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Abstract—Location privacy research has received wide attention in the past few years owing to the growing popularity of location-based

applications, and the skepticism thereof on the collection of location information. A large section of this research is directed towards

mechanisms based on location obfuscation enforced using cloaking regions. The primary motivation for this engagement comes from

the relatively well researched area of database privacy. Researchers in this sibling domain have indicated multiple times that any notion

of privacy is incomplete without explicit statements on the capabilities of an adversary. As a result, we have started to see some efforts

to categorize the various forms of background knowledge that an adversary may possess in the context of location privacy. Along this

line, we consider some preliminary forms of attacker knowledge, and explore what implication does a certain form of knowledge has

on location privacy. Continuing on, we extend our insights to a form of adversarial knowledge related to the geographic uncertainty that

the adversary has in correctly locating a user. We empirically demonstrate that the use of cloaking regions can adversely impact the

preservation of privacy in the presence of such approximate location knowledge, and demonstrate how perturbation based mechanisms

can instead provide a well-balanced trade-off between privacy and service accuracy.

Index Terms—location privacy, differential privacy, query approximations
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1 INTRODUCTION

LOCATION based services (LBS) form a large class of
applications in modern day mobile systems. These

applications utilize the positioning capabilities of a mo-
bile device to determine the current location of the
user, and customize query results to include neighboring
points-of-interest (POI). Wide acceptance of personal
digital assistants and the advancements in wireless cellu-
lar technology have opened up countless possibilities in
this business paradigm. Potential applications can range
from proximity based notifications to tracking business
resources. A wireless carrier typically serves as a channel
between the user and the location content provider.

The potential advantages of location based applica-
tions is not difficult to realize. However, location knowl-
edge is often perceived as personal information. It re-
mains an open question whether the benefits of these
applications can outweigh the underlying privacy risks.
Drawing inspiration from efforts in database privacy,
location based applications have been argued to be
usable without communicating precise location data to
the content provider.

Location obfuscation is a widely researched technique
to achieve location privacy. The fundamental idea here is
to process location based queries relative to a sufficiently
larger region, also known as a cloaking region, compared
to one where a user can be uniquely located. For in-
stance, a cloaking region can be generated to include k
users, including the one making the query [1]. Multiple
algorithms have been proposed to generate such a k-
anonymous cloaking region [2], [3]. However, obfuscat-
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ing private data without understanding the capabilities
of the adversary can be unproductive. The background
knowledge of the adversary must be known (or at least
assumed) in order to demonstrate the privacy guarantees
of a mechanism.

We begin this work by identifying the primary form of
attacker knowledge targeted by most location obfusca-
tion techniques. This knowledge relates to an adversary
being able to determine the true locations of a certain
subset of users. Using a case by case analysis of what
this adversary can achieve from queries made using
true locations and queries made using cloaking regions,
we argue that “location privacy” is a misused term in
this context. The use of cloaking regions is motivated
by the need to introduce ambiguity in correlating a
user to a query. If an adversary does not have any
form of location knowledge on the users, then location
information in a query cannot be used to map it to a
user. The adversary must posses at least approximate
location knowledge about the user, to be able to exploit
the location information in a query. On the other hand,
if true location knowledge is present, then there is no
location privacy. In fact, what is being offered is query
privacy. We treat the two forms of privacy differently –
location privacy meaning hiding the location and query
privacy meaning preventing the mapping of a query to
a user.

In one of our earlier works, we highlighted the in-
adequacy of cloaking regions in preventing location
privacy breaches when approximate location knowledge
is available to an adversary [4]. No privacy mechanism
should enable an adversary to infer exact knowledge
using the existing background information. Towards this
end, we explored the possibility of using perturbed
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locations to issue queries, and proposed a perturbation
method based on local enforcement of differential pri-
vacy. Differential privacy works under the principle that
the chances of being a victim of a privacy breach should
not increase substantially due to the inclusion of ones
private information in a shared data set [5]. However,
the privacy level was assumed to be a function of the
anonymity set size during the local differential privacy
enforcement. The work here provides a robust evaluation
of the privacy levels enforced by such differentially-
private perturbations, in terms of a pair of correctness
and uncertainty measures. In terms of privacy assess-
ment, correctness measures the probability with which
an adversary can correctly guess the location of a user,
and uncertainty measures how skewed (or uniform) is
the adversary’s guess across other likely locations. We
provide an algorithm to efficiently check the amount
of uncertainty that still remains in correctly associating
the true location to a user. Last, we empirically validate
that, on both synthetic and real-world points-of-interest,
perturbed locations can in fact be used to retrieve a
significantly large subset of the actual query results. This
strengthens the feasibility of using perturbed locations in
a real-world setting.

The remainder of the paper is organized as follows.
We begin with a restatement of our earlier work in
Sections 2 and 3. Section 2 initiates our discussion on
attacker capabilities, and the affect on location and query
privacy. Section 3 presents our approach to address
a form of attacker knowledge based on approximate
locations of the users. Section 4 provides an evaluation
of the proposed approach in terms of the correctness
and uncertainty in determining the true location of a
user. Section 5 presents some empirical results on the
effectiveness of the approach in generating useful query
results, as well as a comparison with the breach possibil-
ities in a cloaking based approach. Section 6 lists some
related work in this area, followed by references to future
work in Section 7.

2 ATTACKER CLASS

Classification of attacker knowledge is crucial in order
to provide a comprehensive statement on the privacy
preserving properties of an obfuscation technique. To
consider the extremes, location obfuscation in the pres-
ence of an “oracle” or an adversary with effectively no
background knowledge, is only going to degrade the
quality of service. Other intermediate scenarios also exist
where location obfuscation cannot achieve one or both
of location and query privacy.

Background knowledge in a LBS setting has earlier
been classified into classes involving the user set, the
connection between users and places, and prior events
[6]. For instance, an adversary may posses knowledge of
the entire, or a subset, of users that form the active user-
set. Further, the pseudonyms used by the users may also
be known. In terms of location knowledge, the adversary

may be able to correlate some users to certain places (say
home or work locations) at given time instances. Prior
knowledge may also help the adversary in eliminating
the possibility of a certain user being at a certain place.
Mobility profiles of the user may also have been gathered
by observing prior events. These knowledge forms are
the basis for attacks that seek to correlate events at
multiple points in time to make location inferences. We
direct our focus to the knowledge form pertaining to
the user-to-location mapping. Note that this mapping is
often fuzzy. Hence, the error in tracking a user is not
always the distance between an estimated and the actual
location, but can also be the area of a geographic region
surrounding the actual location.

An adversary that has information on the locations of
any individual(s) is referred to here as a locator. Further,
a perfect locator knows exact coordinates of the users,
while an approximate locator has approximate knowledge
(an area instead of exact coordinates) on the locations.
We also consider another form of knowledge that is re-
lated to the identity of users issuing the queries. We refer
to any adversary that has access to the query database
as a holder (also refereed to as a simple holder). A perfect
holder in this case would be an adversary who knows
the identity of the person who issued a query. There
are multiple permutations in which these two forms
of knowledge may be present in an adversary. While
each form in itself states how much an adversary knows
about the locations or queries of the users, respectively,
the objective is to avoid the inference or significant
improvement of one form of knowledge using existing
knowledge of the other form.

Location based service users communicate location
information as part of their queries. The location infor-
mation can be in the form of precise GPS coordinates, the
resulting query being processed thereafter with respect
to a point in space. Such queries are also referred to
as point queries. However, due to the implications on
privacy, precise locations are obfuscated using a cloaking
region. Queries in this case are processed on a geo-
graphic range, therefore referred to as range queries. We
begin with point queries and put the two forms of
attacker knowledge in perspective with respect to such
queries. Some of the following observations related to
privacy violations in point queries are well-known in
the community. We present them here for the sake of
completeness.

2.1 Point Queries

A point query is where exact geographic coordinates are
communicated along with the query. A query database
in this case contains the precise location of users, among
other parameters of the queries. It is a straightforward
observation that no location privacy can be achieved in
the presence of a perfect locator, and no query privacy
can be achieved in the presence of a perfect holder.
Nonetheless, query privacy is preserved in the case of a
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perfect locator. However, as an immediate consequence
of point queries, location privacy is violated even when
the adversary is only a perfect holder. A perfect holder
in this case performs an identity to location mapping
using the location information in the query database. A
perfect locator must also be at least a holder to effectuate
a breach of query privacy. In this case, the adversary uses
the location knowledge to determine the corresponding
query of the user in the database. The perfect locator here
covers situations such as restricted space identification
and observation based identification [1]. A simple holder
with access to the query database alone is no threat to
either the location or query privacy of the users.

The effectiveness of point queries in the presence of
approximate locators has not been evaluated yet. Point
queries can be potentially harmless depending on the
extent of the adversary’s approximation. For instance,
an approximate locator with an approximation of a few
hundred meters is stronger than one with an approxi-
mation of a city block. The exact extent of knowledge
is difficult to estimate. We shall discuss later how point
queries can still be effectively generated in the presence
of approximate locators.

2.2 Range Queries

A range query is where a query region is associated
with the query. Query results are generated assuming
that the user may be located anywhere inside the region.
The query region serves as a cloak for the user, and is
generated following some established privacy principle.
For instance, a k-anonymous cloaking region would
encompass at least k users inside it. An obfuscation
algorithm tries to achieve the privacy principle within
the smallest possible area. In the following, we present
a case by case overview of which privacy aspect does
a range query help preserve, and under what form of
adversarial knowledge.

2.2.1 Locator

Since a perfect locator knows the location of a user, use
of a cloaking region does not help hide the location of
the user. Query privacy is preserved in the absence of
access to the query database. This implies that no privacy
breach (in the sense of gaining additional knowledge)
can occur in the presence of a perfect locator. Point
queries can in fact be used instead of a range query, in
order to improve the quality of service. Cloaking regions
also do not help achieve better location privacy from an
approximate locator. The approximation of the adversary
on the user’s location is what determines the location
privacy level. Point queries can again be used here, given
that the adversary has no access to the query database.
In other words, no location privacy violation can occur
as a side-effect of the user using the service.

2.2.2 (Perfect) Holder

No query privacy is possible in the presence of a perfect
holder. Location privacy violation is certain since the

cloaking regions present in the queries provide approxi-
mate location knowledge to the adversary. The cloaking
regions can potentially reveal more precise informa-
tion as well. Note that a privacy principle such as k-
anonymity is meant to prevent the association of a user
to the issued query – any of the k users could have
issued the query. However, such a principle is irrelevant
in the case of a perfect holder. A better principle to
enforce would be location diversity [7], [8]. This would
guarantee that zones with multiple levels of sensitivity
are present within the cloaking region, thereby prevent-
ing further location based inferences. Request locality
is another issue to address. This situation occurs when
different likelihoods can be estimated for issuing the
query from different areas within the cloaking region.
Both location and query privacy are preserved in the
case of a simple holder.

2.2.3 Perfect Locator and Holder

The location of a user is already known to this kind of an
adversary. It is easy to determine the set of queries that
could have potentially originated from a certain user.
However, query privacy violation can be prevented if
the cloaking region can generate an ambiguous mapping
between a query and the user. This is achieved by
anonymity principles such as k-anonymity. In fact, ob-
fuscation methods that generate minimal k-anonymous
cloaking regions assume the existence of a perfect locator
with precise location knowledge of at least k users. This
assumption implies that location obfuscation is used
here to preserve query privacy, and not necessarily any
form of location privacy. Query privacy, however, can
also be preserved by issuing a point query using the
true location of one of the k users. This can produce a
relatively accurate result set if the bounding rectangle
of the k users is not excessively large. The result sets
would differ much for larger bounding rectangles, in
which case the costs may itself be too high for acceptable
range query processing.

2.2.4 Approximate Locator and (Perfect) Holder

While cloaking regions are sufficient (although perhaps
not always required) to handle a perfect locator and
holder, their use starts to have a detrimental effect in
the presence of approximate locators. The inadequacy
of cloaking regions in providing location privacy has
earlier been highlighted by Shokri et al. [9]. The authors
demonstrate that generating minimum-area cloaking re-
gions can reveal the active user-set, and thereby violate
location privacy. In our context, when location knowl-
edge is approximate, a cloaking region can enhance the
precision. As depicted in Fig. 1, a k-anonymous cloaking
region may allow an approximate locator to improve
upon the location knowledge of more than just the query
issuer. The problem is eliminated only if the cloaking
region is guaranteed to encompass the approximated
regions corresponding to each of the k users. Unfortu-
nately, it is difficult to judge the extent of knowledge
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Fig. 1. Location privacy breach as a result of using
cloaking regions.

that an adversary possesses. This case presents us with
a situation where the obfuscation method helps preserve
query privacy (if adversary is not a perfect holder), but
can potentially lead to a breach in location privacy.

We summarize below the conclusions that can be
drawn from the discussion in the preceding sections.

1) Neither location privacy nor query privacy can be
preserved in the presence of a perfect locator and
a perfect holder.

2) Point queries pose privacy threats in the presence
of a perfect locator and holder.

3) Cloaking regions help preserve query privacy in
the presence of a perfect locator and holder.

4) Cloaking regions can provide query privacy in the
presence of an approximate locator and holder,
but do not guarantee protection against a location
privacy breach.

3 DIFFERENTIAL PERTURBATIONS

Current location obfuscation techniques based on cloak-
ing regions are insufficient, and undesirable, in location
privacy preservation. This arises from the fact that per-
fect locators represent a very strong class of adversaries.
For instance, acquiring the exact geographic coordinates
of a user would require resources of the likes of a RFID
tracking tag and satellite based monitoring. Further, not
much can be done with location obfuscation once an
adversary gains access to such information. A more
plausible form of adversary is represented by an approx-
imate locator. Approximate location knowledge can be
obtained by a variety of means – device communication
logs such as cell towers used, public records such as
parking violations, or social engineering methods such
as during a casual conversation. Unless regulated by
legislations, the approximate location can more simply
be inferred directly from the information broadcast from
cell towers and wireless access points. The “blue circle”
we often see in existing mobile applications is a man-
ifestation of this technique. Preserving location privacy

in this context dwells upon the problem of preventing
an adversary from reducing the margin of location error
using external references of a user’s activities (such as
in a location based service log).

Although point queries are potentially risky, queries
from perturbed user locations remain a possibility. Per-
turbations may be generated such that they do not bear
any direct linkage to a single user. The downside is that
queries based on perturbed locations can result in an
inaccurate result set. However, if the perturbations are
reasonably close to the actual location, then the query
results can also be assumed to be close enough to the
true set. There is definitely an inherent trade-off involved
between the accuracy of the result set and the location
perturbations. We postpone the analysis of this trade-
off for a later stage and focus on the generation of the
perturbations themselves.

Trivial methods such as using the centroid of a k-
anonymous cloaking region as the perturbed location
are susceptible to an inversion attack [4]. Our approach
is motivated by the requirement to provide probabilistic
bounds on what an adversary can learn from the per-
turbed location.

3.1 Location Perturbation

Each user query in a LBS application is tagged with a
geographic location. Assuming that users are not will-
ing to reveal their true coordinates, the objective is to
compute a perturbed location for use in the query. The
perturbation can be generated by adding a random noise
(to the true location) drawn from a standard probability
distribution. However, the credibility of this method is
questionable if the adversary knows the distribution and
a set of likely positions (including the true location) for
the user. With such information, the adversary can com-
pute the probability of generating the observed pertur-
bation from each of the likely positions. The adversary
will confidently infer the user position if the probability
is significantly high for the true location. Therefore, our
objective is to perform the perturbation in a manner such
that these probabilities are within a small constant factor
of each other. As shown below, the addition of noise
from a carefully selected Laplace distribution can fulfill
this requirement.

Let lp be the perturbed location corresponding to
a true location lt, denoted as lt → lp. A location is
assumed to have two components, denoted by the x and
y coordinates. Let l1, ..., lk be a set of k points, one of
which is lt. The method of choosing these k points is
discussed in the next section. We would generate the
perturbed location lp = (xp, yp) such that, for any two
locations li and lj,

Pr(xi → xp) ≤ eεPr(xj → xp) and

Pr(yi → yp) ≤ eεPr(yj → yp),
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where ε ≥ 0 and i, j ∈ {1, ..., k}. We achieve this
property by using a Laplace distribution with scale λ > 0
to perturb a location li = (xi, yi) such that

Pr(xi → xp) =
1

2λ
e−

|xi−xp |
λ and

Pr(yi → yp) =
1

2λ
e−

|yi−yp |
λ .

The amount of noise to be added to a component is
given as −λsign(rnd) ln(1 − 2|rnd|), where rnd is a uni-
form random value in ]− 1

2 , 1
2 ]. Based on the following

observation, λ is set at (maxnxn −minnxn)/ε to generate
xp, and set at (maxnyn − minnyn)/ε to generate yp. lp is
obtained as (xp, yp).

Observation: Without loss of generality, let c denote
a generic component of a location. Using the triangle
inequality, we can write |cj − cp| ≤ |cj − ci| + |ci − cp|.
After rearrangement, dividing by λ, raising as a power
of e and multiplying by 1/2λ, we get

1

2λ
e−

|ci−cp |
λ ≤

1

2λ
e−

|cj−cp |

λ e
|cj−ci |

λ , or

Pr(ci → cp) ≤ Pr(cj → cp)e
|cj−ci |

λ .

We therefore have

Pr(xi → xp) ≤ Pr(xj → xp)e
|xj−xi |

λ and

Pr(yi → yp) ≤ Pr(yj → yp)e
|yj−yi |

λ ,

and the power of the exponent is bounded as

Pr(xi → xp) ≤ Pr(xj → xp)e
maxnxn−minnxn

λ and

Pr(yi → yp) ≤ Pr(yj → yp)e
maxnyn−minnyn

λ .

Hence, the probability of a location coordinate gener-
ating a certain perturbed value is always within a factor
eε of the probability of some other location (in the set of
k points) generating the same perturbed value.

3.2 Selecting a Perturbation

A perturbed location for a query point can be chosen
using the above method. However, the distribution of
the k points can affect the proximity of the perturbed
location to the true coordinates. For example, if locations
are perturbed based on the coordinates of every known
user within a city, the scale parameter in the noise distri-
bution will become significantly high, thereby resulting
in heavy noise addition. One method to resolve the prob-
lem is to compute the perturbation from a restricted set
of k points, k now being an argument of the perturbation
mechanism. Further, the k points should be chosen to
preserve reciprocity [3], [10]. In other words, the same set
should be chosen irrespective of which of the k locations
is the query point. This is achieved by dividing the
users into buckets of size k, the set being chosen as the
bucket to which the query point belongs. The buckets

are formed based on the Hilbert indices of the users.
The locality preserving properties of Hilbert curves en-
sure (although not necessarily optimal) the formation of
buckets with users that are at close proximity to each
other. The bounding box of the k points corresponds to
the cloaking region used in the HilbertCloak algorithm
[3], and is used during the privacy evaluation steps later
in Section 5.

Each of the k points is then subjected to perturbation,
and the one having the minimum average distance to
all points in the set is chosen as the location to use
in the query. Note that our probabilistic guarantee is
only local to a bucket. Given a perturbed location, the
k points are probabilistically identical (within a factor of
eε) irrespective of which one was used to perform the
perturbation. Hence, choosing the one with minimum
average distance to all points does not risk an inversion
attack. Note that the context of the application still plays
a crucial role. If the user base is relatively sparse, i.e. the
k users are distributed over a significantly large area,
then the generated perturbation will still be far away
from the true location. A cloaking region would also be
unacceptably large in this case.

3.3 Evaluating the Perturbation

Cloaking regions guarantee that the results generated
for a location based query will contain the results cor-
responding to the location of the user. Such a claim
cannot be made for queries issued with a perturbed
location. However, differences in the result may or may
not exist depending on the density of the queried objects,
and the distance of the perturbed location from the true
one. Consider a Knn-query that retrieves the K nearest
objects with respect to a given location. Such a query
is likely to generate a larger subset of common results
on sparsely distributed objects (e.g. police stations). On
the other hand, for densely distributed objects (e.g. cafe),
this likelihood reduces. Note that we use a lower case k
for the computation of a perturbed location.

Result set similarity can also be measured with re-
spect to the distances to the retrieved objects. Under
this measure, two result sets are considered similar if,
corresponding to every object in one set, there exists an
object in the other set that is equidistant from the queried
location. This perspective of result similarity applies well
to proximity based queries – nearest gas stations, nearest
restaurants, nearest friends – where the distance to the
object carries more weight than attributes of the objects.
Result set similarity using common subsets is relevant
in queries where the retrieved objects must be ordered
using user-stated preferences – nearest K cheapest gas
stations.

A third measure is also possible using the distance of
the perturbed location from the true location. Assuming
that the service provider guarantees that the result set
is accurate relative to the query point, a user wanting
complete accuracy will have to travel from the current
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location to the perturbed point. It is therefore worth
investigating how far is the generated perturbation from
the current location of the user.

Although we are not stating any theoretical bounds
on these metrics at this stage, intuition says that query
processing relative to well-formed perturbed locations
will not be futile. As the first step, the following three
metrics are used to evaluate the effectiveness of our
approach [11].

1) Nearness: The nearness value signifies the fraction
of perturbations at close proximity to the true
location.

2) Resemblance: Let O = {o1, ..., oK} be the objects
retrieved by a Knn-query relative to the true lo-
cation of user U , and O′ = {o′1, ..., o′K} be the
objects retrieved relative to the perturbed location.
The resemblance is the fraction of common objects
between O and O′, given as

|O ∩O′|
|O|

.

3) Displacement: The displacement is measured as the
average difference in object distance (from the
true location) across the set of mismatched objects,
given as







∑K
i=1 dist(o′i ,U )−∑K

i=1 dist(oi ,U )
|O|−|O∩O′ | , O (= O′

0, O = O′
,

dist(·) being a distance value between an object’s
location and the true location of a user.

4 PRIVACY EVALUATION

Privacy evaluation involves reverse computations per-
formed by an adversary with background knowledge
about the underlying protection mechanism and user
locations. A separate line of research in analyzing anony-
mous location traces have revealed that user locations
are heavily correlated, and knowing a few frequently
visited locations can easily identify the user behind a
certain trace [12], [13]. Note that the privacy breach
in these cases occurs because the location to identity
mapping results in a violation of user anonymity. The
proposal in this work attempts to prevent the reverse
mapping—from user identity to user location. A known
user may be generating a trace (of perturbed locations)
over a period of time, however by virtue of the local
differential privacy enforcement, the true location can
be any of the coordinates from a set of k points.

True locations of users are geographic points. How-
ever, we take a granular approach where approximation
of the true location to a small geographic area is a
privacy violation of the same magnitude as determining
the true location itself. Henceforth, we consider that
geographic areas are divided into cells of a relatively
smaller area, say 100m × 100m. We change the nota-
tion (xi, yi) to denote the cell where user i is located.

Similarly, (xp, yp) is the cell of the perturbed location.
We then define the approximate location knowledge of
an adversary, corresponding to a user, as a collection
of cells where the user is believed to be present. We
assume an adversary with rather accurate knowledge,
such that the collection of cells is centered at the true
cell of a user. The adversary’s location knowledge with
respect to user i is then specified as LKi = {(x, y)|x ∈
[xi − ri, .., xi + ri], y ∈ [yi − ri, .., yi + ri]}. The notation
[a, .., b] implies an integer interval. The set of x and y
values is denoted by LKi.x and LKi.y respectively. ri is
also referred to as the radius of the location knowledge. A
radius of one signifies that the user is equally likely to be
in the true cell and the eight neighboring ones. Hence the
probability of associating a user to the correct location is
1/|LKi|. It can be argued that the uniform probability
assumption is not always valid. However, this possibility
is more likely when the set of cells considered in LKi is
large, say crossing city limits, thereby making some cells
more probable than others. Hence, in our experiments,
we have assumed a considerably strong adversary that
can place a user within a kilometer of the true location.
An adversary who can further specialize the probability
distribution can probably track the user in real time.
Further, we assume a uniform knowledge adversary,
implying that the radius is same (r) for every user, i.e.
ri = r, ∀i, unless stated otherwise.

4.1 Correctness and Uncertainty

An approximate knowledge adversary begins with a set
of equally likely positions (cells) for a user. However,
certain positions can become more probable after the
adversary observes the perturbed location used by the
user. This probability shift occurs since certain positions
in the adversary’s approximate knowledge is highly
unlikely to generate the observed perturbation under
the used noise distribution. Thereafter, the adversary
can make a probabilistic guess on the user position
using the newly learned distribution. Under such a
mechanism, the user’s true location is more protected
if the adversary’s guess is more skewed towards other
positions. This notion of privacy was first introduced in
the correctness measure proposed by Shokri et al. [14],
where location privacy is argued to be a characteristic of
the adversary’s probability of associating a user to her
true location, instead of the size of the anonymity set. In
addition, as noted in Shokri et al.’s work, the strength
of the adversarial knowledge can be measured in terms
of the “confusion” about the user’s likely location. This
is called the (un)certainty measure, and can also be
used to evaluate the privacy preserving potential of the
underlying protection mechanism. This uncertainty is
maximum when each cell in the adversary’s background
knowledge is equally likely—maximum confusion—and
minimum when one cell is singled out as the user’s po-
sition. Entropy is often the preferred metric to quantify
uncertainty. Note that minimum uncertainty does not
imply maximum correctness.
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Let (X, Y) = (〈x
′

1, x
′

2, ..., x
′

n〉, 〈y
′

1, y
′

2, ..., y
′

n〉) collectively
denote the cell vectors of n users, where (x

′

i , y
′

i) is the cell
associated to user i by the adversary. We shall use (Xi, Yi)
to denote a cell vector where the cell corresponding to
user i is the true cell, i.e. x

′

i = xi and y
′

i = yi. The set of
all cell vectors is denoted by V = {(X, Y)|∀j, (x

′

j, y
′

j) ∈
LK j}. Given a user i, a subset Vi of V contains all
vectors of the form (Xi, Yi). In the discussion below, the
suffix .X and .Y are used to imply the set of X and Y
components of the cell vectors respectively. For example,
V.X = {X|(X, Y) ∈ V}, V.Y = {Y|(X, Y) ∈ V}, Vi.X =
{Xi|(Xi, Yi) ∈ Vi}, Vi.Y = {Yi|(Xi, Yi) ∈ Vi}.

We illustrate the above terminology using an example.
Consider a system with two users, currently located
at cell (2, 2) and (3, 4) respectively. Assuming location
knowledge radius of one, an adversary’s location knowl-
edge will be:

LKuser1 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1),

(3, 2), (3, 3)}

and

LKuser2 = {(2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 3),

(4, 4), (4, 5)}.

We can create a possible cell vector (X, Y) by picking
one element from LKuser1 and another from LKuser2. For
example, choosing the first element from LKuser1 and
the last from LKuser2 gives us a cell vector (X, Y) =
(〈1, 4〉, 〈1, 5〉). A different choice will give us another cell
vector. A cell vector is therefore one possible assignment
of cells to each user by the adversary. The collection of all
such cell vectors is the set V. The notation (Xuser1, Yuser1)
means a cell vector with the correct indices, i.e. (2, 2),
for user1; for example, (〈2, 3〉, 〈2, 4〉) or (〈2, 4〉, 〈2, 5〉),
or Vuser1 as a representation of all possibilities. In fact,
(〈2, 3〉, 〈2, 4〉) also fits the notation (Xuser2, Yuser2) since
(3, 4) are the correct indices for user2.

The cardinality of set V is (2r + 1)2n and that of set Vi

is (2r + 1)2(n−1). The correctness in associating a user i
to its true cell is then given as,

Pr[(X, Y) = (Xi, Yi)] =
(2r + 1)2(n−1)

(2r + 1)2n
=

1

(2r + 1)2
.

In the context of the previous example, an adversary
would correctly guess the correct cell for user1 if the
cell vector is of the form (〈2, ∗〉, 〈2, ∗〉)—the number of
possibilities in which this will happen is 9; hence the
probability of correctly guessing user1’s location is 1

9 (=
1

(2×1+1)2 ). Note that the probability is equal to 1/|LKi|.
This probability signifies the privacy level of a user in
the absence of any additional knowledge. However, we
aim to evaluate the probability when knowledge about
the location obfuscation mechanism (or the obfuscated
location thereof) is also available to the adversary. We
seek to compute the following correctness and uncer-
tainty measures.

Correctness(i) = Pr[(X, Y) = (Xi, Yi)|(xp, yp)], and

0 ln[(2r+1)]2

1.0

Uncertainty

C
o
r
r
e
c
t
n
e
s
s

Fig. 2. Correctness and uncertainty space. Privacy mech-
anisms should avoid zone 1. Arrow indicates privacy
improvement.

Uncertainty(i) = ∑
(x,y)∈LKi

p(x, y) ln
1

p(x, y)
,

where p(x, y) is the probability of associating user i to
cell (x, y).

Correctness when using a cloaking region can be com-
puted as the inverse of the number of cells common to
LKi and the cloaking region. Uncertainty in this case is
ln[1/Correctness(i)]. Fig. 2 shows the correctness versus
uncertainty space for an adversary with knowledge ra-
dius r. A robust privacy mechanism should prevent the
occurrence of high correctness and low uncertainty (zone
1) values. Points in this zone imply that the adversary
has been able to eliminate a significant number of cells
from LKi, with some cells being more probable to be
the adversary’s best guess. On the other hand, a high
uncertainty (zone 2) implies the possibility of a uniform
likelihood across the remaining cells. Most preferably,
a privacy mechanism should create points having low
correctness values (zones 3 and 4). The high uncertainty
in zone 3 indicates that likelihoods are almost equal
across the remaining cells. However, as the true cell
has a low probability (low correctness), most other cells
must also have similar likelihoods, implying that the
adversary may not have been able to eliminate a majority
of the cells in LKi. Zone 4 is an interesting scenario,
where the adversary strongly believes (low uncertainty)
that the user is at a location different from the true one
(low correctness).

4.2 Computing Correctness

Given the location perturbation mechanism in Section
3.1, the probability ratio of generating the perturbed
location (xp, yp) by any two users in an anonymity set
(the set of k users) is bounded by eε. The Laplace noise
added to a location depends on the component-wise
maximum distance between two users. Note that (xp, yp)
will satisfy the probability ratio as long as the scale
parameters use these maximum distances. An adversary
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can exploit this characteristic feature of the perturbation
mechanism to reduce the cardinality of set V. Thereafter,
a choice is made from the reduced set and used as the
adversary’s best guess on the locations of the users.
The guess is correct if the chosen cell vector is of the
form (Xi, Yi), provided that the perturbed location was
generated for user i. The correctness metric measures the
chances of making a correct guess.

In order to eliminate cell vectors from V, the adversary
must make an assumption on the maximum distances.
Assuming maximum distances dx and dy, for compo-
nents x and y respectively, a cell vector (X, Y) can be
eliminated if ∃i, j s.t. |x

′

i − x
′

j| > dx or ∃i, j s.t. |y
′

i − y
′

j| >
dy. Alternatively, dx is a candidate for the maximum
distance in the x component if and only if the set
V(dx) = {(X, Y)|∀i, j, |x′i − x

′

j| ≤ dx} is non-empty.
Consequently, a correct association happens when the
adversary’s guess is also in Vi(dx). A similar condition
applies to dy. Note that the maximum x distance between
two cells in any two LKi provides an upped bound for
dx. Similarly, the minimum distance gives us a lower
bound. Bounds on dy can be obtained in a similar
manner. Also, since the two components are indepen-
dently perturbed, the correctness can be computed as
the product of Pr[X = Xi|xp] and Pr[Y = Yi|yp]. Owing
to the similar nature of computation, we use the generic
notation C (or c) to symbolically represent either of the
two components (read c as x or y, and C as X or Y).
Hence, we seek to compute,

Pr[C = Ci|cp]

= ∑
dc s.t. |V(dc).C| (=0

Pr[C = Ci|dc]Pr[dc]

= ∑
dc s.t. |V(dc).C| (=0

|Vi(dc).C|
|V(dc).C|

Pr[dc].

Given a certain value of dc, a brute force implemen-
tation would involve iterating through all possible vec-
tors in the c component, verifying their membership in
V(dc).C, and checking if C = Ci. The number of possible
vectors to explore in this case is (2r + 1)n. We provide
below an algorithm to avoid this expensive exploration
for large values of r and (or) n.

4.3 A Sliding Window Approach

We present a sliding window based approach to effi-
ciently compute the size of the sets V(dc).C and Vi(dc).C.
Let c

′

1, c
′

2..., c
′

m represent the ordered domain of values for
the component c, i.e. the set ∪jLK j.c arranged in increas-

ing order. We consider a window w0 = [c
′

1, .., c
′

1 + dc] of
length dc, starting at c

′

1, and count the number of distinct
values in LK j.c (corresponding to user j) that appear in
this window. The counts are denoted by t0

1, ..., t0
n for users

1, ..., n. The number of vectors contributed to V(dc).C by
this window is then ∏j t0

j . Given user i, if the window
includes the value ci (the true c component of i), then

the contributed number of vectors to Vi(dc).C, i.e. with
c
′

i = ci, is ∏j (=i t0
j .

The window is next slid over to start at c
′

1 + 1.
This gives us the window w1 = [c

′

1 + 1, .., c
′

1 + 1 + dc].
However, a simple counting as before would result
in repeated vectors being counted more than once.
Consider an example with n = 3. Assuming that
the values corresponding to the users for the window
[1, .., 11] are {1, 2, 3}user1, {10, 11}user2 and {11}user3, vec-
tors 〈1, 10, 11〉, 〈1, 11, 11〉, ..., 〈3, 11, 11〉 (a total of 3 × 2 ×
1 = 6 vectors) would contribute to V(10).C. When
the window is moved next to [2, .., 12], say the new
set of possible values become {2, 3}user1, {10, 11, 12}user2

and {11, 12}user3. In this case, all previous vectors ex-
cept 〈1, 10, 11〉 and 〈1, 11, 11〉 would get recounted. The
problem can be remedied by considering what new
values are added as a result of the shifted window –
{}user1, {12}user2 and {12}user3 – and what old values are
retained – {2, 3}user1, {10, 11}user2 and {11}user3. Vectors
generated from old values have already been accounted
for in a previous window. New vectors must use new
values for at least one user. Therefore, the number of
newly added vectors is the number of vectors possible
using new and old values, minus the number of vectors
from old values only. In the example, this would be
(2 × 3 × 2 − 2 × 2 × 1) = 8.

Note that since the window is shifted by one cell, each
shift can result in the inclusion of at most one new value
and the exclusion of at most one old value. Hence, given
a window wp = [c

′

1 + p, .., c
′

1 + p + dc], where 0 < p ≤
(c

′

m − c
′

1 − dc) is an integer, the set of new values possible
for any user is either empty or {(c

′

1 + p+ dc)}, the count
for user j being denoted as,

t
p
j =

{

1 , (c
′

1 + p + dc) ∈ LK j.c

0 , otherwise
.

The set of old values in the window wp consists of
the old and new values in the previous window, with
the possibility of one exclusion. The value that may get
excluded is (c

′

1 + p − 1), depending on whether it is a
possible value for a user. The number of old values to
use for user j is given as,

h
p
j = t

p−1
j + h

p−1
j −

{

1 , (c
′

1 + p − 1) ∈ LK j.c

0 , otherwise
,

where h0
j is equal to zero. The number of vectors

added to V(dc).C by this window is then

∏
j

(t
p
j + h

p
j )− ∏

j

h
p
j .

The number of vectors added to Vi(dc).C is











∏j (=i(t
p
j + h

p
j ) , ci = c

′

1 + p + dc

∏j (=i(t
p
j + h

p
j )− ∏j (=i h

p
j , ci ∈ [c

′

1 + p, .., c
′

1 + p + dc)

0 , otherwise

.
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TABLE 1
Traffic parameters used in the simulation.

road type mean speed std. dev. speed traffic volume

expressway 90 km/h 20 km/h 2916.6 cars/h
arterial 60 km/h 15 km/h 916.6 cars/h

collector 50 km/h 10 km/h 250 cars/h

These counts are obtained for each possible distance
value between the upper and lower bounds. If W(dc) is
the number of windows that add at least one vector to
V(dc).C, then we also have

Pr[dc] =
W(dc)

∑d W(d)
.

4.4 Computing Uncertainty

Note that an adversary cannot compute correctness since
the true cell of the user is unknown. However, the proba-
bility of a certain cell being the true one can be computed
by the adversary. The probabilities can be obtained using
the sliding window approach above, iterating over the
possible cells (components) of the user and assuming a
cell to be the true location. The uncertainty measure is
then computed from these probabilities. Highest uncer-
tainty is achieved when the probabilities are all equal.

5 EMPIRICAL RESULTS

We have generated a trace data set using a simulator that
operates multiple mobile objects based on real-world
road network information available from the National
Mapping Division of the US Geological Survey. We use
an area of approximately 168 km2 in the Chamblee region
of Georgia, USA for this study. Three road types are
identified based on the available data – expressway,
arterial and collector. Real traffic volume data is used
to determine the number of users on the different road
types [1]. The total number of users on a road type vary
proportionately to the total length and traffic volume of
the road type, and reciprocally to the average speed. The
mean speed, standard deviation and traffic volumes on
the road types are shown in Table 1. Using the number of
users on each road type, the simulator randomly places
them on the network and moves them around. The users
move with a speed drawn from a normal distribution,
randomly making turns and changing speed at junctions.
The simulator maintains the traffic volume statistics
while moving the users.

The used traffic volume information results in 8,558
users with 34% on expressways, 8% on arterial roads
and 58% on collector roads. The trace data consists of
multiple records spanning one hour of simulated time.
A record is made up of a time stamp, user identifier,
and x (latitude) and y (longitude) coordinates of the
user’s location. The granularity of the data is maintained
such that the distance between successive locations of
the same user is approximately 100 meters. Each user

TABLE 2
Percentage of anonymization attempts where perturbed

location is at close proximity to true location.

ε ≤ 1000m ≤ 500m ≤ 100m

0.01 1.05 0.37 0.01
0.1 36.61 13.70 1.00
0.3 84.16 48.33 4.64
0.5 93.79 64.53 7.81
1.0 97.41 76.10 11.89
2.0 98.11 79.91 14.42

has an associated k value drawn from the range [2, 50]
by using a Zipf distribution favoring higher values and
with the exponent 0.6. The trace data is sorted by the
time stamp of records. The first minute of records is used
for initialization. Location coordinates in each record
thereafter are subjected to perturbation. Over 4,000,000
records are processed during a pass of the trace data.

We evaluate the accuracy of queries on two platforms
– (i) synthetic objects and (ii) real-world POIs. Synthetic
queried objects are distributed randomly over the entire
map based on a density value (number of objects per
km2)1. A Knn-query is issued relative to every perturbed
location. Displacement is based on the great-circle dis-
tance (shortest path along the surface of a sphere). The
entire map is assumed to be on a grid of 214 × 214

divisions (a division at every meter) while calculating
the Hilbert indices [15]. Objects in the same division have
the same Hilbert index. For real-world POIs, we use the
SimpleGeo Places API (www.simplegeo.com) to retrieve
Knn-objects corresponding to the true and perturbed
locations. Query strings are chosen to reflect different
POI densities – “cafe”,“hospital”,“atm” and “police”.
To evaluate the correctness and uncertainty, we assume
a cell to be 100m × 100m. All simulation results are
obtained on a 2.8GHz Quad-Core Intel Xeon machine
with 8GB memory and running Mac OSX 10.6.7.

5.1 Nearness

Table 2 shows the percentage of perturbations that re-
sulted in the perturbed point being generated within
1000m/500m/100m of the user’s actual location. A value
of ε = 0.01 effectuates to saying that two users should
effectively have the same probability of generating the
perturbation (eε = 1.01). This is difficult to achieve
for most values of k. As the ε value approaches 0.5
(e0.5 = 1.65), more than 90% of the perturbations are
within 1000 meters of the true location. 60% of the
points are in a much closer proximity of 500 meters. The
numbers increase favorably with increasing ε. However,
higher values of ε reduce the practical significance of
the approach. For instance, with ε = 2.0, we are already
willing to accept a factor of 7 difference in the probability

1. The results presented here for synthetic objects differ from that
in [4] due to an error we discovered in the part of the program that
distributes the synthetic objects over the map. The displacement metric
is also defined differently in this work—here we take an average across
mismatched objects, instead of all K objects.
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Fig. 3. Average resemblance and displacement values for Knn-queries on objects distributed with various density d.
Perturbations are generated with ε = 0.5.

estimates. Nonetheless, it is promising to see that signif-
icantly high nearness values are possible with smaller
values of ε as well. The nearness metric is not applicable
to a cloaking region based approach.

5.2 Resemblance and Displacement

Fig. 3 shows the resemblance and displacement values
corresponding to different values of K (the number of
nearest neighbors to retrieve) and density. The values are
averaged over the the total number of requests processed
(4,484,683). A density of 0.1 results in 25 objects across
the entire region (sparsely distributed), while a value
such as 5 results in 980 objects (densely distributed).

Subset similarity (resemblance) is over 80% for
sparsely distributed objects. However, the metric shows
a decreasing trend as objects become more densely
situated. This is because the chances of finding points
of interest in the immediate neighborhood increases
as they become more closely packed, thereby reducing
the subset overlap. For instance, asking for the nearest
pizza place from two different locations in a city will
most likely retrieve different answers, while the nearest
hospital or airport is likely to be the same for both
locations. Interestingly, increasing the number of nearest
neighbors to search (K) improves the result set similarity.
This improvement is more significant for high density
objects. Retrieval of a higher number of objects can be
viewed as enlarging the search radius, in which case,
an object becomes more probable in the Knn set of
more number of queries (locations). Continuing with the
previous example, we can expect the two city locations
to have a higher overlap in their lists of ten nearest pizza
places. The exact extent of overlap will also depend on
how close the two locations are to each other. The noise
added to a location is crucial in this regard.

The displacement is within 400 meters in all cases. For
sparse objects, mismatched objects are about 100 meters
more distant from the true location. This increases to
300 meters for dense objects. This observation is rather
counter-intuitive. Consider a 1nn-query where the object
w.r.t. the true location is not the same as the object
retrieved w.r.t. the perturbed location (a mismatch).
Owing to the less number of objects in space, we can
say that the difference in distance to the first and the
second (or other) nearest object will be higher in the low
density case. Hence, displacement should also be higher
in comparison to a high density object distribution. The
cause for the inverse observation is grounded in the fact
that mismatches happen rarely for sparse objects. Hence,
on an average, the displacement value is lower than in
the scenario with dense objects where mismatches are
more likely.

Fig. 4 shows the average resemblance and displace-
ment from 10,000 queries performed using the Simple-
Geo Places API. The results on different query strings
closely resemble those on the synthetic objects. While
we observed that resemblance is poor for high density
synthetic objects (d > 1), the real world results indicate
that such high densities seldom appear. For example,
dense POIs such as cafes correspond to a density value
of around 0.5. Low density objects, such as a police
station or an automated teller machine, can be retrieved
with high accuracy. The penalty for choosing one of the
incorrect results would be the traversal of an additional
100-200 meters.

Note that the resemblance measure for a cloaking
region based approach is one for Knn-queries. For in-
stance, a K nearest neighbor range query based on the
HilbertCloak cloaking region will retrieve a superset of
the objects that would be retrieved for a point query
with respect to the true user location. The user can
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Fig. 4. Average resemblance and displacement values
for Knn-queries on real world POIs. The query string is
shown inside each plot. Averages are computed from the
first 10,000 requests in the trace data. Perturbations are
generated with ε = 0.5.

perform a local filtering of this superset to extract the K
nearest neighbors with respect to her location. Since the
true result set will always be embedded in the retrieved
superset, the extraction is exact and the resemblance
value is one. On similar grounds, the displacement value
is zero. Although accurate in terms of result retrieval, the
privacy implications of a cloaking region approach can
be concerning.

5.3 Correctness and Uncertainty

Fig. 5 depicts the normalized uncertainty
(

Uncertainty
ln(2r+1)2

)

and correctness values corresponding to a subset of
the trace data. We performed a set of experiments to
cover three adversary types – a) approximate locator
with access to cloaking regions (generated using Hilbert-
Cloak), b) approximate locator with knowledge of the
anonymity set size used in local differential perturba-
tions, and c) a strong variant of (b) where the locator is
perfect w.r.t. all but the query issuer. The approximate
knowledge itself is considered at two different levels –
i) dense urban localities where cell sites may be closely
packed to enable accurate estimation (say 300m × 300m),
and ii) suburban areas where approximations are larger
(say 1100m × 1100m). These approximations can be far
worse in sparsely populated areas. For the sake of clarity,
we show the values from 1,000,000 randomly sampled
requests, which includes the requests that generated the
minimum or maximum values in the two measures. The
top plots correspond to an adversary who is able to lo-
cate a user within an area of 300m× 300m (radius r = 1).
Bottom plots correspond to the more likely approximate
knowledge of 1100m × 1100m (radius r = 5).

As argued earlier, cloaking regions can result in full
disclosure (correctness = 1.0) in certain situations (Fig.

5a). This is observed in the case of a strong (top plot), as
well as a weak adversary (bottom plot). No robust mech-
anism should generate possibilities for an adversary to
infer a location with high correctness and low uncer-
tainty. The perturbed locations maintain an uncertainty
level close to the uniform case (2.197 for r = 1 and 4.796
for r = 5). Correctness in certain cases improve from the
prior knowledge based on the uniform distribution (Fig.
5b). However, this improvement is marginal. Further,
we did not observe any strong correlation between the
correctness values and the anonymity set size (k) of a
user.

The perturbations maintain these characteristics (low
correctness and high uncertainty) even when the ad-
versary is a perfect locator (r = 0) with respect to all
users except the query issuer (Fig. 5c). Strong auxiliary
knowledge on other users in the anonymity set do not
provide any significant advantage in inferring the true
location of a user. Low correctness and high uncertainty
indicates that the adversary’s prior probability landscape
did not undergo a significant change as a result of
the attack. This is somewhat non-trivial for a strong
adversary that knows the exact locations of all but one
of the k users. One possible explanation can be given if
the approximate location knowledge of the adversary is
mostly contained inside the bounding box created by the
k users. In this case, all cells corresponding to the user
will be within the constraints of any eligible maximum
distance value considered in sliding window algorithm.

5.4 Query Accuracy

Query results using perturbed locations are not guaran-
teed to contain the accurate answers. This directly points
at the underlying trade-off between privacy and utility.
As has been demonstrated in the database community,
achieving one without sacrificing on the other may be
a difficult, if not impossible, task. An evaluation of the
impact of accuracy loss is needed, but is often hard to
perform due to the subjective perception of utility.

For the local search application used in this study, few
arguments can be made to justify that query accuracy
will be maintained much better than that indicated by
the resemblance metric. Contrary to the nearest neighbor
based ranking assumed in the evaluation, applications
such as local search often incorporate multiple other
criteria in ranking their result set. For instance, local
search results for “restaurants” may be ranked based on
distance, price and user feedback. Given such a ranking,
it is unlikely that result sets would undergo frequent
changes over short distances. The nearness values indi-
cate that a significant number of the perturbed locations
are within a kilometer of the true location. Therefore,
it is not unreasonable to assume that top results will
undergo minor (or no) changes at the perturbed query
point. Note that the underlying ranking function is
considered business intelligence and is unlikely to be
shared with the user. Hence, cloaking based approaches
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Fig. 5. Normalized uncertainty and correctness corresponding to 1,000,000 randomly sampled requests in the trace
data. The areas where the points are distributed (w.r.t. Fig. 2) is shown inside each plot. Wherever applicable,
knowledge radius is r = 1 (300m × 300m) in the top plots, and r = 5 (1100m × 1100m) in the bottom plots. (a)
Values when cloaking region is known to approximate locator, (b) values when adversary is approximate locator
corresponding to every user, (c) values when adversary is approximate locator corresponding to query issuer, and
perfect locator corresponding to others.

will be unable to perform client-side extraction of the
exact result set.

We opine that the final choice in this regard should
come from the user. A remodeling of the LBS architecture
and underlying querying mechanisms is required to
enable a user-driven balancing of privacy and service ac-
curacy. Under such a setting, an application’s importance
should be accounted for while making privacy decisions,
and vice versa.

6 RELATED WORK

Location obfuscation has been earlier achieved either
through the use of dummy queries or cloaking regions.
In the dummy query method, a user hides her actual
query (with the true location) amongst a set of additional
queries with incorrect locations [16], [17]. The addi-
tional processing overhead at the LBS, resulting from
the dummy queries, must be addressed while using this
method. Cheng et al. propose a data model to aug-
ment uncertainty to location data using circular regions
around all objects [18]. They use imprecise queries that
hide the location of the query issuer and yield proba-
bilistic results. The results are modeled as the amount
of overlap between the query range and the circular
region around the queried objects. Yiu et al. propose
an incremental nearest neighbor processing algorithm to
retrieve query results [19]. The process starts with an

anchor, a location different from that of the user, and it
proceeds until an accurate query result can be reported.
The work focuses on reducing the communication cost
of the repeated querying mechanism.

Trusted third party based approaches rely on an
anonymizer that creates spatial regions to hide the true
location of users. The use of spatial and temporal cloak-
ing to obfuscate user locations was first proposed by
Gruteser and Grunwald [1]. Continuing on, Gedik and
Liu develop a location privacy architecture where each
user can specify maximum temporal and spatial toler-
ances for the cloaking regions [2]. Drawing inspiration
from the concept of k-anonymity in database privacy
[20], Gedik and Liu enforce a location k-anonymity
requirement while creating the cloaking regions. This
requirement ensures that the user will not be uniquely
located inside the region in a given period of time.
Multiple other suggestions are available on how the
cloaking region should be formed. Bamba et al. enforce
a location l-diversity requirement in addition, where
the number of still-object counts must also be above
a user-specified threshold [7]. Liu et al. propose that a
minimum level of entropy should also be maintained
in the queries originating from the cloaking region [21].
Dewri et al. have extended these concepts to the case
of continuous services [22], [23]. Shin et al. introduce
profile anonymization in cloaking regions, wherein at
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least k − 1 other users with the same profile (denoted
by a vector) as the request issuer is present [24]. Ri-
boni et al. make a similar argument, but in the context
of service parameters. Inferences that can be drawn
based on these parameters are avoided by smoothing
the differences among the distribution of the param-
eters in requests from different cloaking regions [25].
Ghinita et al. propose a decentralized architecture to
construct an anonymous spatial region, and eliminate
the need for the centralized anonymizer [26]. In their
approach, mobile nodes utilize a distributed protocol to
self-organize into a fault-tolerant overlay network, from
which a k-anonymous cloaking set of users can be deter-
mined. Kalnis et al. propose that all obfuscation methods
should satisfy the reciprocity property [3]. This prevents
inversion attacks where knowledge of the underlying
anonymizing algorithm can be used to identify the actual
object [10]. Parameter specification remains the biggest
hindrance to real world application of these techniques.

A mix zone model is presented for location privacy by
Beresford and Stajano [27]. The objective of mix zones is
to prevent tracking of long-term user movements, while
short-term revelation of location data is permissible.
A trusted middleware usually mixes the identities of
users in specific zones, thereby preventing continuous
tracking. Extensions of this technique are proposed for
the scenario where user movements are constrained to
road networks [28].

Mokbel et al. explore query processing of different
types on spatial regions – private queries over pub-
lic data, public queries over private data, and private
queries over private data [29]. Their effort is directed
towards facilitating different query formats using cloak-
ing regions. Lee et al. explore privacy concerns in path
queries where source and destination inputs may reveal
personal information about users [30]. They propose
the notion of obfuscated path queries where multiple
sources and destinations are specified to hide the true
inputs. Historical location data is used by Xu and Cai
in a variant of location k-anonymity, where the cloaking
region is required to have at least k different footprints
[31]. In a later work, the authors argue that the impact of
a privacy parameter, such as k, on the level of privacy is
often difficult to perceive. Hence, they treat privacy as a
feeling-based property and propose using the popularity
of a public region as the privacy level [32]. Soriano et al.
show that the privacy assurances of this model do not
hold when the adversary possesses footprint knowledge
on the spatial regions over time [33]. Shokri et al. propose
a framework to quantify location privacy based on the
expected estimation error of an adversary [14]. This
work provides a method to arrive at different types of
inferences regarding a user’s location based on a known
mobility profile of the user. Using methods of likelihood
estimations, the authors show that measures such as the
anonymity set size or entropy, do not correctly quantify
the privacy level of the user [9].

A new paradigm in location privacy is based on

private information retrieval (PIR) techniques. Khosh-
gozaran et al. propose K nearest neighbor queries that
can be reduced to a set of PIR block retrievals [34]. These
retrievals can be performed using a tamper-resistant pro-
cessor located at the server so that the content provider
is oblivious of the retrieved blocks. Papadopoulos et al.
further warrant the need to retrieve the same number
of blocks across queries [35]. While the use of PIR
techniques in providing location privacy is an interesting
direction to explore, computational inefficiency or the
dependence on additional hardware makes these ap-
proaches currently unsuitable for mainstream adoption.

7 CONCLUSIONS

Obfuscated locations can provide the means to access a
location based service without risking privacy breaches.
The strength of the obfuscation itself is dependent on
the background knowledge of the adversary. Cloaking
regions can be used to provide query privacy, but at the
same time, can also enable an adversary with approx-
imate location knowledge to improve her approxima-
tions. We propose a method based on location perturba-
tion to address such adversaries. Perturbed locations are
generated using a Laplace distributed noise function in
a way such that any user, from a set of k users, is likely
to be the query issuer within a parameterized bound.
Empirical evaluation shows that the perturbed locations
can still serve as promising query points. A high fraction
of the actual result set can be retrieved, or otherwise,
similarity in distances to the points of interest can be
achieved. Further, using perturbed locations do not sig-
nificantly improve the adversary’s prior knowledge on
a user’s location.

Resolution of bad perturbations is an issue that re-
mains to be explored. These are perturbations that are
significantly far away from the true locations. While their
occurrence has not been found to be concernedly high in
the empirical study, it needs to be determined if they can
be eliminated altogether. Reduced anonymity sets could
be an option, specially when the size of the anonymity
set has been found to have almost no correlation to
the correctness measure. It should be even possible
to discard the anonymity set requirement and instead
perturb locations to enforce feeling-based privacy [32].

Based on the observed resemblance and displacement
values, an interesting exploration would be to see the
impact of location accuracy on the query results gener-
ated by an application. A lower bound on this accuracy
requirement, say for a particular class of applications or
object density, will reveal a default level of flexibility
that a user has in perturbing her location. Perturbations
can then be made freely without consulting how other
users are located. With additional knowledge such as the
variation in the resemblance due to different perturbed
locations, a user can be in better control of balancing
location privacy and service accuracy.
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