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Abstract. Rapid development in deep learning-based detection systems
for numerous industrial applications has opened opportunities to apply
them in power grids. A consumer’s power consumption can be monitored
to recognize any anomalous behavior in their household. When building
such detection systems, evaluating their robustness to adversarial sam-
ples is critical. It has been shown that when we provide adversarial sam-
ples to deep learning models, they falsely classify instances, even when
the perturbation or noise added to the original data is very small. On
the other hand, these models should be able to detect attack instances
correctly and raise few to no false alarms. While this expectation can be
difficult to attain, we are allowed to choose a threshold that decides the
extent to which the detection and false alarm rates are compromised. To
this end, we explore the threshold selection problem for state-of-the-art
deep learning-based detection models such that it can recognize attack
instances. We show that selecting a threshold is challenging, and even if
an appropriate threshold is chosen, the tolerance of a model to adversar-
ial samples can still leave avenues for an attack to be successful.

Keywords: Anomaly Detection · Deep Learning · Model Sensitivity ·
Power Consumption · Threshold Selection

1 Introduction

Industrial control systems support critical national infrastructure that are essen-
tial for managing various industries like electricity generation and distribution,
water treatment and supply, oil and gas production and many more. Disruption
of such infrastructure at any time can lead to serious effects on the society and
can impact the safety and economy of a nation. A large scale attack on a power
grid allows adversaries to take control and operate other industrial control sys-
tems as well. Moreover, the attack surface for a power grid has increased over the
past decade with the advent of IoT devices. As these devices are designed with
security as an afterthought, they become easy targets for attackers. By control-
ling IoT devices of consumers, an attacker can regulate the power demand that
can lead to grid failures. Therefore, using anomaly detection and monitoring
systems to detect anomalous power consumption can help in identifying such
cases in advance, facilitating grid operators to take necessary action. Machine
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learning and deep learning methods are proposed for many anomaly detection
applications, and neural networks are well known for their ability to learn pat-
terns, making them applicable for time series data. However, it is possible for
adversaries to modify the input data to deceive the model. Adversarial attacks
on such models were first shown in image applications where perturbed images
of animals and traffic signs were mis-classified, when small perturbations are in-
troduced in the images [6,16]. Previous work also showed that by perturbing the
time series data in small amounts, a deep neural network can still be deceived
for time series classification applications [5,14].

In this paper, we study how susceptible deep learning-based anomaly de-
tection models are to adversarial samples that manipulate the power demand
through compromised consumer devices. First, we provide a simple yet easily
generalizable method to create adversarial samples that is parameterized by the
frequency and strength of the attack (Section 3). This allows us to compare any
generic anomaly detection system against another in a black box setting. Sec-
ond, we provide a comparative assessment of the detection efficiency of three
state-of-the-art deep learning models for power consumption anomaly detection
under different levels of attack aggressiveness. Choosing a right cut-off threshold
is critical for such systems because they differentiate anomalous values from the
normal ones. Hence, third, we demonstrate through a detailed exercise that it
can be challenging to choose a threshold that can detect the various attack sce-
narios, and provide a low false alarm rate at the same time (Section 4). We show
that a model may perform well for certain levels of attack aggressiveness, but is
unable to provide coverage across all scenarios. Lastly, we delve deeper into the
types of undetected attacks in each model, providing insights on the character-
istics of the models and the trade-off between the model’s noise tolerance levels
and the attacker’s wattage requirement (Section 5). Unfortunately, there always
appears to be sufficient room for an attacker to bypass detection by adjusting
their manipulation frequency and strength. We conclude the paper in Section 6
with references to future work.

2 Background and Related Work

In this section, we discuss demand manipulation attacks (MAD) and their ef-
fects on the power grid. We explain the role of anomaly detection algorithms for
detecting MAD attacks. We further discuss existing literature for anomaly de-
tection in the power consumption domain, and adversarial attacks demonstrated
on deep learning models.

2.1 Demand Manipulation Attacks

Demand manipulation attacks, also known as MAD attacks, occur when an
adversary manipulates the demand of the power grid from the utility side using
consumer devices. These devices are assumed to be in a residential setting and
are manipulated either directly by the attacker or by the consumer. Such attacks
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can be performed by controlling a botnet of IoT devices that can manipulate the
power demand much faster than the power plants can react [4]. When an attacker
has access to various high wattage IoT devices, they can synchronously switch
them on and off which leads to the disruption of the power grid [17]. The attacker
can also influence the behavior of the consumers by sending false messages to
fake maintenance shutdown alerts, suggesting the consumers to use appliances
during peak consumption periods [15]. Such attacks have adverse effects on the
power grid such as (i) frequency instability that can lead to a sudden generation
tripping, or disrupting a grid re-start, (ii) line failures and cascading failures, and
(iii) an increase in operating costs leading to the Independent System Operators
(ISOs) having to purchase additional power in the form of reserve generators [17].

2.2 Anomaly Detection Mechanism

The power consumption data of a household that is collected from a smart meter
provides an opportunity to detect sudden changes in the consumption as a result
of a demand manipulation attack. Anomaly detection mechanisms are designed
for detecting attacks and alerting the consumer and the power grid operator.
This allows the power grid personnel to take necessary action to avoid potential
damage to the power grid equipment. An anomaly detection mechanism consists
of a prediction method followed by a scoring technique which provides a score
specifying how anomalous the instance is. A thresholding mechanism is then used
to provide a cut-off beyond which the instance will be flagged as an anomaly.

2.3 Related Work

A review for several anomaly detection systems proposed for power consumption
data was conducted by Himeur et al. focusing on artificial intelligence-based (AI)
models [8]. They categorized models based on different aspects like the type
of algorithm and application. While this work covers different AI models, we
focus on deep learning and neural network-based models. As power consumption
data is a time series, long short term memory (LSTM) neural networks are
predominantly used for time series prediction applications. Wang et al. proposed
an LSTM-based detection model where the predictions are used to calculate
anomaly scores for each time unit and two thresholds are used to mark anomalies
in the data [19]. Clustering-based approaches like K-means can also be applied
instead of scores to identify anomalous instances [2].

Neural networks are often combined with other techniques to capture events
that can be detected by both models. While taking advantage of LSTM’s ability
to remember previous observations, it can be combined with traditional time
series methods like ARIMA to model the non-linear components of the data [9].
Autoregression models (AR) can also be combined with feed forward neural
networks (NN) to form a hybrid model called NNAR [3]. Kim et al. combined two
neural networks, CNN and LSTM, for predicting power consumption data [10].
Other examples of two neural networks used in conjunction include combining
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autoencoders with Online Sequential Extreme Learning Machine (OS-ELM) and
LSTM [18,20].

Adversarial attacks on deep neural network models were demonstrated by
Goodfellow et al. in a computer vision application [7]. Different adversarial at-
tack generation methods on neural networks have been proposed including fast
gradient sign method (FGSM) [7] and basic iterative method (BIM) [12] among
many others. These methods are designed for a threat model where the adversary
has full knowledge of their target model (white-box). However, due to the trans-
ferability of adversarial samples across models, these methods are effective for
gray-box (knowledge limited to model structure) and black-box (can only query
the model) threat models [16]. In the literature, different adversarial sample gen-
eration models have been compared by applying them to neural networks used
for time series classification tasks, including power consumption applications [5].
This was also demonstrated for multivariate time series regression models specif-
ically for CNNs, LSTMs and GRUs (Gated Recurrent Unit) [14].

In this work, we do not assume a target model and generate adversarial sam-
ples by incrementally increasing the power injection and proportion of perturba-
tion. We then pass the generated adversarial samples to three detection models
to assess their performance. While adversarial attacks have been demonstrated
on detection systems used in power grids as well as other industrial control sys-
tems [13,21], we focus on exploring whether a detection system when tuned to
detect such adversarial samples, succeeds or not.

3 Methodology

Anomaly detection systems that are semi-supervised are trained on normal data
and when provided with new data, the model identifies anomalies based on how
different the data is from what it learned. However, there may be cases where the
data is anomalous, but the model is unable to detect it. The same applies to when
the data is normal but the model identifies it as abnormal, because it is slightly
different from what it has seen. In order to explore the research question of how
well a model can avoid giving false classifications, we develop a methodology
where different attack data are generated and tested on state-of-the-art models
to evaluate their performance. The minute-level consumption values from the
previous hour (60 minutes) represented by dt−60, dt−59, ..., dt−2, dt−1 are used to
predict the power consumption at time t represented by d′t. An anomaly score
st is then calculated using the actual and predicted consumption values (dt and
d′t). The threshold th is used to decide whether the consumption value at time
t is an anomaly, by checking if the score st is greater than th.

3.1 Power Consumption Data

The data used in this paper is the individual household electric power consump-
tion dataset obtained from the UCI Machine Learning Repository1. It consists

1 https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+
consumption
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of readings for nine attributes collected for every minute over a period of almost
four years. As we focus only on power consumption, we use three attributes
which consists of the date, time and global active power in kilowatt collected
during the years 2007, 2008 and 2009. There are 25, 979 missing values in the
data that are handled using linear interpolation which is particularly useful for
time series. The training and validation data consists of power consumption val-
ues for the years 2007 and 2008, whereas the testing data consists of values for
the year 2009. For predicting the power consumption at time t, the consump-
tion values at times t − 1, t − 2, t − 3,..., t − 60 are passed as the input to the
model. The training input for each neural network is a dataframe consisting of
60 columns that represent the previous 60 consumption values for each time unit
and 920, 100 rows representing the inputs for timestamps for 21 months, starting
from 2007-01-01 00:00:00 to 2008-09-30 23:59:00 with minute level sampling. The
validation data consists of consumption values for three months starting from
2008-10-01 00:00:00 to 2008-12-31 23:59:00. All the consumption values for the
year 2009 are used as test data.

3.2 Model Training

We select three prediction models from the literature, each representing a differ-
ent type of neural network—multi layer perceptron (MLP) [3], long short term
memory (LSTM) [2] and convolutional neural network LSTM (CNN-LSTM) [10].
We follow semi-supervised training in which the training data is considered to
be normal and does not contain any anomalies. For each model, we use the same
number of layers that the authors from the literature use. We tune the hyperpa-
rameters of the neural network by starting off with the values that the literature
uses and going higher and lower than the suggested value in powers of two. We
perform this search for the number of nodes, dropout, batch size and number
of epochs. The search is controlled by the mean squared error and provides the
model that has the least error on the validation data. The number of nodes per
layer and other parameters for the final models are shown in Table 1. The lay-
ers are listed in the order of their placement in the architecture. There are two
convolution layers for the CNN-LSTM model for which the parameters for each
layer are given in the format (number of filters, kernel size). The number of input
features for each model is 60 and the output is a single value, the prediction.
Mean squared error is used as the loss function, Adam [11] as the optimizer and
TensorFlow [1] on the back-end.

3.3 Anomaly Score

An anomaly score gives the extent to which the data point should be considered
as an anomaly. We use the score st adopted by Wang et al. [19], given as

st =
|predictedt − observedt|

avgi∈T (|predictedi − observedi|)
, (1)
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Table 1. Model architecture for MLP, LSTM and CNN-LSTM

Parameter MLP LSTM CNN-LSTM

Convolution layer n/a n/a (64, 2), (64, 2)
LSTM layer n/a 32, 32, 64 128
Dense layer 100 n/a 32, 64
Dropout n/a 0.07, 0.03 n/a

Number of epochs 30 5 30
Batch size 2048 2048 4096

Table 2. Thresholds calculated for each model using the validation data with varying
percentiles

Percentile MLP LSTM CNN-LSTM

60.0 0.39 0.63 0.41
70.0 0.54 0.74 0.58
80.0 0.92 1.03 0.92
90.0 2.14 2.11 2.37
95.0 4.52 4.08 4.75
98.0 8.74 7.4 8.04
99.0 11.94 10.21 11.16
99.5 15.68 13.21 14.06
99.9 21.8 18.93 19.78

99.999 39.4 34.88 36.08

where predictedt is the prediction for consumption at time t, observedt is the
observed consumption at time t and all previous times {1, 2, 3, ..., t−2, t−1} ∈ T .

3.4 Thresholding Mechanism

A threshold is a value that is applied to an anomaly score above which a point
is flagged as an anomaly. We use a percentile-based approach to calculate ten
different thresholds that vary by the percentile values. This lets us explore the
threshold that fits best with the data. The percentile values used are 60, 70, 80,
90, 95, 98, 99, 99.5, 99.9 and 99.999 which starts from the strictest threshold
and is loosened till the 99.999th percentile. The threshold values calculated for
each model are shown in Table 2. The percentiles are calculated using anomaly
scores for the validation data.

3.5 Attack Profiles

An attack profile represents a dataset that consists of attack instances and is
created by adding perturbations to the original dataset. We generate 2,000 attack
profiles using a perturbation model that randomly chooses the time instances
that are injected with extra wattage in the test data. The number of attack
instances in the data depends on the proportion of perturbation ranging from
0.05 to 1.0 in steps of 0.05, giving a total of 20 proportions to choose from.
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The perturbation that is added ranges from 1 kW to 100 kW in steps of 1 kW,
giving 100 different perturbation values. We choose to limit at 100 kW as the
injection is performed for a single household and it is unlikely to get a wattage
as high as 100 kW. We extend the perturbations till 100 kW to study the model
performance for increasing wattage. The following steps are used to generate the
attack profiles.

1. For a proportion p, randomly choose the list of indices I (or timestamps) in
the dataframe that will be treated as attack instances from the entire test
dataset D.

I = random(n = length(D), r = length(D)× p) (2)

where n is the total number of indices in the dataset D, r is the number of
attack instances to select from D and random chooses r values from 0 to n.

2. Add the perturbation ϵ to the chosen attack instances to create the attack
profile D′.

D′ = D[I] + ϵ (3)

3. Repeat steps 1 and 2 for each proportion p ∈ 0.05, 0.1, 0.15,..., 0.95, 1.0 and
ϵ ∈ 1, 2, 3,..., 99, 100.

4 Threshold Selection

Prediction-based anomaly detection systems require a threshold to be selected
such that it is able to detect majority of the attack instances and give least
number of false alarms at the same time. In this section, we explore different
thresholds in order to choose a value that is able to perform well in both cases.
The metrics for the threshold selection used are detection rate (DR) and false
alarm rate (FAR). Detection rate measures the proportion of true anomalous
instances that are correctly identified. False alarm rate measures the proportion
of normal instances that are incorrectly classified as anomalies.

To make it easier for visual analysis, we categorize the combination of the
amount of perturbation (injected power wattage) and the frequency of the at-
tacks (percentage of attack instances) into nine attack configurations that repre-
sent the strength of the attack as shown in Figure 1. As both values get higher,
it represents a more aggressive attack. We also overlay this grid on the plots to
get a general overview of the performance of the metrics.

4.1 The Threshold Dilemma

The threshold dilemma represents the inability to choose a threshold based on
the detection and false alarm rates in order to achieve the best performance for
adversarial samples. It involves going back and forth with the threshold selection
because there is a downside with one metric when a threshold is chosen using the
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Fig. 1. Types of attacks varying by amount of perturbation and frequency of attacks

other metric. A chosen threshold must be able to detect most of the anomalies
while keeping the false alarms low. This means it should have a high detection
rate i.e. having a value closer to 1.0 and a low false alarm rate i.e. having a value
closer to 0. The detection and false alarm rates are plotted for each threshold
and each plot shows the performance across different attacks. Figure 2 shows the
metrics when using four different thresholds that are calculated using the 60th,
70th, 80th and 90th percentile values (going from bottom to top). Though we
calculate results for all the ten thresholds as described in Section 3.4, we choose
to display only these four thresholds due to space constraints. The results for the
other thresholds are predictable based on the patterns observed in the displayed
plots. The x-axis represents the attack frequency that tells what proportion
of attack instances are perturbed, whereas the y-axis represents the amount of
perturbation or the power wattage that is injected to the chosen attack instances.
As the models are trained using attack-free instances, it can be observed in the
plots that the detection rates are invalid for all models where the percentage of
attack instances or amount of perturbation is zero (i.e. no attack).

In general, the false alarm rates are the best for the highest threshold and
the detection rates are the best for the least threshold. For all the models, we
start off by choosing a threshold using a single metric and change the selection
based on the performance of the other metric. We repeat this and go through all
the thresholds which eventually causes a dilemma of what threshold is the best.
We demonstrate this process in detail for the MLP model and generalize it for
the LSTM and CNN-LSTM models.

We begin by choosing a threshold for the MLP model based on the perfor-
mance results shown in Figure 2 . When selecting a threshold, it is preferred
to have the least false alarm rate because it would be flustering to have false
alarms raised too often. For this reason, we start by choosing the highest thresh-
old of 2.14 calculated using the 90th percentile. Note that the false alarm rate
is the least for a 99.999th percentile threshold, but we are only considering the
displayed four thresholds for easy reference to the readers. When looking at the
results for the 90th percentile threshold, the model has low false alarm rates
for majority of the attack configurations. But it is unable to maintain it as the
attack frequency increases, thus failing in the right strip of the plot particularly
when 80 to 100 percent of data is injected with any amount of wattage. If we are
willing to accept the high false alarm rates for the higher proportions, the choice
of threshold may seem fit. However, the detection rate for the same threshold
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Fig. 2. False alarm rate (FAR) and detection rate (DR) for MLP with thresholds
ranging from 60th to 90th percentile
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Fig. 3. False alarm rate and detection rate for LSTM for a selected threshold

Fig. 4. False alarm rate and detection rate for CNN-LSTM for a selected threshold

of 90th percentile (top-right of Figure 2) is poor even when 25% or more data
is perturbed. Six out of nine attack configurations are almost never detected.
In an attempt to improve the detection rate to the highest value possible, we
will intuitively choose the least threshold of 60th percentile (bottom-right of Fig-
ure 2), because it is able to detect majority of attacks across all attack zones
compared to the others. However, when looking at the false alarm rates for the
same threshold (bottom-left of Figure 2), the proportion of false alarms are be-
tween moderate and high for all attack configurations starting from the least
to the highest possible perturbation and attack frequency. To improve the false
alarm rates, we can increase the threshold to the highest unexplored threshold
which is at 80th percentile. There is an improvement in the false alarm rates
throughout for this threshold compared to the 60th percentile. While this seems
to have given us a better threshold, the detection rates again are observed to
be between moderate and low for attack frequencies greater than 50%. The only
available threshold is at 70th percentile, which provides an improvement for the
detection rates. However, the false alarm rates have worsened in this case com-
pared to the previous 80th percentile threshold. This leads to a dilemma as to



Impact of Model Tolerance in Power Grid Anomaly Detection Systems 11

which threshold must be chosen to balance both metrics. Even if a threshold
is chosen, the compromise that occurs with either of the metrics leads to the
conundrum again.

5 Model Tolerance and Impact

Similar to the MLP model, the behavior of both metrics to changing thresholds
is the same for LSTM and CNN-LSTM models. As the threshold is increased
from 60th percentile to 90th percentile, the false alarm rates improve and the
detection rates deteriorate. Figures 3 and 4 shows both metrics for LSTM and
CNN-LSTM models for a selected threshold. The decision to choose a threshold
becomes challenging while trying to balance both the metrics for these models
as well. Compared to all models, CNN-LSTM has high detection rates for most
thresholds. However, the dilemma arises when deciding how much of the false
alarm rates we are willing to compromise.

Through the above exercise, we observe that there exists a dilemma of what
is to be chosen as the final threshold for the detection system irrespective of the
neural network used. Pursuing the best performance for one metric often results
in the other metric performing poorly. In this section, we discuss the character-
istics and the prediction performance of each model to analyze their effects on
the detection and false alarm rates. We also explore whether the inability of a
threshold to detect certain attack configurations, can still lead to a successful
and significant attack on the power grid.

Detection Model Characteristics A property that is common to all models is
the inability to detect attacks in the bottom-right corner, which represents high
frequency attacks with low perturbations. This could be because all the models
start adapting to the small injections in the consumption that is performed to
majority of the instances. The more the model starts seeing these small changes,
the more it accepts it to be normal. However, the detection system is able to
correctly identify sudden increase or decrease in the power consumption.

When we look at model-specific characteristics, the MLP model has linearly
varying detection rates and false alarm rates based on the proportion of per-
turbation. As observed in Figure 2, if we choose 10% of instances to be per-
turbed, irrespective of the power injected, the MLP model has high detection
rates throughout. On the other hand, the LSTM model follows an exponential
shape for high detection rates as observed in Figure 3. It is able to detect all
of small proportions and small power injections. For example, a perturbation
value of 6 kW is consistently detected for any proportion. The CNN-LSTM
model starts to fail detection in the bottom right corner as seen in Figure 4, and
slowly propagates towards the left in an exponential shape. The detection rate
at 100% perturbation proportion is different from the rest of the proportions
for all thresholds in all models. This can be observed in Figures 2, 3 and 4 that
there is a different behavior for only the 100% perturbation with progressively
changing detection rates going from low to high for different perturbations.
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Fig. 5. Root mean squared error for different models when different proportions of
attack instances are injected with 1 kW (left) and 20 kW (right)

Fig. 6. Root mean squared error for different models when different values of power
are injected for 75% (left) and 100% (right) of attack proportions

Model Prediction Performance The root mean squared error for the trained
MLP, LSTM and CNN-LSTM models on validation data are 0.099, 0.114 and
0.145 respectively. In terms of predicting the power consumption values, MLP
performs the best having the least error, followed by LSTM which has simi-
lar performance as MLP and lastly, CNN-LSTM. Figure 5 shows how the root
mean squared error (RMSE) changes for each model as the percentage of attack
instances increases. We can see that when the attack instances are perturbed
with 1 kW increase in power, the RMSE values follow an inverted parabolic
curve. This suggests that the prediction errors are lower when the proportion of
attack instances are either very low or very high. This can be observed in the
results from the previous section where the detection rates start becoming poor
when there is a large proportion of attack instances. As the injected wattage
is increased, MLP and CNN-LSTM models maintain the same shape, but the
LSTM model starts to deviate from it. This can be observed in the plot for
the 20 kW case, where the errors for LSTM model increase quickly, thus being
sensitive to higher perturbation values. When we keep the percentage of attack
instances constant and plot the RMSE values for increasing amount of injected
wattage, the LSTM model again has a different behavior compared to the MLP
and CNN-LSTM models. As seen in Figure 6, when the proportion of attack in-
stances is 75%, the RMSE has increasing trend for all models. However, LSTM
model increases very quickly for increasing wattage values. Whereas, for a 100%
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proportion case, the RMSE values for LSTM increase and decrease for different
values of power injections, while keeping the same increasing trend. This can be
observed in Figure 3 for LSTM, where the detection rates fluctuate for a 100%
attack proportion.

Successful Attacks on each Model Though the threshold selection might
lead to an indecision, we select a value that balances both metrics for the purpose
of discussing the impact of taking advantage of a model’s sensitivity. If we are to
choose the best threshold value for the MLP model, an 80th percentile threshold
with a value of 0.92 is able to give correct results, at least until 70% proportion
of perturbed data. For the LSTM and CNN-LSTM models, the 70th percentile
and the 80th percentile thresholds respectively, have a good balance between the
detection rates and the false alarm rates. Now, we look into undetected attack
configurations and decide whether the compromise made for selecting the thresh-
old is negligible. If an adversary has to perform an attack on such a system that
involves neural networks, an attack that is more frequent with low perturbations
will be successfully obscured. The required wattage for carrying out a success-
ful MadIoT attack to disrupt the power grid as proposed by Soltan et al. is 30
megawatt with 300 bots per megawatt [17]. This wattage can be injected by an
adversary by controlling compromised IoT bots in the same geographical loca-
tion. The number of bots required for the attack is even lower with high wattage
devices. If an adversary has access to 3, 000 bots, the wattage per bot require-
ment would be 10kW for a successful attack. Similarly, with access to 6, 000 and
100, 000 bots, it would require 5 kW/bot and 0.3 kW/bot respectively.

When we look at the metrics for the chosen threshold of the MLP model
which is 80th percentile in Figure 2, the right vertical strip of the plot with
proportions greater than 70% are not detected. Let us assume that the attacker
has access to 3, 000 bots each contributing 10 kW of additional wattage. Given
that for a single household, the detection is low for the MLP model, irrespective
of the power injection for an 80% perturbation, the attack will be successful
with access to 10 kW devices in 3, 000 households. With access to 20 kW or
more per device and perturbing more than 30% of the consumption, the attacker
can attain low detection rates with below 50% of the attack being detected in
an LSTM model with the chosen threshold at 70th percentile. As observed in
the LSTM plot for 70th percentile threshold in Figure 3, the detection rates
are the least with lower injected wattage per device and more than 50% of the
data perturbed. With this configuration, the attacker requires access to 6, 000
devices with each device contributing a lower wattage of 5 kW. If we go with
the chosen 80th percentile for the CNN-LSTM model, the attacker can again
perform a successful attack by choosing devices under 30 kW and injecting it in
more than 70% of the data as seen in Figure 4. The attack is possible with less
than 3, 000 devices contributing more than 10 kW each. If we choose a higher
threshold of 70th percentile to combat this behavior, there is still a possibility
for the adversary to use between 1 kW to 5 kW devices requiring 6, 000 to 9, 000
devices to carry out a successful attack.
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In summary, the MLP model is easily vulnerable because of its exposure to a
variety of small and large power injection attacks when 70% or more of instances
are perturbed. LSTM model cannot detect higher power injection with moderate
to high frequency attacks, and low power injection with high frequency attacks,
with the latter being more feasible. Though an attacker can have a tough time
staying undetected for majority of the attack configurations in a CNN-LSTM
model, there is still a slight possibility for this to take place for lower power
injections with high attack frequencies. Tightening or increasing the threshold
for any of these models to improve the detection rates leads to the threshold
dilemma as the false alarm rates will be significantly high. Therefore, going past
this dilemma and choosing an appropriate threshold will still lead to successful
attacks on the power grid as the attacker can work within the noise tolerance
levels of a model to stay undetected.

6 Conclusion and Future Work

In this work, we train three state-of-the-art neural network models that are inte-
grated into anomaly detection systems for power consumption data. We generate
adversarial samples with increasing power wattage and attack frequency for the
selected detection systems. We then demonstrate the threshold dilemma showing
the inability to choose a single threshold that will be able to detect all power
grid attacks. We discuss the model characteristics and the impact of the unde-
tected attacks on the power grid. Using some of these insights, a possible future
direction would be to investigate why neural network-based models fail when
detecting attacks that have low power injection but high proportion of attack
instances. As this is a common case observed in all models, it could be possi-
ble to offset that behavior by introducing a new parameter or model into the
detection system to capture such instances. Though the metrics calculated for
these cases have different behaviors visually, the errors for all models follow the
same pattern except for LSTM. As LSTMs are commonly used for time series
predictions, it would be interesting to look into why the model has increasing
errors with high perturbation and proportion of attack instances.
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