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ABSTRACT

The collection of driving habits data is gaining momentum
as vehicle telematics based solutions become popular in con-
sumer markets such as auto-insurance and driver assistance
services. These solutions rely on driving features such as
time of travel, speed, and braking to assess accident risk
and driver safety. Given the privacy issues surrounding the
geographic tracking of individuals, many solutions explicitly
claim that the customer’s GPS coordinates are not recorded.
Although revealing driving habits can give us access to a
number of innovative products, we believe that the disclo-
sure of this data only offers a false sense of privacy. Using
speed and time data from real driving trips, we show that
the destinations of trips may also be determined without
having to record GPS coordinates. Based on this, we argue
that customer privacy expectations in non-tracking telem-
atics applications need to be reset, and new policies need to
be implemented to inform customers of possible risks.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Issues
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1. INTRODUCTION
Many auto-insurance owners are probably familiar with

the insurance discounts one can get by enrolling in telematics-
based pay-how-you-drive programs. Examples of such pro-
grams in North America and Europe include Progressive’s
Snapshot, AllState’s Drivewise, State Farm’s In-Drive, Na-
tional General Insurance’s Low-Mileage Discount, Travelers’
Intellidrive, Esurance’s Drivesense, Safeco’s Rewind, Aviva’s
Drive, Amaguiz PAYD, Insure The Box, Coverbox, Ingenie,
MyDrive, and others. These programs rely on the collection
of driving habits data (time of driving, speed, mileage, etc.)
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during a monitoring period, which is later analyzed to offer
a customized discount to the policy holder.

Vehicle telematics based programs offer many advantages
to insurers and the consumers. Insurers can offer more accu-
rate pricing to consumers based on their driving habits. This
increases affordability for safe drivers, and motivates others
to adopt safer driving habits. Given the incentive to drive
less, these programs also help reduce road accidents, traf-
fic congestion, and vehicle emissions. Telematics have also
proven useful in monitoring driver safety (e.g. the OnStar
program), evaluating accident liability, preventing vehicle
theft, tracking fleet movement, and routing traffic efficiently.

While few programs disclose that their data collection de-
vices track the driver, most do not (or at least claim not to)
track GPS locations, and imply an expectation of privacy
that the customer’s destinations are not tracked. Privacy
policies clearly state what information is collected, the pos-
sibility of sharing the data with third-parties, using it for
fraud prevention and research, or to comply with the law.

A number of researchers have shown that privacy cannot
be guaranteed simply by avoiding sharing or avoiding the
collection of private data. The possibility of linking using
quasi-identifiers, or other sophisticated methods, always re-
main. Quasi-identifiers are attributes of a database record
that are non-identifying by themselves, but can be used to
uniquely identify individuals when used in combination. A
classic example is the re-identification of Governor William
Weld’s health records from an anonymized data set, based
on a combination of gender, postal code and date of birth
[2, 9]. People may enter locations, interests, affiliations,
etc. in search queries, which makes them unique in a de-
anonymized web search database [1]. Knowing the ratings
assigned to eight movies is sufficient to identify an individ-
ual, even when there is a two week error in obtaining the
dates of the ratings [7]. Half of the individuals in the U.S.
population can be uniquely determined if their home and
work locations are known at the level of a census block [3].
In GPS logs, people can be identified based on the last desti-
nation of the day and the most populated cluster of points [4,
5]. Individuals can also be identified by their social network
structures [8] or by their familial structures [6]. While the
objective of this work is not to re-identify an individual in
an anonymized data set, we do ask a similar question in the
context of location privacy preservation: can the different at-

tributes of a driving habits dataset serve as quasi-identifiers

of the destination of a driving trip?

To answer this question, we develop a location inference
attack that executes on real traces of driving habits data,



and attempts to identify the destinations of the trips during
which the data were collected. Our techniques extract po-
tentially quasi-identifying information such as traffic stops,
driving speed and turns from the data, and match them to
publicly available map information to determine potential
destinations of a trip. We describe the implementation of
these techniques and demonstrate that a number of trips can
indeed be geographically matched to their destinations using
simple driving features. Although not a foolproof method,
our study shows that the destinations of certain trips can be
very easily identified, thereby raising concerns about current
expectations of privacy set by the data collection agencies.
The remainder of the paper is organized as follows. Sec-

tion 2 states the location privacy expectations assumed in
this study. Section 3 details our data collection process, fol-
lowed by an explanation of the inference technique in Section
4. Section 5 presents results of executing the inference algo-
rithm on real world traces of driving habits data. Section 6
concludes the paper.

2. LOCATION PRIVACY MODEL
The advantages of services that rely on the collection of

driving habits data are noteworthy. Nonetheless, the threats
of location tracking are equally concerning. Location track-
ing enables inferences about an individual’s lifestyle and so-
cial circles, most of which may be considered private. Al-
though the decision to share one’s location is a personal one,
such decisions can only be made when the intent to collect
location data is fully disclosed. Therefore, location data col-
lection and sharing practices should be explicitly stated in
the privacy policies of pertinent businesses. The difficulty
arises when the location information is inferable from other
types of seemingly unrelated data, in which case, either the
possibility of inference is unknown to the business, or the lo-
cation data is inferred and used without consumer consent.
We make the conservative assumption that if inferences are
possible, they will be made.
We study the threat of location inference in this work. Lo-

cation inference is a deduction about the geographic location
of an event from other known facts. We focus on the problem
in the context of driving habits data collected with the con-
sent of the driver. The collected data has no direct tracking
of the user’s location. Therefore, the offered privacy guaran-
tee is that the data collection agency, or an adversary with
access to the data, is unable to track the driver using this
data. Consequently, we assume that obtaining knowledge of
the destinations of travel is a clear violation of the location
privacy expectations of the driver. This also implies that if
a destination can be reached via more than one route, an
inference of the correct destination is considered a violation
even if the correct route is not inferred. We also assume that
the driver has typical driving habits, such as staying within
reasonable speed limits and taking best possible routes.

3. DRIVING HABITS DATA
Driving habits data includes features such as time of driv-

ing, speed, acceleration/deceleration patterns, distance trav-
eled, braking practices, and others. Unless the associated
service explicitly requires customer tracking, collection of
location data is avoided for privacy concerns. We explain a
typical data collection exercise by using an auto-insurance
discount program as an example. Typical auto-insurance

discount programs (propelled by driving habits data) are
opt-in programs where the driver has to enroll to be eval-
uated for a discount in her insurance premium. Upon en-
rollment, the driver receives a data collection device that
can be plugged into the on-board diagnostic (OBD) port of
the vehicle. The device collects driving habits data over a
period of several days to few months. Some devices can pe-
riodically upload the data to a background server using con-
sumer telecommunication networks. The device is returned
to the agency at the completion of the data collection phase.
Based on factors such as distances driven, time when driven,
and absence of hard brakes, the driver is issued a discount
in the insurance premium for the current and future terms.

3.1 Data collection
The motivation for this study came from observing real

time graphical plots of collected driving habits data when
one of the authors participated in an auto-insurance dis-
count program. Unfortunately, we are not able to access
the raw data underlying these plots. With the ability to
read most of the data from the vehicle’s on-board com-
puter, the collected raw data is expected to be precise and
frequent. Therefore, we used a commodity tracking device
(LandAirSea GPS Tracking Key) to collect the raw data
pertinent to this study. This battery powered device logs
detailed driving data such as vehicle speed and GPS posi-
tion, which can be later extracted into a computer through a
USB connection. Note that a device connected to the OBD
port can easily obtain more than ten samples per second; our
tracking device operates at a much lower resolution of one
sample per second. Although the device collects the GPS lo-
cation (useful for validation later), the only data fields used
in the inference process are: time stamp (t), driving speed

(s), and distance traveled (d). We introduce here the term
“trip” to mean a subset of the collected data, signifying a
drive from one point of interest (e.g. home, office, hospital,
store, friend’s home, etc.) to another. Each 〈t, s, d〉 tuple of
a trip is a data point of the trip.

We kept the devices in our vehicles for a period of 15
days in order to collect data from regular home-office trips,
occasional shopping trips, and visits to infrequent places.
We also collected a few trips between random locations at
varying distances. During these trips, normal driving habits
were maintained.

We use a total of 30 trips in this study. All trips are in the
Denver, Colorado area, and includes home to work and work
to home drives, visits to the airport, the downtown area, lo-
cal grocery stores, school drop-offs, social visits, and others.
Length of trips range from 1 mile to 25 miles, and spanned
interstates, state highways, city roads and residential areas.

3.2 Pre-processing
We pre-process each trip to remove data points that may

correspond to driving in traffic conditions. Our inference al-
gorithms currently do not account for slow or “stop-and-go”
driving resulting from heavy traffic; removal of data points
collected during such conditions help infer locations accu-
rately in more number of trips.

Two steps are performed in this process. In the first step,
we identify the data points where the driving speed is zero
(possible stop in traffic). Thereafter, all data points be-
tween two zero-speed data points (inclusive) are removed if
the total distance traveled between those two points is less
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Figure 1: Disabling of shortest path constraint while
exploring highway nodes.

than a threshold (0.5 mile used in this study). In the next
step, consecutively time-stamped zero-speed data points are
removed if they do not span a time interval of at least 3
seconds.
After the traffic pre-processing, we note the unique dis-

tance values corresponding to the remaining data points
with a zero speed value. We refer to these distances as stop-
points, possible distances from the beginning of a trip where
the driver had to halt due to traffic stops at signals and
intersections.

4. LOCATION INFERENCE METHOD
Our location inference method works under the hypoth-

esis that the stop-points of a trip can be used as a set of
quasi-identifiers for the destination of the trip. Therefore,
if the start-location of the trip is known, we can search a
map of the area for paths that begin at the start-location,
and have traffic stops at distances given by the stop-points.
The assumption of a known start-location is not unrealistic,
since the data collectors are typically aware of the street ad-
dress where the vehicle is parked overnight. Start-locations
in subsequent trips can be obtained from the destinations
of previous trips. Unless the roadways in the area are very
regular, it is expected that a relatively smaller number of
paths will satisfy the constraint to match every stop-point.
The end-points of these candidate paths are potential desti-
nations of the trip. We will employ a ranking process when
multiple candidate paths are identified.

4.1 Area map as a graph
The first step in identifying candidate paths is to obtain a

reliable map of the area. We obtained the map data available
from the crowd-sourced OpenStreetMap project. The map
data from the project comes in the form of XML format-
ted .osm files. We processed these files to generate a graph
with 323928 nodes, and 639395 directed edges representing
motorways, trunks, primary/secondary/tertiary/residential
roads, and corresponding link roads. Nodes are typically
placed at intersections. Nodes are also placed between two
intersections if the road in between is curved. Therefore, the
length of a road segment can be accurately computed by ag-
gregating the distances between successive nodes placed on
the road segment. Each node is labeled with its latitude
and longitude coordinates. Each edge is labeled with the
geodesic distance between the two nodes of the edge. Dis-
tances are computed using the Vincenty inverse formula for
ellipsoids, available as part of the gdist function in the Imap

R package. Edges are also annotated with a road type ex-
tracted from the downloaded XML files. This map data
(crisp.cs.du.edu/datasets) covers an area of more than 1500
sq. miles in Denver, Colorado and its suburbs, spanning be-
tween latitudes 39.41015oN and 39.91424oN , and longitudes
105.3150oW and 104.3554oW .

We also assigned speed limit values to the edges of the
graph. Since it was difficult to obtain the legal speed limit
on all roadways, we assigned numbers based on the road type
indicated in the XML data. A capable adversary can obtain
more accurate speed limit data from commercial sources.

4.2 Generating candidate paths
Candidate paths are generated by performing a standard

depth-first search (DFS) of the map graph. The DFS starts
at a node corresponding to the start-location of a trip and
outputs all paths that satisfy the constraints discussed next.

Stop-point matching. During the DFS traversal, we
keep track of the length of the path from the start node. This
constraint requires that, at any stage of the traversal, the
current path must have an intersection node (3-way or more)
at all stop-points less than the current length of the path.
However, since traffic stops often happen a few feet away
from the signal (the exact coordinates of the intersection),
we allow for a slack while matching the path length to a
stop-point. The slack is set to 500 feet in this study. Stop-
point matching is not performed for the last stop-point, since
the last stop-point appears due to the vehicle being parked,
rather than due to a traffic stop.

Shortest path. The second constraint requires that, at
any stage of the traversal, a path to a node must always be
the shortest one (within a slack of 0.1 miles) from the start
node to that node. The constraint is motivated by typi-
cal driving behavior where a shortest path is preferred when
traveling short distances inside the city. In such cases, short-
est paths are often fastest paths too. This is a reasonable
assumption in lieu of traffic conditions data at the time of
the trip. However, the assumption fails when traveling long
distances, where the driver is likely to take a faster (not nec-
essarily shorter) route through the highway. Nonetheless,
we can make the assumption that the driver would take the
shortest route up to the highway, and then again from the
point of exit on the highway to the destination. We incor-
porate this assumption by changing the start node to be
the currently explored node, if the current node is part of a
highway segment. As a result, the shortest path constraint
remains disabled as long as the exploration continues on the
highway nodes; the constraint is enabled when the explo-
ration enters non-highway nodes, although the start node
now is the last highway node (point of exit) on the path
(Fig. 1).

Turn feasibility. The third constraint requires a path
to always satisfy feasible speed limits at points of right and
left turns. At every point of the exploration, we compute the
angle by which a vehicle would have to turn when moving
from the current node to the next node. An angle higher
than 60o is considered a turn, in which case we consult the
trip data to ensure that the speed at that point of time was
under 25 mph. We use the current length of the path to
extract the closest data point from the trip, and use the
speed in that data point as the current driving speed.

Length. The length constraint terminates the explo-
ration along a particular path when the path length exceeds



distance (miles)

s
p
e
e
d
 (

m
p
h
)

0 1 2 3 4

0
1
0

2
0

3
0

4
0

trip data

ideal model

augmented model

stop stop stop & right-turn stop stop

left-turn

left-turn begin

end

trip

Figure 2: Speed profile for a trip, along with that generated from the ideal and the augmented models for a
different path (differs in the first mile).

the trip length. The path is then a candidate path if all
stop-points (except the last one) have been matched in the
path. When multiple candidate paths to the same end node
are discovered, we retain the one with the least number of
turns.
The nodes in our map graph correspond to points on road-

ways. However, the initial few data points (and the last few
as well) of a trip may correspond to driving on a parking
lot or a driveway. We used the GPS coordinates logged by
the tracking device to manually discard some of these initial
data points such that the first data point of a trip always
corresponds to a node of the map graph. This processing is
not required when more elaborate map data is used to gen-
erate the graph; many online services (e.g. Google Maps)
already use commercial maps with data for parking areas,
bikeways, and pedestrian paths.

4.3 Candidate ranking
The DFS traversal for a given trip outputs the candidate

paths that satisfy the four constraints discussed above. We
process the candidates through a ranking procedure to ar-
rive at the top inferred destinations of a trip. The ranking
procedure makes use of information on typical speed lim-
its along the candidate paths to find ones that best match
the speed changes observed in the trip data points. We be-
gin by first creating an ideal speed model for each candidate,
then augment the model with driving behavior typically seen
when making turns, and then compute a probability for the
observed trip data to have been generated from the model.
The candidates are ranked based on decreasing order of the
probabilities.
Ideal speed model. The ideal speed model of a path

P is a representation of the speeds that an ideal driver would
follow when driving along the path under ideal conditions.
An ideal driver is considered to be one who drives at exactly
the speed limit, and ideal conditions imply no acceleration
or decelerations in the driving speed. The model can be
formally expressed as a function M of distance d and a path
P . The output of such a function is the legal speed limit
at distance d from the beginning of path P (assuming speed
limit is same along both directions of travel) : M(d, P ) =
slimit. In a discrete representation, the ideal speed model

is an array of distance and speed pairs at points where the
speed limit changes along the path.

Augmenting the model. An ideal speed model can
be improved by correcting the output speed in parts of the
path where the vehicle would be performing a turn. Even an
ideal driver in ideal conditions will decelerate to a reason-
able speed to make a right or a left turn. A turn is assumed
to happen exactly at the node joining the two edges that
make the turn. We assume that all left turns happen at a
speed of 15 mph and all right turns happen at 10 mph. The
augmented model, denoted by Maug, gradually reduces the
output speed to the turning speed over a distance that de-
pends on the acceleration and deceleration capabilities of the
vehicle. Similarly, the model also incorporates the required
acceleration behavior after the turn is complete. For all ve-
hicles in this study, we use a fixed deceleration rate of 25
feet/s2 (= 7.8m/s2= 0.8g, g being the acceleration of grav-
ity), and a fixed acceleration rate of 6.5 feet/s2 (= 2m/s2).

The augmented model also incorporates the information
that the vehicle must have come to a complete halt at all
stop-points. Similar to the turns, the output speed is cor-
rected around the vicinity of the stop-points as well. Fig. 2
compares the speed values from a trip, and the values gener-
ated from the ideal speed model and the augmented model
along a similar path to the same destination.

Probability of a candidate path. Given a trip T
with n data points, 〈ti, di, si〉; i = 1, ..., n, and a path P , we
obtain the speed values generated by the augmented model
along path P at distances d1, ..., dn. We denote these values

by s
′

1, ..., s
′

n. The probability we seek is

Pr
[

T |Maug(di, P ) = s
′

i; i = 1, ..., n
]

.

We assume independence of speed values across time and
distance, which gives us the probability as

n
∏

i=1

Pr
[

〈ti, di, si〉|Maug(di, P ) = s
′

i

]

.

Therefore, for each time instant ti, we seek to compute
the probability of observing speed si when the speed should

have been s
′

i at distance di along the path. The probability
is computed from speed variation models based on standard

Gaussian distributions. For speed value s
′

i, the distribution
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Figure 3: Sample candidate paths generated for a trip. Candidate path 118 is the actual route taken during
the trip. The bottom right plot shows the destinations of all (196) candidate paths generated for this trip.
A: start node; B: end node. Map data: Google (2013).
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where N (µ, σ) signifies a Gaussian distribution with mean µ
and standard deviation σ. The distribution implies that, for
speed limits of 20 mph or more, the mean driving speed is
10% higher, and 99.7% of the drivers drive between speeds

of s
′

i and s
′

i + s
′

i/20. For example, in a road with speed
limit 60 mph, most drivers are assumed to drive at speeds
between 60-72 mph, with 66 mph being the mean. For lower
speed limits, we assume that drivers are more likely to stay
close to the limit. The probability is then computed as

Pr
[

〈ti, di, si〉|Maug(di, P ) = s
′

i

]

=

si+ǫ
ˆ

si−ǫ

f(x)dx,

where ǫ is a negligible number (10−5). To avoid issues of
precision, we take the sum of the logarithm of the probabil-
ities instead of the product of the probabilities at different
time instances. The ranking is not affected because of this
transformation.

5. EMPIRICAL OBSERVATIONS
We applied the inference algorithm to the data from 30

trips. Inference correctness depends on factors such as stop-
points, abidance to the shortest path assumption, ability to
drive at speed limits, and the correctness of the map data.
The algorithm was unable to generate any path leading to
the actual destination in 12 out of the 30 trips. However,

trip length
(miles)

number of
candidates

rank of
actual

destination

1.48 5.47 12 11 1 2
1.59 5.89 12 18 1 1
2.60 5.84 50 20 1 1
3.23 7.95 15 196 1 2
3.78 9.42 11 26 2 4
3.85 13.15 23 37 1 3
3.93 14.10 52 53 1 1
3.93 14.57 49 68 1 1
3.95 24.10 37 42 3 13

Table 1: Rank of actual trip destination from
amongst the candidate paths.

in 16 of the remaining 18 trips, the actual destination was
always in the top three destinations (in fact the first one
in 11 of them) generated after the ranking. The number of
candidate paths ranged between 4 and 196 across the trips.
Table 1 lists the trip length, number of candidate paths, and
rank of actual destination for the 18 trips with successful
inference. We are unable to find a correlation between the
number of candidate paths and the ranking performance.

5.1 Illustrative example
Fig. 3 shows five candidate paths identified for one of the

trips. A total of 196 candidate paths were found for this
trip. All candidate paths match the four stop-points of the
trip (7.95 miles in length). Candidate path 118 is also the
actual route taken during the trip. The last plot in the figure



shows the end nodes (destinations) of all candidate paths.
Irrespective of the large number of candidate paths identified
for this trip, most destination nodes cluster around a small
number of localities. This is worth noting, since only four
stop-points are involved over a distance of 7.95 miles in this
trip; yet the ways to match them to an actual map are quite
limited!

5.2 Ranking performance
The ranking method is found to be robust in identifying

the actual destination of a trip. If the destination is the end
point of a candidate path, the path is often found in the
three most likely paths that match the speed profile of the
trip. Note that the ranking procedure does a point-by-point
probabilistic comparison of the speed values observed in the
trip and that along an entire path. Therefore, although we
are not interested in the actual route followed during a trip,
the obtained paths often represent the exact driving route.
An interesting observation is that, even if the top ranked
destination is not the actual one, they are usually very close
(within 0.5 miles) to each other. Therefore, the locality of
the destination can be inferred almost always! The ranking
method suffers when speed limits are not reasonably fol-
lowed, either due to excessive speeding or slow movement in
traffic, and another candidate path matches this noisy speed
profile.

5.3 Failed inferences
We also manually analyzed the 12 trips to understand why

a path to the actual destination was not discovered during
the DFS. For 4 out of the 12 paths, the trip involved a route
that is not the shortest one. For most others, a stop was
made for a significantly long amount of time in the mid-
dle of the road due to heavy traffic. Note that our traffic
pre-processing looks for more than one stop within a small
distance; if a single stop is made due to heavy traffic, we will
instead interpret it as a stop-point. In one case, the search
was unsuccessful due to errors in the map data. The short-
est path issue can be resolved by allowing a larger slack on
the constraint, although doing so may increase the number
of candidate paths. Identifying single stops in the middle
of a road segment due to traffic conditions is more difficult.
An alternative is to allow a maximum number of violations
of the stop-point matching constraint. We believe that un-
derstanding the factors underlying a failed inference is the
key to creating a privacy-preserving technique for telemat-
ics data collection. For example, an auto-insurance data
collection device that intermittently perturbs the detected
speed of the vehicle for short durations can make the task
of inference more prone to noise.

5.4 Summary
To summarize our observations, although multiple candi-

date paths may satisfy the stop-points and turn feasibility
constraints, the number of neighborhoods where the paths
end can still be limited. A robust ranking method can eas-
ily identify candidate paths that do not conform with the
speed profile of the trip, possibly leaving behind ones that
end near the true destination. The speed attribute in the col-
lected data is a crucial component in the inference process.
It is worth exploring how the data collection process can
be modified to introduce noise in this attribute, of course,
without affecting its intended use.

6. CONCLUSIONS
In this paper, we studied the threat of location inference

in vehicle telematics applications that collect driving habits
data. We developed an inference algorithm to demonstrate
that inferring the destinations of driving trips is possible
with access to simple features such as driving speed and dis-
tance traveled. The algorithm does fail in some cases. How-
ever, we believe that communicating the existence of this
threat to privacy is a priority to perfecting the algorithm.
Privacy advocates have presumed the existence of location
privacy threats in non-tracking telematics data collection
practices; our work shows that the threats are real. It is un-
fortunate, but the difficulties in data collection/sharing due
to quasi-identifiers is very much present in this domain as
well. The design of privacy-preserving techniques for telem-
atics data collection is open to research. In the meantime,
enough information should be conveyed to consumers so that
an informed decision can be made.
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