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Abstract—Location privacy preservation algorithms in the
context of location-based services have evolved in the recent
years. However, a majority of the proposals assume that points
of interests (POI) are ranked only by distance, and demand
extensive architectural changes. As a result, a significant gap
remains between academic proposals and the industry standard
of implementing location based services. Recent advances in
mobile device capabilities, more specifically in their computa-
tional power and energy efficiency, have opened the possibility
of engaging the client hardware more actively in the execution
of a privacy algorithm, thereby relaxing strong dependencies on
trusted third parties or the service provider. With this motivation,
we propose a novel privacy algorithm that determines the most
prominent result set through operations restricted to the client
device, thereby limiting the communication of precise location
information to the service provider. The service provider only acts
as a data source, and is required to perform operations that are
within existing industry norms. By measuring the privacy offered
by the algorithm under a formal threat model, we demonstrate
its robustness and practicability, and supplement our conclusions
with empirical evidence.

Index Terms—Location privacy, top-K queries, mobile search

I. INTRODUCTION

Location-based services (LBSs) have become a part of ev-

eryday life in most societies, and are used extensively by any-

one with a smart phone. Along with these very useful services

comes the ability of service providers to track user locations

accurately, and use this information for commercial purposes.

Location privacy loss has been a recognized problem for

several years [1], and hence, several attempts have been made

by the research community to design algorithms that preserve

location privacy, without degrading the utility of LBSs. These

location privacy preserving mechanisms (LPPMs) come in

various flavors. Initially, LPPMs were one-size-fit-all solutions

that offered enhanced privacy to all users of the system at an

equal level [2], [3], [4]. Soon, researchers realized that privacy

needs are different for different users, and even for the same

user, privacy requirements are different in different situations

[5]. The most recent LPPMs provide to their users configurable

levels of privacy that is balanced against quality of service

(QoS) [6], [7].

Out of the several types of LBSs in use today, direct or

indirect search for points-of-interest (POIs), and navigating to

the most suitable of them, is arguably the most widely utilized

application. This particular application warrants deeper study

from the privacy research community as it reveals several

facets of a user’s lifestyle beyond just the location. A sophisti-

cated adversary or a semi-trusted service provider can use this

information to deduce user preferences and future locations,

in addition to the current location [8].

Most earlier algorithms in private POI search not only

required a trusted third party (TTP), but also required that

this TTP has the knowledge of the locations of all users

that subscribe to the anonymization service, thus creating a

single server bottleneck. This requirement of a TTP has a

significant impact on the QoS as users often have to wait

till other users accumulate. Some algorithms even propose

discarding the user’s query if it cannot be answered by the TTP

within a specified time period [9]. The research community

soon realized this bottleneck and, since then, has extensively

proposed novel methods to eliminate the need for a TTP.

Despite the tremendous effort put forward by the commu-

nity, mass adoption of location privacy controls are yet to

be seen. A potential reason for this could be the implicit

requirement for architectural changes that a service provider

has to undergo, and the possible adverse impact it can have

on the quality of service. For instance, methods utilizing

cloaking regions may require transmission of massive amounts

of POI data, while formal methods such as private information

retrieval puts a burden on the service provider to install

trusted/incorruptible hardware and perform expensive compu-

tations. It must be said that researchers are very much aware

of these limitations, and the proposals are very much driven by

the need to perform sophisticated computations and the lack

of an efficient platform to do so, except for a TTP or the LBS

servers. Fortunately, the landscape has changed significantly

in the past few years. Mobile devices (the point of origin of

a request) are no longer a simple piece of radio hardware,

but full-fledged computing platforms, often faster than desktop

servers from a decade ago. It is therefore reasonable to attempt

novel location privacy protection mechanisms that incorporate

this new computation node.

Our earlier work demonstrated that, with a minor change in

the control flow of existing LBS server software, POI search

can be performed without requiring the user to transmit precise

location data outside the device [10]. The work assumed a

single snapshot query model; therefore, the privacy guarantees

do not hold when users make multiple queries in a short

period of time. Motivated by the potential applicability of

modern mobile hardware for location privacy preservation, we

continued our work to facilitate a privacy preserving multi-

query system, thereby providing a complete private POI search

paradigm [11]. We showed how the privacy algorithm executed

in the mobile device for single query systems is susceptible to

localization attacks (determining where the user is at a specific

point in time) when used in the context of multiple queries. To

eliminate this concern, we proposed a new client side privacy

algorithm to retrieve POIs, and analyzed the inference risk of

the algorithm under a Bayesian adversary model.
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The work in this study supplements our earlier works, with

the following differences: this manuscript (i) includes a more

detailed discussion on the adversarial model, and the privacy

algorithm for the multi-query scenario, (ii) uses an enhanced

adversarial model with transition matrices, information on

areas that cannot be occupied by a person, and trajectories

between frequent source/destination locations; the resulting

empirical results are therefore different here, (iii) uses two

different privacy evaluation metrics, and (iv) provides a com-

parative evaluation of the approach with the state-of-the-art

geo-indistinguishability approach [12].

In the next section, we provide a brief overview of the work

done in this field and show the evolution of LPPMs over time.

In Section III, we elaborate on the local search architecture

assumed in this work. We also provide a brief background on

the geo-indistinguishability approach in this section. Section

IV presents the adversary model, and discusses the inference

mechanism assumed to be in use by the adversary. Section

V presents the experimental setup and the metrics used to

evaluate the privacy mechanisms. Section VI elaborates on

the single query scenario and provides runtime evaluations of

performing search operations on a mobile device. Section VII

explores the multiple query scenario. We finally conclude in

Section VIII.

II. PRIOR WORK

A. Anonymity sets

Location privacy has earlier been achieved through the

use of obfuscation and dummy queries. A user can hide her

actual query in a set of dummy queries and achieve location

privacy [2]. Gruteser and Grunwald [3] proposed the use of

spatial and temporal cloaking to obfuscate user locations. The

cloaking is performed at a trusted third party site. Individual

preferences in terms of temporal and spatial tolerances can

also be incorporated during such cloaking [5]. Enforcing

properties such as k-anonymity ensures that users will not

be uniquely located inside a region in a given period of time.

Multiple other suggestions are available on how the cloaking

region should be formed. Bamba et al. enforced a location l-

diversity requirement where the number of still-object counts

must also be above a user-specified threshold [13]; Liu et

al. proposed that a minimum level of entropy should also be

maintained in the queries originating from the cloaking region

[4]; Mokbel et al. presented how different query formats can be

supported using cloaking regions [14]; Dewri et al. proposed

enforcing query m-invariance in cloaking regions [15]; Shin

et al. anonymized the profile of the user using k-anonymity

[16]; Riboni et al. proposed smoothing out differences in the

distribution of query parameters [17]. Ghinita et al. proposed

a decentralized architecture where mobile nodes utilize a dis-

tributed protocol to self-organize into a fault-tolerant overlay

network, from which a k-anonymous cloaking set of users can

be determined [18]. Kalnis et al. proposed that all obfuscation

methods should satisfy the reciprocity property [19] in order to

prevent inversion attacks where knowledge of the underlying

anonymizing algorithm can be used to identify the actual user

[20].

B. Beyond anonymity sets

Moving beyond anonymity sets, Khoshgozaran et al. pro-

posed a protocol where K-nearest neighbor queries are re-

duced to a set of private block retrieval operations on a

database [21], [22]. These retrievals can be performed using

a tamper-resistant co-processor located at the server so that

the content provider is oblivious of the retrieved blocks. In

addition to the trusted hardware requirement, shuffling opera-

tions involved in these protocols often have to be performed

on the database, requiring preprocessing or the availability

of special APIs at the server side. The absence of these

required components in existing services makes these ap-

proaches currently unsuitable for mainstream adoption. While

recent proposals have attempted to address this challenge for

K-nearest neighbor queries [23], private retrieval protocols for

top-K queries are still a challenge. The approach presented in

this work is ready for deployment using available APIs in most

major location based service providers.

Most anonymity set based proposals suffer from the re-

quirement to specify privacy parameters that are not intuitive

or difficult to gauge. Xu and Cai explored this problem by

treating privacy as a feeling-based property and proposed using

the popularity of a public region as the privacy level [24].

Soriano et al. showed that the privacy assurances of this model

do not hold when the adversary possesses footprint knowledge

on the spatial regions over time [25]. Niu et al. recently

revisited the use of dummy queries with the objective of ad-

dressing side information that the adversary may have on query

probabilities from different locations [26]. In a subsequent

work, the authors demonstrated that caching of query results

can help improve the privacy in dummy query models [27].

These works are driven by an entropy-based privacy metric.

Much like the result reuse approach in caching, Shokri et al.

proposed a collaborative model where users can retrieve search

results from their mobile peers, whenever possible, thereby

not requiring location disclosures to the service provider [28].

Infrastructure-dependent architectures are also being currently

explored in some domains, where centrally operated access

points generate digitally signed location and distance proofs

for the user [29].

Shokri et al. argued that location privacy should be quanti-

fied based on the expected estimation error of an adversary

[8]. They provided a method to arrive at different types

of inferences regarding a user’s location based on a known

mobility profile of the user. Using methods of likelihood

estimations, the authors showed that above measures such as

the anonymity set size or entropy do not correctly quantify

the privacy enforced by the method [30]. Moreover, all these

approaches treat privacy as an immutable property that must be

strictly enforced. In reality, most of us like to weigh location

privacy with the prospective gains in service before skewing

our preferences for one. In this context, this work provides an

intuitive privacy parameter (a region) and assesses the privacy

level under the assumption of a strong adversarial model. The

evaluation is performed in terms of metrics operating directly

on the probabilistic inferences that such an adversary can draw

from a Bayesian analysis.
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C. Differential privacy

Dewri introduced the idea of merging a well-known form

of privacy in databases, namely differential privacy, and k-

anonymity [31]. Under this model, an anonymity set of size k

is first formed and then an obfuscated location is generated

such that the probabilities of reporting this location from

any of the k locations are close to each other. Andrés et al.

improved this approach by proposing a new model called geo-

indistinguishability, where the dependence on the anonymity

set is removed, and a privacy radius is introduced as a param-

eter [12]. This integration of location privacy and differential

privacy remains the state-of-the-art in privacy models for

location privacy protection. The primary drawback of these

models is that the choice of the obfuscated location is driven

only by privacy requirements, and no attempt is made to

accommodate its impact on the query results. We differentiate

our work in this dimension by offering an approach that does

not impact the accuracy of results, and adapts the privacy level

when changes in the result set are limited across arbitrary

distances.

D. Privacy-accuracy trade-off

Examination of the privacy/accuracy trade-off in location-

based applications is rare. Shokri et al. explored an optimal

location obfuscation method that can hinder privacy attacks

and provide the best service quality, essentially targeting an

equilibrium solution in a Stackelberg Bayesian game [32].

They compute quality loss as the average dissimilarity in

service quality between the user’s true location and a pseudo-

location. Privacy is computed as the expected error of the ad-

versary in an inference attack. Along similar lines, Bordenabe

et al. provided a mechanism to minimize the service quality

loss for a given degree of geo-indistinguishability [7]. Similar

to most of the earlier works, both of these works assume

that service quality in an application is directly proportional

to the distance between the pseudo-location and the true

location; however, this assumption hardly holds in a local

search application (and others as well) where the quality of

search results depends on multiple factors other than distance.

To the best of our knowledge, our prior work is the only

known attempt to consider arbitrary ranking functions for local

search results, instead of the commonly assumed K-nearest

neighbors [6]. We proposed the use of multi-dimensional

scaling to do a lossy compression of the result set similarity

information into a RGB image. A client then uses the image to

decide an obfuscated location with a tolerable loss in service

quality. This work is our attempt to eliminate the requirement

for the server to produce metadata for privacy decisions, and

instead employ the computational power available in a mobile

device to make informative decisions.

III. LOCAL SEARCH ARCHITECTURE

A typical POI search transaction starts with a user searching

for a POI by using some keyword. The LBS provider receives

this query and returns a list of POIs that match the query.

When this list is generated based only on distance, the problem

can be reduced to finding K nearest neighbors, K being the

number of POIs in the list. But, if one were to observe most

popular POI search providers these days, the list of POIs is not

necessarily sorted only on the distance. In fact, most popular

providers, e.g. Google [33], use a combination of distance and

other criteria.

The service provider returns the list already sorted, and

short-listed (typically 10-20 items), to the requesting appli-

cation. One has to note that privacy in this scenario is based

entirely on the privacy policy of the service provider. If the

service provider is assumed to be semi-honest, i.e. honest but

curious, then location privacy of the user is completely lost.

In this case, one of the LPPMs discussed in Section II needs

to be implemented to enhance the location privacy of the user.

If feasibility demands ruling out algorithms that either require

a TTP, or large changes at the LBS server, or ones that rank

the POIs only based on the distance from the user location,

then there is a shortage of appropriate techniques. Therefore,

we seek alternative architectures where users can continue to

retrieve information on POIs of importance, albeit without

requiring the disclosure of accurate location information.

In the following, we assume that a large geographical area is

modeled as a Z×Z square grid of cells. The user is interested

in POIs contained in this large area. A cell defines the smallest

distance that a user has to move to be recognized as existing

in a different location, i.e. as long as the user moves within

the boundaries of a cell, she will be considered as staying in

the same location. For example, we use a cell side length of

100 meters in this study.

A. Geo-indistinguishability

Andrés et al. introduced the geo-indistinguishability prin-

ciple to generate perturbed locations for location-based POI

search [12]. The principle provides probabilistic limits on the

inferential advantage that an adversary can gain with knowl-

edge of the perturbed location and the perturbation mechanism.

Given a user cell c and a privacy parameter ǫ, the mechanism

adds random noise drawn from a planar Laplace (extension of

the Laplace distribution to two dimensions) distribution to the

user’s location and generates the perturbed location z. Doing

so provides the guarantee that

Pr(z|c1)

Pr(z|c2)
≤ eǫd(c1,c2), (1)

where c1 and c2 are any two cells, and d is a distance function.

To retrieve POI details, the mechanism then issues a query

using z and an area of retrieval (AOR) around z. All POIs

inside the AOR are retrieved from the service provider. Andrés

et al. provide confidence bounds on the size of the AOR that

also includes a specific area around the actual location of the

user (called the area of interest, or AOI). The user can then

choose a POI from the retrieved set depending on how far it

is from her location.

B. A privacy supportive architecture

We use a different request-response architecture to support

the retrieval of POIs based on distance, as well as their

importance. Under this architecture, the client first determines
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a large geographical area (say 500km2) that includes the

user’s location, and sends the coordinates of this area along

with the search keywords to the server. An example of this

query format will be a query such as “asian gift shop in Los

Angeles, CA,” as is supported by the Radar Search method

of the Google Places API. Effectively, the user initiates a

generic query for, say, a large section of a city. The server

finds the list of matching POIs within the area from its

database, and sends back only the locations and prominence

values for the obtained POIs. The prominence value here is

determined by the service provider based on criteria such

as user reviews, reference counts, and financial gain, among

others. POI search is not a typical K-nearest-neighbor search

when prominence values are involved. We emphasize that

the transmission of location and prominence values is not

equivalent to downloading the entire POI database to the client,

since no details about the POIs are available to the client at

this time. These details include features such as business name,

street address, reputation, user reviews, services offered, and

others. The transmission of only location and prominence data

(and no feature data) at this stage also reduces the bandwidth

requirement of the technique by preventing the download of

large fractions of the POI database.

The client application can utilize the location and the

prominence data to locally rank the received list of POIs.

By doing so, the client can determine the most highly ranked

K POIs (top-K POIs) for the user, and request details on

those POIs from the server. Note that a POI present in the

top-K set for the user may be outside the AOR in the geo-

indistinguishability approach.

However, this straightforward method is susceptible to in-

version attacks, where an adversary can compute the top-K

POIs of every cell, match them to the set requested by the

client, and thereby infer likely cells where the user could be

located. In order to ensure that the number of inferred cells

under such an attack is lower bounded, we need to ensure

that the sets requested by the user contain the top-K POIs

corresponding to multiple cells. The user can cache POI details

and generate requests for POIs only if it has not been done

as part of an earlier query. In this case, we refer to the set of

POIs for which details are requested in a query as the interest

set I of the query. One approach to compute an interest set is

to compute the union of the top-K POIs of multiple cells. For

example, we consider a region of b × b cells containing the

user’s location, and form the interest set from the top-K sets

of all cells in the region (minus any that has been retrieved

earlier). This method takes advantage of the fact that nearby

cells will often have very similar top-K POIs, in which case,

the size of the interest set will not grow linearly to the number

of cells in the region. An inversion attack will also produce

an area at least as large as b× b cells.

C. Readiness

Much of the client-server programming interfaces necessary

to implement the proposed method are readily available today.

Here we discuss the interfaces available in the Google Places

API that can be adopted to implement the protocol. The

Google Places API Radar Search Service allows an application

developer to search and retrieve information for up to 200

places at once, but with less detail than is typically returned

in other forms of search. A request is made using a HTTP

URL, and can include the query keyword, a location, and a

radius. For the method proposed in this work, the location

used may be a popular landmark, or simply the center of

a randomly generated large box that includes the user. The

maximum allowed radius is 50km. The result of the request

is returned either as a JSON object or an XML document,

which includes the matching POIs’ geometry (latitude and

longitude), place_id (a unique identifier of the POI) and rating,

among other metadata. Although the developer can use the

place rating as a prominence value, the exact value used by

Google is not yet contained in this result. Details of POIs in

the interest set can be obtained using a Place Details request.

Such a request returns detailed information about a place

identified using a place_id. The returned JSON object or XML

document includes data such as the address of the POI, current

events happening there, phone number, opening hours, photos,

price level of services offered, user reviews, the POI’s rating,

and the website of the business, among other things. The

availability of programming interfaces such as these makes the

proposed privacy preserving POI search architecture feasible

in the current market.

We next discuss the assumed adversary model in this study,

and then present our methodology to compute an interest set.

IV. ADVERSARY MODEL

Following the standard practice in the literature, we assume

that the adversary knows the LPPM that is being utilized by

the user. The adversary’s goal is to determine the cell the user

is in, based on the output produced by the LPPM, also known

as a localization attack. To model an adversary in realistic

terms, we assume that he has the following capabilities. The

adversary:

• has the ability to eavesdrop and observe the contents of

all queries;

• is aware of which LPPM is being used, and knows the

details of the algorithm and its associated parameters;

• has coarse information on the movement patterns of the

user;

• can accurately estimate the maximum number of cells

that a user can move in a given time period;

• knows the map of the geographical area and has access

to the POI database.

The adversary’s goal is to narrow down the user’s location to

a specific cell. Short of that, the adversary tries to determine

the likelihood of existence of the user in a particular cell by

calculating a probability distribution of the user’s existence

in each cell. Let us consider time in unit increments, t =
0, 1, 2, ...; each increment is equal to the time required to move

by one cell. The timestamp of a query always aligns with one

of these time steps. Let Φt denote the distribution computed by

the adversary at the end of time step t. If a query is not made

at a particular time step t, then the adversary only knows the

distribution at the end of the previous time step (Φt−1) and the
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Fig. 1: Prior and posterior distribution after queries along a path. Darker (red) regions signify higher probability mass. White

regions are unreachable cells.

movement pattern of the user. Otherwise, the adversary also

knows the output from the LPPM (such as a perturbed location

or an interest set). In both cases, the adversary can refine the

prior knowledge to arrive at the distribution Φt. Note that Φ0

models the knowledge of the adversary before any queries are

issued to the LBS. A common form of this knowledge is a

uniform distribution spread over a subset of cells in the grid, or

the stationary distribution corresponding to a Markov model of

the user’s movement patterns. It is also reasonable to assume

that Φo spreads over an area larger than the smallest area

inferable from an LPPM (e.g. the AOR or the region used for

interest set generation); otherwise, the background knowledge

of the adversary is already stronger than the guarantees of the

LPPM. We next formalize this inferencing process.

A. First query

Consider a user that first uses the LPPM at time t = 1. We

denote by Ot the output generated by the LPPM during its

use at time t. For geo-indistinguishability, the output signifies

the perturbed location z, and for our method, this output

signifies the interest set. Under a Bayesian adversarial model,

an adversary can refine the prior distribution Φo and obtain

the posterior distribution Φ1 using Bayes rule.

Φ1(c) = Pr(c | O1) =
Pr(O1|c)Φ0(c)∑
c′ Pr(O1|c′)Φ0(c′)

, (2)

where c is any cell in the Z × Z grid. For geo-

indistinguishability, Pr(O1|c) can be computed from the

planar Laplace density function [12]. In our approach, this

probability depends on the exact mechanism used to generate

the region from which the interest set is derived. We revisit

this computation in Sections VI-D and VII-C.

B. User movement

After the first query, the user starts moving along a path and

uses the LPPM to retrieve POIs at time t > 1. A summary of

the user’s movement patterns is available to the adversary in

the form of a transition matrix. A transition matrix T (Ai, Aj)
provides the probability of the user moving from one area Ai

in the grid to another area Aj . For example, the set of cells can

be divided into non-overlapping areas of b × b cells, and the

adversary’s knowledge of the user transitioning between these

areas is encoded in the transition matrix. A transition matrix

can be extracted from available traces of a user’s movement

[8]. We consider the transition probability between individual

cells to be directly proportional to the transition probability

between the areas to which they belong. If cs and cd are two

cells in areas Ai and Aj respectively, we compute the cell-wise

transition probability matrix as

Pr(cs → cd) =
Pr(Ai → Aj)

b2 × b2
=

T (Ai,Aj)
b4

. (3)

This computation assumes that all cells in an area are habit-

able; it is easy to accommodate the case of some cells being

inhabitable by modifying the proportionality constant 1
b4

.

C. Queries on the path

Let tl denote the time step when the user last used the

LPPM, and the current time be t = tl + ∆. The LPPM
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outputs Ot at this time step. Before using this new obser-

vation, the adversary refines his location distribution using the

known movement model of the user. Starting with the notation

λ0 = Φtl , the adversary first obtains λ∆ by iteratively applying

the following expression.

λk(c) =
∑

c′

(λk−1(c
′)× Pr(c′ → c)) . (4)

This computation updates the adversary’s last known distribu-

tion with information based only on the movement patterns of

the user. This is same as the forward variable in a typical

forward-backward algorithm. In the right hand side of the

equation, λk−1(c
′) is the probability of the user being at cell

c′, and Pr(c′ → c) is the probability of the user transitioning

into cell c from c′. By considering all cells c′, the equation

computes the probability of the user moving into cell c in

one time step. In the absence of any output from the LPPM,

Φt = λ∆; otherwise, a final update can be performed using

the output Ot, similar to as in the first query.

Φt(c) = Pr(c|Ot) =
Pr(Ot|c)λ∆(c)∑
c′ Pr(Ot|c′)λ∆(c′)

. (5)

Fig. 1 shows snapshots of the inference process of the

adversary at different points in time. The user in this case uses

an LPPM to generate a perturbed location by adding planar

Laplace distributed noise, and makes queries using this loca-

tion. The figure depicts how the location of the perturbed query

point (in addition to knowledge of the perturbation mechanism

and the user’s transition matrix) helps the adversary refine the

prior distribution. As seen in the beginning of the path, the

refinement resulted in good approximation of the user’s actual

location. As the user moves, the distribution becomes more

concentrated, and refinements depend on where the perturbed

point is generated.

Given all outputs generated by a LPPM along an entire path,

the posterior distribution at a time step can be better refined by

using knowledge of what output was produced after that point

in time (by using a backward variable). We do not perform this

refinement in the computation of Φt. As such, the accuracy of

the adversary’s method in estimating intermediate locations of

the user (the path) is assumed to be not critical; it is the final

destination that we seek to keep private. The presented method

aligns with the forward-backward algorithm when executed at

the last query point; no observations exist after the last query

to compute a backward variable.

V. EXPERIMENTAL SETUP

We consider a 320 × 320 grid over a 32 × 32 km2 broad

area (each cell is 100×100 m2) centered at Los Angeles, CA

downtown (34.0522o N, 118.2428o W). We further process the

grid to identify cells that are not habitable (potentially because

of a natural or artificial blockage). We perform this step by

collecting the latitude and longitude of the center of each cell,

and then using the snapToRoads function in Google’s Maps

Roads API to determine the cells that have a road within 100
meters. This gives us a bitmap signifying if a cell is habitable

or not.

We use multiple search keywords to obtain different POI

distributions in terms of size and density. The business

listings are obtained from the SimpleGeo Places database.

Object prominence values are assigned to the POIs from

{0.95, 0.90, ..., 0.2, 0.25} using a Zipf distribution with expo-

nent 0.8. Lower scores are more frequent under this distribu-

tion.

Experiments are performed on a 2.8 GHz quad-core Intel

Xeon system running Mac OS X 10.8.2 with 8GB memory.

Runtimes of the algorithms to be executed on mobile devices

are obtained on an Android emulator running a virtual device

with a ARM Cortex-A8 processor (∼800 MHz) and 512MB

memory. We also run the algorithms on a virtual device

using the Intel Atom system image (with 1GB memory). All

implementations are single-threaded.

1) Paths and transition matrix: To generate paths along

which queries will be made, we consider five regions sur-

rounding Los Angeles–El Segundo, Pasadena, Hollywood,

Montebello and the Los Angeles downtown–and use them

as sources/destinations that the user mostly travels between.

We randomly choose a pair of cells from these five regions

as source and destination locations of the user, and then

generate a path originating at the source cell and ending at

the destination cell. We generate a set of 100 paths using

this method. A path is always generated such that it contains

habitable cells only.

We encode the 100 paths into multiple transition matrices

for use in adversarial inference. Assuming region sizes of 16×
16 cells (2.56km2), 32 × 32 cells (10.24km2), and 64 × 64
cells (40.96km2), we create three transition matrices. Each

transition matrix is obtained by dividing the 320 × 320 grid

into regions of the corresponding size, and then counting the

frequency of transitions happening between regions in the 100

paths. The three different region sizes are used in parametric

evaluation of our method. For all other experiments, the 32×
32 size is used as the default. A transition matrix is known

to the adversary, while the exact paths are unknown. Note

that a transition matrix created in this manner implies strong

background knowledge since it captures all (and only those)

paths on which we will apply a LPPM. It also implies that

the adversary’s background knowledge is always considered

correct, i.e. the user can never be in a region (or cell) where

the transition probability is zero.

2) POI retrieval and local cache: We consider that query

results must be up-to-date at all points along a path; therefore,

the LPPM is invoked at every point along a path. However,

we implement the LPPMs with local caching functionality,

i.e. results retrieved earlier will not be downloaded again. The

geo-indistinguishability approach, as described in the original

work, cannot directly make use of the local cache. We assume

a modification where the server only returns identifiers of POIs

inside the area of retrieval (AOR); details are then retrieved

only for POIs not in the cache. The geo-indistinguishability

AOR is also not guaranteed to contain the top-K POIs for the

user. For fair comparison, we always set the radius of the AOR

to the smallest value such that it contains the user location, as

well as all POIs in the top-K set of the user. We use a value

of ǫ = ln(6)
16 cells

in the routine that generates perturbed locations.
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3) Evaluation metrics: We consider two metrics to evaluate

location privacy based on the posterior distribution inferred

by an adversary. The first of these metrics is based on

the adversary’s best guess according to the distribution. We

call this the nearness privacy metric. Given a probability

distribution Φ over the cells in the grid, and the user’s current

location cuser, nearness privacy is computed as

nearness(Φ, cuser) = distance(argmaxcΦ(c), cuser). (6)

We use Euclidean distance in our evaluation. If multiple

cells have the most probable value, then we pick the cell

closest to cuser as the adversary’s guess. Note that when Φ
is a uniform distribution, nearness will be zero. The second

metric eliminates this ambiguity by using the concentration of

the probabilities in the entire distribution. The adversary can

sample one cell at a time (without replacement) based on the

distribution Φ. The second metric is the expected number of

cells that the adversary has to sample before being guaranteed

that the user’s cell is contained in the sampling. In other words,

the number of sampled cells create an obfuscation area for the

user. We call this the areal privacy metric. It can be computed

using the following closed form expression.

areal(Φ, cuser) =
∑

c 6=cuser

Φ(c)

Φ(c) + Φ(cuser)
. (7)

When Φ is a uniform distribution over a subset C of cells, areal

privacy is equal to
|C|−1

2 cells. For example, for a uniform

distribution over an area of 32× 32 cells, the areal privacy is

511.5 cells. We will often present it in terms of area, which is

obtained by multiplying the metric’s value with the area of one

cell (0.01km2). Areal privacy can be viewed as the smallest

obfuscation area one can expect if the attacker is successful

in learning an approximate presence area using the sampling

method. Compared to the expected estimation error metric

proposed by Shokri et al. [8], the nearness and areal privacy

metrics consider specific methods by which an adversary may

use the inferred posterior distribution.

VI. BOX SET COMPUTATION

For the first query, we cluster the cells in the Z × Z grid

into non-overlapping boxes (formally sets) of b× b cells. For

ease, b is chosen such that Z is a multiple of b; this results

in a total of (Z
b
)2 boxes. Let B1 be the box containing the

location of the user. We compute a box set BS for B1 as the

union of the top-K POIs of each cell in B1.

BS(B1) = ∪ci∈B top-K(ci). (8)

This box set is also used as the interest set for the first query.

Let P = {p1, ..., pn} denote the set of POIs inside the large

area that matches the search keyword of the user. Each POI

pi has an associated location ci (the cell where it is located)

and a prominence value 0 < βi ≤ 1 . Given cell cuser where

the user is currently located, the rank of object pi is computed

by a weighted combination of its normalized distance from ci
and the prominence value, i.e.

rank′(pi, cuser) = αdnorm(cuser, ci) + (1−α)(1− βi), (9)

where dnorm is a normalized distance function. We use the

length of the diagonal of the large area as the normalization

factor for distance. α is the weighing co-efficient such that

0 < α ≤ 1. The ranks of objects are then between 0 and 1,

with lower values implying better choices. In most situations,

values of α and βi may not be revealed to the user. Hence,

we redefine the ranking function as

rank(pi, cuser) =
rank′(pi, cuser)

α
= dnorm(cuser, ci) + γi,

(10)

where γi =
1−α
α

(1−βi). Since α is a constant, both functions

result in the same ranked ordering of the objects. Therefore, as

a result of the generic query in the privacy-supportive archi-

tecture, the server sends the tuples Ω = {〈ci, γi〉|i = 1...n}
to the client. Using Ω and the current location of the user,

the client can compute a box set BS(·). However, this step is

performed in a resource constrained mobile device, and hence

computation time is critical to prevent noticeable delays in user

experience. We next present our method and optimizations for

this computation, and then report on observed run times.

A. Top-K of a box

Given the set of POIs P , and a box B of cells, we need a

method to calculate the set of top-K POIs for each cell in the

box, and return the union of those sets. A brute force technique

to achieve this is trivial, although it results in a sluggish user

experience. We propose a faster algorithm consisting of the

following steps. We observed this algorithm to be 76 times

faster than a standard QuickSort based approach.

1) Computation for border cells: Using the full set P of

POIs, we execute a kd-tree based branch-and-bound

search algorithm (detailed in the next section) to com-

pute the top-K POI set of each cell on the border of B.

We denote the union of these sets as P̃border.

2) Reducing the search space: Determine the subset of

POIs that are inside the box B, denoted as Pinternal ⊆
P ; consider the set Preduced = P̃border ∪ Pinternal,

which are POIs either inside the box or part of the top-K

set of some border cell of the box.

3) Computation for internal cells: Compute the top-K POI

set for each non-border cell in B; the union of all

these sets is denoted by P̃non-border. We use the kd-tree

algorithm for this step too; however, the tree is created

over the reduced set of POIs Preduced. We generate

P̃non-border in an incremental manner (one cell at a time)

and stop when Pinternal ⊆ P̃non-border, or when the top-

K set for all non-border cells have been evaluated.

4) Final result: The box set BS(B) is returned as P̃border∪
P̃non-border.

The general idea in this algorithm is to first compute the

top-K sets of border cells only using the entire set of POIs.

Thereafter, the top-K sets for internal cells are computed from

a smaller set of POIs obtained by combining the results in the

first step and the POIs inside the box. This reduction of the

search space provides for a faster search.

Step 3 of this process requires a correctness argument since

Preduced = P̃border∪Pinternal should be guaranteed to contain
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Algorithm 1 Compute the top-K set for reference cell.

Input: Root node root of kd-tree; Query cell cref ; Parameter K

Output: Ordered list of top-K POIs w.r.t cell cref
1: function CELLTOPPOIS(root, cref , K)

2: T ← empty list

3: L← empty list

4: L.Append(root)
5: while L is not empty do

6: ntest ← L.Remove-And-Return-Head()
7: if T.size = K and ∄i such that ntest.lbound ≤ T [i].rank then exit while

8: ntest.CalculateRank(cref )
9: T.PriorityInsert(ntest) ⊲ rank based.

10: if T.size > K then T.RemoveLast()

11: if ∃ntest.left node then L.PriorityInsert(ntest.left) ⊲ lbound based.

12: if ∃ntest.right node then L.PriorityInsert(ntest.right) ⊲ lbound based.

13: end while

14: return T

15: end function

the top-K POIs of all internal cells of the box. One can easily

verify that in the plane R2, the top-K POIs of a point inside

any given box is either inside the box, or is the same as the

top-K POIs of some point on the boundary of the box. The

same argument also applies to our discretized grid, provided

the discretization is fine enough that, for any real-valued query

point between two cells on a border of the box, the top-K

set matches the top-K set of either one of the neighboring

cells. The physical distance between two cells in our empirical

evaluation is 100 meters, which is reasonably small to maintain

the accuracy of this heuristic.

B. kd-Tree branch-and-bound search

We construct a kd-tree using the POIs in P as nodes. The

tree in this case is binary, with the x and y coordinates

of the POIs as the two dimensions. The construction uses

standard mechanisms for determining the root, and left and

right subtrees—nodes are split into left and right subtrees

alternating between the x and y values as the splitting dimen-

sion. We implement a construction algorithm that pre-sorts all

objects and operates in O(kn log n) time and O(n) storage

[34]. Additionally, each node in the tree is augmented with

the minimum possible γ (scaled prominence) value of POIs

included in the subtree rooted at that node (including the node

itself). We denote this value by γmin(·). The constructed tree

is reused in all searches where the searched POI set is the

same.

To calculate the top-K POIs for a given query cell cref ,

two lists are maintained: (a) a list T representing the top-

K nodes (POIs), ordered according to the rank of the nodes

with respect to cref , and (b) a list L of nodes to be explored,

sorted by a lower bound value. The lower bound value for a

node represents the minimum possible rank achievable in the

subtree rooted at that node.

During the search, Algorithm 1 explores the nodes in L in

their order of appearance, and terminates when L becomes

empty, or it is determined that no node in the subtree can

potentially change the existing T list (lines [6− 7]). The latter

case can happen when the T list is already at full capacity (K),

and the lower bound value of the first node in L is greater than

the rank value of all nodes in T . Exploring a node involves

the steps of (i) checking if the node can be inserted in the T

list based on its rank (lines [8− 10]), (ii) computing the lower

bounds for the left and right children, and (iii) inserting them

in L (lines [11− 12]). We provide an example illustrating the

execution of this algorithm in an earlier work [10].

C. Improving the search time

When top-K POIs are being determined for consecutive

cells (e.g. a row or column of cells), it may be possible to

skip the top-K search for certain cells. Assume that T is the

vector of top-(K + 1) POIs obtained for a cell cs using the

kd-tree search. Let ct be a subsequent cell in the same row

or column. Given the structure of the ranking function, the

rank of any POI with respect to cs can at best reduce by

dnorm(cs, ct) (the γ values are constant) when computed with

respect to ct. Consider the (K + 1)th top POI for cs, i.e.

T [K + 1]. The rank of this POI, and any other POI not in T ,

can at best be r = rank(T [K + 1], cs)− dnorm(cs, ct) when

computed with respect to ct. Therefore, if we reorder T based

on the ranks of the POIs with respect to ct, and observe that

the Kth POI rank is less than or equal to r, then no other

POI can replace the first K POIs in the reordered T . In that

case, the kd-tree search for ct can be skipped, and the first

K POIs in the reordered T are the top-K POIs for ct. Note

that the (K +1)th POI is only known for cell cs, the last cell

where a full search was performed. Hence, r should always

be calculated using the last fully searched cell (i.e. cs).

D. Computing Pr(O|c)

The output generated by our LPPM is an interest set. Let

I1 denote the interest set observed by the adversary in the first

query. Assuming that any existing cache is flushed in the first

query, this interest set is same as the box set. For adversarial
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Fig. 2: Areal privacy in the first query; b = 32.

inference (Eq. 2), the proposed method of generating the

interest set in the first query results in Pr(I1|c) being either

zero or one. It is zero if BS(B) 6= I1 for c ∈ B; otherwise

one. Therefore, we can say that Φ1 ∝ Φ0 within the subset of

cells where the box set is I1. As a direct result of the method

of generating I1, this subset will have all cells in the box B1

used during the computation.

E. Evaluation

1) Box set computation time: Table I lists the average time

to compute the box sets for a given size (the parameter b). The

average is taken over all the boxes induced as a result of the

pre-partitioning. Recall that in a Z×Z grid, there will be Z
b
×Z

b

boxes. Values for α (weight on distance) and K are set at 0.8
and 10 respectively. The execution time for each parameter

value is taken as the average of 10 identical runs. Each cell

in the table shows the time for the two different devices

(ARM and Atom). Except for when large boxes (64 × 64
cells ≈ 40.9km2) are created for some high density POIs, the

execution time using the ARM processor is within one second;

in fact, less than 500 milliseconds for a majority of the cases.

We get almost a five fold improvement in the computation

time by using the Atom processor, with most computations

in the 20 to 100 ms range. Although the Atom processors

are currently more suitable for tablet computers, efforts have

already been successful in porting them to smartphones. We

also tested our algorithm on a physical Samsung Galaxy

Note smartphone with a dual-core 1.5GHz Snapdragon S3

processor. The observed run times for the 32 × 32 box size

are a three fold improvement over the emulated values on the

ARM device.

The client incurs as additional network overhead while

retrieving the locations and γ values of the matching POIs

inside the large area. However, the overhead is negligible—if

the latitude, longitude and γ values of a POI are encoded as

32-bit numbers, and 1000 matching POIs exist inside the large

area, then a total of 12KB of data needs to be downloaded in

order to compute the box set. Assuming a 3G connection with

320 KB/s speed [35], this download will incur an additional

37.5 milliseconds to the process (ignoring connection latency).
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Fig. 3: Number of POIs for which details are retrieved in the

first query.

2) Privacy: With Φ0 as a uniform distribution over a

subset of cells, the posterior distribution Φ1 will also be a

uniform distribution over the subset of cells that has a non-

zero probability in Φ0 and has the same box set as the one

appearing in the user’s query. As such, the nearness metric is

not applicable here. Fig. 2 shows a box plot of the areal metric

on the first query issued on the 100 paths. The plot depicts the

case for three POI search keywords—“starbucks coffee” (92

POIs: low density), “gas station” (347 POIs: medium density),

and “bakery” (834 POIs: high density).

As can be observed, our approach results in a low variance

areal privacy values due to the deterministic nature of the

process. The minimum value always corresponds to 511.5
cells (5.1km2), which is the same as the theoretical value for

32 × 32 = 1024 cells with uniform distribution. The values

generated by geo-indistinguishability have a comparatively

higher variance, but does generate areal privacy values larger

by a factor of three. However, this comes at the expense of

a comparatively larger amount of bandwidth usage. When

the AOR in geo-indistinguishability is made large enough

to encompass the top-K POIs corresponding to the user’s

location, the resulting retrieval is as high as a factor of ten in

the case of the high density POI (bakery) (Fig. 3). The variance

is also comparatively higher as a result of the randomness in

the perturbed location.

Note that, by design, the sought top-K set is always

available to the user in the interest set approach. As such,

accuracy of results do not suffer in the approach.

VII. QUERIES ON A PATH

As long as the multiple queries by the user happen when

the user is in the same box, the adversary’s knowledge of

the user’s location will not be enhanced. Consider the case

where the user moves from one box to another between two

consecutive queries and the time interval between these two

queries is larger than the time needed by the user to move

across the large geographical area. In this case, the adversary

is still not able to enhance his knowledge about the user’s
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TABLE I: Average time (milliseconds) to compute box set for different sizes of a box with b× b cells. Top and bottom values

correspond to the ARM processor and the Atom processor virtual devices respectively.

box size (b× b)
search query no. of POIs 16× 16 32× 32 64× 64

bus station 32
24.41 43.47 76.96

4.71 8.62 15.18

farmers market 50
45.69 74.04 140.88

8.12 13.62 26.78

police 84
71.25 128.58 396.82

12.41 22.93 70.38

starbucks coffee 92
63.26 117.24 478.98

10.79 20.57 84.84

grocery 95
64.43 119.55 386.67

12.02 23.03 75.34

restaurant italian 124
81.74 155.23 539.14

13.77 27.02 94.71

liquor store 125
92.82 180.66 831.41

14.8 29.42 135.69

bookstore 126
80.66 152.26 650.29

14.83 29.55 128.76

library 141
102.61 194.44 783.86

16.19 31.38 128.72

box size (b× b)
search query no. of POIs 16× 16 32× 32 64× 64

night club 149
96.27 172 644.26

15.35 29.59 115.82

clothing store 169
120.06 235.17 920.34

20.53 42.34 171.79

car rental 196
142.95 252.14 889.84

23.97 44.91 165.54

parking 281
202.45 363.43 1248.92

33.26 62.34 220.6

atm 297
190.53 339.13 1382.03

29.72 57.46 250.42

gas station 347
210.34 383.49 1580.96

34.82 69.25 308.41

pharmacy 369
247.32 446.25 1846.01

36.97 70.33 303.26

cafe 608
385.3 613.32 2097.42

61.73 107.47 407.17

bakery 834
525.32 803.75 2776.04

80.89 137.3 539.39

Fig. 4: Location inference during multiple queries.

location. This is because, there is enough time for the user to

move to any cell in the Z × Z grid.

Now we consider the converse scenario, where the time

interval between the two queries is less than the time needed

by the user to go from the current cell to the farthest possible

cell in the grid. In this case, if we continue to use the

deterministic algorithm in Section VI, the adversary has an

advantage. This is illustrated in Fig 4. It shows two adjacent

boxes in the pre-partitioning: A and B, where b = 4. The user

was in one of the cells in box A and requests the box set of A.

The user then moves for one time step (into box B) and then

issues another query. If the box set of B is unique, then the

adversary can narrow down the user’s location to the “shaded”

boundary cell(s) of B. He sees that the first query’s interest set

matches box A and second query’s interest set matches box

B, and the user had only enough time to move by one cell.

Therefore, the techniques proposed for first query need to be

enhanced for subsequent queries.

A. Selection area

The reason for privacy loss during multiple queries with

time interval constraints is due to the fixed pre-partitioning.

Fixed pre-partitioning is suitable for the single query scenario,

but not for the subsequent queries. In order to deter the kind of

attacks mentioned above, we first create a new area, hereafter

called the selection area S, by expanding the box used at the

previous query to its neighboring cells. If ∆ time steps have

elapsed between two subsequent queries, then a neighboring

cell is any cell that is no more than ∆ rows or columns

away from the current box. The selection area S represents

all possible cells the user could be in for query qt, given as

S(Bt−∆) = b× b boxes in ∪c∈Bt−∆
nbr(c,∆)

nbr(c,∆) = {c′|c′ can be reached

from c in ∆ steps} (11)

Figs. 5a and 5b show S where ∆ = 1 and ∆ = 2
respectively. The numbers inside each cell signify the number

of b× b boxes inside the selection area that contain the cell.

B. Choosing a box

Our algorithm makes the selection of the b × b box (for

interest set generation) based on whether the issued query is

the first one, or one of the subsequent ones. Algorithm 2 uses

pseudo functions whose objectives are discussed next. For the

first query, as described in Section VI, the Z ×Z grid is pre-

partitioned into fixed non-overlapping boxes of size b×b. The

algorithm simply chooses the box that contains the user’s cell.

Let us assume that the algorithm is trying to generate the

interest set for query qt and ∆ be the maximum number

of cells that the user could have moved since the previous

query. For the second query (t > 1), and subsequent ones,

the algorithm first calculates ∆ based on query timestamps

and determines the selection area S. The box for the current

query is selected by picking a b×b box Bt uniformly at random

from S(Bt−∆) such that it contains the user. The algorithm

uses the same techniques used for the single query scenario to

efficiently generate the box set. Since the client caches earlier

results, it only requests details for POIs that are new to this

box, i.e. It = BS(Bt) − I, where I is the cache (set) of all

POIs retrieved earlier. This will continue till the current user

session ends. When the time interval is large enough for the

user to reach the farthest cell in the Z×Z grid, the algorithm

starts a new session with the fixed pre-partitioning step.
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Algorithm 2 Box selection for interest set generation.

Global Initialization: Time of previous query tl = 0; Previous box Bp = φ

Input: Current time t; Box size b; User cell cuser
Output: Box B

1: function BOXFORCURRENTQUERY(t, b, cuser)

2: G← Z × Z grid ⊲ Initial grid.

3: if t = 1 then

4: B ← G.FixedBox(b, cuser) ⊲ (b× b) box from pre-partitoned grid.

5: tl ← 1
6: else

7: ∆← t− tl
8: S ← G.GetSelectionAreaBoxes(Bp,∆) ⊲ (b× b) boxes in selection area.

9: B ← RandomSampling(S, cuser) ⊲ Random (b× b) box from the selection area containing user cell.

10: tl ← t

11: end if

12: Bp ← B

13: return B

14: end function

(a) ∆ = 1.

4 6 8 8 6 4

6 9 12 12 69

8 12 16 16 12 8

4 6 8 8 6 4

6 9 12 12 69

8 12 16 16 12 8

(b) ∆ = 2.

Fig. 5: Selection area for a given box (4× 4 size) and ∆.

C. Computing Pr(O|c)

Let It denote the interest set observed by the adversary at

time step t > 1. Recall that the POIs of interest to the user

may only partially be in this set, since some of them may

be available in the cache I of earlier queries. Consider the

following two sets.

νt(c) = {B|B ∈ S(Bt−∆) and c ∈ B}

ηt(c) = {B|B ∈ νt(c) and It ⊆ BS(B) ⊆ I ∪ It}(12)

νt(c) denotes the set of b× b boxes in the selection area S

at time t that contain cell c; ηt(c) are boxes in νt(c) such that

all newly requested POIs (It) are part of the box set, which

itself is fully contained in the union of the cache and the newly

requested set. Pr(It|c) is then equal to
|ηt(c)|
|νt(c)|

.

Computation of ηt(c) is straightforward for the adversary

once νt(c) is known. However, the adversary does not know

S since it depends on Bt−∆. Nonetheless, the adversary can

perform approximations, denoted by ν̂t(c) and η̂t(c). As base

cases, we have ν̂1(c) = {B|c ∈ B} and η̂1(c) = {B|c ∈
B and BS(B) = I1}—the same formulation as we had for the

first query. To approximate ν̂t(c), the adversary can consider

the union of all selection areas that can be generated from

boxes in η̂t−∆(c).

ν̂t(c) = {B|B′ ∈ η̂t−∆(c) and B ∈ S(B′) and c ∈ B}

η̂t(c) = {B|B ∈ ν̂t(c) and It ⊆ BS(B) ⊆ I ∪ It} (13)

We use in
|η̂t(c)|
|ν̂t(c)|

as an estimate of Pr(It|c) in Eq. 2.

D. Evaluation

1) Privacy: When multiple queries are performed, the

distribution of the POIs along the path has a direct impact on

the interest set requested by the user. As such, the nearness and

areal privacy metric can fluctuate (both increase or decrease)

over time. Fig. 6 depicts the values of these two metrics for one

of the paths, with “gas station” as the search keyword, and box

length b = 32 cells. Since our interest set retrieval mechanism

(ISR) issues requests only if the POIs are not in the cache,

the number of queries are comparatively lower than in the

geo-indistinguishability (GI) approach. The GI approach also

makes use of a cache; however, it must issue a query at every

time step to determine which POIs in the cache correspond

to the result set. When retrievals are made infrequently, the

nearness metric can be sustained comparatively higher. More

queries enable better approximations for the adversary. It is

difficult to make a similar observation on the areal metric from

the figure.
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Fig. 6: Nearness and areal privacy variation along a path.

Search keyword = gas station and b = 32 cells.
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Fig. 7: Nearness and areal privacy quartiles. b = 32 cells.

In order to understand the overall behavior in multiple paths,

we look at the quartiles of the two metrics across all the

paths and three POIs with varying density (Fig. 7). Similar

to the observation stated above, nearness in the ISR approach

is maintained at a higher level than that in the GI approach.

The maximum value of nearness in the lower quartile (25%)

of the ISR data is indeed higher than the upper quartile (75%)

of the GI data. The interquartile ranges show no overlap,

demonstrating strong evidence that the median nearness value

in the two approaches are significantly different.

For areal privacy, we observe that ISR has a higher median

value in the three POI types; although, there is no evidence

of significant differences. We do observe that for medium and

high density POIs (“gas station” and “bakery” respectively),

the ISR approach maintains comparatively lower variance in

the areal privacy than the GI approach. This is indicative of

a stable approach, irrespective of the path taken by the user

during the queries. For most parts (upper 75%), the metric is

also higher (≥ 8km2) than the theoretical minimum (5.1km2).
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We can assess how much information a privacy mechanism

has revealed by also focussing strictly on the final destination

of a path. Destinations of travel can be argued to be more

private than the exact path taken by the user to the destination.

Fig. 8 shows the empirical cumulative distribution function

(CDF) of the distance between the last cell of a path and

the cell with the highest probability in the adversary’s final

inferred distribution, i.e. the nearness value. The CDF is

generated by collating observations in all the 100 paths and

the three POI keywords. Comparatively, about 10% of the

cases in the ISR approach has a final nearness value as low

(≈ 1.8km) as the GI approach; in general, the values are

always better. The adversary’s inferred location in the ISR

approach is significantly distant (> 5km) in about 30% of the

cases, and more than 2km in 95% of the cases.

2) Bandwidth impact : The interest set retrieval mechanism

aims to exploit the fact that top-K sets do not frequently (and
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significantly) change for nearby query points. We exemplified

this in Fig. 6, which shows gaps between query points. Further,

since the approach only retrieves details on pertinent objects,

i.e. objects that are part of a top-K set along the path, we also

expect that download bandwidth is preserved. Fig. 9 shows the

quartiles for the total number of POIs for which details are

retrieved by the ISR and GI approaches. The figure also shows

the maximum number of POIs inside the large geographical

area for each of the three keywords. It can be seen that the GI

approach could potentially result in the download of details for

all the POIs as a result of using an AOR. To contrast this, the

ISR approach downloads details on a median of 12%–30% of

the POIs. Although the ISR approach uses an union of various

top-K sets to generate the box set, it does not result in too

many redundant downloads.

Fig. 10 displays the frequency distribution of the cardinality

of the interest set across all queries (three search keywords and

all paths). A total of 264,627 data points are used to generate

this distribution. Recall that the interest set is the set for which

details are retrieved from the server at a query point. It is

empty if the required details are already in the cache (retrieved

earlier). We observe that in approximately 90% of the query

points, no communication was necessary with the server

(empty interest set). This confirms our statement that top-K

sets seldom undergo changes between query points. Further,

the distribution is heavy tailed, with the frequency dropping

significantly as size increases. In other words, smaller interest

sets are abundant. This is evident of the fact that when-

ever top-K sets change between successive query points, the

changes are often very small (one or two POIs). The top-K

set landscape in local search is recurrently plateaued and is

slow rising; Micinski et al. have independently validated this

observation by studying the changes in search results of six

Android applications instrumented to use a truncated location

[36]. To the best of our knowledge, this characteristic is rarely

exploited by a privacy mechanism.

3) Impact of box size: Fig. 11 depicts the nearness and areal

privacy for three different choices of the parameter b. Recall

that smaller box sizes imply lower expectations of privacy. The

trends we observed in the case of 32×32 box size is repeated

for other box sizes too, albeit at varying degrees. For example,

using a smaller box size leads to lower privacy values, and they

increase as larger box sizes are used. A larger box size does

imply a larger box set, and can lead to the retrieval of more

number of POI details.

VIII. CONCLUSION

Through this work, we have demonstrated how private local

search mechanisms can leverage the computational improve-

ments in modern mobile devices. We have considered a result

ranking procedure that includes the prominence of POIs in

addition to their distance from the query point. Our approach

implicitly exploits the continuity in the top-K result sets and

retrieves details on POIs as needed. The empirical evidence

suggests that our approach does not require any retrieval in

most cases, and when needed, the number of POIs retrieved are

significantly small. This aids in preventing an adversary from

obtaining significant refinements in the probability distribution

associated with the user’s current location.

Our empirical analysis demonstrates that the interest set

approach can limit adversarial inferences in a setting with real

world POI distributions. However, the approach currently does

not provide a theoretical guarantee on this limit. We desire to

be able to bound the probabilistic advantage that the adversary

gains after observing the interest set. We will direct our future

work along this line.
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