user knows what he/she is doing!!!

NOTE : if a command puts the user into a mode (input, append, replace),
the escape key must be pressed to get OUT of that mode.

For more information on vi, see [7, pp. 264-310].

7.2.1 Invoking vi

vi filename

84 CHAPTER 7. EDITORS

will put filename into a buffer, and display the file on the screen. If the file
is larger than the screen can display, the screen will act as a window into the
file. At the beginning of a session, the screen will display the first part of the
file.

If filename does not exist, vi will create it.
Upon entry to vi, the bottom of the screen will print the name of the

file being edited, the number of lines in the file, and the size of the file (in
characters).

7.2.2 vi, command and input modes

One of the most important aspects to remember about vi is that most of the
commands fall into one of three modes:

1. vi mode: in this mode, most keys on the keyboard are defined to be a
specific command. As the key or key sequence is issued, that command
is executed.

This is the mode vi starts in.

At any time, pressing the <ESC> key returns the user to vi mode.

2. command mode: to reach that mode, one must first be in vi mode, then
issue a colon (“:”). That same colon will appear at the bottom left
corner of the screen. Then the command may be issued following the
colon.

One exception to this rule is the search command; a forward slash is
issued instead of the colon.

3. input mode: this is where most users expect an editor to start. This
“mode” actually refers to commands issued from vi mode but that
allow the user to start inputing data into the file.

The vi commands introduced will be grouped in the three major mode
types. Table 7.1 displays the most basic commands.

7.2.3 “vi” visual Editor – vi mode

7.2.4 Moving the Cursor

To move around in the file, use the arrow keys: the up arrow will move the
cursor up one line, the down arrow down one line. The right arrow will cause

7.2. “VI” VISUAL EDITOR – INTRODUCTION 85

vi mode input mode command mode
<ESC> to end input

← ↓ ↑ → - cursor i - insert :q - quit
h j k l - cursor a - append :q! - quit no save
CTL-f - forward screen A - append at EOL :w - write
CTL-b - backward screen O - open line :wq - write and quit
G - end of file r - replace character :num goto line num
x - delete character R - overwrite /str - find str
dw - delete word :set all - vi settings
dd - delete line :r file - import file
yy - copy line in buffer
D - delete to EOL
p - paste/put buffer
u - undo last command
CTL-r - redo last undo (linux/vim)
. - repeat last editing command
n - find next occurrence of string
cw - change word
command - repeate command # times

Table 7.1: Summary of vi Commands.

the cursor to move one position to the right. From the end of a line, it will
go to the beginning of the next line.

The left arrow will move the cursor one position to the left. If the cursor
was at the beginning of a line, it will not move (the same as the up arrow
when the cursor is already at the beginning of the file, and the down arrow
when the cursor is already at the bottom of the file).

If number is typed immediately before pressing the arrow key, the position
of the cursor will move number positions in the direction of the arrow. If
number was too large, a beep will be heard, and nothing will happen.

For terminals with no functional arrow keys, four keys will move the
cursor around:

h left arrow (⇐).

j down arrow (⇓).

86 CHAPTER 7. EDITORS

k up arrow (⇑).

l right arrow (⇒).

7.2.5 “^f” Forward One Screen

ˆf <CTL-f> will move the user forward one screenful in the file.

7.2.6 “^b” Backwards One Screen

ˆb <CTL-b> will move the window backwards (up) one screenful in the file.

7.2.7 “G” End of File

G will move the window to the end of the file. Note, again, that vi, like any
other UNIX utility, is always case sensitive.

7.2.8 “x, d” Delete Character

x or d space (d, followed by a space) will delete one character. To delete
many characters in a row, num x or num d space.

dw would delete to the end of the word.

7.2.9 “dd” Delete Line

[num] dd will delete num lines beginning at the current line. The default
num is 1.

D deletes until the end of the line.

7.2.10 “yy” Copy Line in buffer

[num] yy will copy num lines beginning at the current line, into a buffer.
The default num is 1.

7.2.11 “p” Put Buffer

When a line is deleted with dd (num dd), these lines are copied into a special
buffer. p will put that buffer after the current line.

7.2. “VI” VISUAL EDITOR – INTRODUCTION 87

Note that the contents of that buffer are not erased; they can be put
(recovered) as many times as desired.

7.2.12 “u” Undo

This is a very useful command. It cancels the effect of the previously executed
command.

vim, a vi clone used mosly on linux distibutions, has an unlimitted undo.
To redo the undone change, use CTL-R.

7.2.13 “.” (dot) Repeat

(dot) by itself will cause the last editing command to be repeated. That
command may be dd, or i followed by some text, or a pattern find, or any
legal command.

Cursor movement commands will not be repeated by a ”dot”.

7.2.14 “vi” visual Editor – command mode

7.2.15 “:q” Quit

When in vi, typing

:

will bring the user into command mode. As the : is typed, it will be displayed
on the last line of the screen, and vi will wait for a command to be typed.

q is such a command. This will exit vi, if no changes have been made
since the last write-to-file command.

:q! (with an exclamation mark) will exit, even if the buffer has not been
written to the file.

7.2.16 “:w” Write

:w

will cause the contents of the buffer to be written to the file.
:wq will write the buffer to the file, and exit to the calling shell.

88 CHAPTER 7. EDITORS

7.2.17 “:r” Read

:r filename

will bring the content of filename beginning at the cursor position.

7.2.18 “:num” Line Number

:num

will bring the cursor to line num.

7.2.19 “/string/” Finding a Pattern

To find a specific string, use

/string/

where string is the literal to be found.
Upon finding string, the cursor will position itself at the beginning of the

literal.

7.2.20 “n” Next

After searching and finding a string (using the forward slash ”/”), n will find
the next occurrence of that same string.

7.2.21 :set all

This command displays a number of variables that can be altered to configure
the editor. An example of such a variable is set number, which would then
number the lines in the buffer.

7.2.22 “vi” visual Editor – input mode

7.2.23 “i” Insert Mode

Pressing i will bring the user into input mode. Anything typed after that
will be inserted before the original cursor position.

ESC (escape) exits the insert mode.

7.3. OTHER EDITORS 89

7.2.24 “a” Append to Character Mode

a will enter append mode, with the text inserted after the original cursor
position.

ESC (escape) exits the append mode.

7.2.25 “A” Append to Line Mode

A will bring the cursor to the end of the current line, and enter append mode.

ESC (escape) exits the append mode.

Similar to that command O starts a new line of input.

7.2.26 “r” Replace Character

To replace one character, r followed by the new character will replace the
current character (where the cursor is) with the newly typed one.

7.2.27 “R” Replace Characters

To replace a string of characters, R will enter replace mode, and anything
typed will overwrite the existing characters.

ESC (escape) exits the replace mode.

7.2.28 “cw” Change Word

To replace a word, bring the cursor to the beginning of the word, then issue
cw. From that point on, the current word will be replaced with the input,
until the ESC (escape) character is entered.

7.3 Other Editors

vi and ed are the two editors included in most UNIX systems. Other editors
may be included with UNIX, or can be separately purchased. The next few
sections will indicate some of these editors.

90 CHAPTER 7. EDITORS

7.3.1 GNU Emacs

GNU (Gnu’s Not Un∗x) Emacs is a public domain editor, available from MIT
(prep.ai.mit.edu or 18.71.0.38), or from anyone who has a copy of the soft-
ware.

GNU Emacs is a full screen editor, which relies on control keys for com-
mands.

7.3.2 textedit

textedit is Sun’s GUI (Graphical User Interface) editor. It works only inside
the window system (Open Look), and relies heavily on the mouse.

textedit is easier to use than most other editors because it follows the
“point-and-click” concept.

7.3.3 jot

jot is Silicon Graphics’ equivalent of textedit.

7.3.4 vuepad

vuepad is available on HP’s and is mouse based (point and click).

7.3.5 nedit

This is an X-based, point and click editor, in the public domain. Most servers
maintained by the Research Computing Support Group have it installed.

7.3.6 pico

This is another public domain editor. It is ASCII based, and very easy to use.
As with nedit, it is installed on most servers maintained by the Research
Computing Support Group.

7.4 Exercises

1. Assume you have a standard UNIX system, and that you are logged on
to it via a VT100 terminal. Which editors are available to you? Which

7.4. EXERCISES 91

should you use?

92 CHAPTER 7. EDITORS

Chapter 8

Electronic Mail

8.1 Mail at NRC

Officially, NRC employees use the central Microsoft Exchange service offered
by the Messenging Group of the Information Management Services Branch
(IMSB) based at M-60. That mail system is based on MS Windows Operating
System.

Many researchers still prefer to have their mail delivered to a linux/UNIX
mail server instead, and use their own mail client to access their mail. GUI-
based mail clients used to access their linux/UNIX mail include Netscape,
MS Outlook and Eudora. ASCII-based mail clients include BSD Mail, ELM
and PINE.

This chapter will cover generic mail concepts, then will go on to describe
some of those concepts within the BSD, ELM and PINE mail interfaces.

8.2 Internet node: Machine Naming Conven-

tion

A node is the name of a computer. The computer may be a PC, a worksta-
tion, a mini, a mainframe, or a supercomputer. An Internet node can be any
machine in the world, as long as it is on the Internet network, which NRC is
a member (the Internet is discussed in the Networking section of Book II:

Advanced Introduction).

The convention for a node on the Internet network is:

93

94 CHAPTER 8. ELECTRONIC MAIL

machine.section.organization.type of organization

where type of organization may be edu, mil, gov, com, org, net or, out-
side of the United States, country code.

As of 2001, type of organization also includes aero, biz, coop, info,
museum, name and pro. The networking section (part II of the course notes)
will explain in more details what they are.

At the National Research Council, a node is defined as

machine.institute.nrc.ca

The Research Computing Support Group’s SGI O2 is nickel.sao.nrc.ca

for the outside world, nickel.sao for people within NRC and nickel for
people within RPSO/SCSG.

8.3 Mail Forwarders

Quite often a mail address will be of the form

mail user@company.type of organization

For example,

mail claude.cantin@nrc.ca

This obviously does not follow the above discussion on Machine Naming

Convention.
In such cases, mail is sent to a central mail forwarder (in the above exam-

ple, nrc.ca), which then forwards the mail to user within the organization.
At NRC, user tends to be the user’s first name, followed by a period,

followed by his/her last name (ex: Claude.Cantin). This convention makes
it easy for people to send mail to an NRC employee.

Another advantage of using that method is that when an employee is
transfered to another department, no electronic mail address needs to be
changed: only the entry in the mail forwarder needs to be modified. This
alleviates the problem of contacting all colleagues to let them know of the
change of address.

This method is also used by all organizations with an installed firewall (a
firewall is the result of a procedure used to isolate a local network from the
Internet; this is usually done for security reasons).

8.4. MAIL FOLDERS 95

8.4 Mail Folders

A mail folder is a collection of mail messages stored in a single file. By
convention, all folders are stored within a directory called $HOME/mail or
$HOME/Mail (directory mail in the user’s home directory).

A folder is usually referred to as

+folder name or =folder name

where the plus (+) sign means that the file is residing (or is to be residing) in
the folder directory ($HOME/mail). Note that that convention does not hold
for all mail clients; some require the mail folder directory be included with
the folder name.

The default folder is the user’s system mail folder, /var/mail/user.

8.5 Signature Files

A typical mail program will allow one or more signature files.

A signature file is a file which contains any information

one would like to append at the end of a mail message. It

could look like:

--

Claude Cantin Claude Cantin

Rm 2025, 100 Sussex Dr. Piece 2025, 100 Prom. Sussex

Research Computing Support Soutien informatique en recherche

Information Management Services Services de gestion de l’information

National Research Council Conseil National de Recherches

Ottawa, Canada (K1A 0R6) Ottawa, Canada (K1A 0R6)

claude.cantin@nrc.ca 1-613-993-0822 (FAX: 993-3127)

--

A typical signature filename is .signature.

Often, two such files are used: one for local mail (mail

to addresses on the local system) and one for mail to remote

users. The file names could be .lsignature and .rsignature

where local signature files are used for addresses without the

at ("@") sign.

96 CHAPTER 8. ELECTRONIC MAIL

Signature files are automatically appended at the end of

every message sent.

8.6 Mail Aliases

Mail aliases allow the use of shorter, more meaningful

addresses instead of their long form. For example,

mail claude

could be used instead of

mail claude.cantin@nrc.ca

Mail client packages handle mail aliases using different

methods, and different configuration files.

Group aliases are collections of mail aliases. Using group

aliases, one could send mail to many destinations at once.

8.7 MIME: Multi-purpose Internet Mail Exten-

sions

The MIME protocol is a standard used to include (or attach)

additional information to a mail message. That additional

information may be an ASCII file, a binary file, a video clip,

an audio file, an image, or another object.

A MIME compliant mail program will follow the directives

embedded in the mail message to prompt the user to save the

attachment as a file, play the video/audio clip, or perform

a certain function according to the information stored in the

attachment.

Although MIME has been around for many years, Microsoft made

the term attachments widely used.

Not all mail reader programs are MIME compliant.

8.8. .FORWARD: FORWARDING MAIL 97

8.8 .forward: Forwarding Mail

Often, one has more than one account but want mail to be

forwarded to one specific machine. This is done by created

file

.forward

in the $HOME directory.

The content of .forward is the full address to which mail

is to be forwarded. For example, if your account contains a

.forward file with

claude.cantin@nrc.ca

then all mail sent to your account will be forwarded to

claude.cantin@nrc.ca.

If you want to keep a copy locally, and forward a second

copy, simply add a second line in .forward to include your own

login. For example, if your local login is cantin:

claude.cantin@nrc.ca

cantin

8.9 .vacation: I’m away from my desk

The mail system may be set up to automatically respond to

incoming mail with a specific message. This is usually done

when gone for an extended period of time of longer than a few

days.

This is done using the vacation program:

1. Create file .vacation.msg, in your main directory. That

file would look similar to

Re: away until May 4th.

I am out of the office from April 26 until May 4th.

98 CHAPTER 8. ELECTRONIC MAIL

Your mail has been received, and will be read upon my return.

Regards,

Claude

2. Create file .forward, in your main directory:

\your_login_name, "|/usr/sbin/vacation login_name"

where your login name is your login name on your system.

3. As soon as you have created .forward, initialise the

vacation procedure:

vacation -i -r interval

where interval is the reply interval, in days. This

is the interval in which a user will receive your reply

(content off your .vacation.msg file), no matter how many

message he sent you.

Default is 7 days (2 or 3 is fine). 0 is for every

message -- NOT RECOMMENDED as it would interfere with

mailing lists, discussion groups, etc.

To disable the facility: remove .forward.

8.10 Securely Accessing POP/IMAP Mail-

boxes

One of the main advantage (some would say disadvantage!) of

using UNIX/linux is the pletora of choices one has in regards

to applications. Mail clients are no exceptions.

The POP (Post Office Protocol) and IMAP (Internet Mail

Access Protocol) protocols allow a client application to

8.10. SECURELY ACCESSING POP/IMAP MAILBOXES 99

directly access mail located on a remote server. But, as

is often the case with communication software (but this is

changing), most POP/IMAP application communicate with the

server using cleartext by default.

To get encrypted communication, action is required on the

part of the user.

This section will describe two methods one may use their

POP/IMAP capable mail client to securely access mail on their

POP/IMAP UNIX/linux server.

Both methods apply to systems located within NRC, as well as

systems people are using to connect to NRC from home.

First, it should be noted that POP and IMAP are two

different protocols. POP uses port 110 whereas IMAP uses 143.

A port is an access door one uses to communicate to different

applications on UNIX/linux. POP uses port 110. IMAP uses

port 143. sendmail, the application that accepts mail on the

servers, uses port 25. SSH uses port 22. The web uses port

80.

All systems use the same port for the same applications, and

all application servers listen to the same ports. This allows

for different applications using the same protocol (ex: pine,

evolution, netscape, Eudora all use the POP protocol) to know

how to contact remote servers because they know which port, and

which protocol, to communicate with.

8.10.1 SSH tunneling of email from UNIX to UNIX

One of the capabilities of SSH is to allow the creation of

private tunnels, creating a VPN (Virtual Private Network).

Two uses of SSH-tunneling are to allow X through the SSH

connection, and to allow mail to be delivered through that

encrypted passage.

A tunnel is create with a command similar to

SSH -L:l port:mail server.inst.nrc.ca:r port

mail server.inst.nrc.ca

where

100 CHAPTER 8. ELECTRONIC MAIL

• l port is a number between 1024 and 65536.

• r port is the port number on the remote system you would

like to tunnel through SSH. For mail uses, this is either

110 (POP) or 143 (IMAP).

• mail server.inst.nrc.ca is the name of the system where

your mail resides.

Issueing that command will connect you to

mail server.inst.nrc.ca using ssh, while allowing any requests

made to l port to be automatically forwarded, through the

SSH-encrypted tunnel, to r port on mail server.inst.nrc.ca.

As long as the SSH connection is maintained, your own VPN is

active.

For example, let’s open a tunnel from the local system to

nickel.sao.nrc.ca so you can use IMAP to access your mail on

that mail server. Local port 45243 will be used:

ssh -L:45243:nickel.sao.nrc.ca:143 nickel.sao.nrc.ca

As is with any SSH connection to a remote system, any

communication will be encrypted. And any request made to port

45243 on your local system (often seen as localhost:45243) will

be translated as port 143 on the remote system (often seen as

nickel.sao.nrc.ca:143).

The next step is to configure your mail client (Netscape,

kmail, pine, evolution to name a few) to contact the proper

mail server. For the name of the mail server, it should be

localhost:l port. This will tell your application to use

l port on your local system, tunelling the request to port

r port on mail server.inst.nrc.ca.

Extending the example above, the local application should

define the inbound mail server as localhost:45243. The

outbound mail server is still nickel.sao.nrc.ca.

From that point on, any mail request made locally will be

tunneled through SSH, to port 143 on nickel.sao.nrc.ca.

Note that for this to work, your connection must be kept

active. As soon as the original

8.10. SECURELY ACCESSING POP/IMAP MAILBOXES 101

ssh -L...

command is terminated, the tunneling is also terminated, so is

your VPN.

8.10.2 SSH tunneling of email from a Windows appli-

cation to UNIX

Windows mail applications, like MS Outlook, can also connect

to UNIX/linux based POP/IMAP servers. The principle is the

same as explained when doing so with a UNIX/linux application,

except that there is no need to define a specific local port.

For Windows applications, the local and remote port numbers

stay the same.

Follow the followin steps to read your UNIX/linux mail from

a Windows application:

• Connect to the mail server using an SSH application like

putty.

• Configure your mail application (ex: Outlook) to use

localhost:143 (for IMAP) or localhost:110 (for POP) as

your incoming mail server.

• Start reading mail

Remember that, as was the case above, one must keep the

SSH-connection open in order to keep your tunneling going.

8.10.3 fetchmail: bring remote mail to local system

Note: fetchmail is fine, but, if possible, we recommend

people use a POP/IMAP capable mail client, and connect directly

to the mail server, as shown above.

In some instances, people want to use a non-POP/non-IMAP

mail application, but still want to read their mail locally,

even if their workstation is not a mail server. fetchmail is

used to connect to a remote mail server, and bring your email

to your local mailbox. You then may use your favourite mail

client to browse through your mail.

102 CHAPTER 8. ELECTRONIC MAIL

As with using the POP/IMAP protocols to read your email off

a remote server, fetchmail will need to be configure so it is

tunneled through SSH.

This is done by first enabling the SSH-tunnel, then using

fetchmail to use that tunnel to access mail on the remote

server.

Two ways will be shown here. Both will use the .fetchmailrc

configuration file to perform the SSH-tunneling of the protocol

desired. The first method is simpler while the second one more

graceful and more permanent.

In both cases, the configuration file, .fetchmailrc will

look similar to:

defaults

fetchall

keep

mda "/usr/bin/procmail -d %T"

poll mail server.inst.nrc.ca via localhost port

l port with proto protocol:

preconnect "ssh -f -L l port:mail server.inst.nrc.ca:r port

mail server.inst.nrc.ca sleep 20 /dev/null";

where

• fetchall means all mail will be transfered. Use that line

only the first time you transfer your mail over.

• keep means that the mail will by copied, not moved.

• The poll and preconnect lines log you onto the server and

copy the mail over to the local system.

• protocol is either pop3 or imap.

• l port is a number between 1024 and 65536.

• r port is the port number on the remote system you would

like to tunnel through SSH. For mail uses, this is either

110 (POP) or 143 (IMAP).

8.10. SECURELY ACCESSING POP/IMAP MAILBOXES 103

• mail server.inst.nrc.ca is the name of the system where

your mail resides.

Permissions on .fetchmailrc should be 600 (rw-------).

Manual fetchmail

For a one-time-transfer, fetchmail may be used manually, as in

fetchmail

The configuration file will be read, and the entire system

mailbox from mail server.inst.nrc.ca will be copied locally.

As an example, lets assume the mail server is

nickel.sao.nrc.ca. We want to use POP as the protocol, and

we will use local port 22334 (any number between 1024 and 65535

is fine).

.fetchmailrc would look like:

defaults

fetchall

keep

mda "/usr/bin/procmail -d %T"

poll nickel.sao.nrc.ca via localhost port 22334 with proto pop3:

preconnect "ssh -f -L 22334:nickel.sao.nrc.ca:110 nickel.sao.nrc.ca sleep 20 /dev/null";

Automated/daemon fetchmail mode

To use fetchmail in daemon mode, use the same configuration

file as above, but remove the fetchall line. Then start

fetchmail as in

fetchmail -d time

where time is the frequency, in seconds, you want your mailbox

checked on the remote system. Ideally, time should be in the

order of 300 (5 minutes).

When the command is issued, it will prompt you for your

remote password.

Each time the remote server is rebooted, you will have to

re-issue the fetchmail -d time command, as the tunnel will have

been discontinued, and you need to re-create it.

104 CHAPTER 8. ELECTRONIC MAIL

8.11 The Berkely (BSD) Mail Interface

Most systems include this mail-client. Some vendors invoke the

program with mail whereas other use Mail.

If the command

mail

returns

No Mail for user

the BSD mailer is being used.

8.11.1 Sending Mail

To send mail to a user,

mail user [@node]

where user is the logon name of the recipient, and node is

his/her machine.

After invoking mail, UNIX will come back and prompt the user

for the subject of the message, as in:

prompt> mail cantin
Subject:

This is optional.

Once the subject is entered (and the carriage return

pressed), mail is in input mode: anything entered is part

of the message. End the message by entering a . (dot) on a

line by itself, or press (<CTL-d>).

At that time, a

Cc:

prompt will be displayed, allowing the sender to send copies to

other users. Cc stands for Complimentary (or Courtesy) copy.

Again, this is optional.

Enter a carriage return, and the piece of mail is sent out.

If the entire message has been previously created with an

editor, and placed in file , it can be sent to user with

mail user < file

8.11. THE BERKELY (BSD) MAIL INTERFACE 105

~r filename: Read Filename

To incorporate a previously edited file into the message, issue

˜r filename

where filename is the name of an ASCII file to be incorporated

in the body of the message. The tilde MUST be the first

character of the line.

If filename is not an ASCII file, use uuencode to encode it

into an ASCII sequence.

Note that this must be done while writing the message. Here

is a short mail session:

prompt> mail cantin
Subject:

the file course.tex will appear following this line
˜r course.tex
"course.tex" 80/1888

notice that the name of the file, its number of lines, and
the size of it (in bytes) were displayed by the utility, not
myself.

The dot on the next line indicates the end of the message.
.
Cc: stan

~v: Invoking the Visual Editor

˜v

When writing the body of the message, this command will invoke

vi. Once in vi, edit the letter. Exiting vi (write, and quit)

will come back to the body of the message (at that time the

file being edited by vi will have been written---although the

user can’t see it!).

Enter a dot on a line by itself to end the composition of

the message.

Electronic mail can now be sent from any UNIX system on

the NRC Ethernet network to any other machine (UNIX or not)

106 CHAPTER 8. ELECTRONIC MAIL

connected to the Ethernet. To get the node name of the

receiving system, contact its system administrator.

8.11.2 Reading Mail

Invoking

mail [-f folder name]

allows mail to be read.

Upon entering mail, one of two things may happen (depending

on how the system was set up):

1. For each piece of mail waiting to be read, one line

contains information concerning who the mail comes from,

when it was received, and (part of) the subject line of

that message. mail prompts the user to enter a command.

2. The last message received is displayed. mail prompts the

user to decide what to do with this piece of mail.

Some of the most common commands are explained in the

following sections.

n: Next

n or simply <CR>

displays the next message.

p: Print

p

displays (prints) the current message on the standard output.

NOTE : p stands for print, but really means display on the

screen. The reason is historical: first UNIX users were using

teletype terminals, thus any output was printed on hardcopy.

8.11. THE BERKELY (BSD) MAIL INTERFACE 107

num: Print message num

num

displays (prints) message num on the standard output.

s: Save

s filename

If filename does not exist, it will be created. The current

message will be appended to that file.

If +filename was used, filename would be in the folder

directory.

Sending a file to a printer

A variation of the save command can be used to pipe the message

to a command. For example

s | command

will pipe the current message into command. If command happens

to be lpr or lp, the file will be sent to the printer.

h: Header

h

displays the headers of the active messages.

d: Delete

d

deletes the current message. d also takes a range of message

number(s).

r: Reply

r

allows the user to reply to the sender with another message.

108 CHAPTER 8. ELECTRONIC MAIL

s: Forward

s | mail user

will forward the mail to user.

~m: Incorporating current message

˜m

will incorporate the current message (just read) to the message

being sent out. The incorporated message will be indented one

tab within the message currently being written.

This option is very useful when forwarding a message to

another user.

q: Quit

q

will exit mail, and save all undeleted mail messages back into

the mailbox, usually /usr/mail/user.

8.11.3 Configuring Mail Behaviour

When the mail system is invoked, either for reading or sending

mail, a system-wide mail configuration file (/usr/lib/Mail.rc)

is read. Then, if it exists, file $HOME/.mailrc is also read.

That file may contain, among mail configuration commands,

aliases for mail to use. An example of such an alias could be:

claude cantin@nickel.sao.nrc.ca +cantin

wayne wayne.podaima@nrc.ca +wayne

group claude stan

If mail is sent to group, it will then automatically

be sent to both claude and wayne, which actually means

cantin@nickel.sao.nrc.ca, the mail folder cantin,

wayne.podaima@nrc.ca and the mail folder wayne.

For more information on the .mailrc file, see the Special

Files chapter of Book II: Advanced Introduction.

8.11. THE BERKELY (BSD) MAIL INTERFACE 109

8.11.4 Mail Folders

Creating a Folder

While reading mail, a message can be saved in a folder with

s +folder name

If the folder already exists, the mail message will be appended

to the end of it. If the folder does NOT exist, then the file

will be created.

Reading from a Folder

To read from a folder,

mail -f +folder name

is used. If only ‘‘mail" is issued, the default folder is

/var/mail/$USER.

.record, a special folder

All outgoing mail messages are, by convention, saved in a

special folder called .record. This file always grows in size,

so it is recommended to periodically clean it up, or rename it.

8.11.5 Mail Aliases

BSD mail aliases are put in file

.mailrc

and are of the form

alias nickname real address

or

alias nickname addr 1 addr 2...

8.11.6 MIME: Multi-purpose Internet Mail Extensions

BSD mail is not MIME compliant.

110 CHAPTER 8. ELECTRONIC MAIL

8.12 ELM: ELectronic Mail

Public domain package.

In the late 1980s, early 1990s, ELM was viewed as one of the

top emerging ASCII-based mail clients. It was availabe (source

compiled) on all major UNIX platforms.

For that reason, and because of its ease of use, it was

picked as the default mailer on the UNIX systems manages by the

Research Computing Support Group. On those systems, mail was

aliased to invoke elm.

By the early 2000s, ELM has not kept up as much as some

others (namely PINE, presented in these course notes).

Nonetheless, it still is our default ASCII-based linux/UNIX

mail client.

If the command

mail

returns a full screen interface similar to 8.1, then elm is

being used.

8.12.1 Sending Mail

Standalone Mode

elm user [@node]

will invoke elm in sending mode. The message:

To: user@node

Subject:

will then be displayed. After entering the subject, the string

Copies to:

will prompt you for additional recipient names. A carriage

return will leave that field empty.

The editor (pico by default) will be invoked, and the

composition of the message may begin. The editor invoked may

8.12. ELM: ELECTRONIC MAIL 111

Mailbox is ’/usr/mail/cantin’ with 2 messages [ELM 2.4ME+ PL11 (25)]

1 Apr 30 To cantin@neon.sao (54)

2 Mar 4 To Claude Cantin (15) itest

|=pipe, !=shell, ?=help, <n>=set current to n, /=search pattern

a)lias, C)opy, c)hange folder, d)elete, e)dit, f)orward, g)roup reply, m)ail,

n)ext, o)ptions, p)rint, q)uit, r)eply, s)ave, t)ag, u)ndelete, or e(x)it

Command:

Figure 8.1: elm interface.

112 CHAPTER 8. ELECTRONIC MAIL

be changed by using the option menu, discussed in the previous

section.

If you use pico, elm will prompt you to save the file (it will give
you a suggested name). It does need to save the file before sending
it.

When the message is ready to be sent, issue the editor

command to save the file. elm will come back with the message

And now: s

e)dit message, h)eaders, c)opy, i)spell, !)shell, s)end, or f)orget

p)gp

message. Answering to that message will leave elm completely

and bring you to the UNIX prompt.

Within the Interface

elm

will invoke the interface.

m

will start the program used to send mail, much the same way as

in the previous section.

Batch Mode

Mail could finally be sent in batch mode (or as a one-line

command) with

elm user@node -ssubject < filename

where filename is the name of the file which contains the

message to be sent.

8.12.2 Reading Mail

elm

will invoke the interface to read your mail. The interface

will look much like Figure 8.2.

Enter the message number to read a specific message, or

press ENTER to read the current one (it is highlighted).

8.12. ELM: ELECTRONIC MAIL 113

Mailbox is ’/usr/mail/cantin’ with 113 messages [ELM 2.4 PL24 ME7]

1 Nov 7 SGI Support Mail (84) CREATE CASE/LOG SUCCESS

2 Nov 7 Geof Aers (22) Rick’s machine-cm8

3 Nov 7 Geof Aers (22) Rick’s new enclosure

4 Nov 7 flash@FlashBack.co (826) sunflash 82.00

D 5 Nov 7 flash@FlashBack.co (239) flashback 1386

r 6 Nov 6 Greg Kresko (20) VCR to borrow?

7 Nov 6 Mauro Tomietto (32) Itsssss back !!!

8 Nov 6 Stan Zurawski (24) "phone" fixed

9 Nov 6 SGI Support Mail (72) CREATE CASE/LOG SUCCESS

r 10 Nov 6 Clarify user (52) Email out for Case 0531153

11 Nov 6 Clarify user (49) Email out for Case 0530997

12 Nov 6 SGI Support Mail (73) CREATE CASE/LOG SUCCESS

13 Nov 6 Stan Zurawski (52) Re: whois...

14 Nov 6 Clarify user (47) Email out for Case 0530997

15 Nov 6 Jerome, Ron (29) UUG list server

16 Nov 6 Geof Aers (20) Re: IMS home page...

17 Nov 3 Wayne Podaima (22) To bug you!

18 Nov 3 Geof Aers (23) ims pages on gold

r 19 Nov 3 Wayne Podaima (60) Re: IRIX 6.1 upgrade...

20 Nov 3 Wayne Podaima (26) (Very) Late Monday AM

|=pipe, !=shell, ?=help, <n>=set current to n, /=search pattern

a)lias, C)py, c)hange folder, d)el, e)dit, f)orward, g)rp reply, m)ail,

n)ext, o)pts, p)rint, q)uit, r)eply, s)ave, t)ag, u)ndel, or e(x)it

Command:

Figure 8.2: elm Interface: Expert User Level Menu.

114 CHAPTER 8. ELECTRONIC MAIL

n: Next

To read the next message, enter

n

or return to the message list (press i) and move the

highlighted bar to the message to be read.

To view message num, enter the message index number.

s: Save

s

will save the message in a specified mail folder.

p: Printing to a printer

p

will send the current message to the printer, according to the

command defined by the ‘‘P)rint mail using" string within the

option menu, explained in the Configuring elm section later.

d: Delete current message

d

will perform that operation.

Deleted messages will be tagged with a ‘‘D" in the main

menu.

r: Reply to sender

r

will allow the user to reply to the sender, with the option of

including/modifying the original message.

Once a message has been replied to, an ‘‘r" will be placed

on the left hand side of the message header in the main

menu. Figure 8.2 shows a few messages for which a reply was

performed.

8.12. ELM: ELECTRONIC MAIL 115

f: Forward

f

will give the option of editing the current message, then

prompt for the user to forward the message to, and will give

the option of changing the mail message.

elm will then display:

And now: s

e)dit message, h)eaders, c)opy, i)spell, !)shell, s)end, or f)orget

p)gp

and will await further instructions.

q: Quit

q

will end the current elm session.

8.12.3 Configuring Mail Behaviour

The elm configuration file is stored in the .elm hidden

directory in your login directory. The configuration file

itself is elmrc. This file can be modified with an editor to

suit the user’s individual tastes, or may be modified with the

help of an interactive menu utility invoked within elm itself

by issuing the option command

o

The interface should look similar to Figure 8.3.

NOTE that this configuration menu only changes a small

number of parameters. Many other elm features may be modified

by using an editor on elmrc.

The main options users may want to change are the editor

they would prefer using during the composition of the message

(press ‘‘e" within the options menu), and the command used to

send the current message to a printer (press ‘‘p" within the

options menu).

116 CHAPTER 8. ELECTRONIC MAIL

-- ELM Options Editor --

C)alendar file : /usr/people/cantin/calendar

D)isplay mail using : builtin+

E)ditor : vi

F)older directory : /usr/people/cantin/Mail

S)orting criteria : Reverse Date Mail Sent

O)utbound mail saved : =sent

P)rint mail using : /usr/local/bin/apr %s

Y)our full name : Claude Cantin

A)rrow cursor : OFF

M)enu display : ON

U)ser level : Expert User

N)ames only : ON

Select first letter of option line, ’>’ to save, or ’i’ to return to index.

Command:

Figure 8.3: elm Options Menu.

8.12. ELM: ELECTRONIC MAIL 117

Another option to consider is the ‘‘level" of the elm menu

seen at the bottom of the screen. The higher the level, the

more menu items are displayed! Following that logic, most

users should select expert as their User level. However, even

though a menu item is not displayed, it is still accessible by

typing the character representing it. Help (?) may be used to

list the available options.]

Once the choices are saved (using >), one can return to the

main menu using ‘‘i". Note that most commands within elm do

NOT need to be followed by a carriage return (<CR>).

Modifying the file .elm/elmrc allows you to modify:

• The name of the file all outgoing messages are to be

stored in. That feature may be turned ON, or OFF.

The lines in .elm/elmrc allowing to keep outgoing messages

in a file called Mail/outbound would look like:

save a copy of all outbound messages?

copy = ON

where to save copies of outgoing mail to, default file is "=sent"

sentmail = $HOME/Mail/outbound

• The name of your ‘‘signature" file. That file is

automatically appended to any mail sent out.

For example:

remote ".signature" file to append to appropriate messages...

remotesignature = .rsignature

local ".signature" file to append to appropriate messages...

localsignature = .lsignature

• The behaviour of the mailer once a message is read. Is

the mail deleted? Is it automatically moved to a read

folder?

118 CHAPTER 8. ELECTRONIC MAIL

• Should the interface prompt for the ‘‘cc"?

The lines in .elm/elmrc could be:

would you like to be asked for Carbon-Copies information each msg?

askcc = ON

• Many other features.

8.12.4 Mail Folders

elm folders are stored within the directory defined by the

F)older directory field in the option menu (or the maildir

variable in mailrc). The default is $HOME/Mail.

The folder may be referred to as

+folder name

or

=folder name

where the plus or equal (+/=) sign means that the file is

residing (or is to be residing) in the folder directory. If

the plus (+) or equal (=) sign is not used, the folder will

reside in the directory from which elm was invoked.

Creating a Folder

While reading mail, a message can be saved in a folder with

s +folder name

If the folder already exists, the mail message will be appended

to the end of it. If the folder does NOT exist, then the file

will be created.

Reading from a Folder

To read from a folder,

elm -f +folder name

is used. If only ‘‘elm" is issued the default folder

/var/mail/$USER is read.

8.12. ELM: ELECTRONIC MAIL 119

Changing Folders

Within the main elm menu, pressing

c

will replace the current mailbox with another, represented by a

folder. It is the equivalent of leaving elm, then re-invoking

it with a folder name as an argument.

After entering ‘‘c", a number of strings may be entered:

! : Will read the incoming (system) mailbox.

< : Will read the folder into which outgoing messages are

kept (if so defined in .elm/elmrc, the elm configuration

file).

folder : Will read the contents of folder folder.

If folder includes wildcards which expand into more than

one folder name, all folder names will be displayed. It

would then be possible to choose any one of these.

For example, an asterisk (*) will show all folders.

8.12.5 Mail Aliases

aliases are created, modified and deleted with the use of the

alias menu, shown in Figure 8.4.

Five (5) aliases are defined, four (4) of which are of type

Person and one of which is a type Group alias. The actual

alias file (.elm/aliases.text) is seen in Figure 8.5. It could

be edited manually, within elm (by pressing ‘‘e"), or by using

commands within the aliases menu.

Figure 8.4 shows a number of options:

c : Change/modify the current alias.

d : Tag the current alias for deletion.

e : Edit the .elm/aliases.text file, using vi. This is

often the quickest way to add/modify/delete aliases.

120 CHAPTER 8. ELECTRONIC MAIL

Alias mode: 5 aliases [ELM 2.4 PL24 ME7]

1 Claude Cantin Person cantinc

2 Ratilal Haria Person ratilal

3 Some Group Name Group group

4 Wayne Podaima Person wayne

5 Stan Zurawski Person stan

Alias commands: ?=help, <n>=set current to n, /=search pattern

a)lias current, c)hange, d)elete, e)dit aliases.text, f)ully expand,

l)imit display, m)ail, n)ew alias, r)eturn, t)ag, u)ndelete, or e(x)it

Alias:

Figure 8.4: elm Alias Interface.

8.12. ELM: ELECTRONIC MAIL 121

Note: group aliases must not include addresses with an @

symbol; it should only include either aliases previously

defined or addresses without the @ symbol.

f : Show the real address of the alias.

l : Select only specific aliases to be displayed.

m : Mail to that alias.

n : Create a new alias.

r : Return to the main elm menu.

t : Tag the current alias.

u : If the current alias is marked for deletion, ‘‘untag"

the alias.

x : Exit this menu, without saving any changes made.

wayne = Wayne Podaima = podaima@neon.sao.nrc.ca

ratilal = Ratilal Haria = ratilal.haria@nrc.ca

stan = Zurawski; Stan = zurawski@sys35.di.nrc.ca

cantinc = Claude Cantin = claude.cantin@nrc.ca

group = Some Group Name = wayne, ratilal, stan, cantinc

Figure 8.5: Content of .elm/aliases.text

The alias file may also be edited manually by modifying file

.elm/aliases.text

Once the changes are made, the command

newalias

must be run. That command creates the aliases.hash file elm

uses for aliases.

122 CHAPTER 8. ELECTRONIC MAIL

8.12.6 MIME: Multi-purpose Internet Mail Extensions

ELM is MIME compliant, but was made so after it was initially

written. The result is that using attachments with ELM may not

be as obvious as reading/sending mail with the tool.

MIME and elm: receiving messages.

Most current versions of elm installed in the Institute servers

can handle MIME messages. Uppon starting elm, all MIME

messages will be tagged with a M on the left of the message

header (as shown in Figure 8.2).

Reading the message will automatically invoke the proper

utility to view the mail.

Or, at the main elm menu, pressing "v" (note that this

letter is *not* found in the menu) will bring a new menu

containing the list of included files (ie: attachments) in

the message.

Figure 8.6 is a mail message containing two files:

/etc/hosts and images/tiger.ps. Each of those individual files

may be save, and/or viewed using the metamail program.

Attachments Menu (3 attachments)

1 (none) (437) text/plain

2 /etc/hosts (877) text/plain

3 images/tiger.ps (78519) application/postscript

Attachments:

s)ave, v)iew using metamail, return to i)ndex

Figure 8.6: elm Attachments Menu (incoming messages)

is a mail message with a file containing two files:

/etc/hosts and images/tiger.ps. Each of those individual files

may be save, and/or viewed using the metamail program.

Pressing ‘‘i" would return to the main menu.

8.13. THE PINE MAIL INTERFACE 123

MIME and elm: sending messages.

To send a MIME-encoded mail message, the procedure is very

similar to sending a normal message. The main difference is

performed after saving the message from the editor but before

actually sending the message:

And now: s

e)dit message, h)eaders, c)opy, i)spell, !)shell, a)tt, s)end, or f)orget

Figure 8.7 shows what happens when ‘‘a" (for attachments) is

pressed. Files could be added/deleted from the message.

Attachments Menu (0 attachments)

Attachments:

a)dd, d)elete, m)odify, q)uit

Figure 8.7: elm Attachments Menu (outgoing messages)

8.13 The Pine mail interface

pine, developped at the University of Washington, is a menu

driven mail interface. Full screen based, its design allows

the interface to be easy to use.

pine

would show an interface similar to 8.8.

8.13.1 Sending Mail

Standalone Mode

pine user [@node]

124 CHAPTER 8. ELECTRONIC MAIL

PINE 3.91 MAIN MENU Folder: INBOX 2 Messages

? HELP - Get help using Pine

C COMPOSE MESSAGE - Compose and send/post a message

I FOLDER INDEX - View messages in current folder

L FOLDER LIST - Select a folder OR news group to view

A ADDRESS BOOK - Update address book

S SETUP - Configure or update Pine

Q QUIT - Exit the Pine program

Copyright 1989-94. PINE is a trademark of the University of Washington.

[Folder "INBOX" opened with 2 messages]

? Help P PrevCmd R RelNotes

O OTHER CMDS L [ListFldrs] N NextCmd K KBLock

Figure 8.8: pine interface.

8.13. THE PINE MAIL INTERFACE 125

PINE 3.91 COMPOSE MESSAGE </usr/people/cantin/Mail/[]> (CLOSED) 0 Msgs

To : cantin@nickel.sao.nrc.ca

Cc :

Attchmnt:

Subject :

----- Message Text -----

^G Help ^X Send ^R Rich Hdr ^Y PrvPg/Top ^K Cut Line ^O Postpone

^C Cancel ^D Del Char ^J Attach ^V NxtPg/End ^U UnDel Line^T To AddrBk

Figure 8.9: pine: Sending Mail.

126 CHAPTER 8. ELECTRONIC MAIL

will invoke the full screen interface, as shown in Figure 8.9,

using cantin@nickel.sao.nrc.ca as a example email address.

The up/down arrow keys are used to cycle through the

headings.

The last two lines at the bottom of the screen represent the

commands used to perform specific tasks. For examples

^X

is used to Send the mail message (user will be prompted for

confirmation).

Within the Interface

pine

will invoke the interface.

c

will start the program used to send mail, much the same way as

in standalone mode.

Batch Mode

pine does not work in batch mode. It must be used

interactively.

8.13.2 Reading Mail

pine

will bring the interface, as shown in Figure 8.8.

Pressing

i

will display the mail messages in your current folder.

the new interface will now look similar to Figure 8.10

Press the Enter key to read the highlighed message.

The last two lines on the interface also suggests commands

you may use.

8.13. THE PINE MAIL INTERFACE 127

PINE 3.91 FOLDER INDEX Folder: /var/mail/cantin Message 145 of 145

121 Jun 27 Clarify user (1,960) Email out for Case 0618266

+ 122 Jun 27 Wayne Podaima (545) Official maple Update

+ 123 Jun 28 Andrew Booth (1,281) Re: Server rights for Dave Rogers.

+ 124 Jun 28 Wayne Podaima (827) Return Old M-60 Door Access Cards

+ 125 Jun 30 Wayne Podaima (1,271) Re: softwindows on neon...

126 Jul 2 Ratilal Haria (697) New DB

+ 127 Jul 3 Michel Proulx (1,370) isdn

+ 128 Jul 4 Wayne Podaima (597) 64-bit IMSL for SGI

+ 129 Jul 4 Michel Proulx (424) station.ctn

+ 130 Jul 5 Wayne Podaima (744) objectserver Resets

+ 131 Jul 8 Jamie Bennett (644) xwinnmr

+ 132 Jul 8 Andrew Booth (527) cgi-bin scripts.

+ 133 Jul 8 Wayne Podaima (940) xdvi Size Problem

+ 134 Jul 9 To: cantin@nickel. (2,610) (fwd) Re: Anyone know of a Camera New

+ 135 Jul 10 Daryoush Sheikh-Ba (2,147) If it’s possible

+ 136 Jul 10 Steve Myers (1,061) Server Extensions...

+ 137 Jul 10 Steve Myers (37,168) Readme Files

138 Jul 10 Attila Berces (534) disk on tc3

139 Jul 10 Laura Vais (3,041) IRIS On-Line Update

140 Jul 11 Robertson, Gilles (885) Unix

141 Jul 8 Zborowski, Mary D (1,486) FW: link or pointer needed

+ 142 Jul 11 Wayne Podaima (512) Blank root menu problem

143 Jul 11 To: MINOLTA-L@list (2,449) FS: Minolta SRT-200...

+ 144 Jul 11 Andrew Booth (1,836) Re: Server rights for Dave Rogers.

145 Jul 11 akachhy@hogpa.ho.a (1,185) Re: FS: Minolta SRT-200...

? Help M Main Menu P PrevMsg - PrevPage D Delete R Reply

O OTHER CMDS V [ViewMsg] N NextMsg Spc NextPage U Undelete F Forward

Figure 8.10: pine interface.

128 CHAPTER 8. ELECTRONIC MAIL

n: Next

To read the next message, enter

n

or return to the message list (press i) and move the

highlighted bar to the message to be read.

To view message num, enter

j

followed by the message index number.

s: Save

s

will save the message in a specified mail folder.

p: Printing to a printer

y

will invoke the printer command defined using the SETUP menu

off the main pine interface (lp is set by default).

d: Delete current message

d

will perform that operation.

Deleted messages will be tagged with a ‘‘D" in the main

menu. They may be undeleted by using

u

r: Reply to sender

r

will allow the user to reply to the sender, with the option of

including/modifying the original message.

Once a message has been replied to, a ‘‘A" will be placed on

the left hand side of the messages interface.

8.13. THE PINE MAIL INTERFACE 129

f: Forward

f

will use the same interface as sending mail, but with the

message to be forwarded included in the message body.

q: Quit

q

will end the current pine session.

8.13.3 Configuring Mail Behaviour

file (.pinerc) or by using the

SETUP

menu off the Main Menu.

The SETUP menu offers a number of different settings.

Selecting

S

will give

Choose a setup task from the menu below :

^G Help P [Printer] C Config

^C Cancel N Newpassword U Update

Selecting

c (Config)

will display something very similar to Figure 8.11. That

figure only shows a portion of the configurable options.

Modifying .pinerc also works (a default configuration file

may be found in /usr/local/lib/pine.conf

130 CHAPTER 8. ELECTRONIC MAIL

PINE 3.91 SETUP CONFIGURATION Folder: /tmp/junkmail 145 Messages

personal-name = <No Value Set: using "Claude Cantin">

user-domain = <No Value Set>

smtp-server = <No Value Set>

nntp-server = <No Value Set: using news.nrc.ca>

inbox-path = <No Value Set: using "inbox">

folder-collections = <No Value Set: using /usr2/people/cantin/Mail/[]>

news-collections = <No Value Set: using *{news.nrc.ca/nntp}[]>

default-fcc = <No Value Set: using "sent-mail">

postponed-folder = <No Value Set: using "postponed-msgs">

read-message-folder = <No Value Set>

signature-file = <No Value Set: using ".signature">

global-address-book = <No Value Set>

address-book = <No Value Set: using .addressbook>

feature-list =

Set Feature Name

--- ----------------------

[] assume-slow-link

[] auto-move-read-msgs

[] auto-open-next-unread

[] compose-rejects-unqualified-addrs

[] compose-sets-newsgroup-without-confirm

[] delete-skips-deleted

[] enable-aggregate-command-set

[] enable-alternate-editor-cmd

[] enable-alternate-editor-implicitly

[] enable-bounce-cmd

[] enable-flag-cmd

[] enable-full-header-cmd

[] enable-incoming-folders

[] enable-jump-shortcut

[] enable-mail-check-cue

[] enable-suspend

[] enable-tab-completion

[] enable-unix-pipe-cmd

[] expanded-view-of-addressbooks

[] expanded-view-of-folders

? Help E Exit Config P Prev - PrevPage A Add Value

C [Change Val] N Next Spc NextPage D Delete Val W WhereIs

Figure 8.11: pine Configuration Menu.

8.13. THE PINE MAIL INTERFACE 131

8.13.4 Mail Folders

pine folders are stored, by default in $HOME/Mail. It is

configurable in the SETUP menu interface, under

folder-collections

The folder may be referred to as its name (no prefix). To

use files not located in the folder directory, the full path

name must be used.

Creating a Folder

While reading mail, a message can be saved in a folder with

s folder name

If the folder already exists, the mail message will be appended

to the end of it. If the folder does NOT exist, then the file

will be created (after being prompted).

Reading from a Folder

To read from a folder,

pine -f folder name

is used. If only ‘‘pine" is issued the default folder

/var/mail/$USER is read.

Changing Folders

Within the main pine menu, pressing

l (FOLDER LIST)

(followed by pressing the Enter key in the next menu) will

display the various folder names. The folder may be selecting

using the arrow keys to navigate.

132 CHAPTER 8. ELECTRONIC MAIL

8.13.5 Mail Aliases

Aliases are handled within the

ADDRESS BOOK

menu, within pine’s main menu (enter a in the main menu).

The ADDRESS BOOK menu looks similar to Figure 8.12.

PINE 3.91 ADDRESS BOOK Folder: /tmp/junkmail Message 145 of 145

cantinc Claude Cantin cantin@nickel.sao.nrc.ca

ratilal Ratilal Haria ratilal.haria@nrc.ca

wayne Wayne Podaima wayne@neon.sao.nrc.ca

group UNIX People DISTRIBUTION LIST:

cantinc

ratilal

wayne

zurawski@palladium.sao.nrc.ca

[Now in addressbook .addressbook]

? Help M MainMenu P PrevEntry - PrevPage D Delete S CreateList

O OTHER CMDS E [Edit] N NextEntry Spc NextPage A Add Z AddToList

Figure 8.12: pine ADDRESS BOOK menu structure

Functions available to the user include

e : Change/modify specific parts of the alias.

p : Move pointer (highlighted line) to previous entry.

n : Move pointer (highlighted line) to next entry.

- : Move pointer to previous page (assuming a large list of

aliases).

Spc : Move pointer to next page (assuming a large list of

aliases).

8.13. THE PINE MAIL INTERFACE 133

d : Delete current alias.

a : Add a new alias.

s : Create a new alias representing a group of people.

z : Add to a group.

w : Find an word within the alias file.

c : Compose a message for that alias.

Aliases may also be altered by modifying file .addressbook.

8.13.6 MIME: Multi-purpose Internet Mail Extensions

pine was written with MIME in mind.

Sending MIME messages

To incorporate an attachment to your message, enter the file

name after the

Attchmnt:

subheading.

Receiving MIME messages

When reading a MIME-encoded message, a menu similar to Figure

8.13 will be seen

To see the attachment, press

v

This will start the companion program used to view the

attachment.

In this case, the program xv will be used to display the

content of the GIF file.

134 CHAPTER 8. ELECTRONIC MAIL

PINE 3.91 MESSAGE TEXT Folder: /tmp/junkmail Message 150 of 150 ALL

Date: Fri, 12 Jul 1996 10:32:21 -0400 (EDT)

From: Claude Cantin <cantin@nickel.sao.nrc.ca>

To: Claude Cantin <cantin@nickel.sao.nrc.ca>

Subject: gif mime file

Parts/attachments:

1 Shown 16 lines Text

2 OK 155 KB Image, ""

--

This message includes a GIF image (file cam.gif).

Claude

Claude Cantin Claude Cantin

Rm 2025, 100 Sussex Dr. Piece 2025, 100 Prom. Sussex

Research Computing Support Soutien informatique en recherche

Information Services Management Services de gestion de l’information

National Research Council Conseil National de Recherches

Ottawa, Canada (K1A 0R6) Ottawa, Canada (K1A 0R6)

claude.cantin@nrc.ca 1-613-993-0822 (FAX: 993-3127)

http://www.nrc.ca/rpso/scsg

[Part 2, "" Image/GIF 155KB]

[Not Shown. Use the "V" command to view or save this part]

? Help M Main Menu P PrevMsg - PrevPage D Delete R Reply

O OTHER CMDS V ViewAttch N NextMsg Spc NextPage U Undelete F Forward

Figure 8.13: pine Attachments Menu

8.14. EXERCISES 135

8.14 Exercises

1. What is the identifying name of the UNIX system you are

using?

2. Send yourself a piece of mail.

3. Send someone else a piece of electronic mail.

4. Send someone else on another system a mail message.

5. Send yourself a piece of mail, and include inside it one

of your files.

6. In a file, write a short message. Then, send yourself

that file using mail (hint: one command followed by a

redirection...).

7. Read the mail you have sent to yourself. Issue a ? and

try some of those facilities. Save the piece of mail in a

folder. Reply to yourself.

8. You have sent a piece of mail to a friend. He/she has

lost it, so he/she asks you to send it again. Where can

it be found?

9. Using elm, change the user level of the menu system.

10. Using elm, create an alias, and send a piece of mail to

that alias.

11. Using elm, repeat questions 2 through to 6.

12. Using pine, repeat questions 2 through to 6.

136 CHAPTER 8. ELECTRONIC MAIL

Chapter 9

Commands II

This chapter will introduce a few additonal commands useful to

the intermediate user.

9.1 Location Commands

9.1.1 whereis: Where Is

whereis filename...

By looking only in a list of standard directories, whereis

tries to locate filename.

For IRIX 6.5 (SGI):

/sbin, /etc

/lib, /lib32, /lib64

/usr/{bin, sbin, bsd, ucb, etc, games, demos, lbin}

/usr/{lib, lib32, lib64}

/usr/local/{bin, etc, lib}

/usr/bin/X11

/usr/local/freeware/{bin, lib}

/usr/share/catman/*

/usr/share/man/*

/usr/catman/*

/usr/man/*

/usr/freeware/catman/*

/usr/src/cmd

137

138 CHAPTER 9. COMMANDS II

prompt> whereis ls
ls: /usr/bin/ls /sbin/ls /usr/share/catman/u man/cat1/ls.z

9.1.2 which: Which Program

which file1...

To find where a program/utility is, whereis looked in a

predefined set of directories. which will look in the list

of directories defined by the path (or PATH) variable. If the

program is found, its full path will be immediately displayed.

The following example shows how the whereis and the which

commands could show different results:

prompt> whereis rsh
rsh: /usr/bsd/rsh /usr/lib/rsh

/usr/share/catman/u man/cat1/rsh.z

prompt> which rsh
/usr/bsd/rsh

9.1.3 find: Find

find is a powerful utility that allows the user to find a

specified file or files, and execute a program upon a positive

result of the search.

This course will show a simplified version of the utility.

find path -name filename -print

path is the directory (use absolute path name) where the

search will begin. From that directory, all subdirectories

will be searched, and so on.

filename is the name of the file to be searched for. If

the file name contains metacharacters (wildcards), it should be

in quotes.

find /usr/demos -name “ba*” -print

9.1. LOCATION COMMANDS 139

will find all files beginning with ba in directory /usr/demos

and below. Note that the -print keyword is needed to display

the filenames. Many other commands could have been used

instead of print.

prompt> find /usr/demos -name “ba∗” -print
/usr/demos/backgammon

/usr/demos/banner

/usr/demos/battlestar

/usr/demos/lib/quiz.k/babies

/usr/demos/lib/quiz.k/bard

/usr/demos/lib/battlestar.log

/usr/demos/lib/backrules

To find all core files in your directory,

prompt> find $HOME -name core -print

Instead of -print, you can use any command. Use {}
to represent the filename, and the line must end with \;
(backslash semicolon).

For example, if you want to produce a long listing of each

occurance of file core within your $HOME directory:

prompt> find $HOME -name core -exec ls -l {} \;

Or even better: if you want to remove all core files:

prompt> find $HOME -name core -exec rm {} \;

9.1.4 locate: find files

If all you want to do is to find files, and you are using

linux, use locate:

locate filename

It will search a pre-build database made out of files from the

various filesystems/directories on your system.

That database file is usually updated daily, in the early

morning hours. If a file was removed from the system after the

140 CHAPTER 9. COMMANDS II

database file was updated, locate will still list that file.

The same is true if a file was added after the database file

was updated: the file will not be displayed.

locate is very fast, very efficient. But be aware of the

pitfalls mentionned above.

It is typically found only on linux systems.

9.2 Process Commands

For one reason or another, every user manages to block

programs: an infinite loop may occur, or a program takes

too long to finish. A running program is called a process.

Every process can be displayed and, if necessary, stopped (or

killed).

This section will describe process-related commands.

9.2.1 ps: Process Status

ps [-eflu]

will display, on the standard output, information about the

processes running on the system at that time.

-e : display every process running, as well as the CPU time

used by each one.

-f : display more information about every process running,

such as the user running it, when it started, etc.

-l : display the long version, including the sizes of the

jobs, in 4k pages.

-u : must be followed by a login/user name. The result will

display all processes run by user.

In the following example, the user is logged on to the

console, and has no jobs running, except for his/her shell

and of course the command itself.

9.2. PROCESS COMMANDS 141

prompt> ps

PID TTY TIME COMD

14304 ttyq2 0:00 ps

13943 ttyq2 0:02 tcsh

The next example shows a user using a windowing interface
(in this case, SunView):

prompt> ps

PID TT STAT TIME COMMAND

1338 co IW 0:00 /bin/sh /home/nrccsb2/cantin/bin/sunview

1339 co IW 0:04 /usr/bin/sunview -background /home/nrccsb2/cantin/img/space

1342 co S 3:59 textedit -Wp 479 98 -Ws 673 764 -WP 840 0 -Wi

1343 co S 0:28 clock -Wp 497 32 -Ws 210 47 -WP 704 0 -Wi -S

1345 co S 1:30 perfmeter -Wp 976 0 -Ws 170 69 -WP 0 0 -v cpu

1340 p0 D 1:34 cmdtool -Wp 0 0 -Ws 673 471 -WP 0 0 -Wl $<<$ CONSOLE $>>$

1341 p0 S 0:12 -bin/csh (csh)

1427 p0 S 0:24 perfmeter nrccsb2

1438 p0 R 0:00 ps

1347 p1 S 1:38 cmdtool -Wp 0 350 -Ws 673 550 -WP 772 0 -Wi

1348 p1 IW 0:06 -bin/csh (csh)

1351 p1 S 0:02 rlogin nrccsb2

1352 p1 S 0:02 rlogin nrccsb2

This user has many processes running, each of them taking

some CPU time. Some of the programs running are the windowing

system (sunview), textedit (a full screen ‘‘point-and-click"

editor), a clock, a performance meter, a C shell, two windows

(cmdtool), a remote logon to node nrccsb2, and the ps program.

The first column of the output is the process id, the second

column is the control terminal (co = console, p0 = ttyp0, p1

= ttyp1), the third column is the state of the job (I = idle

process, W = swapped out, S = sleeping, D = in disk waits, R

= runnable). The next column displays the CPU time used by

the process so far, in minutes:seconds, and finally, the last

column displays the command used.

142 CHAPTER 9. COMMANDS II

9.2.2 kill: Kill Process

kill [signal] pid

is used to destroy or terminate a process whose process id is

pid . The pid is found by using the ps command.

kill 1427

would terminate the performance meter.

Sometimes, a process needs to be killed, then immediately

restarted.

kill -1 1427

will send a HUP (Hang Up -- kill and restart) signal to

process-id 1427.

In some cases, the process will not catch the normal kill

interrupt. When that happens, the ‘‘sure kill" is applied:

kill -9 1427

will send an interrupt to that process.

9.3 Verifying System Behaviour

9.3.1 df: Disk Space

df (SUN, Linux)

df -k (SGI)

bdf (HP)

displays the current usage of disk drives used on the system.

The output is usually in blocks (512 or 1024 bytes, depending

on the vendor) and includes both used and free space for each

of the logical/virtual drives installed and configured.

The directory onto which the drive is attached to the

filesystem is shown as the last field of the output.

9.3. VERIFYING SYSTEM BEHAVIOUR 143

prompt> df -k

Filesystem Type kbytes use avail %use Mounted on

/dev/root efs 471376 445886 25490 95% /

/dev/dsk/lv1 efs 1975050 1362496 612554 69% /usr2

neon.sao.nrc.ca:/usr/local nfs 3961000 2507509 1453491 63% /tmp_mnt/usr/local

The above example (executed on a SGI) shows that:

• The root filesystem (/) is 95% used; that there is only

25MB available on that disk.

• /usr2 is a logical volume (/dev/dsk/lv1); in reality it is

two 1GB drives stripped together to form a larger logical

volume.

• /usr/local is not local to this system. It is NFS mounted

(attached to the filesystem through the network) from

system neon.sao.nrc.ca

9.3.2 du: Directory Usage

du [-ks] directory...

where

k : Use units of kb (1024 bytes) for size.

s : Display summary only.

directory : Is the directory where du is to start reporting sizes.

The default behaviour of du is to show the sizes of all

directories, beginning with the current directory. Optionally,

a starting point may be used (directory above).

The following shows the output from du -ks * issued within

the /usr/local directory of gold.sao.nrc.ca:

prompt> du -ks *

865 PowerMonII

6730 adobe

10548 aswedit

144 CHAPTER 9. COMMANDS II

153801 bin

2348 catman

975 data

9978 doc

13688 emacs

89424 etc

2 flexlm

160617 ftp

1 g92

87886 g92.old

126121 g94

4482 groff

118933 imsl

154 include

31 info

74294 lib

12455 pvm3

21791 src

391 tclX

29417 texmf

1260 tkX

2 tmp

223 uniXEDIT

9.3.3 top: Show Top Processes

top

will show the processes (programs) using the most CPU cycles on

the system. It uses a full screen format, with the top 4 lines

giving information about:

• load average.

• system name, time of day.

• concurrent processes.

• CPU state.

9.3. VERIFYING SYSTEM BEHAVIOUR 145

• memory installed, used, free.

• swap available and free.

The remaining portion of the screen gives snapshot of user

processes, similar to ps output, giving information, for top

processes, concerning:

• owner.

• priority.

• total size, resident (in RAM) size.

• running time.

• %CPU used.

The entire screen information is updated every few seconds.

On a single CPU system, the output is similar to

IRIX nickel 6.5 IP32 load averages: 0.31 0.20 0.06 17:45:51

69 processes: 66 sleeping, 2 stopped, 1 running

CPU: 99.5% idle, 0.0% usr, 0.5% ker, 0.0% wait, 0.0% xbrk, 0.0% intr

Memory: 384M max, 326M avail, 283M free, 512M swap, 512M free swap

PID PGRP USERNAME PRI SIZE RES STATE TIME WCPU% CPU% COMMAND

2590702 2590702 cantin 20 2216K 1000K run/0 0:00 0.1 0.59 top

2572241 250 root 20 2996K 1688K sleep 0:06 0.0 0.10 sshd1

172 172 root 20 2492K 1092K sleep 6:10 0.0 0.02 nsd

333 333 root 32 2060K 900K sleep 13:25 0.0 0.02 xntpd

241 241 root 20 3332K 1588K sleep 6:20 0.0 0.01 httpd

But on a multiple CPU system (SGI Origin 200/4 CPUs) it may

look more like:

IRIX64 gold 6.5 IP27 load averages: 0.99 0.99 0.85 17:45:03

164 processes: 116 sleeping, 12 zombie, 33 stopped, 3 running

4 CPUs: 46.9% idle, 26.9% usr, 26.1% ker, 0.0% wait, 0.0% xbrk, 0.1% intr

146 CHAPTER 9. COMMANDS II

Memory: 1024M max, 908M avail, 305M free, 2193M swap, 2108M free swap

PID PGRP USERNAME PRI SIZE RES STATE TIME WCPU% CPU% COMMAND

2460748 522 jolanta 18 142M 21M run/1 36:11 6.3 99.03 l703.ex

2460374 522 root 20 800K 624K run/2 0:00 1.7 26.88 nicer

2461894 2461894 cantin 20 2384K 1536K run/0 0:00 0.1 1.71 top

178 178 root 20 4944K 1824K sleep 36:20 0.0 0.65 nsd

180 180 root 20 7504K 5664K sleep 26:29 0.0 0.34 named

2458709 2439134 scstest 15 1648K 560K sleep 0:00 0.3 0.26 sleep

2439679 2439134 scstest 15 592K 448K sleep 0:02 0.0 0.13 469.gol

2439862 276 root 20 5264K 1792K sleep 0:00 0.0 0.08 sshd1

813 813 root 20 2944K 320K sleep 10:35 0.0 0.05 mediad

1943273 1943273 gabriel 20 21M 2688K sleep 1:31 0.0 0.03 tvdmain

764286 764286 root 20 3936K 2720K sleep 2:40 0.0 0.01 httpd

2229293 2229293 root 20 6240K 2064K sleep 2:25 0.0 0.01 pbs_mom

2229422 2229422 root 20 6256K 2256K sleep 5:52 0.0 0.01 pbs_ser

The output of top may be interactively custimized with a

few simple commands. A few include (from IRIX 6.5; linux

interactive commands vary -- issue ? to view the list):

o : specify order of precesses shown (size, cpu, time).

k : specify which process to kill (by PID).

n : specify number of processes to display.

u : specify user process to show.

q : quit.

? : display help information on commands available.

NOTE: issue h or ? (help) within top on your own system.

The interactive options vary not only from UNIX to linux, but

they also differ between linux distributions AND versions of

the same linux distribution (ex: SuSE 8.0 and SuSE 7.3 use

different interactive commands).

9.3. VERIFYING SYSTEM BEHAVIOUR 147

9.3.4 sar: System Activity Report

This section specific to both IRIX and linux.

sar takes a periodic snapshot of the system. When invoked,

it displays the results of those snapshots:

prompt> sar

IRIX64 tp0 6.5 07201611 IP27 02/22/01

00:00:02 %usr %sys %intr %wio %idle %sbrk %wfs %wswp %wphy %wgsw %wfif

01:00:02 70 0 0 7 22 0 100 0 0 0 0

02:00:02 64 0 0 2 33 0 51 49 0 0 0

03:00:02 64 0 0 0 36 0 75 24 0 0 0

04:00:03 63 0 0 2 36 0 81 19 0 0 0

05:00:02 65 0 0 5 30 0 100 0 0 0 0

06:00:02 65 0 0 2 33 0 100 0 0 0 0

07:00:02 65 0 0 1 34 0 100 0 0 0 0

skip a few lines

11:40:02 71 0 0 0 28 0 100 0 0 0 0

12:00:02 71 0 0 0 29 0 100 0 0 0 0

12:20:02 73 0 0 15 12 0 100 0 0 0 0

12:40:02 74 0 0 1 25 0 100 0 0 0 0

13:00:02 73 0 0 0 26 0 100 0 0 0 0

13:20:02 76 0 0 0 23 0 100 0 0 0 0

13:40:02 74 1 0 3 22 0 100 0 0 0 0

14:00:02 71 0 0 8 20 0 100 0 0 0 0

14:20:03 70 0 0 2 27 0 100 0 0 0 0

14:40:02 67 0 0 0 32 0 100 0 0 0 0

15:00:02 71 0 0 3 26 0 100 0 0 0 0

15:20:02 70 0 0 1 28 0 100 0 0 0 0

15:40:02 74 0 0 0 25 0 100 0 0 0 0

16:00:02 70 0 0 1 29 0 100 0 0 0 0

16:20:03 71 0 0 3 26 0 100 0 0 0 0

16:40:02 71 0 0 1 27 0 100 0 0 0 0

17:00:02 71 1 0 7 21 0 100 0 0 0 0

148 CHAPTER 9. COMMANDS II

17:20:03 65 1 0 1 33 0 100 0 0 0 0

17:40:02 65 0 0 1 33 0 100 0 0 0 0

18:00:02 64 0 0 1 34 0 100 0 0 0 0

19:00:02 61 0 0 4 35 0 100 0 0 0 0

20:00:02 69 0 0 0 31 0 100 0 0 0 0

Average 67 0 0 4 29 0 98 2 0 0 0

sar incr steps

may be used to take steps snapshots every incr seconds.

Memory usage and disk usage may be looked at using the r and

d flags, respectively.

9.3.5 swap/swapon: Virtual memory

swap is an extension of RAM, located on a hard drive.

linux uses swapon instead of swap. The same command is used

to both view swap allocation on the system, and add new swap

partitions/files (only root).

To determine the amount of swap on a system,

/etc/swap -l

may be used. This will display the amount of swap space

available on the system.

prompt> /etc/swap -l

lswap path dev pri swaplo blocks free maxswap vswap

3 /usr/local/VSWAP

128,55 7 0 0 0 0 409600

2 /dev/dsk/dks4d2s7

128,1063 5 0 200000 200000 200000 0

4 /.swap.virtual

128,272 2 0 0 0 0 80000

1 /dev/swap

128,273 0 0 525632 456904 525632 0

The above example also shows virtual swap (vswap). vswap

refers to an amount of swap space defined, but not available

for physical use.

9.3. VERIFYING SYSTEM BEHAVIOUR 149

vswap is only on SGIs.

/usr/local/VSWAP and /.swap.virtual refer to vswap.

/dev/swap and /dev/dsk/dks4d2s7 refer to real swap on two

separate hard drives.

The command

/etc/swap -s

may be used to determine the current usage of virtual memory

on the system. It may be useful to use to find out how much or

the virtual memory is currently being used and/or reserved for

running programs to use.

prompt> /etc/swap -s

total: 33.56m allocated + 759.22m add’l reserved = 792.78m bytes used,

303.47m bytes available

The above example shows 33MB allocated (only from swap

space; since this is a non-zero number, all RAM is currently

being used), 759MB reserved (not currently used but reserved by

running processes) and 303MB available for new programs.

This example was performed on a very large system. More

typically, the output would look more like

prompt> swap -s

total: 0.00k allocated + 68.73m add’l reserved = 68.73m bytes used,

242.95m bytes available

The first three numbers refer to swap space only, while the

last one refers to the virtual memory available (includes RAM +

swap + vswap).

With linux:

prompt> /sbin/swapon -s

Filename Type Size Used Priority

/dev/sda6 partition 2048248 112356 42

/dev/sda7 partition 2048248 112440 42

/dev/sda8 partition 2048248 112372 42

/dev/sda9 partition 2048248 112308 42

/dev/sda10 partition 2048248 112324 42

/dev/sda11 partition 1967920 112392 42

150 CHAPTER 9. COMMANDS II

This shows that the linux system has 6 swap partitions, each

roughly 2 GB in size, to total 12 GB swap space.

Note that for linux, RAM is directly mapped in the first

portion of swap. If there is more swap than there is RAM, the

additional swap may be used as extra RAM.

This is not the case with IRIX, where no RAM is directly

mapped into swap: all swap is used as an extension to RAM.

9.4 Exercises

1. You are looking for file myfile in your directory tree.

Which command could you use to locate it?

2. You wish to remove all occurences of the core files in

your directory tree. How would you do it?

3. You have a program running, called myprog. It is caught

in an infinite loop. Assuming it cannot be killed using

CTL-C or stopped using CTL-Z, how can you eliminate it?

4. You would like to know how a system was behaving the last

few hours. How would you do that?

5. You would like to know how a system is currently behaving.

Which command(s) might you use?

Chapter 10

Solutions to Exercises

This section represents possible solutions to the exercises

in the course material. The subsection numbers represent the

section covered, and the solution number corresponds to the

question number within that section. Solutions to each chapter

of the book (except for Chapter 1) will start on a new page.

10.1 Introduction

1. UNIX is the operating system that covers the widest range

of architectures. You can find UNIX on PCs (SCO, BSD/OS,

FreeBSD, NetBSD, Linux), workstations (Solaris, IRIX,

HP/UX, A/UX, AIX), mainframes (Amdhal and UNISYS have it)

and supercomputers (UniCOS on the Cray).

Why is it on so many architectures? As it is mostly

written in the C language, it is very easy to port from

one processor to another. It is found on proprietary

chips as well as on the 80x86+Pentium, 68000 family, MIPS

R{3,4,8}000 families, SPARC families, 88000 family, and

others.

2. Some of the advantages of running UNIX are its

multi-tasking, time sharing, multi-user and network

capabilities. It is also very flexible, portable and has

virtual memory. Thousands of programs are available for

151

152 CHAPTER 10. SOLUTIONS TO EXERCISES

it both in the commercial world and in the public domain.

3. UNIX’s main philosophy is that it assumes the user knows

what he/she is doing. If the user tells UNIX to erase

his/her entire home directory, it will go ahead and do

it... no questions asked!

4. People would use/develop software on linux because:

• linux is free. It developing software is free.

• linux may be installed on many different plaform,

including any Pentium-based system, SPARC, PowerPC. It

even runs on IBM mainframes!

• linux includes (all free) web servers, mail servers,

DNS server, and many other types of server software.

• No money is going to Microsoft, while using better

software :-)

10.2. FILE SYSTEM 153

10.2 File System

1. You cannot change permissions on someone else’s file. You

must be the owner of the file to do so.

On Sun workstations,

chmod: file: Not owner

will be the error message. On Silicon Graphics systems,

chmod: WARNING: can’t change file

will be echoed back.

2. Assuming I don’t know what the present permissions are,

the only command recommended is

chmod 744 filename

3. The two possible commands to change the permissions from

rwxrwxr-x to rwxr-xr-x are

• chmod 755 filename.

• chmod g-w filename.

4. I simply want to disable the execute privilege on the

file. The only command to be used is chmod go-x filename.

I could not use chmod with octal values because I was not

sure what the remaining permissions are.

154 CHAPTER 10. SOLUTIONS TO EXERCISES

10.3 Tour of the File system

1. The demonstration programs, if available on your system,

could be in:

• /usr/demos on Silicon Graphics systems.

2. Most of the commands used are found in the following

directories:

• /usr/bin.

• /usr/bsd.

• /usr/sbin.

• /bin.

• /usr/local/bin.

3. Most likely in /usr/share/lib/dict, file words.

4. On Sun workstations, your home directory would most likely

be in /home/machine name/your login.

On Silicon Graphics workstations, it would most likely be

in /usr/people/your login.

For the other vendors, issue

echo $HOME

10.4. SHELLS 155

10.4 Shells

1. The easiest way to do this is to use the input redirection

sign as:

names < file of names

2. This time, the input redirection would be used to read the

data, then the output redirection would be used to capture

what would normally be displayed on the screen:

names < file of names > sorted.names

To append to sorted.names, use >> instead of >.

3. I could use the rm command with a wild-card, as

rm *.o

(be careful when using *: type ls *.o before the rm *.o).

4. Again, use a combination of different types of wild-cards:

rm [0-9]*[A-Z]

5. This time, use

rm z???

6. rm my{fil,cap}e[1-4,7,9] is equivalent to:

rm myfile1

rm myfile2

rm myfile3

rm myfile4

rm myfile7

rm myfile9

rm mycape1

rm mycape2

rm mycape3

rm mycape4

rm mycape7

rm mycape9

156 CHAPTER 10. SOLUTIONS TO EXERCISES

7. To remove any file whose name contains a wildcard

character, use the escape character (the backslash) as

in rm nam*er.

8. I’m not interested in the actual output. All I want to

know is the number of lines the program outputs.

This could be done using the wc (word count) command, with

the -l flag (that flag counts the number of lines in a

file).

display.dates | wc -l

As display.dates is processed, its output is piped to wc

-l, which displays how many lines it read.

9. I know that running that job interactively will take

all the time I have left. So, I want to run it in the

background. But I can’t log off when I have a job running

in the background...

Use the batch command: it will send the job to the batch

queue, and the results will be sent by mail. Meanwhile, I

can work on that letter I have to write.

10. In the C shell, one recalls the last command previously

executed by issuing

!!

The last command used beginning with la is recalled using

!la

In the last command 54 can be changed to 45 by issuing

^54^45^

(NOTE : the command will immediately be executed).

I can find out which aliases I am now using by typing

alias

10.4. SHELLS 157

11. If the shell I am presently using can use the alias and

the history features, I am certainly NOT in the Bourne

shell, because those features are not supported in that

shell.

In many instances

echo $shell

will reveal which shell you are using.

12. One would use SSH on their system because SSH encrypts all

communication between two systems, preventing people from

sniffing the communications, including the exchange of

login/password.

158 CHAPTER 10. SOLUTIONS TO EXERCISES

10.5 Security

1. I should use a password to prevent people from using my

account, and corrupt some of the data I have.

I should also use a password because my system is probably

on a network, and anyone from the network could get into

my account easily, gain special privileges, and corrupt

not only my account but other accounts on the system.

If the Internet Worm of November 1988 were reproduced

today, our systems would be affected, just like the 6000

that were affected at the time.

To see if any account does not have a password, simply

look at the /etc/passwd file. The second field of that

file is the encrypted password: if it is empty, no

passwords are needed to get into that account.

2. Passwords should be at least five characters long, and

contain one of the special characters (space, asterisk,

comma, bracket, etc). The password used should NOT be a

word contained in the on-line dictionary.

3. I am a system administrator for a group of workstations.

Only myself, my backup and my supervisor should know the

root password of that system. This will restrict the

number of people that can do damage to the system: the

fewer people involved, the better.

Remember: root has super-user privileges. There is

nothing root cannot do in the file system, including

deleting EVERYTHING and/or corrupting the system. An

inexperienced person could easily remove essential files.

Even experienced people do!

Also, one person should be the ‘‘major" administrator:

that person should keep a log containing the changes made

in the system, packages added, files modified, etc. That

information becomes EXTREMELY handy, even essential, when

the system crashes.

10.5. SECURITY 159

The system administrator should login as root ONLY when

performing functions that REQUIRE root privileges.

Otherwise, he/she should log into his/her personal

account: this will prevent accidental deletions of

critical files.

160 CHAPTER 10. SOLUTIONS TO EXERCISES

10.6 Commands I

1. Options to commands are given using a dash followed

immediately by the options desired.

For example,

ls

lists all files within the current directory. Adding the

option of listing all the files (including ones that start

with a period) changes the command to

ls -a

If another option is added, the character representing

that option is simply added to the string immediately

following the dash, such as

ls -as

If a third option is required, the option string will then

be three characters long.

2. Your password is changed using the passwd command. What

follows is a transcript of what to do to change the

password (NOTE : the password is actually NOT echoed back

to the user):

prompt> passwd
Changing password for cantin

Old password: old password

New password: new password

Re-enter new password: new password

prompt> exit

Most recent versions of the operating system will

also not accept the password if it does not contain a

non-alphabetic character.

10.6. COMMANDS I 161

3. Most systems have on-line manuals, accessible using the

man command.

To see how the rm command works, one simply types

man rm

and the syntax and description of the command is displayed

on the screen.

For many commands, issuing the command itself without any

arguments returns its usage. rm is one such command:

prompt> rm
usage: rm [-rif] file ...

4. The dictionary should be in /usr/share/lib/dict, file

words.

There are many ways to find out how big that file is. Two

ways will be shown here:

wc words
ls -l words

root owns it.

5. Two commands could be used: pwd, and echo ’$cwd’. Both

will give the same answer, although echo ’$cwd’ will be

done quicker since cwd is a variable whose value is the

current working directory, whereas pwd has to go and

calculate it.

6. One of the following three simple commands can be used to

return to your home directory:

cd

cd $HOME

cd ~

7. The first step is to create the directory. Once that’s

done, simply use cp to copy the files over:

162 CHAPTER 10. SOLUTIONS TO EXERCISES

cd

mkdir temp.dir

cd temp.dir

cp /etc/hosts ./

cp /etc/fstab ./

This is one way of using the cp command to do that. There

are many variations, all as good as the one shown.

8. Again, create the new directory, then copy the first one

into the second:

cd

mkdir temp2.dir

cp temp.dir/* ./temp2.dir

Another, simpler way of doing it is

cp -r temp.dir ./temp2.dir

but the results will be slightly different (temp.dir would

be another directory within temp2.dir).

9. To remove the two directories along with their content,

rm -rf temp.dir temp2.dir

The rf flag will perform a recursive remove. If the file

does not exist, or if you own the file but do not have

write permission, it will not issue an error message.

10. The time a file was last changed can be found by doing a

long listing on that file (ls -l list.names). The sixth

column (on SGI’s) will tell you the last time the file was

updated. On Suns, this is the fifth field.

That field will tell you the Month, Day and time. If the

file is more than one year old, the format will be Month

Day and Year.

10.6. COMMANDS I 163

11. Hidden files can be listed using the a option on the ls

command (ls -a).

All files beginning with a dot (.) will be displayed.

12. To create a file of length zero, use the touch command:

this updates the time stamp of the file to "now" if the

file exists, or creates the file with length zero if the

file does not exist.

13. There is no ‘‘rename" command. Instead use the mv (move)

command, as in

mv myfile hisfile

14. To capture the long listing of /bin into hisfile, use the

output redirection sign:

ls /bin/* > hisfile

15. To look at the content of a file, one screenful at a time,

use the more command: it will display one screenful

worth of the file; pressing the space bar will display

the next screenful; pressing the return key will display

one additional line.

16. To see the first twenty lines of a file, use the head

command, with the -count flag:

head -20 hisfile

No options on the command displays the first 10 lines.

17. The last fifteen lines can be seen with the tail command,

using the -count option:

tail -15 hisfile

The default value again is ten lines. Experiment with

different values. What happens if you put a + instead of

the -?

164 CHAPTER 10. SOLUTIONS TO EXERCISES

18. To find out who is logged on to the system at this moment,

issue the who command.

19. To communicate interactively, there are two commands to

use, depending on whether both users can use full screen

mode, or simply line mode.

• In full screen mode, use the talk user @node command.

This will split your screen in half, and send a

message to the remote user you want to talk with.

He/she will then answer back with the same command,

and his/her screen will also be split horizontally in

half.

Your upper half of the screen reflects what you type,

as you type it. This is the remote user’s bottom

half. When the remote user types on the keyboard,

what he/she types is reflected on his/her upper

screen, and your lower screen.

To exit that mode, issue CTL-C.

• In line mode, use the write command. This puts you

in write mode: when you press RETURN, what you just

typed is sent to the user. It stays in that mode

until you hit CTL-D.

20. To print a file, two commands may be used:

• lpr filename

• lp filename

21. To remove print files from the print queue, one of two

commands may be used, depending if the job is queue in a

BSD, or System V type queue:

• Use lpq or lpstat to see the jobs queued, and their

JOB numbers.

• Use lprm or cancel to remove the jobs from the queue.

Make user you use the JOB number you got from the lpq

or lpstat command.

10.7. EDITORS 165

10.7 Editors

1. You are at a VT100 terminal. Most UNIX systems understand

what a VT100 terminal is, but they may not automatically

know that you are a VT100 type terminal.

To tell UNIX you are using a VT100 type terminal, issue

setenv TERM VT100

You could then use vi in its full screen mode. Other

editors which may be available are emacs, edt and xe.

If your UNIX system does not understand VT100 terminals,

you would have to use a line editor, such as ed.

166 CHAPTER 10. SOLUTIONS TO EXERCISES

10.8 Electronic Mail

1. The name of the system you are using is usually found by

issuing the command

hostname

2. To send yourself some mail, simply use the mail command

such as

mail my logon

and fill up the subject line (if any). Write a line or

two, then enter a dot (.) on a line by itself to finish

the main body of the letter.

You may then see a Cc:. The system is asking if you want

to send a complimentary copy to someone else. Press the

return key, and mail will be sent.

3. To send someone else a message, follow the same procedure

as outlined above, but use their logon name for my logon.

4. Assume the remote user is cantin and that his FULL system

name is nickel.sao.nrc.ca. To send him mail,

mail cantin@nickel.sao.nrc.ca

is used, and the same procedure outlined above follows.

BUT: your system has to be configured to use mail. If it

is not, contact your system administrator.

5. When writing a message, a file can be inserted using

~r filename

on a line by itself (that is ‘‘tilde"-r filename).

6. If the message to be sent is already in a file (let’s call

it message), and my user name is cantin, I can send myself

that file via mail using

10.8. ELECTRONIC MAIL 167

mail -s "Subject of this Message" cantin <

message

7. Mail can be read using

mail

When reading mail, the current letter can be saved in the

folder folder by issuing the s +folder command. The plus

sign (+) means that the following file is to be a folder.

To reply to yourself, simply enter

r

at the mail command line.

8. Any outgoing mail is saved in a file called .record in

your own $HOME/mail directory. To send the mail to your

friend, use the mail command to read the .record folder,

save the message in a file by itself, and reply to your

friend, using the content of the new file for the body of

the message.

9. Issue elm to enter the package. From within the package,

‘‘o" will bring the menu option. Issue ‘‘u" to go to

the user level menu, and press the space bar for your

selection.

Save your selection by pressing the greater than (>)

sign.

10. Re-enter elm. Issue ‘‘a" to bring the aliases menu.

Follow the directions elm issues.

168 CHAPTER 10. SOLUTIONS TO EXERCISES

10.9 Commands II

1. The find command would look like:

find $HOME -name myfile -print

2. To find and remove a file:

find $HOME -name core -exec rm {} \;

3. myprog has been running for 30 minutes now, and it should

have run only 2 minutes.

To remove the job, I can log in through another window,

or system and issue the ps command (on SGIs issue ps -e;

on Suns issue ps -asx). Look for the name of your running

job in the last column of the output. Once you find it,

look at its PID (process I.D.) number.

To remove it from the system, issue

kill -9 PID

where PID is the process I.D. of that job.

4. To see how a system has been behaving for the last few

hours, one would use the sar command.

5. But to see how a system is currently behaving, one might

use any of the following commands:

• sar 1 10, so show how the system is behaving for the

next 10 seconds.

• top, to see how the system is behaving AND what jobs

are currently running.

Appendix A

vi Quick Reference

This table is taken from Sun Microsystems’ User’s Guide:

Getting Started (pp. 5-25 to 5-27).

Starting vi

vi filename open or create file

vi +18 filename open to line 18

vi +/"mustard" filename open file to first occurence of ‘‘mustard"

vi -r filename recover crashed file

view filename open file read-only

Cursor Commands

h move left

j move down

k move up

l move down

w move right one word

W move right one word (past punctuation)

b move left one word

B move left one word (past punctuation)

Return move down one line

Back Space move left one character

Space Bar move right one character

H move to top screen

M move to middle of screen

L move to bottom of screen

169

170 APPENDIX A. VI QUICK REFERENCE

Ctl-F scroll forward one screen

Ctrl-D scroll forward one-half screen

Ctrl-B scroll backward one screen

Ctrl-U scroll backward one-half screen

Insterting Characters and Lines

a insert characters to right of cursor

A insert characters to right of cursor, at end of line

i insert characters to left of cursor

I insert characters to left of cursor, at beginning of line

o insert line below cursor

O insert line above cursor

Changing Text

cw change word (or part of word right of cursor)

cc change line

C change part of line to right of cursor

s substitute string for character under cursor

r replace character under cursor with one other character

r-Return break line

J join current line and line below

xp transpose character at cursor & character to right

change case of letter (upper or lower)

u undo previous command

U undo all changes to line

:u undo previous last-line command

Deleting Text

x delete character

dw delete word (or part of word to right of cursor)

dd delete line

D delete part of line to right of cursor

:5,10 d delete lines 5-10

Copying and Moving Text

yy yank or copy line

Y yank or copy line

171

dd delete line

p put yanked or deleted line below current line

P (upper case) put yanked or deleted line above current line

:1,2 co 3 copy lines 1-2 and put after line 3

:4,5 m 6 move lines 4-5 and put after line 6

Setting Line Numbers

:set nu show line numbers

:set nonu hide line numbers

Finding a Line

G go to last line of file

21G go to line 21

Searching and Replacing

/string/ search for string

?string? search backwards for string

n find next (or previous) occurence of string

:g/search/s//replace/gc search and replace, consult at each occurence

Clearing the Screen

Ctrl-L clear scrambled screen

Inserting a File Into a File

:r filename insert (read) filename after cursor

:34 r filename insert filename after line 34

Saving and Quitting

:w save changes (write buffer)

:w filename write buffer to filename

:wq save changes and quit vi

ZZ save changes and quit vi

:q! quit without saving changes

172 APPENDIX A. VI QUICK REFERENCE

Appendix B

Bibliography

173

174 APPENDIX B. BIBLIOGRAPHY

Bibliography

[1] Stephen R. Bourne. The UNIX System V environment.

Addison-Wesley Publishing Company. Don Mills, Ontario.

1987.

[2] D. Dougherty, R. Koman, and P. Ferguson. The Mosaic

Handbook for the X Window System. O’Reilly & Associates,

Inc. Sebastopol, California. 1994.

[3] E. Foxley. UNIX for Super-Users. Addison-Wesley

Publishing Company. Don Mills, Ontario. 1985.

[4] Æleen Frisch. Essential System Administration. O’Reilly &

Associates, Inc. Sebastopol, California. 1992.

[5] Ed Krol. The Whole INTERNET User’s Guide & Catalogue.

O’Reilly & Associates, Inc. Sebastopol, California. 1994.

[6] Jerry Peek, Tim O’Reilly, and Mike Loukides. UNIX Power

Tools. O’Reilly & Associates, Inc. Sebastopol, California.

1993.

[7] H. McGilton and R. Morgan. Introducing the UNIX SYSTEM.

McGraw-Hill Software Series for Computer Professionals.

Toronto. 1983.

[8] R. Thomas, and R. Farrow. UNIX Administration Guide for

System V. Prentice Hall. Englewood Cliffs, New Jersey.

1989.

[9] Silicon Graphics Inc. IRIS-4D User’s Guide, man pages.

[10] Sun Microsystems. SunOS 4.0, 4.1 Reference Manuals.

175

176 BIBLIOGRAPHY

[11] SuSE Linux LTD. SuSE Linux 7.3 Reference Manual.

[12] UNIX International. The UNIX Operating System: A

Commercial Success Story. Nov 1, 1989. Parsippany, NJ.

[13] http://www.canarie.ca; November 1997 version.

