Let $\{a_n\}$ be the sequence defined by $a_n = \frac{3-n}{4+n}$ for all $n \ge 1$. (a) Show that $\{a_n\}$ is monotonic by showing that the function $f(x) = \frac{3-x}{4+x}$ is monotonic on $(1, \infty)$.

(b) Show that $\{a_n\}$ is monotonic by comparing a_n and a_{n+1} for any $n \ge 1$.

(c) Is $\{a_n\}$ is bounded above? bounded below? If so, find an upper bound and a lower bound.

For each statement below, indicate if the statement is true or false. If the statement is true, provide an explanation. If false, provide a counterexample.

1. True or False. If $a_n = f(n)$ for a function f(x) and $\{a_n\}$ is monotonic, then f(x) is monotonic on $(1, \infty)$.

2. True or False. If $\{b_n\}$ diverges and $0 \le b_n \le a_n$ for all $n \ge 1$, then $\{a_n\}$ diverges.

3. True or False. Every unbounded sequence diverges.

4. True or False. If $\{a_n\}$ is decreasing, $\{b_n\}$ is increasing, and $b_n \leq a_n$ for all $n \geq 1$, then $\{a_n\}$ and $\{b_n\}$ both converge.