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Abstract

We present a novel cryptanalytic method based on graph traversals
to show that record linkage using Bloom Filter Encoding does not pre-
serve privacy in a two-party setting. Bloom Filter Encoding is often sug-
gested as a practical approach to medical data aggregation. This attack is
stronger than a simple dictionary attack in that it does not assume knowl-
edge of the universe. The attack is very practical and produced accurate
results when experimented on large amounts of name-like data derived
from a North Carolina voter registration database. We also give theoreti-
cal arguments that show that going from bigrams to n-grams, n > 2, does
not increase privacy; on the contrary it actually makes the attack more
effective. Finally, some ways to resist this attack are suggested.

1 Introduction

When aggregating medical data for research, it is necessary to link data on the
same person, but originating from different sources. The techniques for linking
data involve ways to match pairs of data records based on the value of personally
identifying information (commonly referred to as quasi-identifiers or QIDs), such
as names, birth dates, addresses, and national or local identifying codes. Even
when free access to personally identifying information is available, incomplete-
ness and errors in the data make matching problematic. If data from the same
person is not linked, statistical studies will suffer from inflated sample sizes and
unknown repeated measures bias. If data from two different persons are linked,
their combined data represent a fiction that would contaminate study conclu-
sions, and would deflate actual sample sizes. Therefore, accuracy is critical in
this aggregation.

For research, the privacy rules of the Health Insurance Portability and Ac-
countability Act (HIPAA) in the US and the Data Protection Directive of the
European Union, severely restrict researcher access to QIDs, given the nearly
universal lack of patient authorization to use Protected Health Information.

1



Hence, along with accuracy, equally important consideration is a privacy guar-
antee during the linkage process.

A final factor that determines the usefulness of a linkage algorithm is whether
it can scale to large datasets. Recent results that are based on new cryptographic
methods, including partially homomorphic encryption [13], do not sufficiently
demonstrate their implementability on large, realistic datasets.

The combining of databases such that similar records are linked together
where the linking characteristics are kept private is known as Privacy Preserving
Record Linkage (PPRL) or alternatively Private Record Linkage (PRL). The
process of linkage consists of matching on encoded data, with an understanding
by the data providers that other selected attributes will be revealed on matched
data.

Note that linking data from different sources in a privacy preserving manner
has many more applications than just linking health records. A commonly cited
example [22] involves the study of finding correlation between certain kind of
automobile accidents and resulting injuries. In order to conduct such a study,
data is needed from police records, insurance companies and hospitals. These
entities are not going to share data unless there are strong privacy guarantees.
There are many other applications for PPRL, but our focus in this paper is
limited to linking health records.

While there are multiple approaches to PPRL[22], one approach that has
received considerable attention is Bloom Filter Encoding (BFE) [19]. First
proposed by Schnell, Bachteler and Reiher[19], it splits a word to encode into
equal-length, overlapping pieces (so called n-grams, for some n > 1), inserts the
pieces into a Bloom filter, and determines if two records match by comparing
the resulting filters. Similarity of two Bloom filters is measured by the number
of bits that are common between the two filters in relation to the total number
of bits. Based on this similarity, a match or non-match is declared between the
two corresponding words. Other approaches to PPRL use secure multi-party
computations, which are computationally expensive, or require exact matching
of identifiers. In contrast, BFE is computationally reasonable to apply to large
datasets and allows for approximate matching. Accordingly, interest in BFE
has been seen for usage in PPRL of medical records [4, 3].

The linkage can be performed in a two-party setting or by employing a third
party–a semi-honest broker. Schnell et al. observed the obvious weakness in
the former approach: an attacker can launch a dictionary attack to recover
the data. Such an attack assumes knowledge of the universe from which the
words are drawn. The main result of this paper is to show that a non-semantic
attack, one that does not assume knowledge of the universe, yet recovers the
encoded data with a high rate of success is possible. The cryptanalytic method
employed is novel, very efficient and resulted in recovering a high percentage of
plain text. Our experimental results were carried out on a half million name-
like words derived from the North Carolina voter registration database, ten
thousand random ten letter words, and finally ten thousand random nine digit
numbers.

The rest of the paper is organized as follows. Section 3 covers related work.
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Details of Bloom filter encoding are given in Section 4. The main result is
presented in Section 5. Section 6 gives some scenarios when this attack is not
effective. Section 7 presents an argument detailing why it does not help to go
to higher n-grams. Experimental results are given in Section 8. Finally, some
implications and countermeasures are discussed in Section 9.

2 Contributions

This paper presents a novel cryptanalytic method based on graph traversals to
show that record linkage using Bloom Filter Encoding does not preserve privacy
in a two-party setting. Bloom Filter Encoding is often suggested as a practical
approach to medical data aggregation. For a detailed discussion on various link-
age approaches, including Bloom Filter Encoding, see [22]. In [19], a dictionary
attack is proposed against Bloom Filter Encoding. Our attack is stronger than
a simple dictionary attack in that it does not assume knowledge of the universe.
The attack runs quickly and produced accurate results when experimented on
large amounts of realistic name-like data derived from a North Carolina voter
registration database, synthetically generated random strings, and synthetically
generated random numbers. We also give theoretical arguments that show that
going from bigrams to n-grams, n > 2, does not increase privacy; on the con-
trary it actually makes the attack more effective. Finally, some ways to resist
this attack are suggested.

3 Related Work

There have been attacks on BFE directly. First, as remarked in Schnell et
al.’s original paper on BFE, a dictionary attack can be mounted in a two-party
scenario. Second, a constraint satisfaction attack can be mounted on the three-
party case[12]. But it was of limited effect in practice[11]. Finally, a frequency
analysis attack has been proposed by [10, 15]. The attack requires knowledge
of the universe, and particular choices to be made regarding the hash functions
used.

Various enhancements to the basic BFE approach have been proposed. These
include calculating adaptive parameters and compositing the result [3] and even
adding homomorphic encryption [17].

The privacy-preserving aspect of record linkage plays a central role when
architecting a federated system to perform medical data aggregation. Two such
projects are SAFTINet[18] in North America and VPH-Share[7] in Europe.

A key building block of PPRL is related to privacy-preserving set inter-
section. This problem was initially considered by [6]. Algorithms for other set
operations in a privacy-preserving setting were presented by [9]. For more recent
work see [21].
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4 Bloom Filter Encoding

Using BFE for PPRL was first proposed by [19]. BFE is used because similar
strings encode similarly. This similarity is what is used to perform RL.

At its most basic, BFE requires only three parameters: m bits for the size
of the filter, k hash functions, and the size of n–grams to use. The first two
parameters are the same as a standard Bloom Filter, whereas the third is specific
to BFE.

It has been shown by [8] that the k hash functions can be replaced by linearly
combining the results of two independent hash functions. This computationally
decreases the cost of encoding, without sacrificing any utility of the filter. The
k hash functions are created from two independent hash functions H1 and H2

by
Hi(x) ≡ H1(x) + i ·H2(x) (mod m) (1)

where 0 ≤ i < k and i ∈ Z. It is this computational enhancement that [10, 15]
exploit to mount their frequency analysis attack.

To obtain the required two hash functions for BFE, it is common to use
HMAC, specified in FIPS-198[14], with a cryptographic hash and two distinct
keys. HMAC creates a new hash from an existing unkeyed hash H and key K
as

HMACH,K(x) = H
(
K ⊕ opad||H(K ⊕ ipad||x)

)
(2)

where⊕ is exclusive–or, || is concatenation, and ipad and opad are fixed padding
constants. FIPS-198 specifies specific hashes and padding constants to use,
however other carefully selected hashes and constants can be used.

After these parameters are selected, the item to encode is split into n–grams.
First, n − 1 start sentinel characters are prepended and n − 1 stop sentinel
characters are appended. These sentinel characters need not be the same, but
most of the literature in this area use an underscore for both. To emphasize the
distinction, we will use “ˆ” for the start sentinel and “$” for the stop sentinel.
Since an n–gram of all sentinels is not possible, the choice of sentinel is therefore
arbitrary. Next, the result is split into groups of n consecutive letters. The
number of groups created will be n− 1 more than the length of the word. Each
individual letter group is inserted into the Bloom Filter.

Suppose we wished to encode “SMITH” using bigrams. Then the bigrams
would be computed as

SMITH→ ^SMITH$→ {^S, SM, MI, IT, TH, H$},

with the resulting six bigrams inserted into the Bloom Filter.
If trigrams were in use, “SMITH” would be computed as

SMITH→ ^^SMITH$$→ {^^S, ^SM, SMI, MIT, ITH, TH$, H$$}.

4.1 Example Encoding

Suppose we wish to encode “SMITH” into a Bloom Filter with m = 35, k = 3,
n = 2. The hash functions will be derived from HMAC with SHA-256. The
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key lengths should match the block size of the selected hash. If they do not,
a key derivation algorithm as described in FIPS-198 is used to make them so.
SHA-256 produces a hash 256 bits in length, so the keys need to also be 256
bits in length. We will use keys k1 = 0x11...1 and k2 = 0x22...2, each of
which are specified in hexadecimal and 64 characters in length.

The data to encode, “SMITH,” is split up into six bigrams {^S, SM, MI, IT, TH, H$}.
Each bigram is hashed by the two HMAC functions.

HMACSHA-256,k1
(^S) ≡ 21 (mod 35) HMACSHA-256,k2

(^S) ≡ 10 (mod 35)

HMACSHA-256,k1
(SM) ≡ 23 (mod 35) HMACSHA-256,k2

(SM) ≡ 2 (mod 35)

HMACSHA-256,k1
(MI) ≡ 25 (mod 35) HMACSHA-256,k2

(MI) ≡ 26 (mod 35)

HMACSHA-256,k1
(IT) ≡ 29 (mod 35) HMACSHA-256,k2

(IT) ≡ 14 (mod 35)

HMACSHA-256,k1
(TH) ≡ 4 (mod 35) HMACSHA-256,k2

(TH) ≡ 19 (mod 35)

HMACSHA-256,k1
(H$) ≡ 12 (mod 35) HMACSHA-256,k2

(H$) ≡ 31 (mod 35)

Linear combinations of these values are taken to set k = 3 bits per bigram.
For the case of ^S, this leads to the following values.

HMACSHA-256,k1(^S) + 0 ·HMACSHA-256,k2(^S) ≡ 21 + 0 · 10 ≡ 21 (mod 35)

HMACSHA-256,k1(^S) + 1 ·HMACSHA-256,k2(^S) ≡ 21 + 1 · 10 ≡ 31 (mod 35)

HMACSHA-256,k1(^S) + 2 ·HMACSHA-256,k2(^S) ≡ 21 + 2 · 10 ≡ 6 (mod 35)

Therefore after inserting ^S, bits 6, 21, and 31 will all be set. Continuing
this logic for each bigram will result in the contents of the filter shown in Figure
1.

5 Attack

Assuming we have access to the complete encoding information, the following
attack is possible. Complete information in this case would include knowledge
of any pre–processing steps, and the setup of the Bloom Filter including HMAC
keys if applicable. From this information, a reasonable alphabet, Σ, can be
inferred.

The attack proceeds on a single record in four phases:

1. Determine the potential n-grams in the Bloom Filter by brute force.

2. Construct a directed graph from the potential n-grams.

3. Traverse the graph noting the walks traveled.

4. Filter the paths.
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The first phase of determining the potential n-grams is done by simple brute
force. With the sentinels, there will be (|Σ| + 1)n − 1 distinct n-grams. Each
n-gram is tested for membership in the filter. Despite this being brute force,
it is still reasonable to perform this step because n needs to be small to allow
for approximate matching in record linkage, and the cryptographic hashes used
can be quickly computed.

Next, a directed graph is constructed. The vertices are the n-grams found
with two additional vertices labeled source and sink. There is a directed edge
from u to v if the last n − 1 characters of u’s label are the same as the first
n−1 characters of v’s label. There is an edge from source to v if the first n−1
characters of v’s label are all start sentinels. There is an edge from u to sink if
the last n− 1 characters of u’s label are all stop sentinels.

Then, all walks from source to sink are considered. Such a walk represents
a word that could have been inserted in the filter. Walks can be easily found
by variants of a depth first search looking for either all simple paths, all edge–
disjoint walks, or all walks of a maximum length.

Finally, filters can be applied. For example, if the Bloom filter is known to
encode only a single word, then a potential word can be encoded into a new
filter and compared to the original. Only if they match exactly could the word
have been the actual word inserted into the bloom filter. Additional filters can
be devised based upon the known contents of the bloom filter, such as those
based on expected word length, or even semantic filters based upon dictionaries
or other sources.

5.1 Attack Example

Suppose that we have a filter with m = 200, k = 6, using two HMAC based
hashes using SHA-256 whose keys are 11 . . . 1 and 22 . . . 2, respectively, where
both keys are 64 hexadecimal digits in length.

After inserting “WILLIAM”, we are left with the filter shown in Figure 2.
Using an alphabet of “ABCDEFGHIJKLMNOPQRSTUVWXYZ”, we test each of the

(26 + 1)2 − 1 = 728 possible bigrams, including those using start and stop
sentinels. In this case we find {^W, AM, EC, IA, IL, JQ, LI, LL, M$, WI} are
present. Note that there are two bigrams extracted that do not derive from
WILLIAM, EC and JQ. From these bigrams we derive the directed graph shown in
Figure 3.

Note how the vertices EC and JQ, which were the result of false positives
from the Bloom filter, do not meaningfully contribute to the walks formed from
the graph. They are just isolated vertices. Only if they shared enough of their
label with another vertex could they potentially contribute.

The words derived from the set of all simple paths in this graph are WIAM,
WILIAM, and WILLIAM. If we have the additional knowledge that only one word
was inserted, we can filter these paths by requiring the bigrams from a walk
correspond to the exact bit pattern of the Bloom filter being attacked. After
such a filter only WILLIAM remains.
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The words derived from the set of all edge–disjoint walks in this graph are
WIAM, WILIAM, WILILLIAM, WILILLLIAM, WILLIAM, WILLILIAM, WILLLIAM, and
WILLLILIAM. Applying the same exact match filter removes WIAM and WILIAM

since they do not have the LL bigram from the original word.
Observe that in both cases, the correct word was recovered from the filter,

and the set of possibilities is relatively small. After filtering, fewer possibilities
remain, with the correct word still present.

5.2 Computational Cost of Attack

To conduct this attack there are two distinct phases of the attack. First, the
n–grams present are recovered. This is done in Θ(|Σ|2) time. Second, the graph
is constructed and walks on the graph are considered. The traversal time, as
for all depth first searches, is Θ(|V | + |E|). Practically this is proportional to
the length of the word in the filter.

In contrast, the constraint satisfaction attack, described in [12], works by cre-
ating an instance of the Constraint Satisfaction Problem. This is a well-known
NP-Complete problem, which at the present means that attack has exponential
complexity.

6 Limitations of Attack

This attack has two significant limitations. First, it relies upon complete knowl-
edge of how a string is encoded in the Bloom Filter. This is a strong assumption,
but is still realistic for some scenarios. See §9.2 for further details. Second, the
structure of the word inserted greatly impacts its recoverability. In the preced-
ing example of WILLIAM, we had words that were recovered that could have been
formed from the n–grams, but they were not correct.

This occurs when words have duplicate (n−1)–grams in them. This leads to
extra edges that are not necessarily present in the word. In addition if there are
duplicate n–grams, despite being present multiple times in a word, they only
contribute to bits being turned on once in the Bloom Filter. A word exhibiting
both of these situations is MISSISSIPPI. Consider Figures 4 and 5 that show
the structure of MISSISSIPPI when split up as bigrams and trigrams. It should
be obvious from the figures that there are many walks from source to sink.
However, there are fewer in the case of trigrams.

7 Moving from n–grams to (n+ 1)–grams

Moving to longer n–grams does not make this attack any more difficult. To the
contrary, it actually makes it easier. The core idea is that the graph becomes
more constrained. We start by demonstrating with two examples why increasing
to longer n–grams does not help, WILLIAM and MISSISSIPPI, followed by proofs
of the increase in effectiveness.
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For the word WILLIAM, first consider the graph derived from it as bigrams.
This is shown in Figure 6. By observation, the (source, sink)–walks correspond
to the words WIAM, WILIAM, WILLIAM, WILLLIAM, . . . . Alternatively, these walks
can be described by the regular expression WI(LL∗I)∗AM. Now consider the graph
derived from WILLIAM as trigrams. This is shown in Figure 7. It has only one
(source, sink)–walk, WILLIAM. Clearly this is many fewer walks, and in both
cases the correct word is among the possible choices.

For the word MISSISSIPPI, the situation is a bit more complicated. In the
bigram case, figure 4, there are the words MI, MISI, MIPI, MISISI, MISIPI,
MIPISI, MIPIPI, . . . = MI((S+|P+)I)∗. In the trigram case, figure 5, there are
the words MISSIPPI, MISSISSIPPI, MISSISSISSIPPI, . . . = MIS(SIS)∗SIPPI.

Observe that in both cases, every walk in the trigram graph has a corre-
sponding walk in the bigram graph, but the converse is not necessarily true.

7.1 Theoretical Proof for increasing attack effectiveness
by going to larger n grams

We will show that moving from n–grams to (n+1)–grams, does not weaken this
attack, and in fact strengthens it.

Definition 7.1. A phantom vertex is a vertex in the derived graph that does
not correspond to a n–gram that was inserted into the filter.

Phantom vertices arise from a query that is a false positive in the Bloom
Filter. For example, the vertices EC and JQ from Figure 3 are phantom vertices.

Definition 7.2. For a word w, the graph derived from w as n–grams is the
graph created by splitting up w into n–grams as described in §4 and creating a
graph from it according to the rules described in §5.

Note that this definition does not consider phantom vertices because those
only occur when considering the elements derived from a Bloom Filter. The
graphs of Figures 4 and 5 are both examples of graphs derived from a word.
The structure of a graph derived from a word indicates the relative difficulty of
recovering the word from the set of n–grams.

Definition 7.3. For a word w, the graph derived from a Bloom Filter containing
w as n–grams is the graph created by recovering all n–grams present in the
Bloom Filter and created a graph according to the rules described in §5.

This second definition is broader because it allows for phantom vertices to
be in the graph. Observe that trivially, the graph derived from w as n–grams
is always a subgraph of the graph derived from a Bloom Filter containing w as
n–grams. Therefore results on the difficulty of the attack on the graph derived
from w as n–grams are relevant to attacking the Bloom Filter. A high false
positive query rate to the Bloom Filter would clearly degrade record linkage
performance, so in practice phantom vertices are not a large concern.
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For the following theorems, it is important to keep the following in mind. If
a word has a repeated n–gram, it also has at least two repeated (n− 1)–grams.
Similarly there are repeated (n − 2)–grams as so forth. The intuition here is
that as n increases, the repeated n–grams decrease and vice versa.

Definition 7.4. In a graph derived from a word as n–grams, each (source, sink)–
walk has a corresponding word created from the path by taking the first charac-
ter of each vertex label and then removing the start and stop sentinel characters.

For example, the walk (source, ^W, WI, IL, LL, LI, IA, AM, M$, sink) has
WILLIAM as a corresponding word.

Theorem 7.5. For a word w, the graph derived from w as n–grams will contain
a (source, sink)–walk that has w as a corresponding word.

Proof. Let G be the graph derived from the word w as n–grams. By contradic-
tion, suppose that G does not contain a (source, sink)–walk with corresponding
word w. Then there exists at least one edge required for the walk that is not
present in G. Call it e. By construction, the label of e must be a sequence of n
consecutive letters in w, with possible sentinels on both ends of the label. All
such labels would have been constructed when creating G, thus the edge must
be present in G. Therefore all edges necessary for a (source, sink)–walk with
corresponding word w will be present, and thus the walk will exist.

Theorem 7.6. If a word w has at most a repeated (n − 2)–gram, then there
exists only one (source, sink)–walk in the graph derived from w as n–grams.

Proof. By contradiction, suppose that there exist two distinct (source, sink)–
walks in the graph, W1 and W2. Since they both start at the source vertex,
there must be a vertex, t, where the two walks diverge. For the walks to diverge
at t, the out–neighborhood of t must contain at least two vertices, u and v. By
construction, the last n − 1 characters of t’s label must match the first n − 1
characters of u’s label and v’s label. The labels on u and v must be distinct for
them to be distinct vertices. This is a contradiction because u and v’s labels
imply a repeated (n− 1)–gram.

Definition 7.7. A walk W1 is a shortcut of a walk W2 if W1 and W2 share
the same source and destination, the length of W2 is longer than the length of
W1, every vertex in W1 is also a vertex in W2, and every edge less one in W1 is
present in W2.

For example, in Figure 3, the walk (source, ^W, WI, IA, AM, M$, sink) is a
shortcut of the walk (source, ^W, WI, IL, LL, LI, IA, AM, M$, sink) because the
(WI, IA) edge is replaced by the walk (WI, IL, LL, LI, IA).

Theorem 7.8. If a word w has a repeated (n− 1)–gram, then there exist two
walks in the graph derived from w as n–grams such that one is a shortcut of
the other.
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Proof. Let the repeated (n − 1)–gram start at the ith and jth characters of w.
Consider the walk W with corresponding word w. By Theorem 7.5, it is a
walk present in the graph derived from w as n–grams. Along the walk, there
must be a vertex labeled with a suffix starting at character i. Let the first
such encountered vertex along the walk be denoted u. Similarly there must
be a vertex labeled with the prefix starting at character j. Let the last such
encountered vertex along the walk be denoted v. In W, there must be vertices
between the first occurrence of u and the last occurrence of v, else the (n− 1)–
gram would not have been repeated. The graph construction also puts a (u, v)
edge in the graph. Therefore there exists a walk W ′ that is a shortcut of W
that uses the (u, v) edge to shortcut between the first occurrence of u and the
last occurrence of v.

Theorem 7.9. If a word w has a repeated n–gram, then the graph derived
from w as n–grams will have a cycle.

Proof. Consider the walkW of the word w. By Theorem 7.5, it is a walk present
in the graph derived from w as n–grams. Let u be the vertex labeled with a
repeated n–gram. Along W, the vertex u must appear at least twice since the
n–gram is repeated. Therefore there is a walk starting at u that also ends at u.
This walk either is a cycle, or contains a cycle. Thus the graph derived from w
as n–grams contains a cycle.

Theorem 7.10. The graph derived from w as n–grams will have at least as
many (source, sink)–walks as the number of (source, sink)–walks in the graph
derived from w as (n + 1)–grams.

Proof. Let the graph derived from w as n–grams be G1 and the graph derived
from w as (n + 1)–grams be G2. Consider a (source, sink)–walk W in G2. It
has a corresponding word x. Let the walk created by considering x split up as
n–grams be W ′. Each vertex encountered along W ′ must also be present in G1

since the n–grams are portions of (n + 1)–grams derived from w, and thus are
n–grams derived from w. By the construction of edges in G1, each edge present
inW ′ must also be present in G1. Therefore the walkW ′ is present in the graph
G1. Hence each (source, sink)–walk in G2 corresponds to a (source, sink)–
walk in G1.

Corollary 7.11. Going from n–grams to (n+1)–grams will never increase and
possibly decrease the number of candidate words derived from the graph.

Proof. Theorem 7.10 directly shows that the number of candidate words, which
are necessarily (source, sink)–walks, never increases. Theorems 7.6, 7.8 and 7.9
show how the (source, sink)–walks become more constrained as n increases,
leading to fewer distinct walks in the graph. However, by Theorem 7.5, the
actual word we wish to extract will always be present.

The overall intuition one should gain from the preceding theorems is that by
increasing the length of the n–grams, the effectiveness of this attack will only
increase because the constraints put upon the derived graph increases.
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8 Empirical Results

The attack presented is very practical. We have implemented the attack using
the libraries Crypto++[1], GMP[5], and a custom Bloom Filter in C++. It
can reasonably run on an Intel i7-4810MQ processor in a laptop with the at-
tack running on a single BFE record in under 50ms on average for the bigram
case, which includes the time to calculate all of the bigram hashes. In all of
the following trials, the words were encoded into 1000–bit Bloom filters with
bigrams using 30 hashes computed as linear combinations from SHA-256 hashes
with HMAC keys of all 1s and all 2s. Additionally a filter was applied to the
recovered words to ensure that when coded, the resulting Bloom filter matched
the original.

For comparison with other attacks[11, 15], we ensured a minimum of 10,000
records for each data source to allow reasonable comparison of our attack to
other attacks.

8.1 Name–Like Data

Using the North Carolina Voter Registration database, we derived name–like
data by taking the first names and last names, normalizing the case, stripping
the non-alphabetic characters and finally removing duplicates. This resulted in
474,319 distinct words.

When considering only simple paths, 364,450 of the words resulted in only
one guess which was always correct, that is 76.8% of the words. The mean
number of guesses was 1.32. The correct word was among the set of guesses for
442,619 of the words or 93.3%.

When considering edge disjoint paths, 285,454 resulted in only one guess
which was always correct, that is 60.1% of the words. The mean number of
guesses was 23.34, but for words of length less than 15, which is 465,94 or 98.2%
of the words, the mean number of guesses was just 4.71. The correct word was
among the set of guesses for 471,522 of the words or 99.4%.

8.2 Random Alphabetic Strings

A list of 10,000 words of length ten, where each letter was uniformly drawn from
the standard 26 character alphabet was generated.

When considering only simple paths, 7,974 resulted in only one guess which
was correct in 7,887 of those cases or 98.9% of the words. The mean number of
guesses was 1.21. The correct word was among the set of guesses for 9,625 or
96.25% of the words.

When considering edge disjoint paths, 6,013 resulted in only one guess which
was correct in 6,009 of those cases or 99.9% of the words. The mean number of
guesses was 2.47. The correct word was among the set of guesses for 9,989 of
the words or 99.8%.
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8.3 Random Numeric Strings

A list of 10,000 words of length nine, where each letter was uniformly drawn
from the ten digits was generated. This simulates US Social Security Numbers.

When considering only simple paths, 3,121 resulted in only one guess which
was correct in 2,663 cases or 85.3% of the words. The mean number of guesses
was 2.14. The correct word was among the set of guesses for 7,716 of the words
or 77.1%.

When considering edge disjoint paths, 47 resulted in only one guess which
was correct in every case. The mean number of guesses was 52.1, but when a
word results in over 1,000 guesses are tossed out, leaving 9,951 words, the mean
number of guesses was 18.7. The correct word was among the set of guesses for
9,823 of the words or 98.2%.

The relative difficulty in recovering these numeric words appears to be due
to the word length relative to the alphabet size. In particular as the word length
approaches the alphabet size, the likelihood of repeated bigrams and trigrams
increases. As seen in the preceding sections this results in a more complicated
graph. For example, in this specific case the word 486884464 resulted in 196,076
guesses which as one word alone increased the mean number of guesses by 19.6
for the whole set of words.

9 Discussion

9.1 Medical Data Aggregation

The medical community is having to integrate data from disparate sources to
conduct their research, particularly longitudinal studies. This integration re-
quires data sharing mechanisms that address both record linkage quality and
adherence to regulatory frameworks such as HIPPA and the EU’s Data Protec-
tion Directive. One of the key challenges to this is to perform the integration
while preserving privacy. Many of the methods based upon various crypto-
graphic primitives do not scale to realistic data sizes. Recent work, such as [13],
leave practical implementation for future work. In SAFTINet[18] and other
similar frameworks, the problem of linkage is performed very frequently.

While blocking and similar implementation techniques have proven useful[16],
the problem of PPRL on large data sets remains open. To compound the tech-
nical difficulty, governmental and institutional demands make medical data ag-
gregation a challenging area.

9.2 Implications of Attack

One essential requirement of our attack is complete knowledge of the parameters
used for the Bloom Filter. Some of these parameters should be treated as public
information. For instance the parameters m and k can be determined exactly,
or with very high confidence, respectively, by simple inspection of the data.
The choice of the hash functions can not be as easily determined. Following
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Kerckhoff’s principle, the choice of the hash function should be public, but any
keys used should remain private. Practically this means using some kind of
keyed hash, such as HMAC, where the keys used are kept private.

If the keys are known to the attacker, our attack shows that the system can
be broken by any honest, but curious, attacker that obtains the data. That
is any attacker that obtains BFE encoded data and has knowledge of all the
parameters used in the Bloom Filter can decode a significant portion of the data
without any other party being able to detect this.

A situation where this will always be possible is any two-party system. Both
parties will by necessity have access to all the information necessary to perform
our attack. Therefore no two party system can use BFE and ensure privacy
under even the relatively weak assumption of an honest-but-curious attacker.

This also means that any protocol built upon BFE must have the party
that performs the record linkage unable to access the particular Bloom Filter
parameters used. It also means that any party that contributes data to the
protocol cannot be allowed to see the data contributed by another party because
they could perform this attack.

9.3 Potential Counter–measures

We are aware of a couple simple counter–measures that make this attack a little
harder to perform.

First, putting multiple words into a single Bloom filter. Having more than
one word increases the likelihood that the walks from two or more words will
intersect. This makes the path traversal harder because there will then be more
guesses for the correct words. However this will only work if the alphabets for
the two words is the same. If they are different, the resulting graph will be
completely disjoint except for the edges from source to sink. This may have
implications to record linkage because it would force the mixing of individual
attributes that without mixing could be individually weighted. This is the
approach explored in [3], but consideration towards the alphabets used was not
one of their criteria. Additionally their suggestions include adaptively sizing
filters on a per item basis and compositing the result. If the adaptive sizes of
two items match and they are composited at the same offset, then the net effect
is putting two items into the same filter which increases the difficulty as noted.
Otherwise, the only effect on this attack is potentially adding phantom vertices
to the graph.

Second, the start and stop sentinel values provide a clear beginning and
end for all the graph traversals. If the sentinels were removed, then any of
the recovered n–grams could plausibly be the first n–gram in the recovered
word. Again, this may have undesired implications to record linkage since the
characters that make up the beginning and end of the words will be under
represented in the n–grams in the filter. However it would create many more
traversals which could mask the true contents of the filter, but the true contents
would still be in the set of traversals.
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10 Conclusion

We presented a novel cryptanalytic technique based on graph traversals to show
that the Bloom filter encoding does not preserve privacy in a two-party linkage
setting. We proved that it is a practical attack by running experiments on large
name-like datasets derived from the North Carolina voter database. Recently
several other researchers have pointed out weaknesses of this encoding by giving
statistical attacks. Fundamentally, this encoding, viewed as cipher text, lacks
diffusion [20], i.e. small changes to plain text do not result in large changes to
cipher text. Therefore, it is not surprising that this encoding is susceptible to
statistical attacks. On the other hand, any encoding with high diffusion is un-
suitable for record linkage because approximate matching cannot be performed
on encoded text. A conundrum! Therefore, a radically different approach is
warranted to perform record linkage, one that can give high linkage accuracy,
handle large datasets, at the same time preserve privacy. Commutative en-
cryption appears to hold some promise for solving PPRL. Some recent results
[2] suggest that, what always was deemed to be computationaly too expensive,
efficient implementation are indeed possible for realistic size data sets.
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0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0 0
0 5 10 15 20 25 30

Figure 1: Contents of Bloom Filter after inserting ^S, SM, MI, IT, TH, H$.
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9 0469 0480 0E0B 2002 2102 8041 4080 02D0 1200 258A 4024 1000

Figure 2: Contents of Bloom Filter in hexadecimal after inserting WILLIAM.
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source sink^W WI IL LI IA AM M$

LLEC JQ

Figure 3: Graph derived from {^W, AM, EC, IA, IL, JQ, LI, LL, M$, WI}.
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source ^M MI

IS

IP

SS

SI

PI

PP

I$ sink

Figure 4: Graph derived from MISSISSIPPI as bigrams.
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^^M ^MI MIS ISS SSI SIP IPP PPI PI$ I$$

source sinkSIS

Figure 5: Graph derived from MISSISSIPPI as trigrams.

21



source sink^W WI IL LI IA AM M$

LL

Figure 6: Graph derived from WILLIAM as bigrams.
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source sink^^W ^WI WIL ILL LLI LIA IAM AM$ M$$

Figure 7: Graph derived from WILLIAM as trigrams.
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