MATH-1951
Quiz 4 - (3.2, 3.3, 3.4)
Answer the following questions, and show your work. Answers need not be simplified.
Scientific calculator only.

[1] (3 points total) Find the derivative of

\[f(x) = \sin(-x^2) \]

\[f'(x) = \cos(-x^2) \cdot (-x^2)' \]

\[= \cos(-x^2) \cdot (-2x) \]

\[= -2x \cos(-x^2) \]

[2] (3 points total) Find \(f'(x) \) and \(f''(x) \) of

\[f(x) = 2x^5e^x \]

Rename \(h(x) = 2x^5e^x \)

\[h''(x) = (2x^5 + 10x^4) \cdot e^x + (2x^5 + 10x^4)' \cdot e^x \]

\[h''(x) = (2x^5 + 10x^4) \cdot e^x + (10x^4 + 40x^3) e^x \]

\[h''(x) = (2x^5 + 10x^4) \cdot e^x \]
[3] (2 points total) Differentiate

\[f(x) = \frac{x - 1}{x + 1} \]

\[h(x) = \frac{g f' - f g'}{g^2} \]

\[= \frac{(x + 1) \cdot 1 - (x - 1) \cdot 1}{(x + 1)^2} \]

\[= \frac{x + 1 - (x - 1)}{(x + 1)^2} = \frac{2}{(x + 1)^2} \]

\[h'(x) = \frac{2}{(x + 1)^2} \]

[4] (2 points total) For what value(s) of \(x \) does the graph of \(f \) have a horizontal tangent?

\[f(x) = \frac{x^4 - 6x^3 + 9x^2}{3x} \]

\[\text{Simplify first} \]
\[f(x) = \frac{x^4}{3x} - 2x^2 + 3x \]
\[f'(x) = \frac{1}{3} x^3 - 2x^2 + 3x \]

\[\text{Taking derivative} \]
\[f'(x) = x^2 - 4x + 3 \]

\[\text{Horizontal tangent when } f'(x) = 0 \]
\[x^2 - 4x + 3 = 0 \]
\[(x - 3)(x - 1) = 0 \]
\[x = 3, 1 \] are the values of \(x \) for which \(f \) has a horizontal tangent