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Abstract Researchers have previously looked into the
problem of determining if a given set of security hard-
ening measures can effectively make a networked sys-
tem secure. However, system administrators are often
faced with a more challenging problem since they have
to work within a fixed budget which may be less than
the minimum cost of system hardening. An attacker,
on the other hand, explores alternative attack scenar-
ios to inflict the maximum damage possible when the
security controls are in place, very often rendering the
optimality of the controls invalid. In this work, we de-
velop a systematic approach to perform a cost-benefit
analysis on the problem of optimal security hardening
under such conditions. Using evolutionary paradigms
such as multi-objective optimization and competitive
co-evolution, we model the attacker-defender interac-
tion as an “arms race”, and explore how security con-
trols can be placed in a network to induce a maximum
return on investment.
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1 Introduction

Network-based computer systems form an integral part
of any information technology infrastructure today. The
different levels of connectivity between these systems
directly facilitate the circulation of information within
an organization, thereby reducing invaluable wait time
and increasing the overall throughput. As an organiza-
tion’s operational capacity becomes more and more de-
pendent on networked computing systems, the need to
maintain accessibility to the resources associated with
such systems has become a necessity. Any weakness or
vulnerability that could result in the breakdown of the
network has direct consequence on the amount of yield
manageable by the organization. This in turn requires
the organization to not only consider the advantages
of utilizing a networked system, but also consider the
costs associated with managing the system.

Researchers have proposed building security mod-
els for networked systems using paradigms like attack
graphs [1-5] and attack trees [6-9], and then finding at-
tack paths in these models to determine scenarios that
could lead to damage. However, determining possible
attack paths, although useful, does not help the sys-
tem administrators much. They are more interested in
determining the best possible way of defending their
network in terms of an enumerated set of hardening
options [10]. Moreover, the system administrator has
to work within a given set of budget constraints which
may preclude her from implementing all possible hard-
ening measures or even measures that cover all the weak
spots. Thus, the system administrator needs to find a
trade-off between the cost of implementing a subset of
security hardening measures and the damage that can
potentially happen to the system if certain weak spots
are left unpatched. We performed a Pareto analysis of



this multi-objective problem in one of our earlier works
[11]. The method is driven by an attack tree model that
captures the cause-consequence relationships between
different network states. These relationships are then
used to determine a set of security controls that ex-
hibit non-dominance characteristics with respect to the
control cost and residual risk.

While such trade-off analysis provide valuable in-
sights into the problem of optimal security hardening,
the approach provides only a static perspective to the
problem. The assumption here is that the end goal is
to identify a set of security controls that can prevent a
particular security breach from occurring. An attacker,
meanwhile, continues to explore alternative attack sce-
narios to inflict maximum damage possible to a system,
despite the security controls that are in place. Many a
times, the attacker’s goal may be just to cause some
damage and not necessarily cause the specific security
breach that the defender is trying to protect against.
The attacker may be aided by several factors in this
quest. Defenses may have unknown vulnerabilities that
can be exploited as a system evolves with time. Mis-
configuration of defenses can render them susceptible
to attacks. If the attacker has insider knowledge about
system configuration, weak spots and defenses (or lack
thereof), such knowledge can be used to increase the
probability of a defense failing. Such a situation may
not be acceptable to the higher ups in the organization.
Their perspective may be to not only prevent a spe-
cific security breach but also accept minimal collateral
damage. This may require a continual updating of the
defense strategy based on attacker activities. Thus, one
important objective of security hardening is to make life
as difficult for the attacker as possible by adjusting se-
curity controls. It seems worth investigating if such an
arms race between the attacker and the defender will
be perpetual or there exists a state involving security
controls in which the defender is guaranteed that unex-
pected damages will never be inflicted no matter how
the attacker changes his strategies.

In this paper, we begin with the formal definition
of attack trees first suggested in our earlier work [11].
Using a model that quantifies the potential damage in a
system and the security control cost incurred to imple-
ment a set of security hardening measures, we show how
a cost-benefit analysis can be performed on an attack
tree to aid the decision maker. As the primary contri-
bution of this work, we extend the trade-off analysis to
explore the optimal security hardening problem keeping
in view the attacker’s perspective, namely, defenses can
be broken. Our goal is to identify how security controls
can be decided to maximize the return on investment
for a defender, under the scenario that an attacker is ac-

tively engaged in maximizing its return on attacks. We
explore the optimal security control placement problem
as a dynamic engagement between the defender and the
attacker, and model the problem as an “arms race”. So-
lutions to the optimization problem are obtained using
the competitive co-evolution paradigm and show how
the constant engagement between a defender and an
attacker drives the solution towards a state of equilib-
rium.

Using the outcomes of this analysis, we highlight the
inadequacy of current research in addressing the secu-
rity hardening problem. We argue that research in this
frontier has mostly adopted a perspective of optimal-
ity that becomes questionable under the light of chang-
ing network and attacker dynamics. Hence, towards the
end, we present a few insights on what alternative per-
spective is required.

The rest of the paper is organized as follows. Section
2 explores some of the major works in optimal security
hardening. Section 3 gives some background informa-
tion on multi-objective optimization and competitive
co-evolution. In section 4 we describe a simple network
that we use to illustrate our problem formulation and
solution. The attack tree model is presented in section
5. In section 6 we discuss a motivating example to show
how the attacker’s perspective may bring about changes
in the choice of a security control. In section 7 we define
the cost models used in this study. This is followed by
the formalization of the optimization problems in sec-
tion 8. Specifics on the solution methods are presented
in section 9. Empirical results and discussions are pre-
sented in section 10. Finally, we conclude in section 11
with references to future work.

2 Related Work

Network vulnerability management has been previously
addressed in a variety of ways. Noel et al. use exploit de-
pendency graphs [10] to compute minimum cost-harden-
ing measures. Given a set of initial conditions in the
graph, they compute boolean assignments to these con-
ditions, enforced by some hardening measure, so as to
minimize the total cost of those measures. As pointed
out in their work, these initial conditions are the only
type of network security conditions under our strict con-
trol. Hardening measures applied to internal nodes can
potentially be bypassed by an attacker by adopting a
different attack path. Jha et al. [2] on the other hand
do not consider any cost for the hardening measures.
Rather, their approach involves finding the minimal set
of atomic attacks critical for reaching the goal and then
finding the minimal set of security measures that cover
this set of atomic attacks.



Such analysis is meant for providing solutions that
guarantee complete network safety. However, the hard-
ening measures provided may still not be feasible within
the financial or other business constraints of an orga-
nization. Under such circumstances, a decision maker
must perform a cost-benefit analysis to understand the
trade-off between hardening costs and network safety.
Furthermore, a minimum cost hardening measure set
only means that the root goal is safe, and some resid-
ual damage may still remain in the network. Owing to
these real-world concerns, network vulnerability man-
agement should not always be considered as a single-
objective optimization problem.

A multi-objective formulation of the problem is pre-
sented by Gupta et al. [12]. They consider a generic
set of security policies capable of covering one or more
generic vulnerabilities. A security policy can also intro-
duce possible vulnerabilities, thereby resulting in some
residual vulnerabilities even after the application of se-
curity policies. The multi-objective problem considered
is the minimization of the cost of implementing the se-
curity policies, as well as the residual vulnerabilities in-
troduced by the policies themselves. However, the au-
thors finally scalarize the two objectives into a single
objective using relative weights.

Bistarelli et al. propose defense trees as an exten-
sion to attack trees to analyze the economic profitabil-
ity of security measures and their deterrent effects on
attackers. A game theoretic perspective of the prob-
lem is introduced in an attempt to discover Nash equi-
librium points between the security provider and the
attacker [13]. Early indications of using game theory
for network security is provided by Syverson [14]. The
work considers the example of a network divided into
“good” and “evil” nodes and reasons how game play-
ing can be used to achieve secure computing. Lye and
Wing model the interactions between an attacker and
an administrator as a two-player stochastic game and
use non-linear programming techniques to compute the
Nash equilibria or best-response strategies for the play-
ers [15]. They propose that attacker and administra-
tor actions probabilistically change the state of a net-
work, resulting in gains and losses for the two players
involved. Sallhammar et al. propose the use of stochas-
tic game theory to compute probabilities to attacker
actions [16,17]. They also share the view that attacks
can be modeled as transitions between system states,
and show how the attacker’s behavior is influenced by
parameters of the game on-going with the defender. Liu
and Wang propose a systematic incentive-based frame-
work to model attacker intent, objectives and strate-
gies (AIOS) [18]. Their motivation is aimed towards
separating attacker actions and attack effects since the

same attack may be the source of different intentions
on part of the attacker. The discussion in their work
brings out an important characteristic of game theo-
retic modelling — termed the dual property — the best
attack (defense) strategy is dependent on the defense
(attack) strategies taken. Buldas et al. propose a risk-
analysis method based on attack trees to estimate the
cost and risk probability of attacks [19]. Their argu-
ment is based on the fact that attacks where the cost
surpasses the benefit are unlikely in a system and hence
such factors should be considered while making a ratio-
nal decision on security measures. Zhang et al. develop
a partially observable Markov decision process to mea-
sure the attacker’s and defender’s behavior in terms of
intent and cost factors [20]. Their model aims at reveal-
ing the significant aspects of a system that are more
likely to be exploited by an attacker and thus aid a de-
fender in detecting on-going attacks based on atomic
actions of the attacker. Jiang et al. propose an optimal
active defense strategy decision (OADSD) algorithm to
compute defense strategies with minimum cost from an
iterative attacker-defender game [21].

An implicit assumption in these works is the exis-
tence of a payoff matrix that can be used by a soft-
ware tool to deduce the points of equilibrium. How-
ever, as we explain later, the payoff matrix can be too
large to be computed for a given problem. Our solution
methodology differs here in the adaptation of payoff
functions defined on attack models, which can then be
used by an evolutionary algorithm to find the equilib-
rium points. Further, the solution methodology adopted
by us implicitly models the game undergoing between
the attacker and the defender, revealing not only the
equilibrium solutions (if any) but also the evolutionary
path traversed by the game while reaching the solution.
This information provides a decision maker the added
knowledge to understand the dynamics of the attacker-
defender interactions.

3 Background on Solution Methods
3.1 Multi-objective Optimization

Multi-objective optimization differs from single-objecti-
ve ones in the cardinality of the optimal set of solutions.
Single-objective optimization techniques are aimed to-
wards finding the global optima. There is no such con-
cept of a single optimum solution in case of multi-object-
ive optimization. This is due to the fact that a solu-
tion that optimizes one of the objectives may not have
the desired effect on the others. As a result, it is not
always possible to determine an optimum that corre-
sponds in the same way to all the objectives under con-



sideration. Decision making under such situations thus
requires some domain expertise to choose from multi-
ple trade-off solutions depending on the feasibility of
implementation.

Due to the conflicting nature of the objective func-
tions, a simple objective value comparison cannot be
performed to compare two feasible solutions of a multi-
objective problem. Most multi-objective algorithms thus
use the concept of dominance.

Definition 1 DOMINANCE AND PARETO-OPTIMAL SET
In a minimization problem with M objective func-

tions f1,..., fum, a feasible solution vector x is said to

dominate another feasible solution vector 'y if

1.Vie {1,2,...,M} fi(x) < fily) and

2.35€{1,2,...,M} fi(x) < fi(y)

y is then said be dominated by x. If the two condi-
tions do not hold, x andy are said to be non-dominated
w.r.t. each other. Further, the set of all non-dominated
solutions obtained over the entire feasible region consti-
tutes the Pareto-optimal set.

In other words, a Pareto-optimal solution is as good
as other solutions in the Pareto-optimal set, and not
worse than other feasible solutions outside the set. The
surface generated by these solutions in the objective
space is called the Pareto-front or Pareto-surface.

The classical way to solve a multi-objective opti-
mization problem is to follow the preference-based ap-
proach. A relative weight vector for the objectives can
help reduce the problem to a single-objective instance,
or impose orderings over the preference given to differ-
ent objectives. However, such methods fail to provide
a global picture of the choices available to the deci-
sion maker. In fact, the decision of preference has to
be made before starting the optimization process. Rel-
atively newer methods have been proposed to make the
decision process more interactive.

Evolutionary algorithms for multi-objective optimiza-
tion (EMO) have been extensively studied and applied
to a wide spectrum of real-world problems. One of the
major advantages of using evolutionary algorithms for
optimization is their ability to scan through the global
search space simultaneously, instead of restricting to lo-
calized regions of gradient shifts. An EMO works with
a population of trial solutions, trying to converge on to
the Pareto-optimal set by filtering out the infeasible or
dominated ones. Having multiple solutions from a sin-
gle run of an EMO is not only an efficient approach,
but also helps a decision maker obtain an intuitive un-
derstanding of the different trade-off options available
at hand. The effectiveness of an EMO is thus character-
ized by its ability to converge to the true Pareto-front

and maintain a good distribution of solutions on the
front.

A number of algorithms have been proposed in this
context [22,23]. We employ the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [24] for the multi-
objective optimization in this study. NSGA-II has gained
a wide popularity in the multi-objective optimization
community, partly because of its efficiency in terms of
the convergence and diversity of solutions obtained, and
partly due to its extensive application to solve real-
world problems.

3.2 Competitive Co-evolution

Competitive co-evolution refers to the concurrent evo-
lution of two distinct species in which the fitness of
an individual in one species is based on its competitive
abilities against the individuals of the other species. Fit-
ness evaluation with such reciprocal actions are hypoth-
esized to occur in nature. Game theory based models of
such interactions are first presented in Axelrod’s Pris-
oners’ Dilemma [25]. The evolution of species in a com-
petitive habitat usually leads to an evolutionary stable
strategy [26] which cannot be invaded by the process
of natural selection. In other words, the species reverts
back to the stable strategy over time.

Competitive co-evolution has been successfully ap-
plied to the evolution of strategies for games such an
Tic-Tac-Toe and Nim [27]. The range of potential op-
ponent strategies is typically very large in such games,
thereby making it difficult to determine an exogenous
fitness evaluation function. Other domains such as soft-
ware reliability testing faces a similar problem. The
solution using competitive co-evolution involves using
two populations, one representing the software solutions
and the other representing the test cases, each taking
turns in testing and being tested against the other [28].
A survey of other real world applications is available in
[29].

Success of competitive co-evolution is attributable
to the emergence of an evolutionary arms race [30].
Consider two populations of defense strategies and at-
tack strategies. To begin with, both populations are
likely to have strategies of poor quality. Most of the
host strategies will have low payoffs brought forth by
one or two good strategies existing in the opponent
population. However, since defense strategies are evolv-
ing based on their competitive abilities against attack
strategies, the success of the defender implies the fail-
ure of the attacker. When the attacker finds strategies
to improve its payoff by overcoming the failure, it helps
the defender identify gaps previously unthought of in its



strategies. The same idea drives the attacker’s strate-
gies. New opponent strategies drive hosts towards bet-
ter counter strategies, improving host performance by
forcing it to respond to a wider range of more challeng-
ing test cases.

The next question that comes to mind is whether a
good host strategy of the current generation can prove
its competence against opponent strategies that are lost
in the evolution of the opponent population. This is re-
ferred to as the memory property in co-evolution. To
handle such situations, co-evolutionary algorithms em-
ploy a “hall of fame” [31] sub-population which keeps
track of the best opponent solutions found from ear-
lier generations. Success of a competition for a host
strategy is measured not only relative to the current
opponent strategies but is also dependent on its per-
formance against the opponent’s hall of fame. Other
similar methods are elaborated in [32,33].

4 A Simple Network Model

We consider the hypothetical network shown in Figure
1 to illustrate our methodology. The setup consists of
four hosts. A firewall is installed with a preset policy
to ensure that only the FTP and SMTP servers are
allowed to connect to the external network. In addition,
FTP and SSH are the only two services an external user
can use to communicate with these servers. We assume
that an external user wants to compromise the Data
Server which is located inside the firewall. The firewall
has a strong set of policies setup to protect access to the
internal hosts. There are six different attack scenarios
possible to achieve the ultimate goal from a given set
of initial vulnerabilities and network topology as listed
in Table 1 and 2.

Terminal
196.216.0.3

N\ / -

FTP Server
196.216.0.10

‘_ Internet

SMTP Server
196.216.0.1

Data Server
196.216.0.2

Fig. 1 Example network model.

To compromise the Data Server, an attacker can ex-
ploit the FTP and SMTP Servers using the ftp/.rhost
attack. Both servers are running ftp server versions that

Table 1 Initial vulnerability per host in example network.

Host Vulnerability CVE#
FTP Server Ftp .rhost attack 1999-0547
196.216.0.10 Ftp Buffer overflow | 2001-0755

Ssh Buffer overflow | 2006-2421
SMTP Server Ftp .rhost attack 1999-0547
196.216.0.1
Terminal LICQ remote-2-user | 2001-0439
196.216.0.3 “at” heap corruption | 2002-0004
Data Server LICQ remote-2-user | 2001-0439
196.216.0.2 suid Buffer overflow | 2001-1180
Table 2 Connectivity in example network.
Host Host Port
KR ¥ 196.216.0.1 21,25
H KKK 196.216.0.10 | 21,22
196.216.0.1 196.216.0.2 ANY
196.216.0.1 196.216.0.3 | ANY
196.216.0.3 196.216.0.2 ANY
196.216.0.10 | 196.216.0.2 | ANY

are vulnerable to these exploits. In addition, their rhost
directories are not properly write-protected. As a conse-
quence of the ftp/.rhost exploit, an attacker establishes
a trust relation between the host and attacker machines,
and introduces an authentication bypassing vulnerabil-
ity in the victim. An attacker can then log in to these
servers with user access privilege. From this point the
attacker can use the connection to the Data Server to
compromise it. The attacker may also compromise the
SMTP Server, or choose to compromise the Terminal
machine in order to delay an attack. The Terminal ma-
chine can be compromised via the chain of LICQ re-
mote to user attack and the local buffer overflow attack
on the “at” daemon. Finally, the attacker from either
the FTP server, SMTP server, or the Terminal machine
can use the connectivity to the Data Server to compro-
mise it through the chain of LICQ exploit and “suid”
local buffer overflow attack. Such attack scenarios can
be succinctly represented using an attack tree, discussed
in details in the next section.

5 Attack Tree Model

Materializing a threat usually requires the combina-
tion of multiple attacks using different vulnerabilities.
Representing different scenarios under which an asset
can be damaged thus becomes important for preven-
tive analysis. Such representations not only provide a
picture of the possible ways to compromise a system,
but can also help determine a minimal set of preventive
actions. Given the normal operational state of a net-
work, including the vulnerabilities present, an attack
can possibly open up avenues to launch another attack,



thereby taking the attacker a step closer to its goal. A
certain state of the network in terms of access privileges
or machine connectivity can be a prerequisite to be able
to exploit a vulnerability. Once the vulnerability is ex-
ploited, the state of the network can change enabling
the attacker to launch the next attack in the sequence.
Such a pre-thought sequence of attacks gives rise to an
attack scenario.

It is worth noting that such a notion of a progressive
attack induces a transitive relationship between the vul-
nerabilities present in the network and can be exploited
while deciding on the security measures. Attack graph
[1,2,4,10] and attack tree [8,9] representations have
been proposed in network vulnerability management to
demonstrate such cause-consequence relationships. The
nodes in these data structures usually represent a cer-
tain network state of interest to an attacker, with edges
connecting them to indicate the cause-consequence rela-
tionship. Although different attack scenarios are easily
perceived in attack graphs, they can potentially suffer
from a state space explosion problem. Ammann et al.
[1] identified this problem and propose an alternative
formulation with the assumption of monotonicity. The
monotonicity property states that the consequence of
an attack is always preserved once achieved. Such an
assumption can greatly reduce the number of nodes in
the attack graph, although at the expense of further
analysis required to determine the viable attack sce-
narios. An exploit-dependency graph can be extracted
from their representation to indicate the various con-
junctive and disjunctive relationships between different
nodes. For the purpose of this study, we adopt the at-
tack tree representation since it presents a much clearer
picture of the different hierarchies present between at-
tacker sub-goals. An attack tree uses explicit conjunc-
tive and disjunctive branch decomposition to reduce the
visualization complexity of a sequence of operations.

Different properties of the network effectuate differ-
ent ways for an attacker to compromise a system. We
first define an attribute-template that lets us generically
categorize these network properties for further analysis.

Definition 2 ATTRIBUTE-TEMPLATE

An attribute-template is a generic property of the
hardware or software configuration of a network which
includes, but not limited to, the following:

— system vulnerabilities (which are often reported in
vulnerability databases such as BugTraq, CERT/CC,
or NetCat).

— network configuration such as open port, unsafe fire-
wall configuration, etc.

— system configuration such as data accessibility, un-
safe default configuration, or read-write permission
in file structures.

— access privilege such as user account, guest account,
or root account.

— connectivity.

An attribute-template lets us categorize most of the
atomic properties of the network that might be of some
use to an attacker. For example, “running SSH1 v1.2.23
on FTP Server”can be considered as an instance of the
system vulnerabilities template. Similarly, “user access
on Terminal” is an instance of the access privilege tem-
plate. Such templates also let us specify the properties
in propositional logic. We define an attribute with such
a concept in mind.

Definition 3 ATTRIBUTE
An attribute is a propositional instance of an attribute-
template. It can take either a true or false value.

The success or failure of an attacker reaching its goal
depends mostly on what truth values the attributes in
a network take. Its also lays the foundations for a secu-
rity manager to analyze the effects of falsifying some of
the attributes using some security policies. We formally
define an attack tree model based on such attributes.
Since we consider an attribute as an atomic property of
a network, taking either a true or false value, most of
the definitions are written in propositional logic involv-
ing these attributes.

Definition 4 ATTACK

Let S be a set of attributes. We define Att to be a
mapping Att 1 S x S — {true, false} and Att(s.,sp) =
truth value of sp.

a = Att(sc, sp) is an attack if sc # sp N a = s¢ <
Sp. Sc and s, are then respectively called a precondition
and postcondition of the attack. The set of all precondi-
tions and postconditions of a are denoted by pre(a) and
post(a) respectively.

Att(sc, sp) is a p—attack if Inon-empty S’ C S|[s. #
sp N Att(sc, sp) = (Asi A se) <> sp| where s; € S'.

(2

An attack relates the truth values of two differ-
ent attributes so as to embed a cause-consequence re-
lationship between the two. For example, for the at-
tributes s, =“ulnerable to sshd BOF on machine A”
and s, =“root access privilege on machine A”, Att(s., sp)
is an attack — the sshd buffer overflow attack. We would
like to clarify here that the bi-conditional logical con-
nective “+” between s. and s, does not imply that
sp can be set to true only by using Att(s.,sp); rather
it means that given the sshd BOF attack, the only



way to make s, true is by having s. true. In fact,
Att(“vulnerable to local BOF on setuid daemon on ma-
chine A”,s;,) is also a potential attack. The ¢-attack is
included to account for attributes whose truth values do
not have any direct relationship. However, an indirect
relationship can be established collectively. For exam-
ple, the attributes s., = “running SSH1 v1.2.25 on ma-
chine A” and s., = “connectivity(machine B, machine
A)” cannot individually influence the truth value of s,
but can collectively make s, true, given they are individ-
ually true. In such a case, Att(s,,s.) and Att(sc,, Sc)
are ¢—attacks.

Definition 5 ATTACK TREE

Let A be the set of attacks, including the ¢—attacks.
An attack tree is a tuple AT = (Syoot, S, T,€), where

1. S,o0t 98 an attribute which the attacker wants to
become true.

2.8 = Ninternal U Nezternal ) {Sroot} is a multiset
of attributes. Nezternal denotes the multiset of attributes
s; for which fa € Als; € post(a). Ninternai denotes the
multiset of attributes s; for which 3ai,a2 € Al[s; €
pre(ai) A s; € post(az)].

3. 71 C S xS. An ordered pair (Spre, Spost) € T if
Jda € Al[spre € pre(a) A Spost € post(a)]. Further, if
s; € S and has multiplicity n, then 3s1,82,...,8, €
S|(si,51), (si,82), -, (si,8n) €T, and

4. € is a set of decomposition tuples of the form
(sj,dj) defined for all s; € Nipternal U{Sroot} and d; €
{AND,OR}. d; is AND when \[s; \(si,s;) € T| <> s

K2
is true, and OR when \/[s; A (s;,5;) € T] <+ s; is true.
i

svs

root access
on
machine A

=FTP=
vulnerable to

Mu FTP buffer-overflow

attack

—=§sH=
vulnerable to
ssh buffer-overflow
attack

machine B can
connect to
machine A

machine B can
connect to
machine A

running SSH1
v1.2.25 on
machine A

running FTP
v1.23 on
machine A

Fig. 2 Example attack tree.

Figure 2 shows an example attack tree, with the at-
tribute “root access on machine A” as S,0t- The multi-
set S forms the nodes of the tree. The multiset Negternal
specify the leaf nodes of the tree. These nodes reflect

the initial vulnerabilities present in a network and are
prone to exploits. Since an attribute can be a precondi-
tion for more than one attack, it might have to be du-
plicated, hence forming a multiset. The attribute “ma-
chine B can connect to machine A” in the example is
one such attribute. The set of ordered pairs 7 reflects
the edges in the tree. The existence of an edge between
two nodes implies that there is a direct or indirect re-
lationship between their truth values, signified by the
decomposition at each node. The AND decomposition
at a node requires all child nodes to have a truth value
of true for it to be true. The OR decomposition at a
node requires only one child node to have a truth value
of true for it to be true. Using these decompositions,
the truth value of an attribute s; € Ninternat U {Sroot }
can be evaluated after assigning a set of truth values
to the attributes s; € Nezternal- Figure 3 shows the at-
tack tree for our example network model. It depicts a
clear picture of the different attack scenarios possible,
as outlined in the previous section.

Attack trees for large networks can get complex.
We have the search space bound to the number of at-
tributes that specify what vulnerabilities are present
in which machines. The size of the attribute instances
can be as large as A x M, where A is the number of
attributes and M is the number of machines in the sys-
tem. However, note that the generation of the attack
tree is a one-time cost and is not done in real time.
Our in-house tool takes as input an initial vulnerabil-
ity table, generated by a vulnerability scanner, and the
network topology. Using a sequence of SQL queries on
a vulnerability exposure database, the tool creates con-
sequence attributes for the tree until no further impli-
cations can be derived. Commercial tools (e.g. CAUL-
DRON: http://proinfomd.com) are also available that
explore the topological and security dependencies in a
large-scale real-world network.

A defender installs defenses on the network (makes
some or all leaf nodes false) so as to prevent the root
node from becoming true. The defender’s choice of de-
fenses may be determined by factors such as the in-
stallation cost and the potential damage residual after
making the choice. From an attacker’s perspective, the
attack tree is a model showing the different ways it
can compromise the root node. However, we do not re-
strict our focus to the root node alone. An attacker’s
strategy might as well be directed towards inflicting the
most damage in the presence of defenses, rather than
just compromising the root node. The choice of such a
strategy is also influenced by the difficulty that the at-
tacker has to overcome in order to bypass any installed
defenses. In the next section we give a formal outline of
a defense and an attack strategy.
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Fig. 3 Attack tree of example network model.

6 Defense and Attack Strategy

Incorporating the attacker’s perspective in the optimal
security hardening problem is not easy. We consider a
hypothetical example to illustrate how a defender’s de-
cision to employ a particular strategy is influenced when
the attacker’s gains are kept in consideration. Consider
the payoff matrix shown in Figure 4. The example as-
sumes that the defender has two possible defense strate-
gies dy and ds, and the attacker has two different attack
strategies a1 and as to try out. The objective of the de-
fender is to decide on one defense strategy to adopt.
The first value in a cell (7, ) is a measure of some pay-
off that the defender derives by adopting strategy d;
under the situation when the attacker uses strategy a;.
Given that the defender is only interested in its payoff
value, it uses an average case analysis and finds that
strategy d; can maintain a higher average payoff than
dy — 7.5 compared to 5.5. The defender will arrive at
the same strategy even with a best case analysis. The
defender therefore installs the defense d;. However, the
decision on d; can reveal itself to be flawed when the
attacker’s payoffs are introduced.

The second value in a cell (7, 7) is a measure of the
payoff that the attacker derives by adopting attack a;
when defense d; is in place. With d; in place, the at-
tacker sees that its payoff is more (6 compared to 2) by
adopting strategy a;. Hence, it will always employ a1,
in which case the defender will always derive a payoff
of 5. This value is not only less than the average pay-
off of dy, but is also less than the average payoff of ds.
The value is not even better than the individual payoffs
possible with ds, i.e. 6 when a; occurs and 5 when as
occurs. Further, if we consider the situation where the
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Fig. 4 A hypothetical payoff matrix showing defender and
attacker payoffs.

attacker does not know which defense is in place and
wants to choose a strategy using an average or best
case analysis, strategy a; is the favorable choice. This
is because strategy a; always provides a higher payoff
than as no matter which defense is in place. In the light
of this analysis, the defender should thus be choosing
strategy do. Since the attacker’s choice is inclined to-
wards using a;, the defender now derives a payoff of 6,
compared to 5 when choosing d;.

Another interesting facet of ds is the equilibrium
it maintains with a;. Let us assume that the defender
does a best case analysis, as in the case when the at-
tacker’s payoffs are not known, and chooses d;. The
attacker then employs a; to maximize its payoff. The
defender notices that its payoff is not optimal when
a1 occurred and so switches to ds to increase it. Here-
after, although the defense strategy has changed, the
attacker’s best strategy is to stick to a;. In other words,
the defender and the attacker enters a state of equilib-
rium where none benefits any further from changes in
strategy. Hence, even though d; appears to be the op-



timal strategy at first glance, over time the defender
changes policies to finally settle down with do — the
equilibrium strategy.

One may ask what is the equilibrium solution’s rela-
tion to the notion of optimal security hardening. Con-
sider the scenario where a defender installs defenses
based on some optimality criteria on a system. Over
time an attacker finds the best possible way to exploit
the system under the defensive configuration. The de-
fender notices the attacker’s exploitation mechanism
and modifies its policies keeping in consideration the
optimality criteria. The attacker adapts to the changes
and the process continues. When the defense policies
corresponding to the equilibrium condition are instan-
tiated and the attacker adapts to it, the defender is
already running the optimal set of policies possible for
the attacker’s adaption and does not need to change
it. Thus, in the long run, the notion of optimal secu-
rity hardening converges towards security in equilib-
rium with attacks.

Performing an analysis of the nature shown in the
simple example is relatively more difficult on a larger
scale. First, the payoff matrix can be very large in a real
scenario. For d defense controls and a attack nodes, this
matrix can be as large as 2¢ x 2. Filling the matrix
can thus involve an immense number of evaluations.
Second, even if the matrix can be computed, perform-
ing the analysis to decide on the best strategy can be
impractical. Note that a best (or equilibrium) defense
strategy as depicted in the example may not exist at
all. For example, if the values at cell (2,1) are replaced
by (4,10), then the best strategy for the attacker varies
depending on the defense. Nonetheless, we can argue
that d; is a better defense strategy in this case since
the payoff is better than from ds — 5 with a; as the
strategy of choice for the attacker compared to 4 with
as as the attacker’s choice.

Ideally it would be sufficient to decide on a defense
strategy by comparing it against others under the light
of attack strategies resulting in higher payoffs for the
attacker. One may visualize the attack strategies as test
cases to measure the competence of a defense strategy.
Better test cases are those which are more difficult to
solve, or in other words, result in inferior performance
of the defense strategy. Similarly, an attack strategy
should only be analyzed against defense strategies that
result in higher payoffs for the defender. The presence
of such cyclic dependencies in the evaluation process
makes the analysis hard to conduct. Moreover, the opti-
mal defense strategy will most likely have to be changed
over time to maintain maximum payoff depending on
what strategy is chosen by the attacker. Hence we be-

lieve it is worth investigating if an equilibrium strategy
exists for the security hardening problem.

First we define the notion of a security control (or
defense) in the context of the attack tree definition.

Definition 6 SECURITY CONTROL (DEFENSE)

Given an attack tree (Syoot, S, T, €), the mapping SC' :
Newternal — {true, false} is a security control if 3s; €
Nezternal|sc(8i) = false'

In other words, a security control is a preventive
measure to falsify one or more attributes in the attack
tree, so as to stop an attacker from reaching its goal.
Further, in the presence of multiple security controls
SCy, the truth value of an attribute s; € Negternal 18
taken as ASCk(s;). Given a security control SC, the

k

set of all s; € Negternat|SC(s;) = false is called the
coverage of SC. Hence, for a given set of security con-
trols we can define the coverage matriz specifying the
coverage of each control. For a given set of d security
controls, we use the boolean vector S = (51,52, ...,S54)
to indicate if a security control is chosen by a security
manager.

In order to defend against the attacks possible, the
defender can choose to implement a variety of safeguard
technologies. Each choice of action can have a different
cost involved. Besides, some measures can have multi-
ple coverages but with higher costs. The defender has
to make a decision and choose to implement a subset
of these policies in order to maximize the resource uti-
lization.

Definition 7 DEFENSE STRATEGY

For a given set of d defenses, the defense strategy
Sp = (Sp,,Sps,---,SD,) s a boolean vector indicating
which defenses are chosen by the defender. Sp, = 1 if
defense D; is chosen, zero otherwise.

The choice of this vector indirectly specifies which
leaf nodes in the attack tree would be false to begin
with. An attacker typically exploits leaf nodes that are
not covered by any defense in order to progressively
climb up the tree, inflicting some amount of damage
to the network at every step. However, it is not always
correct to assume that an attacker can no longer exploit
some parts of the attack tree because of the installed
defenses. With the appropriate tools and knowledge, an
attacker may have the potential to bypass a defense as
well. In other words, leaf nodes which were made false
by a defense can be reverted back to being true. We
thus assume an attacker with the requisite knowledge
to breach a defense. However, in order to do so the
attacker will have to incur some cost, often related to
the number of defenses in place and the difficulty to
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Fig. 5 Payoff for different attack strategies in hypothetical
attack tree. Circles denote nodes of the attack tree and the
rectangle denote a defense. Value within a circle signifies a
payoff value that the attacker receives if it succeeds in reach-
ing the node. Value within the rectangle is the cost that the
attacker incurs to bypass the defense.

breach them. If an attacker’s gains are less than the
cost incurred, then its effort to breach the defense is
not worth the time and value. This primarily motivates
the defender to still install defenses despite there being
a chance of breach.

Given that the attacker can bypass an installed de-
fense (after incurring a cost), it can start its exploits
from any leaf node on the attack tree. The attacker’s
progress towards the root is then decided by the leaf
nodes it choose. Note that choosing all leaf nodes that
can collectively make an intermediate node true need
not always be the best approach for the attacker. For
instance, given that defenses will be in place at differ-
ent levels of the tree and the attacker will have to incur
a cost to bypass them, it is possible that the attacker
derives more payoff by inflicting damages at different
parts of the attack tree rather than continuing along a
single scenario all the way up to the root. An example
of this situation is depicted in Figure 5. With the given
values and the defense in place, the strategy 101 gener-
ates a higher payoff than trying to reach the root node
with strategy 111. This happens because the cost to
breach the installed defense nullifies any gains derived
from breaching it.

An attack strategy is thus defined as follows.

Definition 8 ATTACK STRATEGY

Let n denote the number of unique leaf nodes in an
attack tree. An attack strategy Sa = (Sa,,S45,---,54,)
18 a boolean vector indicating which leaf nodes in the tree
are chosen by the attacker for exploit. Sa, = 1 if node
A; € Negternal 18 chosen, zero otherwise.

Thus, an attack strategy specifies the path(s) that
the attacker pursues to an intermediate or the top level
of the attack tree. The success of the strategy depends

on the defense strategy adopted by the defender, as
well as the number of levels it can move up on the tree.
Another way to visualize an attack strategy is the set of
leaf nodes that the attacker assumes to be true, or will
make true by breaching the defenses protecting them.

7 Cost Model

Security planing begins with risk assessment which de-
termines threats, loss expectancy, potential safeguards
and installation costs. Many researchers have studied
risk assessment schemes, including the National Insti-
tute of Standards and Technology (NIST) [34]. For sim-
plicity, the security manager can choose to evaluate
the risks by considering a relative magnitude of loss
and hardening costs [34-36]. However, relative-cost ap-
proaches do not provide sufficient information to priori-
tize security measures especially when the organization
faces resource constraints. We adapt Butler’s multi-
attribute risk assessment framework [37,38] to develop
quantitative risk assessments for our security optimiza-
tion. Butler’s framework enables an aggregated repre-
sentation of the various factors dominating the business
model of an organization.

7.1 Evaluating Potential Damage

The potential damage P; represents a unit-less damage
value that an organization may have to incur in the
event that an attribute s; becomes true. Based on But-
ler’s framework, we propose four steps to calculate the
potential damage for an attribute s;.

Step 1 Identify potential consequences of having a true
value for the attribute. In our case, we have identi-
fied five outcomes — lost revenue (monetary), non-
productive downtime (time), damage recovery (mon-
etary), public embarrassment (severity) and law pe-
nalty (severity) — denoted by x1;, %25, x3;, x4; and
Ts5j.

Step 2 Estimate the expected number of attack occur-
rence, F'req;, resulting in the consequences. A secu-
rity manager can estimate the expected number of
attack from the organization-based historical data
or public historical datal.

Step 3 Assess a single value function, V;;(z;;), for each
possible consequence. The purpose of this function
is to normalize different unit measures so that the

1 Also known as an incident report published annually in
many sites such as CERT/CC or SANS.ORG.
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values can be summed together under a single stan-
dard scale.

Vijlay) = 24— x 100 ,1<i<5 (1)

Max x4
J

Step 4 Assign a preference weight factor, W;, to each
possible consequence. A security manager can rank
each outcome on a scale of 1 to 100. The outcome
with the most concern would receive 100 points. The
manager ranks the other attributes relative to the
first. Finally, the ranks are normalized and set as
Wi;.

The potential damage for the attribute can then be
calculated from the following equation.

5
Pj = Freg; x Y _ WiVij(wi) (2)
i=1

When using an attack tree, a better quantitative
representation of the cost is obtained by considering
the residual damage once a set of security controls are
implemented. Hence, we augment each node in the at-
tack tree with a value signifying the amount of potential
damage residing in the subtree rooted at the node and
the node itself.

Definition 9 AUGMENTED-ATTACK TREE

Let AT = (Sroot, S, T,€) be an attack tree. An augme-
nted-attack tree ATqug = AT|(I,V) is obtained by as-
sociating a tuple (I;,V;) to each s; € S, where

1. I; is an indicator variable for the attribute s;,
where

Ii{o
1

2. Vi is a value associated with the attribute s;.

, if s;is false

, if s; is true

In this work, all attributes s; € Negternal are given
a zero value. The value associated with s; € Nipternal U
{Sroot} 18 then computed recursively as follows.

ka +Iij 5 Zf dj is AND
Vi = k|(sk,s;)ET (3)
’ max Vi, +I;P; ,ifd;is OR
k|(sk,s;)€ET

Ideally, P; is same for all identical attributes in the
multiset. We took a “panic approach” in calculating the
value at each node, meaning that given multiple sub-
trees are rooted at an attribute with an OR decom-
position, we choose the maximum value. We do so be-
cause an attacker’s capabilities and preferences cannot
be known in advance. A similar worst case modeling
is also adopted later when computing attacker and de-
fender payoffs. The residual damage of the augmented
tree is defined as follows.

Definition 10 RESIDUAL DAMAGE

Given an augmented-attack tree (Sroot, S, T,€)|{I, V')
and a defense strategy Sp, the residual damage is de-
fined as the value associated with Syoot, i-€.,

RD(SD) = Voot

7.2 Evaluating Security Cost

Similar to the potential damage, the security manager
first lists possible security costs for the implementation
of a security control, assigns the weight factor on them,
and computes the normalized value. The only differ-
ence is that there is no expected number of occurrence
needed in the evaluation of security cost. In this study,
we have identified five different costs of implementing a
security control — installation cost (monetary), opera-
tion cost (monetary), system downtime (time), incom-
patibility cost (scale), and training cost (monetary).
The overall cost C, for the security control SCj, is then
computed in a similar manner as for potential damage,
with an expected frequency of 1. The total security cost
for a set of security controls implemented is then defined
as follows.

Definition 11 TOTAL SECURITY CONTROL COST

Given a set of d security controls, each having a
cost C;;1 < i <d, and a defense strategy Sp, the total
security control cost is defined as

d
SCC(Sp) = Y (Sp,Cy).

i=1

7.3 Estimating Attacker and Defender Payoffs

In order to compute the attacker and defender payoffs,
the value associated with each node of the attack tree,
V; as given by (3), is modified as follows. All attributes
Si € Negternal are given a zero value. The value asso-
ciated with s; € Ninternai U {Sroot} is then computed
recursively as

Vi= Y Vi +LP; (4)

k|(sk,s5)eT

Under this formulation, the value associated with
a node signifies the sum of the total potential damage
present in the child subtree(s) and the potential damage
of the node itself. If no defense is installed, i.e. all leaf
nodes are true, then V,.,,; gives the maximum damage
possible on the attack tree. When a defender decides on
a defense strategy, it essentially sets the truth values of
the covered leaf nodes to false. Uncovered leaf nodes
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are set to true. An attacker reverts any falsified leaf
node to true if the node is chosen as part of the attack
strategy. With this configuration, we can then find out
the damage inflicted on the attack tree as a result of an
attack strategy.

Definition 12 DAMAGE INFLICTED

For a given defense strategy Sp and an attack strat-
egy Sa on an augmented-attack tree ATy.q, the damage
inflicted DI is given by the value of the root node of the
tree, i.e.

DI(SDa SA) = Vroot~

The payoff for a defender and an attacker is an esti-
mate of the gain they receive by adopting a particular
strategy and after incurring the corresponding costs as-
sociated with the implementation of the strategy. For a
defender, the cost of implementation relates to factors
such as operations cost, training cost, system downtime,
incompatibility cost and installation cost, and given by
Definition 11. For an attacker, the cost of realizing an
attack strategy is related to the effort it has to put for-
ward in overcoming any defenses on its way. We model
this cost under a simplistic assumption that stronger
defenses are likely to have a higher cost of implemen-
tation. Under this assumption, we measure the relative
difficulty to breach a defense — a value in [0,1] — and
assign the cost to breach it, BC(-), as a fraction (given
by the difficulty value) of the cost of implementation of
the defense, i.e.

of

BC(Di) = Mazx C;

X Ci~ (5)

Definition 13 ATTACK STRATEGY COST

Given a set of d defenses, a defense strategy Sp and
an attack strategy Sa on an attack tree AT, the attack
strategy cost ASC' is defined as

SHDY

=1 j|D;(Aj)=rfalse

ASC(Sp,Sa) [BC(D;)Sp,Sa,].

The expression above iterates through the leaf nodes
covered by a particular defense. Thereafter, the cost to
breach the defense is added to the attack strategy cost
if the defense is part of the defense strategy and the
leaf node is part of the attack strategy. When a breach
occurs, the cost paid by the defender to install it (C;)
is a loss, called the breach loss BL(-) and expressed in
a manner similar to the above equation.

SHDY

1=1j|D;(Aj)=false

BL(Sp,Sa) [CiSp,Sa,] (6)

We then define the defender and attacker payoffs as
follows.

Definition 14 PAYOFF FOR DEFENDER AND ATTACKER

For a given defense strategy Sp and an attack strat-
egy Sa on an augmented-attack tree Algyq, the de-
fender’s payoff POD is given as,

POD(Sp,Sa) = DI(0,1) + SCC(Sp)
—DI(Sp,Sa) — BL(Sp,Sa)

and the attacker’s payoff POA is given as,

POA(Sp,Sa) = DI(Sp,Sa) — ASC(Sp, Sa).

Here, DI(0,1) signifies the maximum damage pos-
sible on the attack tree, which happens when there are
no defenses installed and the attacker exploits all leaf
nodes. 0 represents the all zero vector and 1 is the all
one vector. Note that both payoff functions employ the
same DI value derived from the attack tree. One can
argue that the attacker’s knowledge on the damages
sustained by the defender when compromising a node
is rather limited, and thus cannot be the same as that
of the defender. Further, the attacker need not have
the complete knowledge about the cost of implement-
ing a defense and hence will not know the exact value of
ASC. We understand that both are rational arguments.
Our justification to them is based on the fact that the
PO A function need not be an exact estimate of the ac-
tual payoff derived by the attacker. The optimization
process only needs to compare payoff values to deter-
mine the relative effectiveness of two attack strategies,
in which case it suffices to have a value proportional
to the actual payoff. The POA function satisfies this
requirement since the attacker’s actual payoff is likely
to be proportional to the damage it inflicts on the tree.
Moreover, the cost paid by the attacker to overcome a
defense will likely be proportional to the sustainability
of the defense.

Cost factors play a crucial role in any form of net-
work hardening. At the same time, factors such as po-
tential damage and control costs are subjective to an
organization. As highlighted in [34], cost assessment
must be a part of any enterprise level system harden-
ing program, overlapping significantly with the capital
planning within the organization. An organization must
evaluate its assets before and during the enforcement of
a mitigation plan. For our simulation, we choose num-
bers to maintain relative levels of importance between
nodes, depending on what information is contained in
the node. These numbers do not have to represent ac-
tual monetary values to demonstrate the significance of
the cost-benefit analysis.
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Table 3 Security controls for example network model.

Security Control Action
SC1/SC, Disable/Patch suid @ 196.216.0.2
SC3/S5Cy Disable/Patch LICQ @ 196.216.0.2
SCs Disable “at” @ 196.216.0.3
SCs/SCr Disable/Patch LICQ @ 196.216.0.3
SCs Disable Rsh @ 196.216.0.1
SCy Disable Ftp @ 196.216.0.1
SC1o Disconnect Internet @ 196.216.0.1
SCh1 Chmod home directory @ 196.216.0.1
SC12/5C13 Disable/Patch Ftp @ 196.216.0.10
SC14/SC15 Disable/Patch SSH @ 196.216.0.10
SCig Disconnect Internet @ 196.216.0.10
SCi7 Disable Rsh @ 196.216.0.10
SCis Patch FTP/.rhost @ 196.216.0.10
SCho Chmod home directory @ 196.216.0.10

8 Problem Formulation

The two objectives considered in the multi-objective
formulations are the total security control cost and the
residual damage in the attack tree of our example net-
work model. For the attack tree corresponding to the
example network model, we identified 19 different se-
curity controls possible by patching or disabling of dif-
ferent services, as well as by changing file access per-
missions. With about half a million choices available
(219), an enumerated search would not be an efficient
approach to find the optima. The security controls are
listed in Table 3. We maintain some relative order of
importance between the different services, as in a real-
world scenario, when computing the potential damage
and security control costs.

Problem 1 The Single-objective Optimization Problem

Given an augmented-attack tree (Syo0t, S, 7, €)[(I, V)
and d security controls, find a vector T* = (T}), T;* €
{0,1};1 <4 < d, which minimizes the function

aRD(T) + BSCC(T)

where, o and [ are preference weights for the residual
damage and the total cost of security control respec-
tively, 0 < o, <1l and o+  =1.

The single-objective problem is the most likely ap-
proach to be taken by a decision maker. Given only two
objectives, a preference based approach might seem to
provide a solution in accordance with general intuition.
However, as we find in the case of our example net-
work model, the quality of the solution obtained can
be quite sensitive to the assignment of the weights. To
demonstrate this affect, we run multiple instances of
the problem using different combination of values for «
and S. « is varied in the range of [0, 1] in steps of 0.05.
B is always set to 1 — a.

Problem 2 The Multi-objective Optimization Problem

Given an augmented-attack tree (Syo0t, S, 7, €)|[{I, V)
and d security controls, find a vector T* = (T}), T} €
{0,1};1 < 4 < d, which minimizes the total security
control cost and the residual damage.

The next level of sophistication is added by formu-
lating the minimization as a multi-objective optimiza-
tion problem. The multi-objective approach alleviates
the requirement to specify any weight parameters and
hence a better global picture of the solutions can be
obtained.

Problem 3 The Multi-objective Robust Optimization
Problem

Let T = (T;) be a boolean vector. A perturbed as-
signment of radius r, Ty, is obtained by inverting the
value of at most r elements of the vector T. The robust
optimization problem can then be defined as follows.

Given an augmented-attack tree (Syo0t, S, 7, €)[{I, V)
and d security controls, find a vector T* = (1}), T} €
{0,1};1 < i < d, which minimizes the total security
control cost and the residual damage, satisfying the con-
straint

max RD(Ty) - RD(T) < D

where D is the maximum perturbation allowed in the
residual damage.

The third problem is formulated to further strengthen
the decision process by determining robust solutions to
the problem. Robust solutions are less sensitive to fail-
ures in security controls and hence subside any repeated
requirements to re-evaluate solutions in the event of
a security control failure. The hardening problem ex-
plored here assumes known attacks, the pre- and post-
conditions of which are available from vulnerability data-
bases. Unknown attacks can be modeled by introducing
likelihoods in the edges of the attack tree. Leaf nodes
can be assigned a probability of being true (modeling
an unknown attack) and Bayesian inference techniques
can be used to propagate the likelihoods to the root
node. It is worthwhile to note that unknown attacks
play a crucial role in the optimality of security policies.
Our motivation for robust hardening is grounded on the
fact that such attacks can invalidate a security mecha-
nism; however, the potential risk to organizational as-
sets should be bounded in the event of such breaches.

The fourth problem incorporates an estimation of
attacker payoffs. In this case, our attempt is to find so-
lutions that are possibly points of equilibrium in the
arms race between the attacker and the defender. To
do so, we first normalize the POD and POA functions
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in order to account for differences arising in the mag-
nitude of the values. The POA function is in the range
of [-ASC(Sp,Sa), DI(0,1)] which is remapped to [0,
ASC(Sp,Sa) + DI(0,1)] by adding ASC(Sp,Sa) to
the value. POD function is in the non-negative range
[0,SCC(Sp)+ DI(0,1)]. The normalized functions for
POD and POA — in the range of [0,1] — is then given
as,
POD(Sp,Sa)

PODorm(Sp,Sa) = SCC(Sp) + DI(0,1) "

POA(Sp,Sa) + ASC(Sp, Sa)
ASC(Sp,Sa) + DI(0,1)
(8)

The normalized versions are more intuitive in under-
standing what the payoff functions model. The defender
has an investment worth SCC(Sp) + DI(0,1) on the
attack tree. POD,,o-m gives the fraction of this invest-
ment protected by the defender’s strategy for a particu-
lar attack strategy. In other words, PO D, gives the
fractional return on investment for the defender. From
an attacker’s perspective, the best it can do is to gather
the payoff from maximum damage and also retain the
cost incurred while doing so to itself. DI(Sp, Sa) is the
amount that it actually derives. POA,,y;m is thus the
fractional return on attack to the attacker.

The defender’s optimization problem is to find a de-
fense strategy Sp that gives maximum PO D,, ., under
all possible attack strategies. The attacker’s optimiza-
tion problem is to find an attack strategy Sa that gives
maximum POA,,,., under all possible defense strate-
gies. However, such a strategy may not exist. Besides, as
argued earlier, evaluating a host strategy with all oppo-
nent strategies is often impractical. We introduce here
the terms host and opponent to refer to the party whose
strategy is being tested and the party against whom it
is being tested respectively. In order to compare two
host strategies, it is sufficient to evaluate them against
their respective best opponent strategy (one generating
the highest payoff for the opponent with the host strat-
egy in place). Hence, a more suitable statement of the
optimization problem is as follows.

Problem 4 The Attacker-Defender Arms Race Prob-
lem

Defender’s Optimization Problem: Given an
augmented attack tree ATg,, and d defenses, find the
defense strategy Sp* that maximizes POD,,orm(Sp,
SA™), where Sa* satisfies the relation POA, 4 (Sp,
SA*) > POA,orm(Sp,Sa) for any attack strategy Sa.

Attacker’s Optimization Problem: Given an aug-
mented attack tree AT,,, and d defenses, find the at-
tack strategy Sa* that maximizes PO A, orm (Sp*, Sa),

POAnorm(SDu SA) =

where Sp* satisfies the relation POD,,orm (Sp*,Sa) >
POD,,0rm(Sp,Sa) for any defense strategy Sp.

The brute force method to solve each problem is
to first generate the payoff matrix and then mark the
cell, for every host strategy, with the highest opponent
payoff. The solution is the host strategy which has the
highest payoff in the marked cells. If, given the host
strategy in the solution, the opponent’s payoff is also
the highest, and vice versa, then the solution admits a
Nash equilibrium [39]. We want to emphasize here that
solving just one problem is not sufficient. For example,
assume that the defender has found the optimal solu-
tion to its problem. The POD,,,.m reported by the so-
lution implicitly assumes that the attacker will launch
the strategy Sa* that gives the highest attacker payoff
— established in the optimization problem by the con-
straint. If the attacker also solves its own optimization
problem, there is no guarantee that the best strategy
found by it is the same Sa* as found in solving the de-
fender’s optimization problem. The outcome in this case
could be that both the attacker and the defender get
sub-optimal payoffs. This instantiates the requirement
to solve both problems simultaneously, the desired so-
lution being the aforesaid equilibrium. The equilibrium
defense and attack strategy pair Sp™ and Sa* satisfy
the conditions

1. PODnOTm(SD*,SA*) > PODnOTm(SD,SA*) and
2. POATLOT‘m(SD*7SA*) > POA?’LOT"HL(SD*7SA)

for any given defense strategy Sp(# Sp*) and attack
strategy Sa(# SA™).

9 Specifics of Solution Methods

We use a simple genetic algorithm (SGA) [40] to solve
Problem 1. The Non-dominated Sorting Genetic Algori-
thm-IT (NSGA-II) [24] is used to solve Problem 2 and
3. The method of competitive co-evolution is used to
find solutions to Problem 4.

9.1 NSGA-II

NSGA-II starts with a population Py of N randomly
generated security control vectors T. For each trial so-
lution, the total security control cost is calculated using
Definition 11. To compute the residual damage, the at-
tributes covered by a security control vector in the at-
tack tree are decided using Table 3 and set to false. The
truth values for the remaining attributes in Nezternal
are set to true. A post-order traversal of the tree is
then used to determine the truth values of the internal
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nodes using the decomposition at each node. This en-
ables us to compute the value V..o for the root node
(the residual damage) using (3).

A generation indext =0, 1,...,Genyax keeps track
of the number of iterations of NSGA-II. Each genera-
tion of the algorithm then proceeds as follows. An off-
spring population @Q; is first created from the parent
population P; by applying the usual genetic operations
of selection, crossover and mutation [40]. The residual
damage and total security control cost corresponding to
each solution in the child population are also computed.

P Q.
: I :
Non-dominated Sorting

Re ¥
‘IIE!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIEI
[

I

Crowding distance
sorting

Pt+1
Fig. 6 One generation of NSGA-II.

The parent and offspring populations are combined
to form a population R; = P; U Q; of size 2N. A non-
dominated sorting is applied to R; to rank each solution
based on the number of solutions that dominate it. A
rank k(> 0) solution is dominated by solutions of rank
lower than k. For Problem 3, the solutions which violate
the robustness constraint, i.e. an infeasible solution, are
given unique ranks higher than the highest feasible so-
lution rank. The ranking starts in ascending order from
the infeasible solution with least constraint violation.

The population P, is generated by selecting N so-
lutions from R;. The preference of a solution is decided
based on its rank: lower the rank, higher the prefer-
ence. However, since not all solutions from R; can be
accommodated in Py, a choice is likely to be made
when the number of solutions of the currently consid-
ered rank is more than the remaining positions in P4 1.
Instead of making an arbitrary choice, NSGA-II uses an
explicit diversity-preservation mechanism. The mecha-
nism, based on a crowding distance metric [24], gives
more preference to a solution with a lesser density of
solutions surrounding it, thereby enforcing diversity in
the population. The NSGA-II crowding distance met-

ric for a solution is the sum of the average side-lengths
of the cuboid generated by its neighboring solutions in
objective space. Figure 6 depicts a single generation of
the algorithm.

The algorithm parameters are set as follows: popula-
tion size = 100, number of generations = 250, crossover
probability = 0.9, and mutation probability = 0.1. We
ran each instance of the algorithm five times to check
for any sensitivity of the solutions obtained from differ-
ent initial populations. Since the solutions always con-
verged to the same optima, we dismiss the presence of
such sensitivity.

9.2 Competitive Co-evolution

We begin with two randomly generated populations
Popa and Popp of size N4 and Np respectively. Pop 4
refers to the population of attack strategies {Sal,...,
S ANA} and Popp refers to that of defense strategies
{Sp?, ...,SpP}. In every generation, every strategy
in a population is evaluated with the best opponent
strategy (one with highest fitness as described later) of
the previous generation to find PO A,y and PO Do, -
The notations SpPe?est and SaPrevbest ig used to de-
note the best defense and attack strategy from the pre-
vious generation respectively. For the first generation,
the best strategies are chosen randomly from the pop-
ulations.

Next, each strategy in the populations is assigned
an age count, Age(-), signifying the number of itera-
tions for which it has survived the evolutionary process.
Each strategy begins with an age count of zero which
is incremented every time it manages to enter the next
population. The age is reset to zero if the strategy no
longer exists in the next population. With this, the fit-
ness of a defense strategy Sp® in generation (iteration)
t is assigned as

i _ F(Sp',t—1)xAge(Sp")+POD,orm (Sp*,SaPTevlest)
F(Sp.t) = [geSp+1]

9)

and that of an attack strategy Sa’ in generation t is
assigned as

F(Sad,t) = F(Sa?,t—=1)xAge(Sa?)+POAnorm (Sp? """ ,Sa7)

[Age(Sal)+1]
(10)

The fitness is an average measurement of the payoff
of a strategy throughout the evolutionary process. With
this fitness assignment, each population then indepen-
dently undergoes the usual process of evolution as in a
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Fig. 7 Schematic of competitive co-evolution of attack and defense strategies.

genetic algorithm (GA) — selection, crossover and mu-
tation [40] — and creates a new population of strategies.
The best strategies of the past H generations replace
H randomly selected strategies in the respective popu-
lations. The process is repeated until a set number of
generations. Figure 7 depicts the algorithm. The pa-
rameters of the algorithm are set as follows: Ny = 100,
Np = 100, H = 10, single point crossover with proba-
bility 0.5, probability of mutation = 0.01, 2-tournament
selection and 1000 generations. In the experiments we
use the 19 defenses shown in Table 3 and the attack
tree has 13 unique leaf nodes. The defender thus has
219 defense strategies and the attacker has 2! attack
strategies to choose from.

10 Empirical Results

We first present the sensitivity results of NSGA-IT and
SGA to their parameters in the multi-objective problem
solution methods. Increasing the population size from
100 to 500 gives us a faster convergence rate, although
the solutions reported still remains the same. The ef-
fect of changing the crossover probability in the range
of 0.7 to 0.9 does not lead to any significant change
of the solutions obtained. Similar results were observed
when changing the mutation probability from 0.1 to
0.01. The solutions also do not change when the num-
ber of generations is changed from 250 to 500. Since we
did not observe any significant change in the solutions
by varying the algorithm parameters, the following re-
sults are presented as obtained by setting the parame-
ters as chosen in the previous section. For competitive
co-evolution, some parameters involved in the GA affect

the dynamics of the arms race undergoing between the
two populations. Using a higher probability of crossover
or mutation affects the age count of a solution. A high
probability decreases the chances of a strategy surviv-
ing for long across iterations, thereby interrupting its
chances of competing against a wider variety of oppo-
nent strategies. Increasing the population size gives a
faster convergence rate, although the solution remains
unaffected. We also increased the number of iterations
from 1000 to 5000 to see if a dormant strategy becomes
prominent over time. However, no such outcome is ob-
served.

10.1 Problem 1: Single-objective optimization

It is usually suggested that the preference based ap-
proach should normalize the functions before combin-
ing them into a single function. However, we did not see
any change in the solutions of the normalized version
of Problem 1. Figure 8 shows the solutions obtained
from various runs of SGA in Problem 1 with varying «.
A decision maker, in general, may want to assign equal
weights to both the objective functions, i.e. set a = 0.5.
It is clear from the figure that such an assignment do
not necessarily provide the desired balance between the
residual damage and the total security control cost. Fur-
thermore, such balance is also not obtainable by assign-
ing weight values in the neighborhood of 0.5. The so-
lutions obtained are quite sensitive to the weights, and
in this case, much higher preference must be given to
the total security control cost to find other possible so-
lutions. Since the weights do not always influence the
objectives in the desired manner, understanding their
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effect is not a trivial task for a decision maker. It is also
not possible to always do an exhaustive analysis of the
affect of the weights on the objectives. Given such sit-
uations, the decision maker should consider obtaining
a global picture of the trade-offs possible. With such a
requirement in mind, we next consider Problem 2.

10.2 Problem 2: Multi-objective optimization

The two solutions corresponding to o = 0.25 and 0.1 in
Figure 8, including any other solution in the vicinity, are
likely candidates for a decision maker’s choice. Unlike
the single-objective approach, where determining such
vicinal solutions could be difficult, the multi-objective
optimization approach clearly revealed the existence of
at least one such solution. Figure 9 shows the solutions
obtained from a single run of NSGA-II on Problem 2.
NSGA-II reported all the solutions obtained from mul-
tiple runs of SGA, as well as three more solutions. In-
terestingly, there exists no solution in the intermediate
range of [25, 45] for residual damage. This inclination of
solutions towards the extremities of the residual dam-
age could be indicative of the non-existence of much va-
riety in the security controls under consideration. The
number of attack scenarios possible is also a deciding
factor. Most of the security controls for the example
network involve either the disabling or patching of a
service, resulting in a sparse coverage matrix. For a
more “continuous” Pareto-front, it is required to have
security controls of comparative costs and capable of

SCy SCq 56+
SCi1 564 SC1y

RD 10 20 30 40 50

sensitivity

SCC
4
1

T T T T T T T
0 10 20 30 40 50 60

RD

Fig. 9 NSGA-II solutions to Problem 2 and sensitivity of a
solution to optimum settings.

covering multiple services. A larger, more complex real-
world problem would likely have more attack scenarios
and a good mixture of both local and global security
controls, in which case, such gaps in the Pareto-front
will be unlikely.

10.3 Problem 3: Robust optimization

Once the decision maker has a better perspective of the
solutions possible, further analysis of the solutions may
be carried out in terms of their sensitivity to security
control failures. Such sensitivity analysis is helpful in
not only reducing valuable decision making time, but
also to guarantee some level of fault tolerance in the
network. Figure 9 shows the sensitivity of one of the
solutions to a failure in one of the security controls cor-
responding to the solution. This solution, with security
controls SC4 and SC11, will incur a high residual dam-
age in the event of a failure of SCy. Thus, a decision
maker may choose to perform a sensitivity analysis on
each of the solutions and incorporate the results thereof
in making the final choice. However, the decision maker
then has no control on how much of additional resid-
ual damage would be incurred in the event of failure.
Problem 3 serves the requirements of this decision stage
by allowing the decision maker to specify the maximum
allowed perturbation in the residual damage. It is also
possible to specify the scope of failure — the radius r
— within which the decision maker is interested in an-
alyzing the robustness of the solutions. For this study,



18

Table 4 Fully robust solutions obtained by NSGA-II with
r=1.

Robust-optimum security controls RD | SCC
R1 | SCy, SCi1, SCi3, SCi5, SCi6, SCi9 0.0 26.0
R2 SCs, SC4, SCq, SC11, SC18, SC19 10.5 | 21.0

R3 SCs, SCy4, SC7, SC11 13.5 12.0
R4 SCs, SCy 22.8 8.0
R5 SCr7, SC11 49.5 4.0
R6 null 58.8 0.0

we are mostly interested in obtaining solutions that are
fully robust, meaning the residual damage should not
increase, and hence set D to zero. Also, because of the
sparse nature of the coverage matrix, we set the per-
turbation radius r to 1. Figure 10 shows the solutions
obtained for this problem.

25
1

+ Non-robust optimization
m Robust solution

20
I
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[8) balance between RD and SCC
O
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° 4
+
[]
0 +
+ []
+
+
+
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Fig. 10 NSGA-II solutions to Problem 3 with D = 0 and
r = 1. Problem 2 solutions are also shown for comparison.

The solutions to Problem 3 reveal that none of the
optimum solutions previously obtained, except the triv-
ial zero SCC solution, is fully robust even for a single
security control failure. Such insight could be of much
value for a decision maker when making a final choice.
Table 4 shows the security controls corresponding to
the robust solutions. With the final goal of obtaining
a solution with a good balance between the residual
damage and the total security control cost, the decision
maker’s choice at this point can be justifiably biased
towards the selection of solution R3.

Policies coveringA
the node

Residual damage[ ]

OR =

13.5[™ [10.8]|"%
+ 0 +5

ng 0.0[%

7\ |+10.8

0.0|™0 0.0(™1 0.0/|™2
+0| A1\ A1 +0 +o| A1

Fig. 11 Compressed attack tree showing residual damage
computation with R3 as security control set.

10.3.1 Inside the Robust Solution R3

We present certain interesting properties exploited by
solution R3 from the attack tree. To point out the salient
features, we compress the attack tree for our example
network model as shown in Figure 11. The compressed
tree is obtained by collapsing all subtrees to a single
node until a node covered by a security control from
R3 contributes to the calculation of the residual dam-
age. All such nodes, represented by rectangles in the
figure, are labeled with the maximum residual damage
that can propagate to them from the child subtree and
(4) the damage value that can occur at the node itself.
A triangular node represents the security controls that
can disable that node. The individual damage value is
accrued to the residual damage from the child node only
if the attached security control, if any, fails.

The solution R3 clearly identifies the existence of
the subtrees STy = {{n7,n10}, {ns, n11}, {ng,n12}} and
STy = {{ n3,n7,n10}, {n6, N9, n12}}. In the event of a
failure of SCi1, n7y would collect a value of 10.8. Since
ng has an AN D decomposition with SC7, it will be dis-
abled, thereby not contributing its individual damage
value of 12 to the residual damage at that node (10.8).
On the other hand, if SC; fails, SCy; will disable ny;
which in turn will disable ns. In fact, in this case the
residual damage at ng would be zero. Similarly, ng and
ng also never propagate a residual damage of more than
10.8 to its parent node. Consequently, no never prop-
agates a value more than 13.5. The individual cost of
36 at n; is never added to this residual damage value
of 13.5 from nsy since, owing to the AND decomposi-
tion, ny is always falsified by security controls SC3 and
SCy, only one of which is assumed to fail at a time. The
solution wisely applies security controls covering mul-
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Fig. 12 Fitness of best defense and attack strategies in every
iteration of the co-evolutionary process.

tiple attack scenarios, and at multiple points in those
scenarios to keep the damage to a minimum.

10.4 Problem 4: Arms race

Figure 12 shows how the fitness of the best strategy
in the defender and attacker populations change across
generations. The random initialization of the two popu-
lations usually starts off the competition with compar-
atively higher fractional payoff for the defender. How-
ever, the attacker immediately finds strategies to im-
prove its payoff, and reciprocally decreases the payoff
for the defender, as can be seen on the steep decline
of the defender’s payoff. There is even a phase between
the 50" to 150" generations when the attacker contin-
ued to evolve strategies with similar payoff, but ones
that continued to decrease the payoff for the defender.
The arms race becomes prominent after this phase. The
arms race is indicative of the period when the defender
and the attacker continuously change their strategies to
cease the decline in their payoffs brought forth by an
improved opponent strategy. In a way, this arms race
depicts the change in policies that the defender has to
sporadically keep enforcing in order to subdue the af-
fects of an evolving attacker.

10.4.1 Dynamics of the Arms Race

Figure 13 depict the dynamics of the two populations
during the 100" to the 200" generations. The aver-
age fitness of each population is plotted to show the
interactions happening between them. The arms race is
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Fig. 13 Average fitness of defender and attacker strategies
showing “arms race” population dynamics between the 100"
and the 200" generations.

distinctly visible after the 130t" generation — one pop-
ulation reacts to changes in the other. Rising up to a
peak indicates the phase of steady improvement in host
strategies against those of the opponent’s. Falling down
to a pit signifies the reverse. As depicted by the verti-
cal lines, a rising period in one population results in a
falling period in the other, and vice versa. Note that the
rise in one population and the fall in the other are not
correlated in terms of the payoff values. An attacker’s
marginal improvement in payoff can result in a signif-
icant drop in the defender’s payoff. More interestingly,
there is no fixed duration within which the two popula-
tions alternate between rise and fall. In other words, the
dynamics of finding a strategy to tackle the currently
dominating opponent strategy is not known. We stress
on this phenomena since any defense strategy not in
equilibrium with that of the attacker eventually results
in a decline in the payoff. Ideally, the better the strat-
egy, the slower will be the decline; emphasizing that
the attacker faces more difficulty in finding a counter
strategy to improve its payoff.

However, with the static attack tree in place, the
process of arms race do not continue forever. Both the
attack and the defense strategies stabilize at around the
500t" generation. No host at this point manages to find
a strategy to improve its payoff given the best strategy
the opponent has at the point. However, this stability
in the strategies is not sufficient to conclude that the
attacker and defender are now in an equilibrium. This
follows from the fact that there may exist an undis-
covered opponent strategy that can reduce the payoff
generated from the stable host strategy.
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10.4.2 Verifying an Equilibrium Point

In order to demonstrate the effectiveness of competitive
co-evolution in generating an equilibrium strategy pair,
we perform the following supplementary analysis. The
defender’s best strategy Spb®s** in every generation t
(1 <t < 1000) of the process is noted. For each such
strategy we run a simple genetic algorithm to generate
the attack strategy Sa®¢*** with the highest attacker
payoff. Figure 14 shows the defender and attacker pay-
offs (in circles) for the pairs Sp®¢*!* and S ¢!, A simi-
lar process is done taking the attacker’s best strategy of
every generation. The plus signs in the plot depict the
payoffs for the pairs obtained from the process. We find
that the only circle and plus coinciding corresponds to
the stable strategy of the defender and the attacker as
returned by the co-evolutionary optimization. If the de-
fender chooses the stable defense strategy, the attacker’s
payoff is maximum when it uses the stable attack strat-
egy. If the attacker uses the stable attack strategy, the
defender’s payoff is maximum when it uses the stable
defense strategy. In other words, the stable defense and
attack strategy pair is indeed an equilibrium point.

10.5 Revisiting the Optimality Criterion

One of the forthcoming questions resulting from this
analysis is whether an organization’s investments be di-
rected towards a static minimal cost security policy or
proactively be channeled towards an equilibrium pol-
icy. We have argued in this work that the conventional
notion of an optimal security policy (a minimum cost

policy) ignores the possibility of constraints in terms
of available resources to implement the security con-
trols. Pareto analysis of the nature performed here can
be instead used to identify a minimal policy depend-
ing on the resource constraints of the organization. In
this case, the optimality criterion is represented by the
non-dominance characteristic of the Pareto solutions.
Robust hardening limits the extent of unforeseen dam-
age that can be inflicted on the system. However, we
are still working under the assumption of fixed attacker
capabilities.

The minimal policy resulting from a one-time eval-
uation may incur a lower cost with respect to a short
time window, but under an evolving attacker model,
this cost must be supplemented by further investments
over time. We emphasize that the evolution of attack
strategies need not relate to a single active attacker.
The attack strategies at different evolution points might
as well be executed by different attackers. The evolv-
ing strategies are a platform to demonstrate how the
optimality of an organization’s security policies is in-
validated over time (again and again) due to the con-
stant engagement of the attacking entities. Under such
grounds, the optimality of the chosen policy can no
longer be guaranteed. This can have a serious impact
on business dynamics, since business models are often
driven by investment returns. We have demonstrated
using a game-theoretic analysis of the security harden-
ing problem that an optimal security policy converges
with the idea of equilibrium points in the long run. This
optimality criterion ensures that an organization’s re-
sources are not spent in intermediate policies that are
likely to undergo changes as attacker capabilities evolve
over time.

While multiple attempts to define the optimality cri-
terion have been made (including the work here), we be-
lieve these definitions cannot be complete without the
inclusion of an evolving defender. It is important to note
that security hardening is an on-going process. There-
fore, the optimality of a policy should not only be de-
pendent on the amount of risk it can eliminate (or how
much it costs), but also on how much it deviates from
existing policies. In other words, reusability of already
invested resources needs to be stressed. A minimal pol-
icy (in the Pareto sense) should be minimally dissimilar
from the current policy; a factor that can be easily in-
corporated into the non-dominance based definition of
optimality. An equilibrium policy, by definition, needs
no revision. However, this is only true when the network
characteristics do not change over a long period of time.
Any change in the network can invalidate the equilibria
of a policy since the equilibrium conditions hold only
for a particular snapshot of the network. Other defini-
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tions of optimality also suffer from this drawback. We
believe this necessitates an approach where an evolving
defense model and an evolving network model is integral
to the definition of an optimal security policy. Ideally,
such an approach should target a trade-off between the
short-term gains achievable by evaluating a snapshot
of the network, and the long-term gains achievable by
considering the evolving attacker capabilities (as in an
equilibrium policy).

11 Conclusion and Future Work

Incorporating strong defenses against malicious attack-
ers is challenging. Simply installing the best available
defenses does not work for several reasons. The security
administrator has to work within fixed budgetary con-
straints and has to explain the return on investment of
security controls to the management. However, any con-
vincing argument explaining the return on investment
must take the attacker’s benefits into consideration.

In this paper, we addressed the system administra-
tor’s dilemma, namely, how to select a subset of security
hardening measures from a given set so that the total
cost of implementing these measures is not only min-
imized but also within budget and, at the same time,
the cost of residual damage is also minimized. One im-
portant contribution of our approach is the use of an
attack tree model of the network to drive the solution.
By using an attack tree in the problem we were able to
better guide the optimization process by providing the
knowledge about the attributes that make an attack
possible. Further, a systematic analysis enabled us to
approach the problem in a modular fashion, providing
added information to a decision maker to form a con-
crete opinion about the quality of the different trade-off
solutions possible.

We argue that the notion of optimal security hard-
ening is often dictated by the constant interaction be-
tween the defender and the attacker. What is perceived
as the optimal return on investment would cease to be
so once the attacker’s strategy to exploit the defensive
configuration is understood. We highlight that the dy-
namic engagement between the attacker and the de-
fender is a continuous process ending only when both
enter a state of equilibrium. To this end, we formulate
the requisite optimization problems and present the no-
tion of equilibrium in terms of the formulated problems.
As a viable methodology, we propose the use of compet-
itive co-evolution to generate the aforementioned equi-
librium strategies. The method involves an algorithm
that intrinsically models the arms race undergoing be-
tween the attacker and the defender, with the ability to
effectively find the equilibrium solutions.

Evolutionary algorithms often receive criticism for
their time complexity, compared to other optimization
methods. The multi-objective algorithm used in this
study has a complexity of O(GN log N), where G is the
number of generations and N is the population size.
However, the population based approach also makes it
highly suitable for discovering multiple solution points
on the Pareto-front. These algorithms are inherently
parallel and can easily be adapted to utilize the pro-
cessing power of most massively parallel systems [41].
The evolutionary algorithm is one viable methodology
for the multi-objective optimization that we can think
of at this moment. There is no doubt that more effi-
cient methods are required. A similar argument applies
to the competitive co-evolution algorithm as well. At
this point, we are not aware of a more efficient method
to explore the arms race. We strongly believe this would
motivate some future studies in this area.

The cost model that we adopt in this paper is some-
what simplistic. We assume that, from a cost of imple-
mentation perspective, the security measures are inde-
pendent of each other when in real life they may not be
so. The problem can be made more interesting by de-
signing payoff models that incorporate multiple attack-
ers working in conjunction to achieve a particular ob-
jective (collaborative attacks). Incorporating network
connectivity and the trust relations across organizations
into the attack tree will generate far more complex at-
tack scenarios. These forms of attacks are very likely in
today’s networked infrastructure and warrant a further
study. Further work can be directed towards design-
ing algorithms that can identify the existence of multi-
ple equilibrium points simultaneously. We believe that
Pareto analysis intended towards generation of such so-
lutions is a promising avenue to explore. Formal anal-
ysis to determine if equilibrium solutions exists at all
would be a major contribution as well. Furthermore, the
possible decomposition of an attack tree to divide the
problem into sub-problems is an interesting alternative
to explore. Finally, exploring the optimality of security
policies under the light of changing network character-
istics and attacker capabilities remains one of the most
challenging problems in this domain.
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